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We have performed anab initio study of the oscillation periods of the interlayer coupling in sandwiches of
@100# layers of body centered cubic Cr, respectively, Mo, with up to 20 monolayers thickness embedded in an
Fe host. Our derived values for the oscillation periods of the interlayer coupling agree well with those expected
from the respective Fermi surface calipers and are in excellent agreement with experiment. We compare the
interlayer coupling across a nonenhanced paramagnetic Cr spacer with the interlayer coupling across a Cr
spacer in the spin-density wave state. We find that the spin-density wave gives rise to an additional contribu-
tion to the interlayer coupling. The origin of the observed and calculated 18 Å period of the interlayer coupling
can be explained as due to a caliper of the Fermi surface of Cr in the CsCl structure. In the case of the Mo
spacer we investigate the influence of the lattice constant on the interlayer coupling and also the dependence of
the interlayer coupling amplitude on the Fe magnetic moment.@S0163-1829~96!00633-9#

I. INTRODUCTION

The oscillation of the interlayer coupling as a function of
the spacer thickness has been extensively studied in recent
years. In 1986 Gru¨nberget al.1 found an antiferromagnetic
interlayer coupling in a~100!-oriented Fe/Cr/Fe sandwich.
Later, Parkinet al.2 systematically investigated the interlayer
coupling for all transition metals as a spacer imbedded in Co
by measuring the giant magnetoresistance. Among these sys-
tems, the Fe/Cr/Fe system is a special case for the following
two reasons.

First, Cr is an antiferromagnet in contrast to the other
investigated spacer materials which are paramagnets. There-
fore the question arises of how much the exchange enhance-
ment~see Sec. III A! of Cr influences the interlayer coupling.
Up to now all model calculations and all total-energy calcu-
lations which make use of the force theorem3 have neglected
the exchange enhancement effects. In order to answer this
question we performed two sets of self-consistent total-
energy calculations, one where the Cr exchange enhance-
ment was supressed by treating Cr as a paramagnet, and
another one where we allowed for the Cr exchange enhance-
ment by letting Cr build up an incommensurable spin-density
wave.

Second, experiments have found an extraordinarily long
period ~18 Å! for Cr as a spacer, despite the fact that the
bcc-Cr Fermi surface does not display a corresponding cali-
per. We show, however, that the CsCl-structure-Cr Fermi
surface exhibits exactly the 18 Å caliper, where the CsCl
structure is the same as the bcc structure but with two atoms
in the unit cell. This observation seems to rule out other
possible explanations for the experimentally observed long
period oscillation, e.g., that it is not a higher harmonic of the
short period oscillation as Schilfgaardeet al. suggest,4 and
that it is not due to small variations of the Fermi energy as
for example Koelling5 has suggested.

Since the Fermi surfaces of Mo and Cr are very similar,
we have also studied the Fe/Mo/Fe system. It is known6,7

that Cr has a 2.1 ML oscillation, which is connected with the
nesting properties of the Cr Fermi surface. In correspondence
to this, for the Mo spacer we also find a 2 ML oscillation,
which has already been predicted by Koelling5 and Levy
et al.,8 based on the nesting properties of the Fermi surface.
The long period that we find for Mo (15 Å! is in excellent
agreement with what is implied by the Fermi surface. How-
ever, our calculational method does not take lattice relax-
ations into account. Since the lattice constants of Fe and Mo
differ by about 9%, we made one set of calculations where
we used the lattice constant of Mo,aMo , for the entire sand-
wich, i.e., for both Fe and Mo, and analogously one set of
calculations where we used the lattice constant of Fe,aFe.
This gives us an idea about the influence of lattice relax-
ations on the interlayer coupling. Moreover, the choice of
lattice constant affects the magnitude of the magnetic mo-
ment. We calculate that the Fe bulk magnetic moment is
2.23mB usingaFe and 2.72mB usingaMo . We will show that
this difference in the Fe magnetic moment is responsible for
the difference in the interlayer coupling amplitudes for the
two lattice constants. The organization of the paper is the
following. In Sec. II we describe the details of our calcula-
tions. In Sec. III we present our results for the Fe/Cr/Fe
sandwich, and in Sec. IV we present our results for the
Fe/Mo/Fe sandwich. Finally in Sec. V we summarize our
results.

II. CALCULATIONAL METHOD

We have performed self-consistent electronic structure
calculations by means of the scalar relativistic spin-polarized
Green’s-function technique9 based on the linear muffin-tin
orbitals method10 within the tight-binding,11 frozen core, and
atomic-sphere approximations. This has been done using the
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local spin-density approximation in the Vosko-Wilk-Nusair
parametrization scheme.12 The Fe/Cr/Fe~Fe/Mo/Fe! sand-
wiches were constructed by embeddingn @100# layers of Cr
~Mo! between two semi-infinite body centered cubic crystals
of Fe, which symbolically may be written in the form

`•••Fe$Cr%nFe•••`. ~1!

For the Fe/Cr/Fe sandwich the atomic Wigner-Seitz radius is
assumed to be 2.662 bohr for both Fe and Cr corresponding
to the experimentally observed volume of bcc Fe. The
Green’s-function technique takes into account the broken
symmetry perpendicular to the interface and therefore deals
correctly with the purely two-dimensional symmetry of the
problem. The interlayer coupling is very sensitive to the to-
pology of the Fermi surface. Therefore it is important to
perform thek point and energy integration with high accu-
racy. We use the principal layer technique13 and thereby
avoid an integration overk' , the component of the wave
vector perpendicular to the Cr layers. Within our method we
have thus nok' , but onlyki . The direction perpendicular to
the Cr layers is dealt with in real space. For theki integration
we find that 528 specialk points14 in the irreducible part of
the two-dimensional Brillouin zone are sufficient for spacer
thicknesses up to 20 layers. The energy integration was per-
formed at 16 logarithmically spaced points on a semicircular
contour in the complex energy plane. The point on the con-
tour closest to the real axis lies 70 meV below it. This is
comparable to a temperature smearing of 235 K. The princi-
pal layer consists of three atomic layers which implies that
the total number of layers, of Fe and Cr, has to be a multiple
of three. Thus the bulk Fe on each side of the sandwich is
adjusted in the range 3–5 Fe layers depending on the number
of spacer layers.

III. Fe-Cr-Fe

A. Exchange enhancement

The enhanced susceptibilty,x(q), of Cr can be written in
terms of the Pauli spin susceptibility,x0(q), according to

x~q!5
x0~q!

12Ix0~q!
, ~2!

where I is the Stoner exchange parameter. If we assume
I50, the susceptibiltyx(q) is equal to the nonenhanced
Pauli spin susceptibilityx0(q). For nonenhanced paramag-
netic Cr, hereafter denoted CrPM, we requirex(q)5x0(q).
In our calculation we achieve the restrictionx(q)5x0(q) in
the following way: The exchange-correlation energy in the
spin-polarized case is

exc~r s ,z!5exc
PM~r s!1Dexc~r s ,z!, ~3!

wherer s andz are the standard variables for density and spin
polarization, respectively, and PM stands for paramagnet.
During the entire self-consistency cycle we use for CrPM

exc~r s ,z!5exc
PM~r s!, ~4!

i.e., we only allow those exchange and correlation interac-
tions which are inherent in a paramagnetic system.

We emphasize that this does not imply that the Cr mag-
netic moment is identical to zero, since a paramagnet under
the influence of a magnetic field~in our case the surrounding
Fe layers! is indeed spin polarized.

It is well known that Cr at room temperature is an anti-
ferromagnet but in LSDA it is calculated to be a
paramagnet15 at its equilibrium volume. Neither does Cr be-
come antiferromagnetic~AFM! in our calculations in which
we allow for the exchange enhancement in Cr, i.e.,IÞ0, but
it does build up an incommensurable spin-density wave
~SDW!. The difference between an AFM and the SDW so-
lution becomes particularly evident at large Cr thicknesses.
For an AFM solution the magnetic moment of Cr is indepen-
dent of the layer thickness, whereas for the SDW solution the
magnetic moment of Cr decreases with the layer thickness.

B. Interlayer coupling oscillation

We have calculated the total energy for two distinct mag-
netic configurations where the alignment of the Fe magnetic
moments between the two separated Fe sides were either
parallel or antiparallel. Hence the interlayer couplingJ is
defined as the energy difference

J~d!5Etot
↑↓~d!2Etot

↑↑~d!, ~5!

whered is the spacer thickness andEtot is the total energy.
For small spacer thicknesses the interlayer coupling de-
creases exponentially and thek points which contribute to
the interlayer coupling do not necessarily fulfill the station-
ary phase condition. Therefore we only include thicknesses
larger than 5 ML in the following analysis. To extract the
oscillation periods we perform a least squares fit of our cal-
culated interlayer couplingJ to the asymptotic limit of the
RKKY expression:

J5
A1sin~v1d1f1!

d
1(

i52

4
Aisin~v id1f i !

d2
. ~6!

The first term on the right-hand side has a 1/d dependence.
This is expected for full planar nesting, i.e., for the short
period oscillation. The terms in the summation show the
usual 1/d2 dependence, which is expected for calipers be-
tween extrema of the Fermi surface.16 This expression con-
tains 12 parameters, the fitted values of which are found in
Table I. Both configurations, SDW and PM, have been
treated separately but we find that the fit for JCrPM

agrees
better with the values of the self-consistent calculation~the
root mean square amounts to 0.8 meV for CrPM and to 2.2
meV for CrSDW). This is also evident in Figs. 1 and 2, where

TABLE I. Fitting parameters and Fermi-surface calipers of Cr in
the CsCl structure.

CrSDW CrPM Fermi
i v i ~ML ! Ai ~meV! F i v i ~ML ! Ai ~meV! F i Q i ~ML !

1 2.05 326 -0.70 2.07 99 -0.31 2.10
2 3.43 431 3.87 2.66 315 -5.53 2.64
3 5.02 910 7.56 3.61 246 -0.65 3.88
4 11.05 738 -0.71 11.98 486 2.82 11.6
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we show the calculated interlayer coupling together with the
fit. Nevertheless, the agreement between the calculated curve
and the fit is quite good in both cases. Both for CrPM and
CrSDWwe obtain a short period oscillation~SPO!, 2 ML, and
a long period oscillation~LPO!, 11.5 ML. Both the LPO and
the SPO are in excellent agreement with experiment1,6 as
well as with the Fermi surface calipers~Fig. 3 and Table I!.
However, the experimentally obtained amplitude1 of the in-
terlayer coupling is about 103 times smaller than the calcu-
lated amplitude.

From Figs. 1 and 2 we notice two different preasymptotic
behaviors. For the 1 ML Cr spacer, the interlayer coupling
amplitudes, i.e.,JCrPM andJCrSDW, are more or less identical,

whereas between 2 and 6 MLJCrPM is smaller than JCrSDW by
nearly 2 orders of magnitude. We find that the frustration of
the spin-density wave~see Sec. III D! is energetically more
expensive in the preasymptotic regime than in the asymptotic
regime. This explains the large amplitude ofJCrSDW in the
preasymptotic regime.

Besides the SPO and the LPO we find a 2.66 ML and a
3.61 ML period for CrPM. These two intermediate periods

are in very good agreement with the corresponding Fermi
surface calipers. This notwithstanding neither the 2.66 nor
the 3.61 ML period have been verified experimentally. On
the other hand, experiment reveals a 3 ML period for a Mo
spacer, which has a Fermi surface very similar to the one of
Cr ~see Sec. IV A!. However, the amplitude of the 2.66 ML
period with Cr as a spacer is smaller than the 3 ML period
with Mo as a spacer, which might be the reason why it has
not been observed yet.

In the case of CrSDWwe find 3.4 ML and 5.0 ML periods.
None of these two periods matches with any Fermi surface
caliper of Fig. 3, but in Ref. 17 Stiles finds by means of a
model calculation a 5.0 ML Fermi surface caliper having its
origin in a Fermi surface plane parallel to the one shown in
Fig. 3, i.e.,kiÞ0. This concludes the discussion about the
intermediate periods and we now turn our attention to the
SPO and LPO.

1. Short period oscillation

We find a 2.07 ML, respectively, 2.05 ML, period~Table
I! both of which are in excellent agreement with the experi-
mental value of 2.1160.03 ML ~Ref. 6! and the length of the
nesting caliper of 2.10 ML~Fig. 3!.

Due to the incommensurability of the SPO with the lattice
a phase slip occurs with a period of

Tphase slip5
TSPO

u22TSPOu
. ~7!

With the calculated SPO~2.07 ML! we get a phase slip every
29 ML, whereas experimentally at room temperature a phase
slip is obtained every 22 ML. In our calculation the period of
the phase slip is governed by the difference between the
kinetic energy and the sum of Hartree and exchange-
correlation energy. Thus the behavior of the phase slip
strongly depends on the calculational accuracy of the total
energy. If we fix theEn parameter10 at its bulk value, we

FIG. 1. Calculated interlayer coupling JCrSDW as a function of the
CrSDW spacer thicknessdCr . The inset shows JCrSDW ~solid line!
together with the fit~broken line! in the asymptotic regime.

FIG. 2. Calculated interlayer coupling JCrPM as a function of the
CrPM spacer thicknessdCr . The inset shows JCrPM ~solid line! to-
gether with the fit~broken line! in the asymptotic regime.

FIG. 3. Fermi surface of bulk Cr along theG2H direction
(k'). The lines indicate extremal spanning vectors. We show the
Fermi surface in the bcc structure, but in the left half of the figure
we also show the Fermi surface in the CsCl structure.
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obtain a phase slip at 13–14 ML in agreement with the cal-
culation by Schilfgaardeet al.18 If we include theEn param-
eter in the self-consistent procedure, i.e., if we always choose
En at the center of the occupied density of states, we expect
a phase slip at about 29 ML. Unfortunately, the calculated
interlayer coupling fordCr.20 ML was not fully converged
within the computational limits. Moreover, the phase slip
depends on the accuracy of the calculated short period oscil-
lation ~SPO!. Let us assume a value of 2.0760.02 ML. With
this accuracy the phase slip can vary between 23 ML and 41
ML, which shows the difficulty to compare the calculated
result of the phase slip with experiment.

For a discussion of the amplitude of the SPO, we caculate
the spectral densityDs ,

Ds~E,ki!52
1

p
Im Tr(

i
Gii ~E,ki!, ~8!

for ki equal to a nesting point. The trace is to be taken over
the orbitals andGii is the Green’s function of the layeri . We
do not include all layersi in the above summation because
otherwise the existing interface states would complicate the
interpretation of the spectral density peaks. Every peak in the
spectral density that moves periodically through the Fermi
energy with increasing spacer thickness corresponds to a
quantum well~QW! state. In Fig. 4 we show the dispersion
of the QW states for the nesting calipers, i.e., the energy
position of the QW state for different spacer thicknesses. The
stars in the figure correspond to peaks in the spectral density
and the lines indicate the periodical movement of the QW
states through the Fermi energy. The period of the QW states
amounts to 2.0760.02 ML which is in excellent agreement
with the fitted SPO and the nesting caliper. In Fig. 5 we
display the energy dependence of the QW states for a par-
ticular spacer thickness. The QW states are rather broad
compared to Mo, for example. A look at the band structure
along k' at that nesting point~Fig. 6! for both Fe and Cr
reveals that the Cr wave functions at the Fermi energy do not
experience an energy gap. This is not the case for all nesting

points, since in the range of (0,0),ki,(0,0.25), the Cr
wave functions indeed experience a gap.

2. Long period oscillation

As already pointed out in the Introduction, the nature of
the LPO in Cr has been puzzling for quite a long time. Until
now, no first-principles calculation could reproduce the LPO.
Moreover, the fact that the bcc Cr Fermi surface offers no
caliper of a length that would correspond to the LPO left
room for speculations. Recently, Schilfgaarde and Harrison4

argued that the LPO might be a higher harmonic of the SPO.
Their argumentation seems to lead to the conclusion that the
phase slip period is identical to the period of the long oscil-
lation, which certainly is not true.1,6 Koelling et al.suggested
that a small change in the Fermi energy might modify the
topology of the bcc Fermi surface such that the 9 ML caliper
changes to a 10212 ML caliper. We investigated the bcc
Fermi surface for a different value of the Fermi energy
@EF(T50)1T5300 K# and found no changes that would
give rise to a 10212 ML caliper.

In the past, the bcc Cr Fermi surface has been investigated
in order to find the caliper which gives rise to the LPO.
Investigating instead the Fermi surface of Cr in the CsCl
structure, i.e., that the unit cell of the Cr consists of two
atoms per cell, we found that the Cr Fermi surface in the
CsCl structure gives rise to different calipers than in the bcc
structure as long as the nesting caliper is incommensurable
with the lattice. In the bcc structure a caliperQ along the
~100! direction, fulfills the following equation:

Q1k5Gbcc, ~9!

whereGbcc is the reciprocal lattice vector of the bcc lattice.
In the CsCl structure the same caliperQ fulfills instead the
following equation:

FIG. 4. Dispersion of QW states with thickness. The energy
position of the QW states relative to the Fermi energy as a function
of the Cr thickness is shown for one nestingk point ki5(0,0.25)
when the Fe magnetic moments aligned parallel. The broken lines
indicate the periodic movement of the QW peaks through the Fermi
energy.

FIG. 5. Energy position of the QW states fordCr516 ML and
the nestingk point ki5(0,0.25) when the Fe magnetic moments are
aligned parallel. For this thickness the SDW is frustrated. The solid
~dotted! line indicates the QW states of CrSDW ~CrPM) and for com-
parison the dashed line shows the QW states of Mo (aMo) in the
Fe/Mo/Fe system, i.e., a system for which the SPO follows the
strong scattering limit.
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Q1k85
Gbcc

2
. ~10!

If we now assume the caliper spanning the hole octahedron
atH in the bcc structure to be identical withQ in Eq. ~9! and
Eq. ~10!, the caliperQ4 in Fig. 3 is identical tok8 in Eq.
~10!. As long as the nesting caliperQ1 is incommensurable
with the lattice, we find no caliper in the bcc structure which
is identical withQ4 in Fig. 3. In other words, the calipers
Q4 and Q̃4 have different lengths as long asQ1 is incom-
mensurable with the lattice.

If paramagnetic Cr is correctly described assuming a bcc
structure, the bcc and CsCl Fermi surfaces should give rise to
the same calipers. Our findings suggest that even our para-
magnetic bulk solution is not correctly describable assuming
a bcc structure for Cr, i.e., the CsCl structure of Cr is not
reducible to a bcc structure, as long as the nesting caliper of
Cr is incommensurable with the lattice. In agreement with
our findings Schwartzmanet al.19 showed that if many-
particle effects, i.e., exchange and correlation, are neglected,
the susceptibility of paramagnetic Cr has a sharp peak near
the nesting caliper in contrast to Mo.

Since Cr has an incommensurable nesting vector the CsCl
and bcc Cr Fermi surface give rise to different calipers at the
G point, i.e., the calipersQ4 and Q̃4 give rise to different
periods. CalipersQ1 ,Q2, andQ3 are identical for the bcc
and CsCl-Cr Fermi surface. For the CsCl Fermi surface the
Q4 caliper is 11.6 ML long and gives rise to an intraband
transition, whereas for the bcc Cr Fermi surface theQ̃4 cali-
per is 9.3 ML long and gives rise to an interband transition
which exactly at theG point even is symmetry forbidden
~Fig. 3!. This means that the agreement is excellent between
the Fermi-surface calipers, the fitted interlayer coupling pe-
riods, and the experimentally obtained interlayer coupling
periods if we use the paramagnetic CsCl Fermi surface.

In the case of, say, bcc Cu the calipers of the CsCl and of
the bcc Fermi surface are exactly the same because there is
no incommensurable nesting vector. The correct description
of Cr is a unit cell which contains two atoms per cell. By
increasing the number of atoms per unit cell even more, for
example, by using four atoms, the lengths of the calipers do
not change.

C. Contributions to the interlayer coupling

In this section we describe the interlayer coupling for
CrSDW by considering it as a sum of two distinct contribu-

tions, namely, the spin-density wave contributionJSDW and
the multiple scattering contributionJscattering,

JCrSDW5JSDW1Jscattering. ~11!

For Cr as a paramagnetic spacer the interlayer coupling has
its origin merely in multiple scattering. Therefore the mul-
tiple scattering contribution to the interlayer coupling across
the CrSDW spacer approximately equals the total interlayer
coupling across the paramagnetic Cr spacer,
Jscattering5JCrPM.

For a spacer thickness where the SDW in Cr is frustrated,
Fig. 5 displays the spectral density for one nesting point for
both the CrPM and the CrSDW spacer and confirms the above
equality. For spacer thicknesses where the SDW in Cr is
frustrated~Sec. III D! there exists nearly no SDW contribu-
tion to the spectral density. Therefore the spectral densities
for CrPM and CrSDW in Fig. 5 should be rather similar to
each other. The small differences in the spectral densities
have their origin in slightly different boundary conditions at
the Fe interface.~Due to hybridization the Fe interface mo-
ment depends on whether it is in contact with a CrPM spacer
or a CrSDW spacer.! In Fig. 7 we show, as in Fig. 5, the
spectral density for one nesting point for both the CrPM and
the CrSDW spacer, but now for a spacer thickness where the
SDW in Cr is matched at the Fe interface. We notice that the
spectral density peaks of CrSDW are exchange shifted and

FIG. 6. Energy bands along a nesting caliper
in Fe and Cr. The left panel shows the Fe spin-
down bands and the right panel the Fe spin-up
bands. The middle panel shows the Cr bands.
h1 has the coordinates, (2p/a)~0,0.25,0! andg1

the coordinates (2p/a)~0 ,0.25,1!.

FIG. 7. Energy position of the QW states fordCr515 ML and
the nestingk point ki5(0,0.25) when the Fe magnetic moments are
aligned parallel. This thickness allows the formation of a SDW. The
solid ~dotted! line indicates the QW states of CrSDW ~CrPM).
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amplified compared to the peaks of CrPM. For all Cr layers
having a positive~negative! magnetic moment the peaks are
shifted by plus~minus! half the exchange splitting compared
to the peaks of CrPM.

Now we can compare the two different contributions to
the interlayer coupling, i.e.,JSDW5JCrSDW2JCrPM since

Jscattering5J CrPM
. In Fig. 8 we show both the spin-density

wave and the multiple scattering contribution to the inter-
layer coupling across the CrSDW spacer. We notice that both
contributions are of the same order of magnitude. Therefore
the interlayer coupling for a Cr spacer has two equally im-
portant contributions, multiple scattering16 and spin-density
wave. The effect of the spin-density wave in Cr is to force
the magnetic moments of the ferromagnetic layer to align
with the magnetic moment of the closest Cr layer. For most
spacer materials the spin-density wave contribution is negli-
gible, as in Mo, or even absent, as in Cu. In most cases the
multiple scattering contribution is equal to the interlayer cou-
pling, i.e.,J5JMS. For Cr, on the other hand, there exists in
addition a spin-density wave contribution, since Fe induces a
spin-density wave in Cr. We expect an antiferromagnetic cal-
culation to give about the same results forJSDW as obtained
here, since for the presently investigated range of spacer
thicknesses the amplitude of the SDW in Cr is more or less
constant within the spacer~see Sec. III D!.

D. Magnetic properties

In Fig. 9 we compare the magnetic moment profiles for
CrSDW with CrPM. For an odd~even! number of spacer lay-
ers the absolute value of the magnitude of the Cr magnetic
moment has to go through zero, if the Fe magnetic moments
are aligned antiparallel~parallel!.7 In short, this behavior is
due to the boundary conditions the spin-density wave expe-
riences at the interface, i.e., we have one situation where the
spin-density wave is matched at the Fe interface and another
situation where the spin-density wave is frustrated. In the
matched situation~left graph! the Cr interface magnetic mo-
ment for CrPM is reduced to 26% and in the following layer
it is reduced even further to 6% compared to the respective
moments of CrSDW. We point out that the magnetic moment

of CrSDW decreases only slightly with layer thickness as is
evident from Fig. 9~left!. At the interface the Fe magnetic
moment is reduced due to hybridization with Cr.20 At the
interface with CrSDW ~CrPM) the Fe moment amounts to
1.97mB (1.91mB), which corresponds to a 14% reduction
compared to the magnetic moment of bulk Fe.

IV. Fe/Mo/Fe

A. Fermi surface

The oscillation periods of the interlayer couplingJ are
determined by the Fermi-surface topology. In the asymptotic
limit, i.e., for large distancesd between the Fe layers, the

RKKY theory predictsJ;ei2k
W
Fd

W
in the free-electron case21

andJ;ei (k
W
i2kW j )d

W
for a periodic potential, wheredW points in

the direction perpendicular to the interfaces. Thus it is the
difference between twok points at the Fermi energy,

kW i2kW j , that determines the periods of the interlayer cou-

pling. The vectorskW i andkW j have to fulfill the following four
conditions in order to asymptotically determine the periods
of the interlayer coupling: FirstkW i andkW j have to lie on the
Fermi surface, second (kW i2kW j )idW , third the group velocities

vW i andvW j must be antiparallel, and fourth the band symmetry
in pointskW i andkW j must be the same.

In Fig. 10 we show the Fermi surface of bulk-Mo with the
experimental lattice constant of Mo,aMo53.14 Å, and with
the experimental lattice constant of Fe,aFe52.86 Å. Some
pairs of k points ~calipers!, which fulfill the above-
mentioned conditions and therefore contribute to the oscilla-
tion of the interlayer coupling in the asymptotic limit are
indicated by arrows: CaliperQ1 is the nesting caliper. It
connects the jack centered onG with the octahedron centered
on H ~2 ML!. CaliperQ2 connects the ellipses atN. The
caliperQ3 connects the ellipse atN with the jack. Finally,
the caliperQ4 connects the jack with the lens found along
theD line from G to H. The lengths of the calipers depend
on the value chosen for the Mo lattice constant. The 2 ML
caliper is shorter usingaFe, whereas the three other calipers
are longer usingaFe. The calipers for the two lattice con-
stants which were determined graphically, are collected in

FIG. 9. Magnetic moment of CrSDW and CrPM for a parallel
alignment~left graph! and an antiparallel alignment~right graph! of
the Fe moments fordCr515 ML.

FIG. 8. The multiple-scattering contribution Jscattering and the
spin-density wave contribution JSDW as a function of the spacer
thicknessdCr .
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Table II, using the relationv i51/Lki
, wherev is the period,

Lk is the length of the caliper andi labels the four above-
mentioned calipers.

B. Band structure

The amplitude of the interlayer coupling is determined by
the degree of matching between the Fe and Mo bands.22 The
amplitude is small in case the Mo states at the Fermi energy
can couple to Fe states, i.e., if there is no gap. The amplitude
is larger in case the Mo states at the Fermi energy find no Fe
states to couple with, i.e., if there is a gap. In the following
we want to investigate the band structure along the four cali-
pers, i.e., alongk' for four different ki . As mentioned
above, we have nok' in our calculation, which implies that
it is not obvious which band structure to investigate. We find
that the interface-Fe properties, and not the Fe bulk proper-
ties, determine the amplitude of the interlayer coupling.
Therefore we show the bulk Fe band structure but with the
potential parameters10 of the Fe interface layer. In other
words we fix the Fe bulk magnetic moment at the calculated
interface magnetic moment. In Figs. 11, 12 and 13 we show
the band structures for each caliper,Q1–Q4, separately. The
bands in the figures are numbered in order of increasing en-
ergy at the right zone boundary.

In Fig. 11 we show the bands along the caliperQ1 for
aMo . For aFe ~not shown, but similar to Fig. 6!, the Mo and
Fe bands~bands 3 and 5 in Fig. 11! match each other for
both spin directions, but foraMo , only the spin-down bands
of Mo and Fe match. The spin-up bands of Fe and Mo are of
different symmetry at the Fermi energy, which leads to a gap
for the spin-up states of Mo. Thus, forQ1 we find a gap
usingaMo , but no gap usingaFe.

In Fig. 12 we show the bands alongQ2 andQ3 for aFe.
CalipersQ2 andQ3 have about the sameki , which implies
that the band structures alongQ2 to Q3 do not differ signifi-
cantly. The bands 2 and 4 give rise to caliperQ3 whereas
caliperQ2 involves only band 2. For both lattice constants
and both calipers the Mo states find Fe states to couple with
at the Fermi energy regardless of the spin direction, since the
Fe and Mo bands have the same symmetry. We find no gap
for either lattice constant and the Fe and Mo bands match.

In Fig. 13 we show the bands alongQ4 for a Mo . The
caliperQ4 connects bands 3 and 4. At first sight it seems as
if this caliper violates the symmetry condition. The caliper
joins the D28 band ~band 4! with the D5 band ~band 3!.
However, we recall that not only the critical point, but a
small region around it, contributes to the interlayer coupling.
At theG point theD5 band is doubly degenerate. But already
in a small region around theG point this degeneracy is
lifted23 so that the transition between bands 3 and 4 does not
violate the symmetry condition. Hence caliperQ4 fulfills all
conditions~Sec. IV A! and thus contributes to the interlayer
coupling. For both lattice constants, only the spin-down
bands of Fe and Mo match each other, whereas the spin-up
Mo states experience a gap. For caliperQ4 we find gaps
using either lattice constant.

C. Interlayer coupling oscillation

We again calculated the total energy for two magnetic
configurations, where the Fe magnetic moments either point
parallel or antiparallel to each other. Then the interlayer cou-
pling J is defined as in Eq.~5!. In Figs. 14 and 15 we show

FIG. 11. Energy bands alongQ1 in Fe and
Mo for aMo . The first panel shows the Fe spin-
down bands and the last panel the Fe spin-up
bands. The panel in between shows the Mo
bands.h1 has the coordinates (2p/a)~0,0.25,0!
andg1 the coordinates (2p/a)~0,0.25,1!.

TABLE II. Fermi surface calipers of Mo.

v i @ML # aFe aMo

v1 2.00 2.05
v2 3.11 2.74
v3 4.21 4.00
v4 10.77 9.66

FIG. 10. Fermi surface of bulk Mo along theG-H direction
(k'). The solid~broken! line is the Fermi surface of bulk Mo for
the lattice constantaFe (aMo). The arrows indicate calipers contrib-
uting to the interlayer coupling~see text!.
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the calculated interlayer couplingJ as a function of the
spacer thicknessd (d51, . . . ,20 ML! ~solid curve!. To ex-
tract the oscillation periods we again perform a least squares
fit of our calculated interlayer couplingJ to the asymptotic
limit of the RKKY ~QW! expression as in Eq.~6!. The fit
expression contains 12 parameters, the fitted values of which
are found in Table III. In order to compare the oscillation
periods for the two different values of the lattice constant, we
have to do a fit with at least four periods. A fit with only
three periods leads to the three strongest periods for the re-
spectivea: v1, v3, andv4 for aFe andv1, v2, andv3 for
aMo . Previously

24 we reported results using only three fit
periods all of which have a 1/d dependence and did not
obtain the 3 ML period for eithera.

In the following we compare our fitted periods with the
Fermi-surface calipers~Table II!. When we compare the sec-
ond columns of Table II and Table III and the third column
of Table II with the fourth column of Table III, we find a
nearly perfect agreement. The difference between the Fermi-
surface values and the fit values is at most 4% and indicates
the exactness and convergence of our computational method.
Levy et al.8 find by use of the Anderson model, only the 2
ML oscillation and others17,5 find by investigating the pos-
sible Kohn-anomaly spanning vectors an extensive list of
possible oscillation periods, including the periods found by
our fit. Experimentally only the 3 ML oscillation has been
found in the ~100! direction.25 Their reported coupling
strength amounts to 0.12 meV atd'5 ML, which is equiva-
lent to a coupling amplitudeA2'3 meV. Thus the experi-
mentally obtained coupling amplitude is by about a factor of
102 smaller than the theoretical one. This is not so surprising,
since in our calculation we include neither surface roughness
nor defects which both broaden the scattering state and
thereby decrease the coupling amplitude. The question of
why the other periods have not been observed experimen-

tally is still open. In Ref. 5 Koelling made the argument that
the 3 ML oscillation is ofsp nature in contrast to the other
periods which all containd character. Then, by defect scat-
tering thed character is washed out, whereas thespcharacter
is less influenced by such factors. This line of argumentation
should also be valid for the 4 ML oscillation, which is domi-
nantly ofspcharacter as well. But the 4 ML oscillation is not
found experimentally in spite of the fact that theoretically the
amplitude of the 4 ML oscillation is even larger than the 3
ML oscillation.

D. Interlayer coupling amplitude

From the theoretical point of view the RKKY~Ref. 16!
and the quantum well~QW! theory22 were both put forward
to explain the salient features of the interlayer coupling.
There is general agreement that RKKY theory and QW
theory are equivalent and that they are capable to explain the
features of the interlayer coupling. Both describe a multiple
scattering process. If one only considers the lowest contrib-
uting scattering order, i.e., one single scattering of the wave
function both at the left and right interface, one recovers the
RKKY expression found by perturbation theory.16 This de-
fines the weak scattering limit, which implies that the inter-
layer coupling amplitude,A, is proportional to the square of
the ferromagnet’s magnetic moment,M2.4,16 If higher orders
of scattering are included, i.e., multiple scattering at both
interfaces one recovers the QW theory. Higher orders of
scattering become important when a gap opens up at the
Fermi energy. Then, in the strong scattering limit, the inter-
layer coupling amplitude is independent of the magnetic
moment.26

In the following we investigate the dependence of the
interlayer coupling amplitude on the magnetic moment of Fe.
Earlier Schilfgaardeet al.4 made a similar investigation for a

FIG. 12. Energy bands alongQ2 ~andQ3) in
Fe and Mo foraFe. The first panel shows the Fe
spin-down bands and the last panel the Fe spin-up
bands. The panel in between shows the Mo
bands.h2, g2, h3, andg3 have the coordinates
(2p/a)~0,0.42,0!, (2p/a)~0,0.42,1!,
(2p/a)~0,0.44,1!, and (2p/a)~0,0.44,1!, respec-
tively.

FIG. 13. Energy bands alongQ4 in Fe and
Mo for aMo . The first panel shows the Fe spin-
down bands and the last panel the Fe spin-up
bands. The panel in between shows the Mo
bands.
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Fe/Cr/Fe system. In the weak scattering limit, the interlayer
coupling amplitude,A, can simply be expressed as a function
of the Fermi surface curvature,k, and the square of the fer-
romagnet’s magnetic moment,M2.27 Thus the interlayer cou-
pling does not explicitly depend on the chosena. Moreover,
the Fermi surface curvatures for the two lattice constants
differ so little that we may approximate the ratio of the in-
terlayer coupling amplitude by the ratio of the square of the
Fe magnetic moments,

AaMo

AaFe

5
MaMo

2

MaFe
2 . ~12!

The small difference between the Fermi surface curvatures of
the two lattice constants is reflected by the difference in the
phases obtained by our fit~Table III!. For the 2 ML oscilla-
tion the difference vanishes. In this case the Fermi surface

curvatures are equal for both lattice constants~Fig. 10!. The
difference in the center of band,C, between spin up and spin
down,

C↑2C↓5DC, ~13!

is to first-order approximation proportional to the difference
in occupation numbers between spin up and spin down, i.e.,
the magnetic moment

DC;M . ~14!

From Eqs.~12! and~14! it follows that the amplitude ratio is
equal to the ratio of the square of the center of band differ-
ences, i.e.,

AaMo

AaFe

5
~DCaMo

!2

~DCaFe
!2
. ~15!

In the following we discuss whether Eq.~15! is fulfilled for
the four different calipers. In Table IV we compare our fitted
amplitudes with the square of the center of band difference.
We obtainedDC graphically by using the Fe bands that give
the strongest contribution to the interlayer coupling. Obvi-
ously these are bands 3 and 5 for caliperQ1, band 2 for
Q2, bands 2 and 4 forQ3, and bands 3 and 4 forQ4. In the
first column we show the amplitude ratio and in the second
column we show the ratio of the square of the center of
bands difference. For the 3,4, and 10 ML oscillation the two
ratios are about equal, i.e., Eq.~15! is fulfilled and thus the
amplitude is proportional to the magnetic moment squared.
However, for the 2 ML oscillation the two ratios deviate by
about 40%, i.e., Eq.~15! is not fulfilled. The band structure
at Q1 alongk' tells us that for theaMo there is a gap con-
tributing to the interlayer coupling, whereas for theaFe there
is not. The disagreement for the 2 ML oscillation is thus
expected, since, as mentioned earlier, the appearance of a
gap~for theaMo) implies that the interlayer coupling ampli-
tude is independent on the Fe magnetic moment. In contra-
diction with theoretical predictions26 stands that despite the
fact that for caliperQ4 we find a gap for both lattice con-
stants, we find the interlayer coupling amplitude to be pro-

TABLE III. Fit parameters for the Mo spacer.

aFe aMo
i v i ~ML ! Ai ~meV! F i v i ~ML ! Ai ~meV! F i

1 2.04 181 -0.32 2.06 462 -0.30
2 3.09 287 2.49 2.78 644 -1.45
3 4.03 495 3.66 3.94 699 0.66
4 11.2 355 2.02 9.66 226 2.59

TABLE IV. Comparison between the amplitude ratio and the
center of band ratio.

Caliper AaMo
/AaFe

DCaMo
2 /DCaFe

2

1 ~2 ML! 2.6 1.6
2 ~3 ML! 2.2 2.5
3 ~4 ML! 1.4 1.6
4 ~10 ML! 0.6 0.5

FIG. 14. Calculated interlayer couplingJ for aFeas a function of
the Mo spacer thickness. The solid curve gives the self-consistent
results and the broken line is the result of the fitting procedure@Eq.
~5!#.

FIG. 15. Calculated interlayer couplingJ for aMo as a function
of the Mo spacer thickness. The solid curve gives the self-consistent
results and the broken line is the result of the fitting procedure@Eq.
~5!#.
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portional to the magnetic moment squared. This we cannot
explain yet. We have thus shown that the 2 ML oscillation
for theaMo follows the strong scattering limit, whereas the 2
ML oscillation for theaFe follows the weak scattering limit.
The 3 and 4 ML oscillations both follow the weak scattering
limit for both lattice constants. For caliperQ4 we have con-
tradictory results, i.e., from the band structure we would ar-
gue that the long period oscillations follows the strong scat-
tering limit but we find it in this section to follow the weak
scattering limit.

E. Spectral density

The spectral densityDs @Eq. ~8!# can be used to derive
some information about the nature of the coupling. The un-
certainty relationDtDE'\ implies that the longer the path
of the wave~and thus the larger the timet) is, the smaller
will the uncertainty in energy become. The higher the scat-
tering orders that contribute to the interlayer coupling, i.e.,
the longer the path of the wave function, the narrower be-
comes the spectral density peak. In the following we will
only consider the spin-up states, because the contribution to
the interlayer coupling from the spin-down states is much
smaller. We calculated the spectral density for one nesting
k point @ki5(0,0.25)# as a function of the energy for the two
different lattice constants~Fig. 16!. The solid curve corre-
sponds to the Mo spectral density, i.e.,i runs over the entire
spacer with the exception of the interface layers, whereas the
broken curve indicates the Fe spectral density for the one Fe
layer furthest away from the interface. For both lattice con-
stants we see at the Fermi energy two peaks which have no
counterpart in Fe. These are scattering states. The peak width
for the aFe is considerably broader compared to the peak
width for theaMo , i.e., foraFe the 2 ML oscillation follows
the weak scattering limit while foraMo already higher scat-
tering orders contribute.

In Fig. 17 we again show the spectral density but this time
for a fixed energy, the Fermi energy, and instead as a func-
tion of the spacer thickness. The different curves correspond
to different k points all contributing to the nesting caliper.

This demonstrates clearly the 2 ML oscillation. Moreover,
all nestingk points contribute to the interlayer coupling in a
constructive manner. For a Mo thickness of 8 ML thek point
with ki50.20 gives the strongest contribution, whereas for a
Mo thickness of 16 ML the samek point gives the weakest
contribution. This difference is due to how close to the Fermi
energy the scattering peak appears for a particular Mo thick-
ness andk point.

F. Magnetic moment of Fe and Mo

At the Fe/Mo interface, Fe induces a spin polarization in
Mo. By considering a single interface,̀Fe/Mo`, one finds
that Fe gives rise to a Friedel oscillation in Mo, i.e., the Mo
magnetic moment will oscillate in space. In Table V we
show the charge and magnetic moment at the Fe/Mo inter-
face. The magnetic moment of Fe is, compared to the bulk,
reduced at the interface by 24% for theaFe and by 20% for
the aMo . This reduction is due to hybridization between the
Mo d band and the Fed band.20 We find a fast decaying Fe
charge oscillation and a slower decaying oscillation of the Fe
magnetic moment. Mo behaves as an antiferromagnet with a
small magnetic moment. At the interface Mo has a moment
of 0.23mB for aMo and of 0.04mB for aFe. At the interface,
the Mo and Fe moments always couple antiparallel to each
other.

V. SUMMARY

In the case of the Cr spacer we have shown that the mag-
netic moment of Cr influences the interlayer coupling dra-

FIG. 16. The spectral density @Eq. ~8!# for
ki5(2p/a)(0,0.25). The left~right! panel gives the spectral den-
sity for aMo (aFe) . The solid line gives the spectral density fori
only running over the Mo layers, whereas the broken line gives the
spectral density fori equal to the one Fe layer 3 ML away from the
interface with Mo.

FIG. 17. The spectral density@Eq. ~8!# at the Fermi energy as a
function of the Mo spacer thickness forki5(2p/a)(0,0.25) for
aFe. The different lines give the spectral density for differentki
points, all of which give rise to a nesting caliper.

TABLE V. Magnetic moment and charge at the Fe/Mo inter-
face.

Fe Fe Fe Mo Mo Mo Mo Mo Mo

aFe Q 7.99 7.98 8.35 5.65 6.02 6.00 6.00 6.00 6.00
M 2.34 2.49 1.68 -0.04 0.01 -0.01 0.02 -0.01 0.01

aMo Q 8.00 7.98 8.30 5.70 6.01 6.00 6.00 6.00 6.00
M 2.72 2.76 2.20 -0.23 0.03 -0.03 0.04 -0.03 0.02
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matically. Besides the multiple scattering contribution we
find a spin-density wave contribution to the interlayer cou-
pling which is of the same order of magnitude. The 18 Å pe-
riod of the interlayer coupling can be explained as due to a
caliper of the Cr Fermi surface in the CsCl structure. In the
case of the Mo spacer we have discussed the Fermi surface
of Mo and the band structure of Fe and Mo for four different
calipers. We fit four periods to our calculated interlayer
coupling and find them in excellent agreement with the Mo
Fermi surface calipers. We even find the experimentally ob-
served 3 ML period. With the exception of the 2 ML period

coupling, all the other interlayer coupling amplitudes are
proportional to the square of the magnetic moment, despite
the fact that for the longest period there exists a gap.
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