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Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet
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A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon
Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex
is obtained at order-3/level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is
obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction
vertex in the largdd limit yields a nearest-neighbor instantaneous interaction with interaction eredgy
Application of this approach to the intermedidieregime, which is of relevance for cuprate antiferromagnets,
is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum
spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on
La,CuO,. [S0163-18206)05430-4

. INTRODUCTION with decreasingJ.'?%3In contrast, in the largé limit, the
one-magnon DOS diverges at the upper band edge due to
Two-magnon Raman scattering has been used as a probene-boundary magnons at energy, whereJ=4t?/U is
to study low-energy excitations in magnetic solids, particuthe exchange energy aridl the dimensionality. This peak
larly the short-wavelength modes. Extensive studies havstructure resembles a broadening due to a magnon interac-
been carried out in antiferromagnets such as RbMnF tion, and must be incorporated in any realistic theory of two-
MnF,, and KNiF,,'~®and a good theoretical understanding magnon Raman scattering when applied to the small- and
exists for these systems with spi8=1, within the intermediated regimes. Since it is believed that JGuO,
interacting-magnon theory for the quantum Heisenberg antidoes actually fall in the intermediaté-regime, a formally
ferromagnetQHAF).° Recently there has been renewed in-weak-coupling expansion scheme has a potential application
terest since studies in L@uQ, (a S=1/2 systemhave indi- as well.
cated evidence of substantial quantum spin fluctuations, In this paper we describe a perturbation-theoretic dia-
and the observed two-magnon Raman scattering linewidth igrammatic scheme for systematically obtaining the two-
much too broad to be explained within the classical théory.magnon Raman scattering in the Mott-Hubbard antiferro-
Moreover, scattering intensities are observed in geometriasiagnet. Since within the Hubbard model itself there is no
which, in the classical approximation, should yield no scatformal expansion parameter, we make use of the generalized
tering. Interest in two-magnon Raman scattering continuesiubbard model with\ orbitals per sité? and develop a
also because upon doping with holes, the two-magnon peadystematic expansion in powers ofAl/ This perturbation-
broadens out and relaxes into the Raman continuum. Itheoretic scheme, which preserves the spin rotational sym-
YBa,Cu;04., for example, the intensity of the two-magnon metry, and hence the Goldstone mode, order by order in the
feature decreases rapidly with increasingnd virtually dis-  perturbation theory, has been used earlier to systematically
appears ax=0.5.1° obtain quantum corrections to sublattice magnetization, spin-
While theoretically two-magnon Raman scattering haswvave energy, perpendicular susceptibility, and ground-state
been studied extensively within the QHAF, there haveenergy of a Hubbard antiferromagriétwhen this formally
been so far only limited attempts to systematically studyweak-coupling perturbative approach is carried to the large-
this within the Mott-Hubbard model. Recently a strong- U (strong-coupling limit, which is analytically the simplest,
coupling expansion in powers dafU, the hopping term, one recovers identical results as obtained within ti&el-
has been carried out, and the Fleury-Loudon Hamiltoniarpansion for the spis quantum Heisenberg model. We shall
has been obtained at the second order I8v&i. this treat-  see that this holds for the two-magnon Raman scattering ef-
ment, the hopping term is extended to include the gauge terifect as well.
exd (ie/fic) [IA-dI] arising from the external transverse In spin-pair excitations by light, the two magnons are cre-
electro magnetic field, and the transition matrix elementsated on nearest-neighb@iN) sites, and therefore strong in-
which determine the Raman scattering are obtained within geraction effects between magnons are important in a quan-
strong-coupling expansion. However, it appears that so fatitative analysis. Considering a two-dimensiongk 1/2
no systematic, formally weak-coupling expansion has beesystem for concreteness, two spins flipped involve an exci-
carried out which can continuously interpolate between theation energy 4 when far apart but only energyJ3vhen on
smallU and larged limits. NN sites. This suggests that the interaction energy between
Significantly, in the small- and intermediatefregimes of magnons at the lowest-order level+s] when on NN sites,
the Mott-Hubbard antiferromagnet, when the interactionwhich shifts the peak in the two-magnon Raman scattering
termU is less than or comparable to the free-electron bandintensity to energy~3J. Indeed, we find within our
width W, the one-magnon density of stal@09) exhibits a  perturbation-theoretic approach that to the lowest order in
peak structure which broadens and shifts to lower energie$/\, the interaction energy between magnons on NN sites is
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precisely—J in the larget limit. non propagatorsy” * and y*~, we obtain for the two-

We first consider, in the next section, the latdelimit magnon propagator in the noninteracting limit
wherein the magnon propagator and magnon interaction are

considered at the lowest-order level in an expansion in pow- 0 . (-t e

ers oft?/U2. In this limit only the nearest-neighbor Heisen- Gdﬁ’(Q)_IJ dte 2 x (gt

berg antiferromagnetic interactidr= 4t%/U is present in the o

equivalent spin model. In Sec. Il we consider an extension XxTT(r+8,tr"+8,t). (3)

to the intermediaté} regime by incorporating higher-order
terms in the magnon propagator and interactions. Finally in . . I
Sec. IV we make a simple estimate for zero-temperatur The one-magnon propagater * has been studied within

magnon damping and evaluate the Raman scattering intet € Hut:jt?ard model '?2 Ithehlargejfhmn, and also Iln .the |
sity in the B;; symmetry and compare with the observed!merr_ne |atﬁ-J|crjeg|m|e. U;. N antlherrot:?agnet trags ﬁtmnfa
Raman scattefing in LEUO, . invariance holds only within each sublattice, and therefore
Fourier transformation within a two sublattice basis yields
the magnon propagatoy™ " (r,t;r’,t’) in terms of a %2
Il LARGE- U LIMIT matrix [ x~ " (Q,Q)]. At the random phase approximation
RPA) level the one-magnon propagator has the following
orm in the strong-coupling limit of a Hubbard antiferromag-

net on a hypercubical lattice iD dimensions:

The scattering of light in magnetic solids can be describe
by the Fleury-Loudon effective Hamiltonian which repre-
sents the interaction of spin pairs with photon pairs:

Q
HrR=A2 (Einc&)(Esc HS1)-Sr+8). (1) Losl o5 e
X+(Q,Q)=—§(Q—> Q

HereE;,., andEg; are the incident and the scattered electric Q —vo 1+—
field vectors, andé is a unit vector connecting nearest- DJ
neighboring sites of opposite sublattices. The sum aver 1 1
ensures that the spin-pair excitation has zero total wave vec- X — , (4)
tor as required by momentum conservation since the photons 2-Qq Q+Qq

involved have essentially zero wave vector. To calculate the

two-magnon spectrum, we need to extract parts of the spighere QQ:DJ‘/]_—)/% is the magnon energy angq
operators which combine to create a pair of magnons. W‘”zEDzlcosQM/D. Now sinceé, &' are vectors joining nearest
focus therefore on the transverse part of the spin-pair opergreighbors, ifr andr’ belong to sublattices and v, respec-
tor Ps=2%,§(r)-S(r+ ). Since the two-magnon Raman tively (u,»=A/B), thenr+é andr’'+ & belong to oppo-

scattering intensity is related to the correlation function ofsjte suplattices. and v, respectively, and therefore we ob-
the spin-pair operatoP;, which can be obtained as the tgjn

imaginary part of the corresponding propagator, we consider
the following time-ordered two-magnon Green’s function:

dQ
Gop (=i | 52 2 [x Q0
GM,(Q)=—iJ dtg =) Q wr
XX*T(-QQ-Q)] e (5

> S (r,t)St(r+éat)
r It is convenient to(i) decomposeG(;s,(Q) in terms of the
irreducible representations,(Q) of the lattice andii) con-
‘¢G>_ (2)  sider G in a 2x2 matrix form within the two-sublattice
basis. This greatly simplifies the summation of the perturba-

A tioned lier in thi devel N tive series in powers of magnon interaction, as we will see
_AS mentioned earlier, in Nis paper we develop a SySteMra o ko thenth irreducible representation, we obtain
atic perturbation expansion for this two-magnon propagator

within the Hubbard model. We show the fermionic structure do

of the magnon-interaction vertex ©(1/A), and evaluate [GA(0)] y:iJ—12 HAQAx T(Q.0)T,,
the resulting two-magnon propagator in the latgédimit in . 2m°Q .
order to make contact with the known results within the
Heisenberg model formalism. Extension to higher orders in
(1/N) and to the intermediate- regime can then be carried

out. We first consider the noninteracting limit of the two-  Finjte-temperature evaluation @GS(Q)]W can now be

magnon propagatdl’a;ﬁ,(ﬂ), decompose it into the irreduc- carried out in the standard way. Replacing the frequefcy
ible representations of the lattice, and then develop the peby the bosonic Matsubara frequendy,, and the frequency
turbative expansion in powers of the magnon interaction. Inntegral over{), by a contour integral, and taking the con-
the noninteracting limit we have a magnon pair propagatingour around each singularity in the clockwise direction, we
from NN sitesr,r+6tor’,r’'+6'; and in terms of the mag- obtain

X, ST t)S(r'+8,t)
r!

XX (=QQ=Qp)]- (6)
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dQ, TABLE |. Contributions to the magnon-interaction vertex of
[Gg(iQm)]W=i 3€ 2—2 ¢ﬁ(Q)[X_+(Q,Ql)]MV diagrams shown in Figs.(d)—1(h), for various signs of the pair of
T Q fermion propagators which are off diagonal in sublattice basis. The
fermion-propagator signs refer to the advanced/retarded nature of

X[xT (—Q,iQ, Ql)]wﬁ the fermionic propagators.
7) Diagrams Fermion-propagator signs Contribution
Adding the residues from the four poles, takigf®m=1,  Figs. Xa), 1(b) (++),(--) (ID2)yq-q
and finally replacing Q,, by Q, yields the following matrix  Figs. Xa), 1(b) (+=).(=+) —2(ID/2)yq-q
elements of G2(Q)1: Figs. Xc), 1(d) (—-) (ID/2)yq-q
D32 0 0 Figs. 1c), 1(d) (+-).(—+) —(ID/2)yg-q
[Gr(2)]an % ¢n(Q)(Q 1+ J) (DJ” Figs. Xe), 1(f) (+=)(—=+) —(ID2)yq-q
Figs. 1g), 1(h) (+-).(—+) (ID/2)yg-q-

D

Q Q
X7 QQZ cotl'(ﬁ Q)
ties, but correspond to choices which yield leading-order

. , DJ\2 Q)2 [ Q contribution at thet?/U? level. The contributions of dia-
[GAD)]gs=> ¢n(Q)(Q— 1+( oyl D_J” grams shown in Fig. (®—(h) are given in Table 1, and a
Q detailed evaluation of one of the diagrams is given in the
Qo BQq Appendix. Up to ordet?/U? the net contribution of all dia-
X 02 7 COtl’( ) grams ofO(1/V) to the magnon interaction vertex is given
by
Qq Q '
[GA(Q)]ap= E $A(Q) ) [VQ]QZ 492 COt"<IB Q) Vil Q—Q", Q21— Q5)=—-2DJyg_qr» (10)
implying nearest-neighbor instantaneous interaction energy
=[Gn(Q)]ga- (80 —J between magnons. In the magnon interaction vertex

Adding these four matrix elements allows for all possibilities tN€ €ntering and exiting magnon lines involve the same sub-
regarding positions of andr’, and imaginary part of the !att|ce, and in fact the same site in largedimit, so that

sum yields the noninteracting limit of the two-magnon Ra-"" real space we can write Viy(r,r',r+ 4’
man scattering intensity, + 8 )=Vin(r,r,r+6,r+ 9 =-J. Therefore in the two-
DJ\2 sublattice basis the magnon interaction vertex is diagonal:
Rﬁ(ﬂ)=2 ¢ﬁ(Q)(_) 8(Q-200) [VinlQ—Q")1,,=—2Jyg-q' 6., Wherez=2D is the coor-
Q Qq dination number of the Iatt|ce We also make use of the

irreducible representationg,(Q) of the lattice to decouple
><cot|—( 'B_QQ) 17 (9) the momentum dependence of the interaction vertex as
2 |1-e P
which is essentially the joint magnon density of states near v (Q-Q')= —2y9 o= 3> ¢, (Q b (Q).
the upper end of the magnon spectrum whggg~DJ, and n
peaks at)=2DJ. Finite-temperature corrections are negli- (11)
gible at temperaturelsgT<<J. Here the irreducible representatiogs(Q) are normalized
We now turn to the magnon interaction vertex within the so that2Q¢ﬁ(Q)=1 for all n. This decoupling permits a
Hubbard model, and obtain its fermionic structure at thestraightforward summation of the perturbation series for the
lowest-order leveD(1/N). The magnon interaction vertex is two-magnon propagatdg,(2) involving repeated magnon
evaluated in the large- limit, wherein we only retain terms interactions in a ladder sum. The orthogonality of the irre-
of ordert?/U? and neglect terms of ordéf/U* and smaller.  ducible representation$,(Q) leads to the following result
t4/U%~J%/U? is a measure of the next-nearest-neighborin the two sublattice basis:
(NNN) spin-spin interaction within the equivalent extended-
range Heisenberg model, af@(J%/U?) terms will be in- [G.(Q)]= [GA()] (12)
cluded in the intermediatg-regime. The fermionic structure " 1+J[GoQ)]
of the magnon interaction vertex, when the interacting mag-
nons are on opposite sublattices, is shown in Fig. 1. Therégain we need to add the four matrix elements of
are eight diagrams which contribute at t9¢1/\) level to  [Gn(©2)] so as to allow for all possibilities regarding posi-
the magnon interaction vertex. These diagrams essentialjons of r and r’. If we USEA(Q) B(Q?), and C(Q?) to
describe various -spin and | -spin particle-hole processes denote the matrix elemenf&o(92)]aa, [G(2)]gs, and
involving the nearest-neighboring sites. The— signs in  [G2(Q)]agea, respectively, which are given in Eq8),
these diagrams refers to the advanced/retarded nature of theen the sum of matrix elements |0&,((2)] is obtained as
one-particle Green’s function, corresponding to states in théelow. The imaginary part then yieldB,({2), the two-
upper/lower Hubbard bands. The fermionic propagator signsnagnon Raman scattering intensity for a Hubbard antiferro-
indicated in the diagrams are not exhaustive of all possibiliimagnet, in the strong-coupling limit, at the ladder-sum level:
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(A+B+2C)+2J(AB—C?) to the two sublattices. These vertex functions were obtained,
> [Gh()],,= (1+JA)(11JB)—J2C2 (13)  within the ladder approximation, in the form of coupled
my equations, which were then solved and added to yield
2,LGn(Q)],, - On the other hand, by expressing the two-

Within the Heisenberg formalism, using a perturbative ap-magnon propagator in the two-sublattice basis a22ma-
proach in which the magnon-magnon interaction was takefix, we are able to perform the ladder sum in a very straight-
into account in a ladder approximation, this result was obforward manner, and summing the matrix elemeatshe
tained earlier by Solyortf In this work four vertex functions  endyields the same result. Of course our starting point is the
were introduced corresponding to the four possibilities arisHubbard model, and we have treated the Hubbard interaction
ing from the incoming and outgoing magnon lines belongingterm perturbatively within a formally weak-coupling expan-
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FIG. 1. Fermion structure of the diagrams contributing to the magnon-interaction vertex at the dfdievel/and in the strong-coupling
limit. The interacting magnons are @k and B-sublattice sites. The interaction vertices lie within the four dashed lines representing the
Hubbard interaction. The hatched areas represent the magnon propagators.
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sion scheme, and carrying this expansion to the strongaon damping and therefore any quantitative treatment of
coupling limit we have recovered the Solyom result. Ourtwo-magnon Raman scattering in the intermedldteegime
approach can therefore be extended to the intermetiate-must take this intrinsic broadening into account. Here we
and smallJ regimes as well in principle. consider a simple extension to the intermedidteegime.
Finally we consider the Ising limit of the expression for  There are essentially two modifications that are required
the two-magnon propagator given in E@.3), in order to in our earlier analysis. Both the NN magnon-interaction en-
clearly see the role of the nearest-neighbor magnon intera@rgy and the spin-wave propagator acquire an otééy?
tion. In the Ising limit when the spins can only be flipped correction. Using the results of Ref. 12 where spin-wave
completely, the spin-wavespin-flip) energy isDJ, yo=0 properties were obtained via a systematic expansion in pow-

and thereforeA=C=0 and ers oft?/U2, we obtain after a zero-temperature evaluation
1 of the two-magnon propagator the following matrix elements
B=>, ¢%(Q) a=D7 Q+2DJ) of [G(Q)], the zeroth-order two-magnon propagator, given
Q in Eq. (8):
1 1 23\2
= - . — 2 42
Q-2DJ Q+2DJ A(Q)—% m ¢>n(Q)(Q—Q)
In this I.imit 2 ,[Gn(Q)],, reduces to the foIIowing.equa- a2 o 1/0\2] Q
tion which shows the pole & =2DJ—J corresponding to xla2—|=2| —g—+ _(_) }—Q >,
the two-magnon spin-flip excitations created on nearest- 2J 23 2123] |07-4035

neighbor sites:

242 2J ?
B(Q)=2> m*$(Q)| 5~
Q Q

1
% [Gn(Q)]Mhsing:m- (14 ) )
. [Re)?, Q@ 1/0)7 Qg
Several extensions of this analysis of two-magnon Raman a7 l23) tag sl 0%2-40%’

scattering in the Hubbard model, carried out here in the

largeU limit, are possible, some of which are discussed be- 2.2 2J\? 2 Qq

low. Higher-order corrections in the inverse-degeneracy ex- C(Q):% m“$n(Q) Qn [b VQ]W' (19
pansion in powers of N"may be included in the magnon Q Q
interaction vertex. Magnon damping which may be systemwherem=1—2t?/A? is the magnetization at the HF level,
atically incorporated in the theory in this manner is of par-2A=mU is the Hubbard gap, and up to ordétA? we have,
ticular interest because, after all, one-magnon states are ngi the intermediatéJ regime,

exact eigenstates of the antiferromagnet, and hence damping

of magnon modes is expected, particularly of the short- ) 2 , M2
wavelength, high-energy modes. Also the one-magnon lines @=2J| (1~ 7o)~ 12(6+3cof,coRy—9yg)|
themselves may be renormalized to include the magnon in-

teraction effects. At th@(1/\) level the spin-wave energies t2 3 2 /11
are modified by the momentum-independent multiplicative azl—P 3+ EcostcoQﬁ yé ,b=1—p(? .

factorZ. (=1.16 in 2D, e.g), and the spin-wave amplitude
is reduced by the same factor as the sublattice magnetization
relative to the Hartree-FockHF) value. Also of interest is
the extension to the intermedidtk-regime which is dis-
cussed below.

(16)

A simple estimate for the NN magnon-interaction energy
is now made as follows. We have seen that in the l&jge-
limit, this interaction energy is nothing but the NN spin-
interaction energy. Since this result is consistent with the
simple bond counting argument, we expect this to hold in the

In the intermediatéd regime the Hubbard model maps to intermediated regime as well. Therefore we take the NN
an extended-range Heisenberg model and the NNN spin coulagnon-interaction energy to be simply the modified NN
plings of O(t*¥U% can be obtained within the RPA spin-interaction energy. An elementary quantitative analysis
analysist? Alternatively the magnon-interaction vertices of Which relies on a comparison of spin-wave energy forms for
Fig. 1 can be evaluated up to the next or@ét*/U%). Thus  the intermediaté Hubbard model(evaluated up to order
with the one-magnon propagatgr " (€)) and the magnon tZ/AZ) and the NNN Heisenberg model is given in Appendix
interaction vertex both evaluated up @(t*/U%), one can B and yields, for the NN spin-interaction energy,
systematically study the two-magnon Raman scattering idnn=J(1— 3t?/A?).
the intermediatéd regime. As mentioned earlier this regime ~ The two-magnon Raman scattering intensity for the two-
is of interest because the modification of spin-wave spectrurgimensional system is now evaluated in the intermedihte-
results in a significantly different form of the magnon densityregime fromG,(2) = G(Q)/[ 1+ JywG(Q)] and is shown
of states. Instead of the divergence at energyr2the DOS in Fig. 2 for the caseA/t=3.5 which corresponds to
due to zone-boundary magnons, one instead gets a pedk~W for the two-dimensional case. We have taken the
structure with a progressively increasing broadening/éis ~ symmetry factorg,(Q) = (coRQ,—coK),), appropriate to the
decreases. This peak structure resembles the effect of maB,y symmetry. Comparing with the larde-limit result, it is

IIl. INTERMEDIATE- U REGIME
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L R B R LB magnon damping which is based on the following disorder
4} i@ J analogy. Because of the substantial transverse spin fluctua-
tions present in th&=1/2, D=2 antiferromagnetic insula-
AA/;;l:g'"_‘" T tor, magnons propagating in the system will see a fairly dis-
3} " g ordered magnetic lattice in which the spins, while
P maintaining overall AF long-range order, are slowly fluctu-
: ating in space and time. These fluctuations are slow on the
Q) 2t . time scale of (2) ! and therefore zone-boundary, high-
AU energy magnons of energyl 2which are of interest, will see
; : an essentially static disorder. This disorder-analogy picture
i 1 suggests that magnon damping will be proportional to the
magnon density of states, which results in a qualitatively

L A correct picture — substantial damping for zone-boundary
0 - magnons and very small damping for low-energy, long-
6 05 1 15 2 25 3 35 4 . - .
wavelength magnons. Since we are interested only in the
zone-boundary magnons, in view of the divergent magnon
o ~density of states at the upper edge dt 2 self-consistent
FIG. 2. Calculated two-magnon Raman scattering intensity inevaluation of damping is therefore essential. We obtain the
the By; symmetry in the large) limit (dotted line and the  self-consistent magnon damping for zone-boundary magnons

intermediateld limit (solid line). with energyQ ~ 2J:

r
clear that while there is a 25% increase in the linewidth in = ImE *(Q,0) 2 -
going to the intermediatd, this increase is not sufficient to Y L 1=y Qo (Q—Qg)2+T2
account for the zero-temperature linewidth observed in 17

La,CuQ, . Therefore, while this contribution must be taken wherevy is an effective disorder strength which measures the

into account in any quantitative analysis, the large broadendegree of spin disorder due to quantum transverse fluctua-

ing seen in LaCuQ, must find an explanation elsewhere. In tions, which we now proceed to estimate. An appropriate

the flowing we consider an important source of broadeningneasure of transverse spin fluctuations is the equal-time cor-

which is particularly relevant for L&LuQ, which is a low- relation function(S™S"), and therefore the simplest esti-

spin and low-dimensional system. mate for the scattering vertex &S~ S"). And since the
disorder strengthy represents two scattering processes, we
obtain y~J%(S™S*)2. Now for theD =2, S=1/2 antiferro-

IV. ZERO-TEMPERATURE MAGNON DAMPING magnet, we kn0W<3—3+> EQ(ll\/ﬁS) 1)/2~0.2,

It is well established now that quantum spin fluctuationswhich is precisely the quantum-fluctuation reduction in
play an important role in L#£uO, and other cuprate anti- (S, or the sublattice magnetization.
ferromagnets which are spin-1/2 and almost two-dimensional Substituting this value ofy, the effective disorder
systems. There is a substantial reduction in the zerostrength, we self-consistently solve from E@7) the effec-
temperature sublattice magnetization relative to the HHive one-magnon damping for zone-boundary magnons, and
(Néel) value. Thus while long-range AF order is maintainedobtain I'/J=0.15. Thus even for zone-boundary magnons
in the two-dimensional(2D) antiferromagnet, there is sub- the resulting damping is small — only about 7% of the en-
stantial amount of spin disorder. A consequence of thigrgy. We now incorporate this magnon damping arising from
fluctuation-induced disorder is that spin-wave states are ndtuantum spin fluctuations into the two-magnon Raman scat-
exact eigenstates of the antiferromagnetic ground state, $6ring evaluation from Eq(13) in the larged limit. This is
that spin-wave or magnon damping must necessarily bdone by simply adding the imaginary paiitl2to the two-
present. And since two-magnon Raman scattering is relate@agnon energy Q in the energy denominators in E().
to the imaginary part of the two-magnon propagator, magnoNVe take the symmetry factap,(Q)=(coxQ,—coxQ,), ap-
damping should play an important role in the observedpropriate to theB,, symmetry, for comparison with Raman
broadening. scattering observations on JGuQ,. The result of this evalu-

While finite-temperature magnon damping in the Heisen-ation, together with the Raman intensity observed in
berg antiferromagnet has been studied in défaf® zero-  La,CuQ, taken from Ref. 8, is shown in Fig. 3. We adjust the
temperature magnon damping is not easy to obtain in thenergy scales so that the observed Raman peak at around
antiferromagnetic insulator. The second-order magnon inter3200 cmi ! occurs at 3 where our calculated Raman scat-
action process does not yield any damping at zero temperaering intensity peaks. As we have shown earlier, there will
ture owing to a phase-space restriction. This process involvese additional broadening if the evaluation is done in the
a magnon decaying into three magnons which subsequentlptermediated regime, appropriate to the cuprates. It is clear
reunite. From simple energy-momentum conservation conthat while the linewidth compares reasonably well with the
siderations it is seen that for lightlike linear dispersion thisobserved full width at half maximunifFWHM) of about
process has a vanishingly small phase space. This argumet200 cmi !, there is a marked asymmetry in the observed
in fact holds for any convex energy-momentum dispersionRaman line, and also a significantly larger scattering persist-
as for magnons. ing at energies aboveJ4 It has been suggested that four-

We discuss below a simple estimate for zero-temperaturenagnon excitations are responsible for these features.
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3 ’ : : i relevant for the two-magnon propagator. The vertices are
shown for interaction between magnons on opposite sublat-
tices A and B. The evaluation is performed in the strong-
coupling limit, in which case the interaction is actually ef-
fective only on nearest-neighbor sites. As mentioned earlier
the interaction vertices represent spinspin-| particle-hole
processes in which energy momentum is exchanged by the
interacting magnons. All diagrams shown are of orde¥ ity
an inverse-degeneracy expansion.

We first briefly review the single-particle Green’s func-
tions in the AF state in the strong-coupling limit.In terms
of the quasiparticle amplitudes, (k) andb (k) on the two
sublattices, the single-particle Green'’s functions are given by
(a5)* azb;

agby  (b3)?
whereo=1/], ands= +/— referring to states in the upper/
FIG. 3. Calculated two-magnon Raman scattering intensity inower Hubbard band. Here the quasiparticle energy
the By, symmetry with a magnon damping 67J=0.15, and few  E; =+ /A2+ ¢Z, where 2=mU is the Hubbard gap, and
points from the observed Raman scattering inQw0, (taken from €= —2t25:1005kM is the free-particle energy. From spin-
Ref. 8. sublattice symmetry, & )?=(b/)2 and @/)2=(b;)? In

. i the strong-coupling limit, retaining terms only up to order
There have been several recent studies of two magnor}/uz, we  have a{(k)zzbf(k)zzl—eﬁluz and

Raman scattering in antiferromagnetric insulators wheré+ D= b (K) =
various additional aspects have been investigated and pr('i‘-T( )_bl( )_fk_/U- ) o
posed as being significant besides the quantum-spin- NOW in each diagram there are precisely two fermionic
fluctuation effects. These include magnetostriction-induced€S connecting am-sublattice site to @-sublattice site,
exchange disorder introduced by lattice vibratiéhsiagnon ~ and therefore off diagonal in the two-sut;latnce basis. This
damping caused by magnon-phonon interactioi?, and pair of lines already contributes a factdfU?, and therefore
resonant Raman scattering in which the incident photon en& need to retain only the leading-order contributions from
ergy is comparable to the Hubbard &t thus appears that all other terms in each gﬂagram. As a representative example,
the actual physics involved in the two-magnon Raman scatiVe discuss the evaluation of the diagram shown in Fig), 1
tering experiments on antiferromagnetic insulators like Cu_yvhere the fermion lines constituting the loop are off diagonal

1

Gi(k,w)= — s
oK) o—Ep+isy

(A1)

prates may be quite rich in detail. in the sublattice basis. The amplitudes of all other Green's
functions are taken to be 1 and poles at enefgy
APPENDIX A =+U/2, in order to obtain the leading-order contribution.

Contributions of all diagrams shown in Figsal-1(h) are
In this appendix we discuss evaluation of diagrams showmgiven in Table |. To the magnon-interaction vertex the con-
in Figs. Xa-1(h) representing magnon interaction verticestribution of diagram shown in Fig.(&) is given by

Vint(Q_leQl_QZ)|(g)
e[ do _ _ , N
=i(iv) fﬁ; G (k,0)anG; (k=Q+Q", 0= Q1+ Q3)anG| (k= Q,0—=Q1)an

dw, - ’ ’ + ’ ’ + ’ ’ ’
% [ oS 61 (K0 )66G] (K + Q0 ~0+01)g6G (K +Q0'~ 0+ 0o
k’

4

dw AV /AN o ’ "
X(=1) | 52 G (K',0")agG[ (K"~ Q+Q", 0"~ Q1 +02)pa
k”

dw 1 2 1
_/in6 | 2
={v) fzwi; (w—(—U/Z)—in) (w—U/2+i77
dw” Gk/!/U Gk//,QJrQr/U
X(_l)fﬁ§ (w"—(:U/z):in)(w"—(iwz)iin

e -1 4t° D
:(|U) Uz‘ Uz (_1) Ug‘ % ek"ek”*Q+Q’:U?YQ*Q’:(‘]D/Z)’YQ*Q" (AZ)

2

fdw' 1 1
2m < lo—(—UR)—in)|o—U2+iy




APPENDIX B

We discuss below an estimation of the NN spin-
interaction energy in the intermedidteregime. The idea is

to compare the spin-wave energy expressions obtained from

(i) the spin-1/2 Heisenberg model with NNN spin interaction
and(ii) the intermediateéd Hubbard model, both for the two-
dimensional, square-lattice caseJlandJ’ refer to the NN

and NNN Heisenberg antiferromagnetic spin interactions, re-

spectively, then for the spin-wave energy we have
Qo=~2J[(1-79)—(23'1)(1-yx)]"%  (BY

where yézcostcon, and terms of orderX'/J)? have

been neglected. We compare this expression now with the
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which, after separating the, and y(’g pieces, can be rewrit-
ten as

Qo~2(4t2/U)(1-9t?/A%)Y2

X[(1=y3)+(3tAY)(1-yy) Y2 (B3)

Now comparing these two spin-wave energy expressions,

we obtain for the NN spin coupling

result for the Hubbard model obtained at the RPA level by an

expansiof? in powers oft?/A2, where 2A =mU is the Hub-
bard gap:

Qo=2(4t2/U)[(1— ¥3) — (t2/A%)(6+ 3y — gyé)]ll(zéz)

] 4t? L 9 t? B4
U\t .
and aferromagneticNNN spin coupling
J 3¢t 85
T 28 (B9
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