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Disclination dynamics in nematic liquid crystals
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This paper presents a simple particle plus field model for the dynamics of disclination lines in a nematic
liquid crystal. The model has no logarithmic divergences with system size and, therefore, no need to introduce
a cutoff. The resulting equation of motion relates the velocity of the disclination to the local phase gradient at
the core of the disclination. The equation is used to obtain a solution, with a scaling behavior at small time for
the annihilation of a pair of opposite strength disclinations. In addition, this paper develops a criterion for the
flow speed required to free a disclination from the boundary constraints of the container.
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The mathematical characterization of topological defectsnultiplier A, to take into account the auxiliary condition
and in particular their dynamics has received much recent?=1;
attention. There are several reasons why nematic liquid crys-
tals are an ideal material for the study of such defects. The _J 1 5
first reason is the relative ease with which such defects in h= SN {F=2\(r)n7dr, @
liquid crystals can be studied in the laboratory. The second _ _
reason is that the behavior of the nematic outside the defe¥there the deformation energy densit ={K,(V-n)?
can be well described by a continuum theory of the unit+Ka[n-(VXn)J?+Ka[nx (Vxn)]?}/2. _ o
vector field, or director(This theory was due originally to There is one case in which the field equations simplify
Oseeth and Zochet and later refined by FrankEricksen?  greatly. This occurs in the one-elastic-consterapproxima-
and Leslie> For a more complete description see also Refs. gion and where the director lies in a plane
and 7) These qualities make liquid crystals convenient for[nN=(cosp,sing,0)]. Comparison of numerical work on
theoretical study. Another reason for some of the recent incoarsening dynamics of thé¢Y modef® and phase ordering
terest in liquid crystals is that the dynamical equations govfor the entire nematic order paraméteshows that this is not
erning the evolution of the director field find an ana|og in thean unreasonable restriction, at least in two dimensions. The
nonrelativistic nonlineas- model, which determines the evo- field equations can now be derived from the following en-
lution of global defects produced in cosmoldbf ergy functionaf®

Recent work, both experimentaind theoretical’>*3has
examined the dynamics and structure of line defects, called j_-:J E(V({))Zdr 3)
disclinations, in nematic liquid crystals. The earliest works v 2
on disclination dynamidé*® concentrated on calculating a
frictional coefficient 5, which is related to a drag force
710, Wherey, is a viscosity coefficient and is the discli-
nation velocity. These efforts suffered from a diverging fric- tion

and some assumption about the dissipation. Applying the
standard approach, as utilized in Ed), leads to the equa-

tional coefficient caused by the failure of the static field

. : . . L 1 6F
equations to accurately describe the field of a moving discli- hp=— — —. (4)
nation at large distances from the defect cdféis is also Y1 6¢

the problem in Ref. 11 Ryskin and.KremenetsRS’/rectified In order to obtain an equation of motion for the disclinations,
this problem and obtained a nondivergentHowever, they e proceed as follows. First, we look at the solutions to Eq.

did not obtain a complete description of the dynamics of thes) which satisfy the topological constraint imposed by a
disclination in the form of an equation of motion. Such angjsclination. Then we use the resulting solution, which is

equation should include a driving force as well as the dragyny valid outside the core region, as a starting point to take

force. The purpose of this work is to obtain an equation Ofiytg account the fact that the boundary, as set by the position
motion for a line defect moving in a nematic medium. of the core, is moving.

In the absence of fluid flow, the equation describing the = cgnsideration of the variation of inside the volume/
relaxation of the liquid-crystal three-component director field,, 5 ;nded by the walls of the container and punctured b'y the
n, in the nematic phase,‘is core region of any disclination lines present, gives

1
=— _h — 2
dn; nh" (1 8F jvéw odr. (5)

wherevy; is the twist viscosity. The vectdr is a variational Combined with Eq.(4), this §F leads to a diffusion-type
derivative of the elastic free energy and involves a Lagrangequation
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9p=DV?¢ (6)

inside the volume/ with a diffusion constanD=K/y,. In
the reference frame of a disclination defect placed(@},
this becomes

DVZ¢=a,6—q-V, (7
whereq is ¢,q in the original reference frame. The diffusion
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is that ¢ in Eq. (10) has afinite interaction lengtt{taking
r—oo with fixed g, in Eq. (10) gives ¢—0]. As we will see
below, this interaction length, which dependsarcan also

be used to determine when a disclination will be free of the
boundaries of the container in which the liquid crystal sits.
So far we have no equation of motion fqr This is due to

the neglect of the surface terms in the variati&f given in

Eq. (5). The above equations can be extended in a natural

equation being linear, we can treat the disclination separatel%ay in order to obtain an equation of motion for a disclina-

and first solve for the fields, due to the disclination which
satisfies

DV2¢y=—0- Vg, (8)
with the boundary conditions
¢hq—Sa+const as(x—q)—0. (9

Then ¢= ¢+ dex is a solution of Eq(7) satisfying the to-
pological constraint at|, where the “external field” ¢y is

tion. This is done by considering the free energy cost in-
volved in displacing the disclination with respect to the back-
ground fields. Note that all volume integrals should be done
only over a punctured domain which excludes small regions
around the defect cores, and E4) is replaced by

f Opoipdr =— ib‘]—'. (11
\% Y1

any solution of the diffusion equation which is analytic over The key here is that nowF will include terms involving the

the core region of the disclination at=q. The solution to
Egs.(8) and(9) with a disclination of strengtk centered at
the origin of the moving frame is

¢q<r>=f:

1.
g(r)=—sex;{ — ﬁq'r

1. .
Vg+ qu)-r’da’,

Ko (10

1 .
ﬁkﬂr ;
wherer is given in polar coordinates («), K, (as well as

K; and |, below is the modified Bessel function, and an
arbitrary additive constant has been set to z€fdis is a

shift in the position of the finite-sized core region.
Let us now write the energfB) in terms of the two fields

g and e

f—Ef [(Vg)?+(Ve)®+2V g Ve ddr. (12)
2y q e q’ e :

Consider a virtual displacementg, of the disclination. In
order to maintain correct boundary conditions, we must also
displace the fieldp, by 6. This is equivalent to a functional
change in¢g, of

Spq=—50-V . (13

generalization of the solution given in Refs. 17 and 10 to aNow consider the individual terms in E@¢L2). There is no

disclination moving in any directiop.

change in the integral of theV(¢q)2 term as¢, has been

The key difference between this and most previous workslisplaced, along with the disclination core. The shift in the
is that solutions to the diffusion equation, rather thancore position causes a surface term to arise involving the

Laplace’s equation, are uséice., unlike in Ref. 114, does
not satisfy the static equatipnThis avoids numerous loga-

other integrands. Finally, there is a volume integral from the
cross terms sincey, has been shifted whilé, has not. The

rithmic divergences with the system size. The reason for thigull variation of 7 is now

SF=K fvv bex V Ocpgdr + ;L\/a. SAL(V e+ 2V ey Vg lds

where the boundaryV is the “surface” of the disclination
core ando is a unit vector normal toV.

We can use the diffusion equation for the field outside of

the core regions to write Eq1ll) in a frame-invariant man-
ner as

f 5¢sz¢dr=—iaﬁ (15
\Y; Y1

which, in terms ofgg and ¢y, is

—Kf 5¢qu¢exdr+Kj 0 {V ¢ x8¢q+ 384 (V hex) >+ 2V ey V g1} dIs,
\ NV

(14)

J' 5¢q[—q-V¢q+DV2¢ex]dr=—ib‘]—'. (16)
\% Y1

Combining Eqgs.(13), (14), and (16) gives the equation of
motion forq:

~ g
n~q=DL\/{V¢q(f-0)—§[f2+2f-v¢q] ds, (17)
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Note that in the case whefe V¢>eX|q is not small, one must
use the more exact EL7).

_ F_IG. 1. Director_ field for disclination-antidisclination pair anni- As an example of the use of the equation of moti@g),
hilating shown at time$=0, 70, 95, and 101.3. let us consider the annihilation of a pair of disclinations with
- . . opposite winding numbers. The importance of this example
where =V ¢eq and 7= [V ¢qV dqdr is @ 22 matriX, jies in the fact that there is growing numerical evideiéé
not a scalar. For a small external field gradienkatq and iyt the phase ordering of a large system of numerous defects

small core radius, we can talte-V ¢, to be constant over s determined solely by the forces acting in the two-defect
the region of the disclination core. Neglecting terms of Orderproblem. We place a disclination with s at x=—q on the

f2, Eq. (17) becomes x axis and one with-s at x=q. The field ¢, can be found
by using Eq.(10) twice with a suitably shifted origin. We
';TqZDj [Vq(o-f)—o(f-Vg)]ds find the equation of motion for the disclinationatq and
Y assume that the other follows in a symmetric fashion. The

gradient caused by the positive disclination at the site of the

:Df/\f Vpy/\ods second is
Vv
S - -
S—— 1 vlere e 239 9] 94 5. 5
where we have used the boundary conditions, (Byg.in the
last step, and Substituting this into Eq(22) gives the equation of motion
for . The resulting equation is extremely nonlinear and can-
0 -1 not be solved analytically foq in terms ofq. The problem
J=l1 o | (19 can be simplified greatly from a numerical point of view by

differentiating the equation of motion with respect to time

and converting to a first-order system of two equations. The

The expressiom= [V ¢,V ¢4dr can be evaluated using original equation of motion supplies a constraint on the
the explicit solution for¢, given in Eq.(10). Taking the f:hoice of initial conditions for andq. The resulting system

gradient of¢ in Eq. (10) gives IS
Vpa=JI(Vg+qg/D). (20) a=y,
After a snj_all .amo_unt of algebra, one finds tyds an eigen- e K,(q|gl/D)
vector of  with eigenvalue y=——-—> s - . (29
q EKI(E)11(28)exp(—aqa/D)—Ky(a[gl/D)
n= wszf Ki(,u)ll(z,u)d,u Note that€ depends om from Eq.(21). Despite the compli-
€ cated nature of these equations it is considerably simpler to
~7s2n[3.1D/(|g|a)] 21) solve these ordinary differential equations than to solve the

full partial differential equations describing the fields. These
where £=a|q|/(2D), anda is the core radius. This is the equations have an approximate scaling solution for strl
same friction coefficient found in Ref. 10. So our equation of
motion becomes q=cDY?(t4—1)*, (25)
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where ¢ comes from numerically solving the equation of where& is the same as in Eq21). We can see from this
motion att=0 giventy, an annihilation time. Figure 1 dis- that the static and dynamic line tensions are equal when
plays a field map of the numerical solution to E¢34) at  1/€~L/a or when the speed of the flow |g|=2K/(y,L).
different times. A comparison of the numerical solution andFor flow speed less than this critical value, the dis-
Eq. (29 is given in Fig. 2. Note that the scaling solution clination will be pinned elastically by the boundaries. Above
remains almost indiStingUiShable from the numerical SOlUtiOfthe critical flow Speed, the field distortions due to the discli-

until quite close to the annihilation timig .

nation do not reach the boundary, and the disclination is free

Another interesting implication of the dynamic equationsiy move.

of motion is that a finite flow is required to move a disclina-

In conclusion, in this paper we have derived an equation

tion in a finite medium. In the static case, the position of asf motion for a disclination in a nematic liquid crystal.

that the gradient ofp caused by a static disclination drops
off only as 1f at large distances from the disclination. In

addition, the line tensiomr, computed using the energy in
Eq. (3), diverges logarithmically with system size,
os=mKsn(L/a). L is the distance of the disclination line
from the walls of the containérin contrast, if one examines
the field in Eq.(10) due to a disclination that is moving, one

This equation has no logarithmic dependence on the system

size. We have applied this equation to the annihilation of a
pair of opposite-strength disclinations and the flow required
to free a disclination from the walls of its container. An
observation of these two effects would give an experimental
measurement of the ratio of the elastic constant to the vis-
cosity constant. We note, however, that these results depend
on the assumption that the dissipation inside the core is neg-

finds that it drops to zero at distances much greater thaﬁgible compared to that outside the core. This will only oc-

a/€. Thedynamicline tension, computed using the solution
(10) in Eq. (3), is given by

o= [ dpunl1o( 2 K ) +KE( 0]

+211(2p)Ko( ) Ky ()}

~ 7Ks?In(1.12f), (26)

cur when the size of the region outside the core where the
dissipation is significant is much greater than the core itself
or <1,
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