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This paper presents a simple particle plus field model for the dynamics of disclination lines in a nematic
liquid crystal. The model has no logarithmic divergences with system size and, therefore, no need to introduce
a cutoff. The resulting equation of motion relates the velocity of the disclination to the local phase gradient at
the core of the disclination. The equation is used to obtain a solution, with a scaling behavior at small time for
the annihilation of a pair of opposite strength disclinations. In addition, this paper develops a criterion for the
flow speed required to free a disclination from the boundary constraints of the container.
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The mathematical characterization of topological defects
and in particular their dynamics has received much recent
attention. There are several reasons why nematic liquid crys-
tals are an ideal material for the study of such defects. The
first reason is the relative ease with which such defects in
liquid crystals can be studied in the laboratory. The second
reason is that the behavior of the nematic outside the defect
can be well described by a continuum theory of the unit
vector field, or director.~This theory was due originally to
Oseen1 and Zocher2 and later refined by Frank,3 Ericksen,4

and Leslie.5 For a more complete description see also Refs. 6
and 7.! These qualities make liquid crystals convenient for
theoretical study. Another reason for some of the recent in-
terest in liquid crystals is that the dynamical equations gov-
erning the evolution of the director field find an analog in the
nonrelativistic nonlinears model, which determines the evo-
lution of global defects produced in cosmology.8,18

Recent work, both experimental9 and theoretical,10–13has
examined the dynamics and structure of line defects, called
disclinations, in nematic liquid crystals. The earliest works
on disclination dynamics14,15 concentrated on calculating a
frictional coefficient h, which is related to a drag force
hg1q̇, whereg1 is a viscosity coefficient andq̇ is the discli-
nation velocity. These efforts suffered from a diverging fric-
tional coefficient caused by the failure of the static field
equations to accurately describe the field of a moving discli-
nation at large distances from the defect core.~This is also
the problem in Ref. 11.! Ryskin and Kremenetsky10 rectified
this problem and obtained a nondivergenth. However, they
did not obtain a complete description of the dynamics of the
disclination in the form of an equation of motion. Such an
equation should include a driving force as well as the drag
force. The purpose of this work is to obtain an equation of
motion for a line defect moving in a nematic medium.

In the absence of fluid flow, the equation describing the
relaxation of the liquid-crystal three-component director field
n, in the nematic phase, is7
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whereg1 is the twist viscosity. The vectorh is a variational
derivative of the elastic free energy and involves a Lagrange

multiplier l, to take into account the auxiliary condition
n251;
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where the deformation energy densityF5$K1(¹–n)
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There is one case in which the field equations simplify

greatly. This occurs in the one-elastic-constant-K approxima-
tion and where the director lies in a plane
@n5(cosf,sinf,0)#. Comparison of numerical work on
coarsening dynamics of theXY model19 and phase ordering
for the entire nematic order parameter20 shows that this is not
an unreasonable restriction, at least in two dimensions. The
field equations can now be derived from the following en-
ergy functional:6,16
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and some assumption about the dissipation. Applying the
standard approach, as utilized in Eq.~1!, leads to the equa-
tion
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In order to obtain an equation of motion for the disclinations,
we proceed as follows. First, we look at the solutions to Eq.
~4! which satisfy the topological constraint imposed by a
disclination. Then we use the resulting solution, which is
only valid outside the core region, as a starting point to take
into account the fact that the boundary, as set by the position
of the core, is moving.

Consideration of the variation ofF inside the volumeV,
bounded by the walls of the container and punctured by the
core region of any disclination lines present, gives

dF52E
V
df¹2fdr . ~5!

Combined with Eq.~4!, this dF leads to a diffusion-type
equation

PHYSICAL REVIEW B 1 SEPTEMBER 1996-IVOLUME 54, NUMBER 9

540163-1829/96/54~9!/6272~4!/$10.00 6272 © 1996 The American Physical Society



] tf5D¹2f ~6!

inside the volumeV with a diffusion constantD5K/g1. In
the reference frame of a disclination defect placed atq(t),
this becomes

D¹2f5] tf2q̇•¹f, ~7!

whereq̇ is ] tq in the original reference frame. The diffusion
equation being linear, we can treat the disclination separately
and first solve for the fieldfq due to the disclination which
satisfies

D¹2fq52q̇•¹fq , ~8!

with the boundary conditions

fq→sa1const as~x2q!→0. ~9!

Thenf5fq1fex is a solution of Eq.~7! satisfying the to-
pological constraint atq, where the ‘‘external field’’fex is
any solution of the diffusion equation which is analytic over
the core region of the disclination atx5q. The solution to
Eqs.~8! and~9! with a disclination of strengths centered at
the origin of the moving frame is
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wherer is given in polar coordinates (r ,a), K0 ~as well as
K1 and I 1 below! is the modified Bessel function, and an
arbitrary additive constant has been set to zero.~This is a
generalization of the solution given in Refs. 17 and 10 to a
disclination moving in any direction.!

The key difference between this and most previous works
is that solutions to the diffusion equation, rather than
Laplace’s equation, are used~i.e., unlike in Ref. 11,fq does
not satisfy the static equation!. This avoids numerous loga-
rithmic divergences with the system size. The reason for this

is thatfq in Eq. ~10! has afinite interaction length@taking
r→` with fixed q̇, in Eq. ~10! givesf→0#. As we will see
below, this interaction length, which depends onq̇, can also
be used to determine when a disclination will be free of the
boundaries of the container in which the liquid crystal sits.
So far we have no equation of motion forq. This is due to
the neglect of the surface terms in the variationdF given in
Eq. ~5!. The above equations can be extended in a natural
way in order to obtain an equation of motion for a disclina-
tion. This is done by considering the free energy cost in-
volved in displacing the disclination with respect to the back-
ground fields. Note that all volume integrals should be done
only over a punctured domain which excludes small regions
around the defect cores, and Eq.~4! is replaced by

E
V
df] tfdr52
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The key here is that nowdF will include terms involving the
shift in the position of the finite-sized core region.

Let us now write the energy~3! in terms of the two fields
fq andfex:
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212¹fq•¹fex#dr . ~12!

Consider a virtual displacement,dq, of the disclination. In
order to maintain correct boundary conditions, we must also
displace the fieldfq by dq. This is equivalent to a functional
change infq of

dfq52dq•¹fq . ~13!

Now consider the individual terms in Eq.~12!. There is no
change in the integral of the (¹fq)

2 term asfq has been
displaced, along with the disclination core. The shift in the
core position causes a surface term to arise involving the
other integrands. Finally, there is a volume integral from the
cross terms sincefq has been shifted whilefex has not. The
full variation of F is now

dF5KE
V
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where the boundary]V is the ‘‘surface’’ of the disclination
core ands is a unit vector normal to]V.

We can use the diffusion equation for the field outside of
the core regions to write Eq.~11! in a frame-invariant man-
ner as

E
V
dfD¹2fdr52

1

g1
dF, ~15!

which, in terms offq andfex, is

E
V
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Combining Eqs.~13!, ~14!, and ~16! gives the equation of
motion forq:

h̃•q̇5DE
]V

H ¹fq~ f•s!2
s

2
@ f 212 f•¹fq#J ds, ~17!
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where f5¹fexuq and h̃5*V¹fq¹fqdr is a 232 matrix,
not a scalar. For a small external field gradient atx5q and
small core radius, we can takef5¹fex to be constant over
the region of the disclination core. Neglecting terms of order
f2, Eq. ~17! becomes

h̃•q̇5DE
]V

@¹fq~s•f!2s~ f•¹fq!#ds

5Df`E
]V

¹fq`sds

522psD~Jf!, ~18!

where we have used the boundary conditions, Eq.~9!, in the
last step, and

J5F 0 21

1 0 G . ~19!

The expressionh̃5*V¹fq¹fqdr can be evaluated using
the explicit solution forfq given in Eq. ~10!. Taking the
gradient offq in Eq. ~10! gives

¹fq5J~¹g1q̇g/D !. ~20!

After a small amount of algebra, one finds thatq̇ is an eigen-
vector of h̃ with eigenvalue

h5ps2E
E

`

K1
2~m!I 1~2m!dm

'ps2ln@3.7D/~ uq̇ua!#, ~21!

whereE5auq̇u/(2D), anda is the core radius. This is the
same friction coefficient found in Ref. 10. So our equation of
motion becomes

hq̇522psD~Jf!. ~22!

Note that in the case wheref5¹fexuq is not small, one must
use the more exact Eq.~17!.

As an example of the use of the equation of motion~22!,
let us consider the annihilation of a pair of disclinations with
opposite winding numbers. The importance of this example
lies in the fact that there is growing numerical evidence19,20

that the phase ordering of a large system of numerous defects
is determined solely by the forces acting in the two-defect
problem. We place a disclination with1s at x52q on the
x axis and one with2s at x5q. The fieldf, can be found
by using Eq.~10! twice with a suitably shifted origin. We
find the equation of motion for the disclination atx5q and
assume that the other follows in a symmetric fashion. The
gradient caused by the positive disclination at the site of the
second is

¹f1ux5q5
suq̇u
2D

expS 2qq̇

D D FK1S quq̇u
D D2K0S quq̇u

D D G ŷ. ~23!

Substituting this into Eq.~22! gives the equation of motion
for q. The resulting equation is extremely nonlinear and can-
not be solved analytically forq̇ in terms ofq. The problem
can be simplified greatly from a numerical point of view by
differentiating the equation of motion with respect to time
and converting to a first-order system of two equations. The
original equation of motion supplies a constraint on the
choice of initial conditions forq andq̇. The resulting system
is

q̇5y,

ẏ5
q̇2

q

K1~quq̇u/D !

EK1
2~E!I 1~2E!exp~2qq̇/D !2K1~quq̇u/D !

. ~24!

Note thatE depends onq̇ from Eq.~21!. Despite the compli-
cated nature of these equations it is considerably simpler to
solve these ordinary differential equations than to solve the
full partial differential equations describing the fields. These
equations have an approximate scaling solution for smallt of

q5cD1/2~ td2t !1/2, ~25!

FIG. 1. Director field for disclination-antidisclination pair anni-
hilating shown at timest50, 70, 95, and 101.3.

FIG. 2. Position vs time for the disclination-antidisclination pair
annihilation shown in Fig. 1.
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where c comes from numerically solving the equation of
motion att50 given td , an annihilation time. Figure 1 dis-
plays a field map of the numerical solution to Eqs.~24! at
different times. A comparison of the numerical solution and
Eq. ~25! is given in Fig. 2. Note that the scaling solution
remains almost indistinguishable from the numerical solution
until quite close to the annihilation timetd .

Another interesting implication of the dynamic equations
of motion is that a finite flow is required to move a disclina-
tion in a finite medium. In the static case, the position of a
disclination is fixed by the boundaries. This is due to the fact
that the gradient off caused by a static disclination drops
off only as 1/r at large distancesr from the disclination. In
addition, the line tensions, computed using the energy in
Eq. ~3!, diverges logarithmically with system size,
ss5pKs2ln(L/a). L is the distance of the disclination line
from the walls of the container.6 In contrast, if one examines
the field in Eq.~10! due to a disclination that is moving, one
finds that it drops to zero at distances much greater than
a/E. Thedynamicline tension, computed using the solution
~10! in Eq. ~3!, is given by

s5pKs2E
E

`

dmm$I 0~2m!@K0
2~m!1K1

2~m!#

12I 1~2m!K0~m!K1~m!%

'pKs2ln~1.12/E!, ~26!

whereE is the same as in Eq.~21!. We can see from this
that the static and dynamic line tensions are equal when
1/E'L/a or when the speed of the flow isuq̇u52K/(g1L).
For flow speed less than this critical value, the dis-
clination will be pinned elastically by the boundaries. Above
the critical flow speed, the field distortions due to the discli-
nation do not reach the boundary, and the disclination is free
to move.

In conclusion, in this paper we have derived an equation
of motion for a disclination in a nematic liquid crystal.
This equation has no logarithmic dependence on the system
size. We have applied this equation to the annihilation of a
pair of opposite-strength disclinations and the flow required
to free a disclination from the walls of its container. An
observation of these two effects would give an experimental
measurement of the ratio of the elastic constant to the vis-
cosity constant. We note, however, that these results depend
on the assumption that the dissipation inside the core is neg-
ligible compared to that outside the core. This will only oc-
cur when the size of the region outside the core where the
dissipation is significant is much greater than the core itself
or E!1.

I would like to thank Ray Goldstein for many valuable
discussions and Chao Tang for a critical reading of this
manuscript.
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