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A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon
Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex
is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is
obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction
vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy2J.
Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets,
is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum
spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on
La2CuO4. @S0163-1829~96!05430-6#

I. INTRODUCTION

Two-magnon Raman scattering has been used as a probe
to study low-energy excitations in magnetic solids, particu-
larly the short-wavelength modes. Extensive studies have
been carried out in antiferromagnets such as RbMnF3,
MnF2, and K2NiF4,

1–5 and a good theoretical understanding
exists for these systems with spinS>1, within the
interacting-magnon theory for the quantum Heisenberg anti-
ferromagnet~QHAF!.6 Recently there has been renewed in-
terest since studies in La2CuO4 ~aS51/2 system! have indi-
cated evidence of substantial quantum spin fluctuations,7–9

and the observed two-magnon Raman scattering linewidth is
much too broad to be explained within the classical theory.4

Moreover, scattering intensities are observed in geometries
which, in the classical approximation, should yield no scat-
tering. Interest in two-magnon Raman scattering continues
also because upon doping with holes, the two-magnon peak
broadens out and relaxes into the Raman continuum. In
YBa2Cu3O61x, for example, the intensity of the two-magnon
feature decreases rapidly with increasingx, and virtually dis-
appears atx50.5.10

While theoretically two-magnon Raman scattering has
been studied extensively within the QHAF, there have
been so far only limited attempts to systematically study
this within the Mott-Hubbard model. Recently a strong-
coupling expansion in powers oft/U, the hopping term,
has been carried out, and the Fleury-Loudon Hamiltonian
has been obtained at the second order level.11 In this treat-
ment, the hopping term is extended to include the gauge term
exp@( ie/\c)* i

jA–dl# arising from the external transverse
electro magnetic field, and the transition matrix elements
which determine the Raman scattering are obtained within a
strong-coupling expansion. However, it appears that so far
no systematic, formally weak-coupling expansion has been
carried out which can continuously interpolate between the
small-U and large-U limits.

Significantly, in the small- and intermediate-U regimes of
the Mott-Hubbard antiferromagnet, when the interaction
termU is less than or comparable to the free-electron band-
widthW, the one-magnon density of states~DOS! exhibits a
peak structure which broadens and shifts to lower energies

with decreasingU.12,13 In contrast, in the large-U limit, the
one-magnon DOS diverges at the upper band edge due to
zone-boundary magnons at energyDJ, whereJ54t2/U is
the exchange energy andD the dimensionality. This peak
structure resembles a broadening due to a magnon interac-
tion, and must be incorporated in any realistic theory of two-
magnon Raman scattering when applied to the small- and
intermediate-U regimes. Since it is believed that La2CuO4
does actually fall in the intermediate-U regime, a formally
weak-coupling expansion scheme has a potential application
as well.

In this paper we describe a perturbation-theoretic dia-
grammatic scheme for systematically obtaining the two-
magnon Raman scattering in the Mott-Hubbard antiferro-
magnet. Since within the Hubbard model itself there is no
formal expansion parameter, we make use of the generalized
Hubbard model withN orbitals per site,14 and develop a
systematic expansion in powers of 1/N. This perturbation-
theoretic scheme, which preserves the spin rotational sym-
metry, and hence the Goldstone mode, order by order in the
perturbation theory, has been used earlier to systematically
obtain quantum corrections to sublattice magnetization, spin-
wave energy, perpendicular susceptibility, and ground-state
energy of a Hubbard antiferromagnet.14 When this formally
weak-coupling perturbative approach is carried to the large-
U ~strong-coupling! limit, which is analytically the simplest,
one recovers identical results as obtained within the 1/S ex-
pansion for the spin-S quantum Heisenberg model. We shall
see that this holds for the two-magnon Raman scattering ef-
fect as well.

In spin-pair excitations by light, the two magnons are cre-
ated on nearest-neighbor~NN! sites, and therefore strong in-
teraction effects between magnons are important in a quan-
titative analysis. Considering a two-dimensionalS51/2
system for concreteness, two spins flipped involve an exci-
tation energy 4J when far apart but only energy 3J when on
NN sites. This suggests that the interaction energy between
magnons at the lowest-order level is2J when on NN sites,
which shifts the peak in the two-magnon Raman scattering
intensity to energy;3J. Indeed, we find within our
perturbation-theoretic approach that to the lowest order in
1/N, the interaction energy between magnons on NN sites is
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precisely2J in the large-U limit.
We first consider, in the next section, the large-U limit

wherein the magnon propagator and magnon interaction are
considered at the lowest-order level in an expansion in pow-
ers of t2/U2. In this limit only the nearest-neighbor Heisen-
berg antiferromagnetic interactionJ54t2/U is present in the
equivalent spin model. In Sec. III we consider an extension
to the intermediate-U regime by incorporating higher-order
terms in the magnon propagator and interactions. Finally in
Sec. IV we make a simple estimate for zero-temperature
magnon damping and evaluate the Raman scattering inten-
sity in the B1g symmetry and compare with the observed
Raman scattering in La2CuO4 .

II. LARGE- U LIMIT

The scattering of light in magnetic solids can be described
by the Fleury-Loudon effective Hamiltonian which repre-
sents the interaction of spin pairs with photon pairs:

HR5A(
r ,d

~Einc•d !~Esc•d!S~r!•S~r1d!. ~1!

HereEinc, andEsc are the incident and the scattered electric
field vectors, andd is a unit vector connecting nearest-
neighboring sites of opposite sublattices. The sum overr
ensures that the spin-pair excitation has zero total wave vec-
tor as required by momentum conservation since the photons
involved have essentially zero wave vector. To calculate the
two-magnon spectrum, we need to extract parts of the spin
operators which combine to create a pair of magnons. We
focus therefore on the transverse part of the spin-pair opera-
tor Pd[( rS(r)•S(r1d). Since the two-magnon Raman
scattering intensity is related to the correlation function of
the spin-pair operatorPd , which can be obtained as the
imaginary part of the corresponding propagator, we consider
the following time-ordered two-magnon Green’s function:

Gd,d8~V!52 i E dteiV~ t2t8!

3K cGUTF(r S2~r,t !S1~ r1d,t !

3(
r8

S1~r8,t8!S2~r81d8,t8!GUcGL . ~2!

As mentioned earlier, in this paper we develop a system-
atic perturbation expansion for this two-magnon propagator
within the Hubbard model. We show the fermionic structure
of the magnon-interaction vertex toO(1/N), and evaluate
the resulting two-magnon propagator in the large-U limit in
order to make contact with the known results within the
Heisenberg model formalism. Extension to higher orders in
(1/N) and to the intermediate-U regime can then be carried
out. We first consider the noninteracting limit of the two-
magnon propagatorGd,d8

0 (V), decompose it into the irreduc-
ible representations of the lattice, and then develop the per-
turbative expansion in powers of the magnon interaction. In
the noninteracting limit we have a magnon pair propagating
from NN sitesr,r1d to r8,r81d8; and in terms of the mag-

non propagatorsx21 and x12, we obtain for the two-
magnon propagator in the noninteracting limit

Gd,d8
0

~V!5 i E dteiV~ t2t8!(
r ,r8

x21~r,t;r8,t8!

3x12~r1d,t;r81d8,t8!. ~3!

The one-magnon propagatorx21 has been studied within
the Hubbard model in the large-U limit,15 and also in the
intermediate-U regime.12 In the antiferromagnet translational
invariance holds only within each sublattice, and therefore
Fourier transformation within a two sublattice basis yields
the magnon propagatorx21(r,t;r8,t8) in terms of a 232
matrix @x21(Q,V)#. At the random phase approximation
~RPA! level the one-magnon propagator has the following
form in the strong-coupling limit of a Hubbard antiferromag-
net on a hypercubical lattice inD dimensions:

x21~Q,V!52
1

2 S DJVQ
DF 12

V

DJ
2gQ

2gQ 11
V

DJ

G
3S 1

V2VQ
2

1

V1VQ
D , ~4!

where VQ5DJA12gQ
2 is the magnon energy andgQ

5(m51
D cosQm /D. Now sinced,d8 are vectors joining nearest

neighbors, ifr andr8 belong to sublatticesm andn, respec-
tively (m,n5A/B), thenr1d and r81d8 belong to oppo-
site sublatticesm̄ and n̄, respectively, and therefore we ob-
tain

Gd,d8
0

~V!5 i E dV1

2p (
Q

(
mn

@x21~Q,V1!#mn

3@x12~2Q,V2V1!#m̄ n̄ eiQ•~d2d8!. ~5!

It is convenient to~i! decomposeGd,d8
0 (V) in terms of the

irreducible representationsfn(Q) of the lattice and~ii ! con-
sider G0 in a 232 matrix form within the two-sublattice
basis. This greatly simplifies the summation of the perturba-
tive series in powers of magnon interaction, as we will see
later. For thenth irreducible representation, we obtain

@Gn
0~V!#mn5 i E dV1

2p (
Q

fn
2~Q!@x21~Q,V1!#mn

3@x12~2Q,V2V1!#m̄ n̄ . ~6!

Finite-temperature evaluation of@Gn
0(V)#mn can now be

carried out in the standard way. Replacing the frequencyV
by the bosonic Matsubara frequencyiVm and the frequency
integral overV1 by a contour integral, and taking the con-
tour around each singularity in the clockwise direction, we
obtain
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@Gn
0~ iVm!#mn5 i R dV1

2p (
Q

fn
2~Q!@x21~Q,V1!#mn

3@x12~2Q,iVm2V1!#m̄ n̄

1

ebV121
.

~7!

Adding the residues from the four poles, takingeb iVm51,
and finally replacingiVm by V, yields the following matrix
elements of@Gn

0(V)#:

@Gn
0~V!#AA5(

Q
fn
2~Q!S DJVQ

D 2F11S VQ

DJ D
2

2S V

DJD G
3

VQ

V224VQ
2 cothS bVQ

2 D ,
@Gn

0~V!#BB5(
Q

fn
2~Q!S DJVQ

D 2F11S VQ

DJ D
2

1S V

DJD G
3

VQ

V224VQ
2 cothS bVQ

2 D ,
@Gn

0~V!#AB5(
Q

fn
2~Q!S DJVQ

D 2@gQ
2 #

VQ

V224VQ
2 cothS bVQ

2 D
5@Gn

0~V!#BA . ~8!

Adding these four matrix elements allows for all possibilities
regarding positions ofr and r 8, and imaginary part of the
sum yields the noninteracting limit of the two-magnon Ra-
man scattering intensity,

Rn
0~V!5(

Q
fn
2~Q!S DJVQ

D 2d~V22VQ!

3cothS bVQ

2 D 1

12e2bV , ~9!

which is essentially the joint magnon density of states near
the upper end of the magnon spectrum whereVQ;DJ, and
peaks atV52DJ. Finite-temperature corrections are negli-
gible at temperatureskBT!J.

We now turn to the magnon interaction vertex within the
Hubbard model, and obtain its fermionic structure at the
lowest-order levelO(1/N). The magnon interaction vertex is
evaluated in the large-U limit, wherein we only retain terms
of ordert2/U2 and neglect terms of ordert4/U4 and smaller.
t4/U4;J2/U2 is a measure of the next-nearest-neighbor
~NNN! spin-spin interaction within the equivalent extended-
range Heisenberg model, andO(J2/U2) terms will be in-
cluded in the intermediate-U regime. The fermionic structure
of the magnon interaction vertex, when the interacting mag-
nons are on opposite sublattices, is shown in Fig. 1. There
are eight diagrams which contribute at theO(1/N) level to
the magnon interaction vertex. These diagrams essentially
describe various↑-spin and↓-spin particle-hole processes
involving the nearest-neighboring sites. The1/2 signs in
these diagrams refers to the advanced/retarded nature of the
one-particle Green’s function, corresponding to states in the
upper/lower Hubbard bands. The fermionic propagator signs
indicated in the diagrams are not exhaustive of all possibili-

ties, but correspond to choices which yield leading-order
contribution at thet2/U2 level. The contributions of dia-
grams shown in Fig. 1~a!–~h! are given in Table 1, and a
detailed evaluation of one of the diagrams is given in the
Appendix. Up to ordert2/U2 the net contribution of all dia-
grams ofO(1/N) to the magnon interaction vertex is given
by

Vint~Q2Q8,V12V2!522DJgQ2Q8, ~10!

implying nearest-neighbor instantaneous interaction energy
2J between magnons. In the magnon interaction vertex
the entering and exiting magnon lines involve the same sub-
lattice, and in fact the same site in large-U limit, so that
in real space we can write Vint(r,r8,r1d,r8
1d8)5Vint(r,r,r1d,r1d)52J. Therefore in the two-
sublattice basis the magnon interaction vertex is diagonal:
@Vint(Q2Q8)#mn52zJgQ2Q8dmn wherez52D is the coor-
dination number of the lattice. We also make use of the
irreducible representationsfn(Q) of the lattice to decouple
the momentum dependence of the interaction vertex as

Vint~Q2Q8!52zJgQ2Q852J(
n

fn~Q!fn~Q8!.

~11!
Here the irreducible representationsfn(Q) are normalized
so that(Qfn

2(Q)51 for all n. This decoupling permits a
straightforward summation of the perturbation series for the
two-magnon propagatorGn(V) involving repeated magnon
interactions in a ladder sum. The orthogonality of the irre-
ducible representationsfn(Q) leads to the following result
in the two sublattice basis:

@Gn~V!#5
@Gn

0~V!#

11J@Gn
0~V!#

. ~12!

Again we need to add the four matrix elements of
@Gn(V)# so as to allow for all possibilities regarding posi-
tions of r and r8. If we useA(V), B(V), and C(V) to
denote the matrix elements@Gn

0(V)#AA , @Gn
0(V)#BB , and

@Gn
0(V)#AB/BA , respectively, which are given in Eq.~8!,

then the sum of matrix elements of@Gn(V)# is obtained as
below. The imaginary part then yieldsRn(V), the two-
magnon Raman scattering intensity for a Hubbard antiferro-
magnet, in the strong-coupling limit, at the ladder-sum level:

TABLE I. Contributions to the magnon-interaction vertex of
diagrams shown in Figs. 1~a!–1~h!, for various signs of the pair of
fermion propagators which are off diagonal in sublattice basis. The
fermion-propagator signs refer to the advanced/retarded nature of
the fermionic propagators.

Diagrams Fermion-propagator signs Contribution

Figs. 1~a!, 1~b! (11),(22) (JD/2)gQ2Q8
Figs. 1~a!, 1~b! (12),(21) 22(JD/2)gQ2Q8
Figs. 1~c!, 1~d! (22) (JD/2)gQ2Q8
Figs. 1~c!, 1~d! (12),(21) 2(JD/2)gQ2Q8
Figs. 1~e!, 1~f! (11) (JD/2)gQ2Q8
Figs. 1~e!, 1~f! (12),(21) 2(JD/2)gQ2Q8
Figs. 1~g!, 1~h! (12),(21) (JD/2)gQ2Q8

6358 54SAURABH BASU AND AVINASH SINGH



(
mn

@Gn~V!#mn5
~A1B12C!12J~AB2C2!

~11JA!~11JB!2J2C2 . ~13!

Within the Heisenberg formalism, using a perturbative ap-
proach in which the magnon-magnon interaction was taken
into account in a ladder approximation, this result was ob-
tained earlier by Solyom.16 In this work four vertex functions
were introduced corresponding to the four possibilities aris-
ing from the incoming and outgoing magnon lines belonging

to the two sublattices. These vertex functions were obtained,
within the ladder approximation, in the form of coupled
equations, which were then solved and added to yield
(mn@Gn(V)#mn . On the other hand, by expressing the two-
magnon propagator in the two-sublattice basis as 232 ma-
trix, we are able to perform the ladder sum in a very straight-
forward manner, and summing the matrix elementsat the
endyields the same result. Of course our starting point is the
Hubbard model, and we have treated the Hubbard interaction
term perturbatively within a formally weak-coupling expan-

FIG. 1. Fermion structure of the diagrams contributing to the magnon-interaction vertex at the order 1/N level and in the strong-coupling
limit. The interacting magnons are onA- andB-sublattice sites. The interaction vertices lie within the four dashed lines representing the
Hubbard interaction. The hatched areas represent the magnon propagators.
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sion scheme, and carrying this expansion to the strong-
coupling limit we have recovered the Solyom result. Our
approach can therefore be extended to the intermediate-U
and small-U regimes as well in principle.

Finally we consider the Ising limit of the expression for
the two-magnon propagator given in Eq.~13!, in order to
clearly see the role of the nearest-neighbor magnon interac-
tion. In the Ising limit when the spins can only be flipped
completely, the spin-wave~spin-flip! energy isDJ, gQ50
and thereforeA5C50 and

B5(
Q

fn
2~Q!S 1

V22DJ
2

1

V12DJD
5S 1

V22DJ
2

1

V12DJD .
In this limit (mn@Gn(V)#mn reduces to the following equa-
tion which shows the pole atV52DJ2J corresponding to
the two-magnon spin-flip excitations created on nearest-
neighbor sites:

(
mn

@Gn~V!#mnu Ising5
1

V22DJ1J
. ~14!

Several extensions of this analysis of two-magnon Raman
scattering in the Hubbard model, carried out here in the
large-U limit, are possible, some of which are discussed be-
low. Higher-order corrections in the inverse-degeneracy ex-
pansion in powers of 1/N may be included in the magnon
interaction vertex. Magnon damping which may be system-
atically incorporated in the theory in this manner is of par-
ticular interest because, after all, one-magnon states are not
exact eigenstates of the antiferromagnet, and hence damping
of magnon modes is expected, particularly of the short-
wavelength, high-energy modes. Also the one-magnon lines
themselves may be renormalized to include the magnon in-
teraction effects. At theO(1/N) level the spin-wave energies
are modified by the momentum-independent multiplicative
factorZc ~51.16 in 2D, e.g.!, and the spin-wave amplitude
is reduced by the same factor as the sublattice magnetization
relative to the Hartree-Fock~HF! value. Also of interest is
the extension to the intermediate-U regime which is dis-
cussed below.

III. INTERMEDIATE- U REGIME

In the intermediate-U regime the Hubbard model maps to
an extended-range Heisenberg model and the NNN spin cou-
plings of O(t4/U3) can be obtained within the RPA
analysis.12 Alternatively the magnon-interaction vertices of
Fig. 1 can be evaluated up to the next orderO(t4/U4). Thus
with the one-magnon propagatorx21(V) and the magnon
interaction vertex both evaluated up toO(t4/U4), one can
systematically study the two-magnon Raman scattering in
the intermediate-U regime. As mentioned earlier this regime
is of interest because the modification of spin-wave spectrum
results in a significantly different form of the magnon density
of states. Instead of the divergence at energy 2J in the DOS
due to zone-boundary magnons, one instead gets a peak
structure with a progressively increasing broadening asU/t
decreases. This peak structure resembles the effect of mag-

non damping and therefore any quantitative treatment of
two-magnon Raman scattering in the intermediate-U regime
must take this intrinsic broadening into account. Here we
consider a simple extension to the intermediate-U regime.

There are essentially two modifications that are required
in our earlier analysis. Both the NN magnon-interaction en-
ergy and the spin-wave propagator acquire an ordert2/U2

correction. Using the results of Ref. 12 where spin-wave
properties were obtained via a systematic expansion in pow-
ers of t2/U2, we obtain after a zero-temperature evaluation
of the two-magnon propagator the following matrix elements
of @Gn

0(V)#, the zeroth-order two-magnon propagator, given
in Eq. ~8!:

A~V!5(
Q

m2fn
2~Q!S 2JVQ

D 2

3Fa22S VQ

2J D 22a
V

2J
1
1

2 S V

2JD
2G VQ

V224VQ
2 ,

B~V!5(
Q

m2fn
2~Q!S 2JVQ

D 2

3Fa22S VQ

2J D 21a
V

2J
1
1

2 S V

2JD
2G VQ

V224VQ
2 ,

C~V!5(
Q

m2fn
2~Q!S 2JVQ

D 2@b2gQ
2 #

VQ

V224VQ
2 , ~15!

wherem5122t2/D2 is the magnetization at the HF level,
2D5mU is the Hubbard gap, and up to ordert2/D2 we have,
in the intermediate-U regime,

VQ52JF ~12gQ
2 !2

t2

D2 ~613cosQxcosQy29gQ
2 !G1/2,

a512
t2

D2 S 31
3

2
cosQxcosQy1gQ

2 D ,b512
t2

D2 S 112 D .
~16!

A simple estimate for the NN magnon-interaction energy
is now made as follows. We have seen that in the large-U
limit, this interaction energy is nothing but the NN spin-
interaction energy. Since this result is consistent with the
simple bond counting argument, we expect this to hold in the
intermediate-U regime as well. Therefore we take the NN
magnon-interaction energy to be simply the modified NN
spin-interaction energy. An elementary quantitative analysis
which relies on a comparison of spin-wave energy forms for
the intermediate-U Hubbard model~evaluated up to order
t2/D2) and the NNN Heisenberg model is given in Appendix
B and yields, for the NN spin-interaction energy,
JNN5J(12 9

2t
2/D2).

The two-magnon Raman scattering intensity for the two-
dimensional system is now evaluated in the intermediate-U
regime fromGn(V)5Gn

0(V)/@11JNNGn
0(V)# and is shown

in Fig. 2 for the caseD/t53.5 which corresponds to
U;W for the two-dimensional case. We have taken the
symmetry factorfn(Q)5(cosQx2cosQy), appropriate to the
B1g symmetry. Comparing with the large-U limit result, it is
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clear that while there is a 25% increase in the linewidth in
going to the intermediateU, this increase is not sufficient to
account for the zero-temperature linewidth observed in
La2CuO4 . Therefore, while this contribution must be taken
into account in any quantitative analysis, the large broaden-
ing seen in La2CuO4 must find an explanation elsewhere. In
the flowing we consider an important source of broadening
which is particularly relevant for La2CuO4 which is a low-
spin and low-dimensional system.

IV. ZERO-TEMPERATURE MAGNON DAMPING

It is well established now that quantum spin fluctuations
play an important role in La2CuO4 and other cuprate anti-
ferromagnets which are spin-1/2 and almost two-dimensional
systems. There is a substantial reduction in the zero-
temperature sublattice magnetization relative to the HF
~Néel! value. Thus while long-range AF order is maintained
in the two-dimensional~2D! antiferromagnet, there is sub-
stantial amount of spin disorder. A consequence of this
fluctuation-induced disorder is that spin-wave states are not
exact eigenstates of the antiferromagnetic ground state, so
that spin-wave or magnon damping must necessarily be
present. And since two-magnon Raman scattering is related
to the imaginary part of the two-magnon propagator, magnon
damping should play an important role in the observed
broadening.

While finite-temperature magnon damping in the Heisen-
berg antiferromagnet has been studied in detail,17–19 zero-
temperature magnon damping is not easy to obtain in the
antiferromagnetic insulator. The second-order magnon inter-
action process does not yield any damping at zero tempera-
ture owing to a phase-space restriction. This process involves
a magnon decaying into three magnons which subsequently
reunite. From simple energy-momentum conservation con-
siderations it is seen that for lightlike linear dispersion this
process has a vanishingly small phase space. This argument
in fact holds for any convex energy-momentum dispersion,
as for magnons.

We discuss below a simple estimate for zero-temperature

magnon damping which is based on the following disorder
analogy. Because of the substantial transverse spin fluctua-
tions present in theS51/2, D52 antiferromagnetic insula-
tor, magnons propagating in the system will see a fairly dis-
ordered magnetic lattice in which the spins, while
maintaining overall AF long-range order, are slowly fluctu-
ating in space and time. These fluctuations are slow on the
time scale of (2J)21 and therefore zone-boundary, high-
energy magnons of energy 2J, which are of interest, will see
an essentially static disorder. This disorder-analogy picture
suggests that magnon damping will be proportional to the
magnon density of states, which results in a qualitatively
correct picture — substantial damping for zone-boundary
magnons and very small damping for low-energy, long-
wavelength magnons. Since we are interested only in the
zone-boundary magnons, in view of the divergent magnon
density of states at the upper edge at 2J, a self-consistent
evaluation of damping is therefore essential. We obtain the
self-consistent magnon damping for zone-boundary magnons
with energyV;2J:

G5g Im(
Q

@x21~Q,V!#5g(
Q

2J

VQ

G

~V2VQ!21G2 ,

~17!
whereg is an effective disorder strength which measures the
degree of spin disorder due to quantum transverse fluctua-
tions, which we now proceed to estimate. An appropriate
measure of transverse spin fluctuations is the equal-time cor-
relation function^S2S1&, and therefore the simplest esti-
mate for the scattering vertex isJ^S2S1&. And since the
disorder strengthg represents two scattering processes, we
obtaing;J2^S2S1&2. Now for theD52, S51/2 antiferro-
magnet, we know ^S2S1&5(Q(1/A12gQ

2 )21)/2'0.2,
which is precisely the quantum-fluctuation reduction in
^Sz& or the sublattice magnetization.

Substituting this value ofg, the effective disorder
strength, we self-consistently solve from Eq.~17! the effec-
tive one-magnon damping for zone-boundary magnons, and
obtain G/J50.15. Thus even for zone-boundary magnons
the resulting damping is small — only about 7% of the en-
ergy. We now incorporate this magnon damping arising from
quantum spin fluctuations into the two-magnon Raman scat-
tering evaluation from Eq.~13! in the large-U limit. This is
done by simply adding the imaginary part 2iG to the two-
magnon energy 2VQ in the energy denominators in Eq.~8!.
We take the symmetry factorfn(Q)5(cosQx2cosQy), ap-
propriate to theB1g symmetry, for comparison with Raman
scattering observations on La2CuO4. The result of this evalu-
ation, together with the Raman intensity observed in
La2CuO4 taken from Ref. 8, is shown in Fig. 3. We adjust the
energy scales so that the observed Raman peak at around
3200 cm21 occurs at 3J where our calculated Raman scat-
tering intensity peaks. As we have shown earlier, there will
be additional broadening if the evaluation is done in the
intermediate-U regime, appropriate to the cuprates. It is clear
that while the linewidth compares reasonably well with the
observed full width at half maximum~FWHM! of about
1200 cm21, there is a marked asymmetry in the observed
Raman line, and also a significantly larger scattering persist-
ing at energies above 4J. It has been suggested that four-
magnon excitations are responsible for these features.

FIG. 2. Calculated two-magnon Raman scattering intensity in
the B1g symmetry in the large-U limit ~dotted line! and the
intermediate-U limit ~solid line!.
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There have been several recent studies of two-magnon
Raman scattering in antiferromagnetric insulators where
various additional aspects have been investigated and pro-
posed as being significant besides the quantum-spin-
fluctuation effects. These include magnetostriction-induced
exchange disorder introduced by lattice vibrations,20 magnon
damping caused by magnon-phonon interaction,21,22 and
resonant Raman scattering in which the incident photon en-
ergy is comparable to the Hubbard gap.23 It thus appears that
the actual physics involved in the two-magnon Raman scat-
tering experiments on antiferromagnetic insulators like cu-
prates may be quite rich in detail.

APPENDIX A

In this appendix we discuss evaluation of diagrams shown
in Figs. 1~a!–1~h! representing magnon interaction vertices

relevant for the two-magnon propagator. The vertices are
shown for interaction between magnons on opposite sublat-
ticesA andB. The evaluation is performed in the strong-
coupling limit, in which case the interaction is actually ef-
fective only on nearest-neighbor sites. As mentioned earlier
the interaction vertices represent spin-↑, spin-↓ particle-hole
processes in which energy momentum is exchanged by the
interacting magnons. All diagrams shown are of order 1/N in
an inverse-degeneracy expansion.

We first briefly review the single-particle Green’s func-
tions in the AF state in the strong-coupling limit.15. In terms
of the quasiparticle amplitudesas

s (k… andbs
s (k… on the two

sublattices, the single-particle Green’s functions are given by

Gs
s ~k,v!5F ~as

s !2 as
sbs

s

as
sbs

s ~bs
s !2

G 1

v2Ek
s1 ish

, ~A1!

wheres5↑/↓, ands51/2 referring to states in the upper/
lower Hubbard band. Here the quasiparticle energy
Ek

656AD21ek
2, where 2D5mU is the Hubbard gap, and

ek522t(m51
D coskm is the free-particle energy. From spin-

sublattice symmetry, (a↑
2)25(b↓

1)2 and (a↑
1)25(b↓

2)2. In
the strong-coupling limit, retaining terms only up to order
t2/U2, we have a↑

2(k)25b↓
1(k)2512ek

2/U2 and
a↑

1(k)5b↓
2(k)5ek /U.

Now in each diagram there are precisely two fermionic
lines connecting anA-sublattice site to aB-sublattice site,
and therefore off diagonal in the two-sublattice basis. This
pair of lines already contributes a factort2/U2, and therefore
we need to retain only the leading-order contributions from
all other terms in each diagram. As a representative example,
we discuss the evaluation of the diagram shown in Fig. 1~g!,
where the fermion lines constituting the loop are off diagonal
in the sublattice basis. The amplitudes of all other Green’s
functions are taken to be 1 and poles at energyEk

6

56U/2, in order to obtain the leading-order contribution.
Contributions of all diagrams shown in Figs. 1~a!–1~h! are
given in Table I. To the magnon-interaction vertex the con-
tribution of diagram shown in Fig. 1~g! is given by

Vint~Q2Q8,V12V2!u~g!

5 i ~ iU !6E dv

2p(
k
G↑

2~k,v!AAG↑
2~k2Q1Q8,v2V11V2!AAG↓

1~k2Q,v2V1!AA

3E dv8

2p (
k8

G↓
2~k8,v8!BBG↑

1~k81Q,v82V1V1!BBG↑
1~k81Q8,v82V1V2!BB

3~21!E dv9

2p (
k9

G↓
7~k9,v9!ABG↓

6~k92Q1Q8,v92V11V2!BA

5~ iU !6E dv

2p i(k S 1

v2~2U/2!2 ih D 2S 1

v2U/21 ih D E dv8

2p i(k8
S 1

v2~2U/2!2 ih D S 1

v2U/21 ih D 2

3~21!E dv9

2p i(k9
S ek9 /U

v92~7U/2!7 ih D S ek92Q1Q8 /U

v92~6U/2!6 ih D
5~ iU !6S 21

U2 D S 1

U2D ~21!S 21

U3 D(
k9

ek9ek92Q1Q85
4t2

U

D

2
gQ2Q85~JD/2!gQ2Q8. ~A2!

FIG. 3. Calculated two-magnon Raman scattering intensity in
theB1g symmetry with a magnon damping ofG/J50.15, and few
points from the observed Raman scattering in La2CuO4 ~taken from
Ref. 8!.
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APPENDIX B

We discuss below an estimation of the NN spin-
interaction energy in the intermediate-U regime. The idea is
to compare the spin-wave energy expressions obtained from
~i! the spin-1/2 Heisenberg model with NNN spin interaction
and~ii ! the intermediate-U Hubbard model, both for the two-
dimensional, square-lattice case. IfJ andJ8 refer to the NN
and NNN Heisenberg antiferromagnetic spin interactions, re-
spectively, then for the spin-wave energy we have

VQ'2J@~12gQ
2 !2~2J8/J!~12gQ8 !#1/2, ~B1!

where gQ8 [cosQxcosQy , and terms of order (J8/J)2 have
been neglected. We compare this expression now with the
result for the Hubbard model obtained at the RPA level by an
expansion12 in powers oft2/D2, where 2D5mU is the Hub-
bard gap:

VQ52~4t2/U !@~12gQ
2 !2~ t2/D2!~613gQ8 29gQ

2 !#1/2,
~B2!

which, after separating thegQ andgQ8 pieces, can be rewrit-
ten as

VQ'2~4t2/U !~129t2/D2!1/2

3@~12gQ
2 !1~3t2/D2!~12gQ8 !#1/2. ~B3!

Now comparing these two spin-wave energy expressions,
we obtain for the NN spin coupling

J'
4t2

U S 12
9

2

t2

D2D ~B4!

and aferromagneticNNN spin coupling

J8

J
52

3

2

t2

D2 . ~B5!
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