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We present an analytic model to describe the existence of photonic energy gaps in the propagation of surface
plasmon polaritons on corrugated surfaces. We concentrate on elucidating the physical origin of the band gap,
and accordingly we place strong emphasis on the physical reasoning and assumptions that we use. Our model
is designed to give direct access to expressions for the electromagnetic field and surface charge distributions
associated with modes at the band edges, thus allowing their physical character to be easily appreciated.
Having established why a band gap occurs we then find expressions for the central position and width of the
gap. We compare the results of our model for the gap width with those already in the literature, and find
excellent agreement. Our results for the central position of the gap, notably the prediction that it should fall as
the corrugation amplitude rises, contradicts one prediction made in the literature. We also reexamine the
comparisons made in the literature between experiment and theory for the gap width, and find them inadequate
because the theories have been compared to inappropriate experimental data. Consequently we present our own
recent experimental data, enabling us to validate our theoretical results, in particular confirming our prediction
that the central position of the gap falls as the corrugation amplitude is increased. The limitations of our model
are discussed, as well as possible extensions and areas for future research.@S0163-1829~96!07433-4#

I. INTRODUCTION

Photonic materials are currently the subject of intensive
and widespread study~Refs. 1, 2, and references therein!.
These materials are based on the interaction between an op-
tical field and a material exhibiting periodicity on the scale
of the wavelength of light. The periodicity modifies the
propagation of the optical wave within the material, and un-
der appropriate circumstances may prohibit propagation over
some range of optical frequencies—a photonic band gap. In-
terest in such systems stems from the potential they offer to
control the optical properties of materials, particularly spon-
taneous emission, since this has important applications in
such areas as the reduction of noise in laser diodes and light-
emitting diode~LED! emission.3

The photonic materials generally considered are bulk in
nature, for example the quarter wave dielectric stack used as
both mirror and filter, and the face centered cubic lattice.4 In
such systems the photon is dressed by the periodic
material—this dressed state is called a polariton mode of the
system. One can also consider a system that involves surface
rather than bulk modes; if the surface is metallic then the
relevant mode is a surface plasmon polariton~SPP! ~Ref. 5!
and a corrugated surface may be used to provide the period-
icity. Just as in the bulk case, under appropriate conditions
this periodicity may result in an energy band gap in the
propagation of the surface modes. In a recent Brief Report6

we outlined an analytic description of the photonic gap that
exists for SPP’s propagating on a metallic grating, and used
it to show the physical origin of the band gap. In this paper
we provide the detailed formulation of our theory and exam-
ine the effect of the surface profile on the gap. We also
discuss the merits of our theory in comparison with previous
work, discuss the theory’s limitations, and present experi-
mental data of previously untested aspects of SPP energy
gaps that support our analysis.

The paper is organized as follows. In Sec. II we present a
brief summary of the nature of photonic band gaps with ref-
erence to a particularly simple system, the quarter wave di-
electric stack, and place our subsequent discussion of SPP
energy gaps in this context. In this section we also review
previous work in the field. In Sec. III we discuss the impor-
tance of the detailed nature of the surface profile on the en-
ergy gap and in particular look at the implications this has in
interpreting experimental data. In Sec. IV we discuss previ-
ous theoretical work, thus setting our own in context. In Sec.
V we develop in detail our analytic theory, ultimately finding
expressions for the central position, the width of the gap and
the field and surface charge distributions. By incorporating
the results of some numerical modeling we provide a simple
physical picture for the nature of the energy gap for SPP’s. In
Sec. VI we compare the results from our model with experi-
mental data, and discuss the limitations of our model. Sec-
tion VII provides a summary together with suggestions for
future work.

II. BACKGROUND

We start by looking at the simplest periodic photonic ma-
terial, the quarter wave dielectric stack; see Fig. 1.7,8 Con-
sider light propagating normal to the interface planes. When
the optical wave vector is equal to half of the Bragg vector
corresponding to the stack periodicity, Bragg scattering re-
sults in both forward and backward traveling waves that in-
terfere constructively to set up a standing wave. We can use
simple symmetry arguments to find where the standing wave
is positioned with respect to the dielectric stack. If, at some
point in the stack the two waves~forward and backward! are
in phase the subsequently Bragg scattered waves must arrive
back at this point still in phase. Since both waves will suffer
an identical phase change on scattering they must travel an
equal optical path length, thus requiring that the original
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point under consideration be in the middle of a low index
region or the middle of a high index region; see Fig. 1.

The origin of an energy difference between these two
standing wave configurations becomes apparent when we
consider the nature of the modes involved. Light within a
material is no longer just an optical field, it is now intimately
linked with the optical response of the material, the mode is
a polariton rather than a photon. The interaction between the
optical field and the material is represented by the complex
dielectric permittivity and thus the index of refraction. As we
have just seen the standing wave within the stack can have
two configurations, one when the standing wave has the op-
tical field concentrated in the high index layers, the other
when it is concentrated in the low index layers. The different
refractive indices of the two regions mean that the two
modes have different energies~and therefore frequencies! as-
sociated with them whilst still having the same
periodicity—a band gap has been opened up. Frequencies
between these two values, i.e., in the gap, are unable to
propagate since they correspond to forward and backward
traveling waves that destructively interfere within the stack.
Such an energy gap is exploited in the manufacture of dielec-
tric stacks for use as filters and mirrors since, when propa-
gation is prohibited, an incident optical beam is totally re-
flected rather than transmitted.

To summarize then, if the internal optical wavelength is
twice the periodicity of the stack a standing wave may be
formed and two possible standing wave configurations or
modes exist, having different energies. This difference arises
because the optical field of the two modes are concentrated
in regions of different refractive index.

We can now go on to consider the situation for surface
modes; see Fig. 2. We restrict ourselves to nonradiative sur-
face plasmon polaritons~SPP’s! propagating on a corrugated
surface, although other surface modes, particularly acoustic,
have also been considered.9 As with the dielectric stack, if
the surface mode propagates on a corrugated surface and the
mode wave vector is half the value of the grating wave vec-

tor this results in the formation of a standing wave and again
the mode distribution on the surface may then take two con-
figurations, having different energies. We may qualitatively
see the origin of this energy difference once we consider the
nature of SPP modes. A nonradiative SPP mode is bound to
the interface between a dielectric and a metal, it consists of
an electromagnetic field oscillation coupled to an oscillating
surface charge density. The energy of an SPP standing wave
will thus depend on the energy stored both in the electromag-
netic field and the surface charge distribution. Since the two
standing wave solutions take different positions with respect
to the peaks and troughs of the grating~these are the ana-
logues of the high and low index regions of the dielectric
stack! it is not unreasonable to suppose that the electromag-
netic field and surface charge distributions will differ in the
two modes. As we shall show below, it is by considering the
nature of these standing wave solutions in detail that we are
able to determine quantitatively the magnitude and central
position of this energy gap. The experimental existence of
energy gaps, alternatively described as frequency orv gaps,
in the propagation of surface plasmons on corrugated metal-
lic surfaces, is now well established10–15 ~note that these are
sometimes referred to as minigaps in the literature since the
ratio of gap width to central position has usually been small,
typically 0.02!.

To understand what follows we must be clear about the
effect the corrugated surface has on the dispersion of the SPP
mode. For an ideal metal the dispersion curve for SPP propa-
gation on a flat surface takes on a particularly simple form,
as shown in Fig. 3. If the modulation depth of the grating is
small then the SPP mode wave vector,kSPP, will only be
perturbed by the surface modulation when it is close to half
the value of the Bragg wave vector, 2K. The Bragg wave
vector is defined as 2K52p/lg where lg is the pitch of
corrugation; the reason for not defining it asK will become
clear in Sec. III. At this value of the mode wave vector a
energy gap opens up in the dispersion curve, see Fig. 3, in
direct analogy with the energy gaps found in the dispersion

FIG. 1. A sketch of the standing waves in the dielectric stack.
The boxed regions are of high-refractive index. The low frequency
standing wave, top, has field extrema concentrated in the high index
regions; the high frequency solution has the extrema in the low
index regions.~Note that the fields drawn are only to give an indi-
cation of the distribution; in practice they will not be sinusoidal,
e.g., the low frequency field will be more tightly concentrated in the
high index region.!

FIG. 2. Sketch of the corrugated surface considered, together
with the spatial axes. The surface is described by a shape function
s(x).
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curve of electrons propagating in crystalline lattices and that
discussed for the dielectric stack above.

It is the principle aim of this paper to explain in detail the
physical origin of this gap. There was for some time concern
about whether such gaps were gaps in frequency or wave
vector. As we shall see below, this confusion arose from a
poor interpretation of experimental data rooted in a lack of
understanding of the way in which the SPP modes couple to
photons. Although this problem has now been resolved in
favor of frequency gaps, its legacy has persisted when com-
parison between experimental and theoretical work has been
attempted by some authors; it is therefore important to un-
derstand the nature of the problem and see how it is resolved.
To do this we need to look at how experimental data on SPP
energy gaps is obtained.

III. THE INTERPRETATION OF EXPERIMENTAL DATA
ON SPP ENERGY GAPS

Our aim in this section is to look at the way in which
experimental data on SPP energy gaps has been obtained,
with particular emphasis on how the data may be interpreted.
We summarize the results of previous investigations and
highlight the importance of having a detailed knowledge of
the surface profile of the grating in making such interpreta-
tions; we use numerical modeling~discussed later in this
paper! to emphasize the relevant points.

The observation of SPP energy gaps can be achieved by
studying the resonant interaction between SPP’s and radia-
tive modes, e.g., photons. However, an important property of
SPP’s is that their momentum is greater than that of a free
space photon of the same frequency, i.e.,kSPP.k0; photons
can only access the region within the light lines of Fig. 2.

Scattering from the corrugated surface provides an easy mo-
mentum matching route. The SPP’s can gain or lose momen-
tum in integer multiples of 2K by such scattering, thus pro-
viding coupling to photons. However, the portion of the
dispersion curve near the first Brillouin zone boundary al-
ways lies outside the light lines, even after scattering from
the grating, and so cannot couple to photons; see Fig. 3. A
common solution to this problem is to introduce another
modulation onto the surface. If the modulation has a longer
pitch than the original then it may couple the energy gap
region to photons; see Fig. 4.

Corrugated surfaces are commonly made by exposing
photoresist to a holographic interference pattern. Nonlineari-
ties in the exposure and development process lead to a grat-
ing profile that contains higher harmonics in addition to the
fundamental. Typically only the lowest harmonic is impor-
tant ~the importance of the existence of higher harmonic
components in the surface profile has been recognized by
many authors13,14! and the surface profile,s(x), may be rep-
resented as

s~x!5d1sin~Kx!1d2sin~2Kx1f2!, ~3.1!

wherex is the spatial coordinate,d1 andd2 are the amplitude
of the two harmonic components, andf2 is their relative
phase. It is important to be clear on the role that the different
components play. TheK component of the surface modula-
tion provides the coupling to photons whilst the 2K compo-
nent produces the energy gap. We note that the modulation
with Bragg vectorK will also produce a band gap, but in a
different frequency region, this fact is ignored in Fig. 4. Hav-
ing thus identified the role of the two components it is clear
that there is no physical requirement for them to be har-
monic. We should also note that a pure sinusoid can carry
out both functions, i.e., gap creation and momentum match-
ing. Second order scattering from theK component can give

FIG. 3. The surface plasmon polariton dispersion curve. The
dashed line shows the dispersion curve for a flat surface, the dotted
line that for a corrugated surface. Notice how a frequency gap is
opened up in the case of the corrugated surface. The gap occurs at
6K, the zone boundary, the Bragg vector of the corrugation being
2K. Also shown are the light lines. These are the dispersion curves
for photons traveling at grazing incidence to the interface between
the metal and the dielectric, i.e., those having the largest possible
value of kx : we see that it is not possible to couple the surface
modes directly to photons; the surface modes always have more
momentum than the photon of the same frequency.

FIG. 4. The surface plasmon dispersion curve for a doubly cor-
rugated surface, i.e., one having two grating components, one with
Bragg vector 2K, the other with Bragg vectorK. The dispersion
curve scattered by the 2K component~dotted curve! has gaps out-
side the light lines, and is therefore unable to couple to photons. To
examine the gap experimentally a second grating componentK is
used. The dispersion curve scattered by theK component~dashed
curve! exhibits a gap within the light lines thus allowing experimen-
tal investigation.
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rise to a gap, however, this second order process is weak~see
Sec. V! and need not be considered further in the present
discussion.

We need now to consider the experimental details of the
coupling between SPP’s and photons, since the way the ex-
periment is carried out has important implications for the
interpretation of the data. The purpose of such experiments is
to reconstruct the dispersion curve, thus allowing the width
and central position of the gap to be determined. The prin-
ciple method by which this has been achieved is as follows.

Light of a given frequency is incident on the grating in the
plane containing the grating vector and the surface normal, at
some angleu with respect to the surface normal and the
reflectivity monitored. If this angle is such that

kSPP56k0sinu6nK, ~3.2!

then the light may couple to the SPP mode. The reflection
coefficient contains components due to specular reflection
and reradiation by the SPP mode. Typically the inclusion of
the SPP reradiation results in a significant reduction in the
reflected intensity due to the phase difference between the
specular and reradiated light.16,17Data are acquired by mea-
suring the reflection coefficient as a function of incident fre-
quency and angle. It is the interpretation of the reflection
data so obtained that we wish now to concentrate on. In the
following we make use of numerical modeling to explore the
reflectivity under various experimental conditions. The nu-
merical modeling is based on the same techniques that we
use later in Sec. V to develop our analytic model. The details
of the numerical models have been reported elsewhere.18

We start by mapping the reflectivity of a purely sinusoidal
silver grating as a function of incident wavelength and angle;
see Fig. 5. The crossing between the branches scattered by
6K occurs for light at normal incidence. For this sinusoidal
profile there is no significant interaction between the two
branches of the dispersion curve as shown by the absence of
a gap in this case. Adding a 2K component to the surface
profile provides an interaction between the two branches, the
forward and backward traveling surface modes are coupled
by this component and an energy gap opens up as shown in
Fig. 6.

Experimentally there are two distinct ways in which data
of this type may be obtained. One is to fix the angle of
incidence and scan the reflectivity as the frequency is
changed. The other is to fix the frequency and scan the angle
of incidence. As has been noted by others, the two tech-
niques can produce rather different results.13,19 Figure 7
shows sections through Fig. 6 corresponding to the two dif-
ferent types of scan. The wavelength scan, Fig. 7~a!, for a
constant incident angle, in this case 0°, shows two clear
minima indicating the presence of an energy gap. By con-
trast, the angle scan at a constant wavelength, Fig. 7~b! is
quite different, showing only one reflectivity minimum. At
first sight this is rather surprising since we chose our fixed
wavelength to be in the middle of the gap. We can see why
this is from Figs. 5 and 6 where, due to the finite width of the
resonances, a clear saddle point exists in the gap. The mini-
mum reflectivity in this case@Fig. 7~b!# which is only about
5% deep, represents coupling to the wings of the resonances.
Thus if we scan the wavelength for a range of fixed angles
we always see two minima. If we scan the angle for a range

of wavelengths there are circumstances in which we will
only see one minimum. Consequently, using the minima
from angle scanned data will not in general yield the true
dispersion curve of the SPP modes. It is better to scan the
wavelength for fixed angles of incidence, or, better still, to
obtain the reflectivity as a function of both so as to be able to
examine the data as we have done here for the numerically
modeled data presented in Fig. 4–6.

There was for some time confusion in the literature con-
cerning the existence ofk gaps, i.e., gaps that occurred in
momentum rather than energy.13,20,21 Although it has now
been established13,22–24that there are no momentum gaps for
the propagation of SPP’s on grating surfaces and that the
appearance of such gaps in reflectivity data is an artifact of
the coupling between the SPP and a photon, it is still worth
revisiting this problem as it has important consequences for
the type of model that should be used in looking at SPP band
gaps.

Thatk gaps are due simply to over coupling is easily seen
by reproducing the data used to produce Fig. 5 but with an
increased amplituded1 of the fundamental surface profile
component,K; see Fig. 8. To understand the origin of thisk

FIG. 5. Numerically modeled reflectivity of a singly corrugated
surface. The upper picture shows a reflectivity surface map, reflec-
tivity being plotted as a function of both angle of incidence and
wavelength. The surface has Bragg vectorK, thus allowing cou-
pling of photons to surface modes, but not providing the scattering
required to set up a gap. The lower picture shows this clearly; the
reflectivity minimum is a continuous function of wavelength, there
is no gap where the branches cross.~Note that in the lower picture
the darker the region the lower the reflectivity.! The parameters
used in the modeling were grating pitch5634 nm, amplituded155
nm; the metal parameters were fixed at«r5217.5,«i50.7, charac-
teristic of those for silver in this wavelength range.
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gap we must consider what the reflectivity we measure rep-
resents. As discussed above, the reflected light comprises a
component due to specular reflection and one due to reradi-
ated SPP emission. By increasing the depth of the grating we
increase the coupling between the photon and the SPP
thereby decreasing the reflected signal and increasing the
reradiated. At the optimum coupling depth the reflected and
reradiated components are equal in amplitude and out of
phase, resulting in zero net reflectivity—100% coupling.
Now suppose that we have two such perfectly coupled
modes, one either side of the crossing point of Fig. 5. If we
now bring these modes closer in frequency to the crossing
point then the two 100% coupled modes will overlap.
Clearly they cannot add to produce 200% coupling, instead
an increased reflectivity is recorded. This is clearly visible on
a constant wavelength scan through the middle of Fig. 8.
There now appears to be a reflectivity maximum between
two weaker minima and a ‘‘momentum gap’’ has appeared.
The foregoing highlights the care with which reflectivity
minima must be treated when trying to construct a dispersion
curve. Ideally experiments should be conducted with very
shallow gratings so that this type of distortion of the apparent
mode position does not occur.

To complete our examination of the care with which ex-
perimental data must be acquired and analyzed we need to
consider one further detail of the surface profile, the relative
phase,f2, of the K and 2K components. For reasons of
clarity this discussion will be delayed until Sec. V F.

We can summarize this section by noting that the details
of the surface profile are critical in determining the reflectiv-

ity data that will be obtained and how it should be inter-
preted. The presence of two Fourier components are required
if SPP band gaps are to be observed optically. Their magni-
tude and phase have a significant effect on the reflectivity,
through their effect on the coupling between the SPP modes
and photons, and must therefore be considered carefully in
evaluating data obtained in this way. In fact, as we shall see
in Sec. VI C it is possible to use prism coupling the SPP
modes to photons, thus avoiding the need for a second cor-
rugation component.

We also note at this stage that information concerning
SPP band gaps can be obtained by examining emission rather
than reflectivity data.25 In this case a layer of excited mol-
ecules immediately above the metal surface lose their energy
by generating an SPP mode of the appropriate frequency. We
will not discuss this work further here since it introduces an
extra complication into our model, i.e., it requires the inclu-
sion of a third medium, the layer of excited molecules. We
shall however return to this subject in Sec. VII when consid-
ering directions for future work.

IV. THEORETICAL APPROACHES

The goal of any model for the SPP band gap is to allow us
to calculate how the gap width and central position depend
upon the grating profile, in particular on the amplitude of the
modulation. One approach is to set up a model for the inter-

FIG. 6. As Fig. 5, except that now a second grating component
has been added,d252 nm, f250°, into the surface profile. Note
how a clear energy gap has now opened up at the intersection be-
tween the two branches.

FIG. 7. Slices taken through the data of Fig. 6. The upper scan
~a! shows the reflectivity that would be recorded if a wavelength
scan was made for fixed incident angle through the intersection
between the two branches of the dispersion curve; two minima are
clearly seen. The lower scan~b! shows the reflectivity that would be
recorded if an angle scan was made for a fixed wavelength, chosen
to be at the center of the gap—only one minimum is seen, and there
is no evidence in this type of data for an energy gap.
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action between electromagnetic radiation and the grating, as
has been undertaken by many authors,26,27and to then evalu-
ate the scattering coefficients for the different diffracted or-
ders of the reflected light, the dispersion relation can then be
obtained numerically from the poles of the scattering
coefficients.28 ~Zeros in the scattering coefficients could not
be used since, as we have seen above, it is not always pos-
sible to identify reflectivity minima with mode solutions.!
Although this method allows the numerical calculation of the
gap parameters, it provides little physical insight, the very
thing we wish to concentrate on here; we must therefore seek
another approach, one that can lead us more directly to the
dispersion relation in the vicinity of the band gap, and in
particular that can improve our physical understanding.

The crucial factor determining the existence of a SPP
mode is that of satisfying the electromagnetic boundary con-
ditions across the interface. In the case of a flat surface this is
straightforward,16,29but for a corrugated surface the determi-
nation is more involved. Many authors have addressed the
problem of solving for the SPP gap parameters, and several
approaches have been pursued; they can be divided into four
categories, detailed below.

A. The Rayleigh method

The essential details of this method are these. Space is
divided into three regions, one that is all dielectric~usually
air or vacuum!, another that is all metal, and a selvedge
region in which both metal and dielectric exist, the compo-

sition of this latter region being periodically modulated. The
electromagnetic fields in the two half spaces are constructed
as Fourier sums that possess the Bloch periodicity property.
The boundary conditions are satisfied by assuming that the
expressions for the fields in the two half spaces are valid all
the way in to the interface—this is the Rayleigh hypothesis.
This approach has been discussed by many authors,22,30,31

and can be used to obtain an analytic expression for the
width of the band gap.30 The method is however only
approximate—it can only be proved to be valid for small
amplitude gratings up tod2/lg;0.1,32 although it appears
that the range of validity is actually greater than expected
from Ref. 32; see the following section.

B. Green’s function method „also known as the extinction
theorem method…

In this method the boundary conditions are included ex-
actly, and analytic expressions in the form of two simulta-
neous matrix equations containing the Fourier coefficients of
the fields30,31,33 are obtained. These equations have been
solved numerically.33 Further, the identity of the solutions
obtained by this method with those found using the Rayleigh
hypothesis allows the range of validity of the Rayleigh hy-
pothesis to be extended beyond the expected range to
d2/lg;1. We should emphasize that agreement here is with
another theory, not with experiment. Although the Green’s
function method has not been applied specifically to band
gaps in the dispersion of SPP’s it has been used to study
band gaps in the propagation of Rayleigh surface waves on a
grating.9

C. Perturbation approach

This approach takes the solution for the plane surface and
expands the solutions using a standard form of perturbation
theory. The perturbation approach produces not one equation
for the mode solutions, but a whole hierarchy of equations,
making solutions to any particular problem tedious unless
limited to lowest, i.e., first, order. Such a perturbation treat-
ment was given by Mills,9 the use of only the first order
limiting the range of validity of the technique to small am-
plitude gratings. The limited range of applicability of this
approach was also shown by Da Silvaet al.34 Seshadri35 has
developed a perturbation treatment that is applicable to
larger amplitude gratings although the validity of this later
work must be in question as it makes predictions about the
central position of the gap that are not borne out either by
other theoretical work,36 our own theoretical work or
experiment—see Secs. V and VI.

Even if we could ignore the problems with the perturba-
tion treatment of Ref. 35, none of the above techniques are
ideally suited to our purpose. The reason for this is as fol-
lows. To gain physical insight we wish to study the field and
charge distributions associated with the mode solutions and
we would ideally like simple analytic expressions for these.
In all of the above treatments the fields comprise a Fourier
expansion involving the Bragg vectors. We could write an
expanded field component as

FIG. 8. As Fig. 5, except that now the grating amplitude has
been increased from 5 to 30 nm. Now rather than an energy gap, we
see a gap inkx . This is thus seen to be an artifact of over coupling
between SPP’s and photons.
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H~x,z!5(
m

am exp~ ibmz!exp„i ~kx1mK!x…, ~4.1!

wherebm are the Bragg vectors and whereK52p/lg , lg is
the pitch of the fundamental component of the surface pro-
file. As the amplitude of the grating increases, producing a
greater distortion of the fields, more terms need to be in-
cluded to represent the resulting fields. We are particularly
interested in the SPP modes that decay evanescently away
from the corrugated interface. The field components associ-
ated with these modes will thus contain Fourier coefficients
with imaginary values ofbm , given by Ref. 37,

bm5 i F ~kSPP1mK!22
v2

c2 G
1/2

. ~4.2!

Thus as the value ofm rises the associated field component
decays very rapidly away from the interface. Further, thebm
are independent of the surface shape. As a consequence of
these two facts, the number of terms required to construct a
solution to a given precision increases extremely rapidly as
the depth of the grating rises. Mode solutions thus contain a
large number of components and can only really be investi-
gated numerically. It is for this reason that the above meth-
ods are not a very direct way of examining the fields associ-
ated with the mode solutions, even in the small grating
amplitude regime. An alternative technique that does provide
a more direct route to the fields is discussed next.

D. Chandezon approach

Here an altogether different approach developed by Chan-
dezonet al.27 is adopted. First the spatial coordinates are
transformed to a system in which the surface is flat. Max-
well’s equations are then expressed in these new coordinates
and solved for the SPP existence and boundary conditions
~we shall see what these are in the next section!. Using the
Chandezon framework we have developed a perturbation ap-
proach to provide analytic expressions for the band gap.6

The primary advantage of this approach for our purpose is
that it yields eigenmode solutions for the fields which can be
expanded in the form

H~x,z!5(
m

(
q

f m
q exp„ilq~z2s~x!…exp„i ~kx1mK!x…,

~4.3!

wheres(x) is the shape function of the surface, i.e.,on the
surface z5s(x), lq the eigenvalue of the mode, andf m

q the
amplitude of themth Fourier component of theH field in the
qth eigenmode; these details will be dealt with more thor-
oughly in the next section. This expression for the field, Eq.
~4.3!, already contains information on the surface profile in
the first exponent. Another important point not immediately
obvious at this stage~but discussed in Sec. V B! is that the
eigenvalueslq also depend on the surface profile. This
should be contrasted with the Rayleigh expansion where the
equivalent of the eigenvalues are the Bragg vectorsbm
which, as discussed above, are independent of the surface
profile. Thus, when we need to perform the Fourier sum to
evaluate the relevant fields the summation based on the
Chandezon technique needs fewer terms than the summation

based on the Rayleigh method~Ref. 27, Table 1 and associ-
ated text!. In fact, as we shall see, a single dominant term
describes the SPP standing wave on a small amplitude grat-
ing and satisfies the boundary conditions directly, i.e., only
one term is needed in the summation. We are thus able to
obtain simple analytic expressions for the fields associated
with the SPP modes.

In summary, whilst several methods exist, we have based
our approach on the method of Chandezonet al.27 Although
the range of validity of the model for the SPP band gap as we
develop it below is no better than some of the other tech-
niques used, notably the Rayleigh and Green’s function
methods, it does allow the fields and charge distributions
associated with the modes to be readily obtained; the tech-
nique is thus advantageous in improving our physical insight
into the mechanism behind the formation of SPP band gaps.

V. ANALYTIC THEORY

The Chandezon approach involves solving Maxwell’s
equations in the vicinity of a corrugated surface by making
use of a coordinate transformation technique. The procedure
we adopt is as follows.

~A! Set up the scheme for the mode solutions following
Chandezon. We thus flatten the surface by making use of an
appropriate coordinate transformation. We then express
Maxwell’s equations in the new coordinate system, making
use of the periodicity to expand the fields as eigenmode so-
lutions.

~B! Seek solutions to Maxwell’s equations for the case
when the surface modulation Bragg scatters the SPP mode,
assuming that we need only consider first order Bragg scat-
tering.

~C! Apply the boundary conditions appropriate for the
existence of SPP’s on a grating.

~D! Examine the field distributions and surface charge
density, thus identifying the physical origin of the gap.

~E! Derive expressions for the central position and gap
width.

~F! Look at the importance of the phase of the grating in
the context of optical examination of the SPP band gap.

~G! Examine the effect of refining the model to include
higher order terms.

A. The Chandezon technique

The crucial factor determining the existence of a surface
plasmon excitation on a flat surface is the necessity of satis-
fying the electromagnetic boundary conditions across the in-
terface. If the interface is nonplanar then the solution of
Maxwell’s equations in rectangular coordinates is not a great
deal of help in ensuring that the corresponding boundary
conditions are exactly satisfied, instead we adopt the method
of Chandezonet al.27 The detail of their method is set out in
their paper; in our case we are particularly interested in the
transverse magnetic~TM polarized! solutions since the SPP
mode is TM polarized; anE field normal to the metal surface
is required to generate the surface charge density variations
that constitute a component of the SPP mode. Further, we
consider only that surface profile component that gives direct
rise to the SPP band gap, i.e., the component with Bragg
vector 2K.
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In essence the method used by Chandezonet al.proceeds
in a number of stages.

~i! The coordinate system is transformed fromx,y,z to

u5z2s~x!,

v5x, ~5.1!

w5y,

wheres(x) is a periodic function defining the grating sur-
face. In our case the profile of the grating is given by Eq.
~3.1! with d1 set to zero; thuss(x)5d2sin~2Kx1f2!. Note
that we retain the phase termf2 for future use even though it
is not strictly required here. The position of the interface
between the regions of relative permittivity«1 and«2 is de-
fined asu50; «2 is assumed to be real and negative, i.e.,
metallic.

~ii ! For convenience the field variablesE andH are reex-
pressed asF andG, whereF andG contain the field com-
ponents in a form appropriate to the new coordinate system.
F andG are defined so thatF contains the field components
perpendicular to the symmetry plane, i.e., they or w com-
ponent, whilstG is related to the field component in the
symmetry plane and tangential to the local surface. Express-
ing the fields in this way simplifies the application of the
boundary conditions, i.e., that the local tangential field com-
ponents are continuous across the corrugated interface. For
TM polarizationF andG take the form

F5Z0Hy ,

G52k0«EiA11s82, ~5.2!

where

Z05S m0

«0
D 1/2, s85

]s

]v
, k05

v

c
~5.3!

Ei is the component of the electric field locally parallel to the
surface, andHy is the component of the magnetic field nor-
mal to the symmetry plane.

~iii ! Maxwell’s equations, expressed in terms ofF andG
in the new coordinate systemu,v,w give, for the TM polar-
ized case under consideration,

]F

]u
5

s8

11s82
]F

]v
1

iG

11s82
,

]G

]u
5 ik0

2«F1
]

]v F s8

11s82
GG1

]

]v F i

11s82
]F

]v G ,
~5.4!

where « is the relative permittivity of the appropriate me-
dium. Once these two coupled equations are solved we will
have found the tangential components of theE andH fields,
i.e.,F andG, from which the normalE-field component can
be found by differentiation.

~iv! In finding the solutions to the above equations we
recognize the periodicity of the fields in thev variable and
expressF andG as Fourier expansions of the form

F~u,v !5(
m

Fm~u!exp~ iamv !,

~5.5!

G~u,v !5(
m

Gm~u!exp~ iamv !,

where

am5kx1mK, m50,61,62,..., ~5.6!

andkx is thex component of the wave vector of the mode
under consideration.

~v! Substitution of these expansions@Eqs. ~5.5!# into the
new form of Maxwell’s Eqs.~5.4! yields an infinite set of
equations forFm(u) andGm(u) that can be written in the
form

2 i
dz~u!

du
5Tz~u!, ~5.7!

where T is a matrix of infinite size that is independent
of u and z(u) is a column vector of the formz(u)
5(F1N ,F1N21,...,F2N ,G1N/«,G1N21/«,G2N/«), i.e., in
the limit N→` it contains the field components from the
Fourier expansion~5.5!.

~vi! The normal mode solutions have au dependence of
the form exp(ilqu), and we thus write

zq~u!5cq exp~ ilqu!. ~5.8!

The normal mode solutions can be found by extracting the
eigenvalues ofT, i.e.,lq and the associated eigenvectors,cq,
from

~T2lqI !cq50, ~5.9!

wherelq are the eigenvalues ofT.
Writing

cq5S f mqgmq D , ~5.10!

then

Fm
q ~u!5 f m

q exp~ ilqu!,
~5.11!

Gm
q ~u!5gm

q exp~ ilqu!.

We can now express the mode solutions in the form quoted
in Sec. IV D. First we find theF vector corresponding to the
mode solution by substituting~5.11! into ~5.5! to give

Fq~u,v !5(
m

fm
q exp~ ilqu!exp~ iamv !. ~5.12!

For TM polarizationF(u,v)5Z0H(x,z); see Eq.~5.2!. If we
further convert back to thex,y,z coordinate system and sub-
stitute foram through Eq.~5.6! then we find

H~x,z!5(
m

(
q

f m
q exp†ilq

„z2s~x!…]exp„i ~kx1mK!x…,

~5.13!

which is identical with Eq.~4.3! ~ignoring the constantZ0!.

6234 54BARNES, PREIST, KITSON, AND SAMBLES



~vii ! To obtain a solution to Eq.~5.9! we must truncate the
Fourier expansion at some finite value ofm, i.e.,
2N<m<N.

B. Solutions that are coupled by Bragg scattering

We are considering the case in which there is a degen-
eracy between the right and left traveling SPP’s, having
wave vectorsmK wherem561, i.e.,kSPP56K. @Note that
this situation corresponds tokx50 in Eq.~5.6!, i.e., a photon
coupled to this SPP mode would have to propagate normal to

the surface.# This degeneracy can be removed by coupling
the two modes via the surface Fourier components that have
wave vectors62K. The dominant effect occurs through the
coupling of them561 components via this62K term in the
surface profile and is analogous to the degenerate perturba-
tion theory calculation in quantum mechanics. In the follow-
ing we will assume that the splitting is dominated by the
coupling of them561 terms and will omit all other Fourier
components associated with the plasmon.

The T matrix in the eigenvalue equation~5.9!, is now a
434 matrix given by

T53
KD0 2KD2 C0 C2

KD22 2KD0 C22 C0

2K2C01«S v

c D 2 KC2 KD0 KC2

KC22 2K2C01«S v

c D 2 2KD22 2KD0

4 . ~5.14!

Cm andDm are defined by

1

11s82
5(

m
Cmexp~ imKv !,

~5.15!
s8

11s82
5(

m
Dmexp~ imKv !,

with

s85
]s

]v
52Kd2cos~2Kv1f2!. ~5.16!

Notice that the shape of the surface only enters the matrixT
through the coefficients ofC andD. We now assume that for
our lowest order scattering we need only retain terms to or-
der ~Kd2!

3; this assumption is discussed further in Sec. V G.
Equation~5.15! then becomes

C05122~Kd2!
2[12r,

C6250,
~5.17!

D050,

D625Kd2~123r/2!exp~6 if2!5j exp~6 if2!/K,

with r andj defined as

r52~Kd2!
2,

~5.18!
j5K2d2~123r/2!.

The eigenvalues of~T2lI ! are then found to be

l25«S v

c D 2~12r!2K2~12r!22j2 ~ twice!.

~5.19!

The eigenvectors are found by substituting Eq.~5.17! into
~5.9!. There is some flexibility in the choice of the two inde-
pendent eigenvectors due to the degeneracy of the eigenval-
ues; see Eq.~5.19!. We choose to express them in the form
shown below since, as we shall see in Sec. V D, this choice
gives quickest access to the physics involved,

cs5S 1
e2 if2

l1j

12r
l2j

12r
e2 if2

D , ct5S 1
2e2 if2

l2j

12r
2l2j

12r
e2 if2

D .

~5.20!

With suitable normalization factors~see later! the first two
elements determine the amplitudes of the tangentialHm561
fields and the second two determine the amplitudes of the
tangentialEm561 fields. Our task in the next section is to
find those combinations of the above eigenvectors that rep-
resent solutions to the situation under consideration, i.e., un-
der the appropriate boundary conditions.

C. The boundary conditions

In each region,i , on either side of the interface, the sur-
face mode solution is a mixture of the two eigenvectors, i.e.,

c i5~cs
i 1m ict

i !bi , ~5.21!

where bi is an overall amplitude andmi is the relative
strength ofct to cs in the mixture. In addition,l must be
chosen appropriately to give solutions that decay away from
the interface.

At the boundaryu50 and the matching conditions on the
tangentialH components derived from Eqs.~5.5! and~5.11!
give
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b1~11m1!5b2~11m2!,
~5.22!

b1~12m1!5b2~12m2!,

so thatb15b2 andm15m25m.
Similarly, noting thatE5G/«, the matching conditions

on the tangentialE components yield

1

«1
~l11j!1

m

«1
~l12j!5

1

«2
~l21j!1

m

«2
~l22j!,

~5.23!
1

«1
~l12j!1

m

«1
~2l12j!5

1

«2
~l22j!1

m

«2
~2l22j!.

These coupled equations replace the two~identical! bound-
ary conditions,

l1

«1
5

l2

«2
, ~5.24!

that apply for a planar surface~j50!. As mentioned above,
the surface plasmon solution must have fields that decay
away from the interface, so that

l15 ih1 , l252 ih2 , ~5.25!

where, using Eq.~5.19!,

h i~v!5FK2~12r!21j22« i S v

c D 2~12r!G1/2. ~5.26!

The solution of the boundary conditions, Eq.~5.23! to-
gether with Eq.~5.25! has two solutions,

m57 i . ~5.27!

Further, we find that

h1
6

«1
1

h2
6

«2
57jS 1«12 1

«2
D , ~5.28!

where

h i
6[h i~v6!. ~5.29!

Combining Eqs.~5.26–5.29! gives

S v6

c D 2~12r!5K2~12r!2S 1«1 1
1

«2
D1

2j2

«1
6
2j

«1
h1

6

5K2~12r!2S 1«1 1
1

«2
D1

2j2

«2
7
2j

«2
h2

6 .

~5.30!

In deriving the above we find thatv5v6 for m57i . That
the two different solutions have different energies is now
clear. We could now proceed immediately to find algebraic
expressions for the gap width and central position; however,
we prefer at this stage to develop expressions for the field
distributions since it is these that provide the insight into the
origin of the gap.

D. Field distributions, surface charge density,
and mode energy

In this section we find explicit expressions for the field
distributions and the surface charge density. We then use
these expressions to evaluate the electromagnetic energy as-
sociated with the modes. Apart from an overall normaliza-
tion factor the tangentialH andE field amplitudes, which we
write as H i and Ei , are obtained by dividingF by
Z05~m0/«0!

1/2 andG by (2v«/c)~11s82!1/2. Hence, using
Eq. ~5.5!, together with~5.9!, ~5.20!, and~5.21!, we find that
at the surface

H i
65A„~ f 1

s7 i f 1
t !eiKv1~ f21

s 7 i f 21
t !e2 iKv

…/Z0

5H0 cos~Kv1f2/27p/4!, ~5.31!

with H052&A/Z0 . We also find

Ei
652A„~g1

s7 ig1
t !eiKv

1~g21
s 7 ig21

t !e2 iKv
…

c

v6« S 1

~11s82!1/2D
52

~l66 i j!c

«~12r!v6

Z0H0

~11s82!1/2
cos~Kv1f2/27p/4!.

~5.32!

In evaluating this expression it is important to recall Eq.
~5.25!, i.e.,

l1
65 ih1~v6!, l2

652 ih2~v6!. ~5.33!

The component ofE, normal to the surface,EN
6 may be

deduced fromH i
6 by differentiation, viz.,

EN
65

i

~11s82!1/2
Z0c

«v6

]H i
6

]v

52
i

«

Kc

v6

Z0H0

~11s82!1/2
sin~Kv1f2/27p/4!.

~5.34!

The expressions~5.31!, ~5.32!, and ~5.34! determine the
fields on the boundaryu50, whilst the surface charge den-
sity, s6 , can be found fromEN

6 since

s65«0~EN1
6 2EN2

6 !

52 i
K

v6
S 1«12 1

«2
D H0

~11s82!1/2
sin~Kv1f2/27p/4!,

~5.35!

whereEN1
6 andEN2

6 are the normal field components at the

surface in the two media. We have also used the fact that
«0cZ051. We can summarize the spatial dependence of the
fields and surface charge density along the surface as

H i
6 ,Ei

6}cos~Kv1f2/27p/4!,
~5.36!

EN
6 ,s6}sin~Kv1f2/26p/4!.

It is from these expressions that we can see the origin of the
energy gap between the two modes. The extrema of the nor-
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mal field component and surface charge distribution for the
high frequency solution occur at the troughs of the surface
component that has periodicity 2K, whereas for the low fre-
quency solution they occur at the peaks. These distributions
are illustrated in Fig. 9, from which it is clear that, owing to
the relative distortion of the fields between the two solutions
and the associated difference in location of the surface
charge, a different energy will be associated with the two
distributions. Before finding an expression for this energy
difference, we can gain further physical insight by consider-
ing the decay lengths of the modes into the surrounding me-
dia.

Using Eqs.~5.8! and ~5.25! we see that away from the
surface the fields are modulated by the factors exp~2h1

6u!
in region 1~u.0! and by exp~h2

6u! in region 2~u,0!; h1
6

andh2
6 are thus the inverse decay lengths of the modes away

from the interface. Combining Eqs.~5.26!, ~5.29!, and
~5.30!, we find the following expressions for them:

h1
65K~12r!F2

«1
«2

G1/27j,

~5.37!

h2
65K~12r!F2

«2
«1

G1/26j.

Thus comparing withh i
05h i(d250), the decay lengths for

the flat surface,~i! for thev1 solution,

h1
1,h1

0, h2
1.h2

0, ~5.38!

so that this plasmon field distribution is ‘‘shifted’’ to the
dielectric side of the interface whilst~ii ! for thev2 solution

h1
2.h1

0, h1
1,h1

0; ~5.39!

that is the plasmon field distribution is ‘‘shifted’’ towards the
metal side of the interface. These shifts in distribution are
depicted in Fig. 10, showing again how the two modes differ.

Using the expressions~5.37! for h1
6 the expression forE i

6

simplifies to

Ei
152 i

Kc

v6
S 2

1

«1«2
D 1/2 Z0H0

~11s82!1/2
cos~Kv1f2/2

7p/4!, ~5.40!

which is valid on both sides of the interface~as required by
the matching condition!.

The total electromagnetic energy associated with the
modes is comprised of that stored in the fields on either side
of the interface and the energy associated with the surface
charge distribution. The latter surface energy density is given
by

SS5
1

2lg
E sV dl, ~5.41!

where the integration is carried out along the surface for a
full period lg~52p/K!. Hence

SS5
K

2~2p!
E
0

lg
sV~v !~11s82!1/2dv, ~5.42!

where

V~v !52E Eidl52E
0

v
Ei~11s82!1/2dv. ~5.43!

Substitution of the relevant, previously derived, expressions
@Eqs. ~5.35! and ~5.40!# yields the result that the time aver-
aged surface energy density is

SS
652

1

8 S Kcv6
D 2 m0H0

2

K S 1«12 1

«2
D S 2

1

«1«2
D 1/2.

~5.44!

The corresponding time averaged energies stored in the
fields per unit~flat! surface area is

FIG. 9. Sketch of the field (E) and surface charge distributions
for the two standing wave solutions at the gap boundaries. The
upper sketch is for the low frequency solution, the lower sketch is
for the high frequency solution. Notice that the field lines are more
distorted in the lower sketch, illustrating the greater energy stored
in the fields by this mode.

FIG. 10. A plot of the way in which the fields decay away from
the interface. Decays are shown for the flat surface, and for the two
solutions~high frequency dashed, low frequency dotted! of the cor-
rugated surface. Notice how the field in the dielectric for the high
frequency solution becomes less well confined to the interface, as
one might expect since this branch is pushed closer to the light line;
see Fig. 3.
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S̄E
65

1

2lg
E

2`

`

duE
0

lg
«0«@ uEi

1u21uEN
6u2#dv

5
m0H0

2

16 S Kcv6
D 2~12r!S 1«12 1

«2
D S 1

h1
62

1

h2
6D

~5.45!

and, similarly,

S̄H
65

1

2lg
E

2`

`

duE
0

lg
m0uH i

6u2dv

5
m0H0

2

16 S 1

h1
6 1

1

h2
6D . ~5.46!

These appear to differ but algebraic manipulation using the
relationship betweenv6 and h1

6 previously derived@Eq.
~5.26!# shows thatSH

65SE
6 and so the total electromagnetic

field energy per unit area is then 2SE
6.

Hence the total energy per unit area associated with the
modes is

S65
m0H0

2

8K S Kcv6
D 2S 1«12 1

«2
D F S K

h1
62

K

h2
6D ~12r!

2S 1

2«1«2
D 1/2G . ~5.47!

After further manipulation it is possible to show that for
small j

S̄12S̄2}S v1

Kc D
2

2S v2

Kc D
2

, ~5.48!

as one might expect.
Although this section has allowed us to examine the

physical origin of the band gap it yields little that allows us
to test our model against experiment. In the next section we
derive expressions for the dependence of the gap width and
central position on the surface profile that allow such tests to
be made.

E. Expressions for the central position and gap width

We first define the parameters for which we shall find
analytic expressions since they are not immediately obvious
if the above discussion is not familiar. Following the mode
solutions derived in Sec. V C, in particular Eq.~5.30!, we
define thenormalized gap widthto be

F S v1

c D 22S v2

c D 2G
and thenormalized central positionto be

1

2 F S v1

c D 21S v2

c D 2G .
Later, when we need the more conventional definition of gap
width, i.e.,dv5v12v2 , we shall derive it from our expres-
sion for the normalized gap width. With these definitions we
find from Eq.~5.30! that

F S v1

c D 22S v2

c D 2G~12r!5
2j

«1
~h1

11h1
2!52

2j

«2
~h2

1

1h2
2! ~5.49!

and

1

2 F S v1

c D 21S v2

c D 2G~12r!

5K2~12r!2S 1«1 1
1

«2
D1

2j2

«1
1

j

«1
~h1

12h1
2!

5K2~12r!2S 1«1 1
1

«2
D1

2j2

«2
1

j

«2
~h2

12h2
2!. ~5.50!

Further manipulation shows that

h1
12h1

252~h2
12h2

2!522j, ~5.51!

so that

1

2 F S v1

c D 21S v2

c D 2G5K2~12r!S 1«1 1
1

«2
D5S v0

c D 2~12r!

5S v0

c D 2„122~Kd2!
2
…, ~5.52!

where

S v0

c D 25K2S 1«1 1
1

«2
D . ~5.53!

Also

~12r!2

4j2 F S v1

c D 22S v2

c D 2G21S 2j

«1
D 25S h1

1

«1
1

h1
2

«1
D 21S h1

1

«1
2

h1
2

«1
D

52S h1
1

«1
D 212S h1

2

«1
D 2

52H 2K2~12r!2

«1
2 1

2j2

«1
2 2F S v1

c D 21S v2

c D 2G S 12r

«1
D J

54
K2~12r!2

«1
2 1

4j2

«1
2 24S v0

c D 2 ~12r!2

«1
~5.54!
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giving, for the normalized gap width,

S v1

c D 22S v2

c D 254jA2K2/«1«2

54~Kd2!
K2

A2«1«2
„123~Kd2!

2
….

~5.55!

Further, using Eq.~5.52!, we find that

S v6

c D 25S v0

c D 2„122~Kd2!
2
…

62~Kd2!
K2

A2«1«2
„123~Kd2!

2
…. ~5.56!

In this expression«1 and«2 should be interpreted as the local
values of relative permitivities atv6 as appropriate. If the
variation in their values over the range of the band gap is
unimportant then the equations above represent a solution to
the problem. If the frequency variation is significant then it
remains to solve each equation self-consistently forv1 or
v2 given a functional form for«1~v! and«2~v!. We can now
express the central position as

v2

c2
5
1

2 F S v1

c D 21S v2

c D 2G5S v0

c D 2@122~Kd2!
2#.

~5.57!

We now have expressions for the normalized gap width and
the normalized central position, Eqs.~5.55! and~5.57!. These
expressions will be compared with experimental data in Sec.
VI. In examining these two equations we note two important
facts in the small modulation limit, i.e., 2Kd2!1.

First, the gap width,dv, is linear in modulation ampli-
tude,d2. This is not at first sight obvious from Eq.~5.55!,
but if the normalized gap width is reexpressed in terms ofdv
then we finddv}d2. We leave this derivation until Sec.
VI A so that we can include the higher order terms of Sec.
V G in our model. Having already examined the field and
surface charge distributions it is clear whydv}d2. As the
modulation depth increases, so the distortion of the fields,
and thus the energy associated with them will also increase.
To a first order approximation the frequency differencedv
will therefore be linear ind2.

Secondly, we see from Eq.~5.57! that the central position
falls as the corrugation amplitude,d2, is increased. The
physical reason lying behind this fall is seen by considering
the energy associated with each mode. As we have seen the
energy is a consequence of the field and surface charge dis-
tributions. In particular, the high energy solution has fields
that extend further into the half space above the metal; see
Fig. 10. This mode thus becomes less well bound to the
surface as the grating modulation increases. This change is
limited since the greatest distortion with respect to the planar
situation occurs when the fields extend without decay into
the half space above the metal, i.e., the high frequency
branch approaches the light line~Fig. 3!. There is thus an
upper limit on the frequency of this mode. The low fre-

quency branch is not affected in this way and consequently
the central position of the two modes falls as the grating
modulation is increased.

F. The phase of the grating

As we mentioned at the end of Sec. III, it is important to
consider the role of the relative phase,f2, between the fun-
damental~theK grating! and first harmonic component~the
2K grating!. In Sec. V E we showed that the frequenciesv6

are independent of the phase of the 2K grating. However,
phase does become important when we consider the coupling
of SPP modes at the edge of the band gap to photons.

We can best illustrate this by numerically examining the
reflectivity of a corrugated surface with the two grating com-
ponents present with various values off2. Figure 11 shows
such reflectivity contour plots for the same grating as Fig. 6,
but with f25690°. Both cases still exhibit energy gaps of
the same magnitude and position as before~Fig. 5!, but the
coupling strength of one of the branches is now reduced to
zero. Whilst the importance of the relative phase of the sur-
face components in determining the coupling strength of the
two modes has been known for some time,14,38,39it is worth
applying our analytic model to uncover the physics involved.

As discussed in Sec. III, for a corrugated surface possess-
ing grating componentsK and 2K, photons normally inci-
dent on the surface will couple to the SPP modes at the edges
of the band gap. For coupling between the photons and the
standing wave to occur there must be some component of the
incident optical field normal to the surface, at the appropriate
points on the surface, to generate the surface charges neces-
sary for the standing wave; see Fig. 12. For normal incidence
there will be no component of the optical field normal to the
surface where the surface has zero gradient. As Fig. 12
shows, whenf2590°, the troughs of the 2K component cor-

FIG. 11. Numerically modeled reflectivity plots showing the
effect of the phasef2 between the two grating components. Al-
though the size of the gap is unaffected by the phase, the coupling
is.
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respond to flat regions of the surface, the mode having
maxima at the troughs will not therefore couple to photons;
see Fig. 11~a!. Whenf25290°, the peaks of the 2K com-
ponent correspond to flat regions of the surface and the mode
having maxima at the peaks is now uncoupled; see Fig.
11~b!. For f250° the peaks and troughs of the 2K compo-
nent occur at equivalent points with respect to theK compo-
nent; the coupling is therefore the same for both; see Fig. 6.

The reasoning given in the above paragraph can be rein-
forced using the results we derived in Sec. V D. We can
express the normalE field component of the SPP modes,
EN

6, using Eq.~5.34!, as

EN
6}sin~Kv1f2/27p/4!. ~5.58!

In the particular situation under consideration, i.e., the am-
plitude of theK grating is much larger than the amplitude of
the 2K grating, the component of the incident field normal to
the corrugated surface is primarily that normal to theK com-
ponent. The spatial dependence of this field will thus be
cos(Kv). Comparing this with Eq.~5.58! we see that for
f2590°, EN

2 ~i.e., the low frequency branch! will have the
same spatial dependence as the incident field, i.e., cos(Kv),
and will thus be coupled whilstEN

1 ~the high frequency
branch! will have an orthogonal spatial dependence, i.e.,
sin(Kv), and will thus not be coupled. Forf25290° the
spatial dependence, and thus coupling, will be reversed. This
explains the feature found experimentally by Nashet al.39

where simply inverting the grating reversed the strengths of
the coupling to the two branches.

G. Extension of the model

Some care has been taken to retain all terms of order
~Kd2!

3 correctly within the modelas definedso as to estab-
lish clearly the role of the 2K component in causing the band
gap. However, at this level of accuracy there are terms of
order~Kd2!

2 which have been excluded. These arise because
the 2K components of the grating will also couple the6K to
the63K modes yielding an additional contribution of order

~Kd2!
2 to the results previously derived. It is however rela-

tively straightforward to correct for this in a perturbative way
which we outline below.

To include these extra terms we extend the eigenvalue
matrix of Eq. ~5.14! to containm563 as well asm561
terms. The corresponding eigenvalue matrix is now 838
rather than 434 and has the structure

S TX8
X
T8 D S c

c8 D5l8S c
c8 D , ~5.59!

whereT is the original 434 matrix, l8 is the modified ei-
genvalue,c contains the eigenvector field components asso-
ciated with the6K modes, andc8 contains those associated
with the63K modes. The latter may be eliminated to yield
a modified version of Eq.~5.9!,

„T1X~l82T8!21X8…c5l8c. ~5.60!

SinceX andX8 contain only terms that couple6K modes to
63K modes, their leading order terms are of orderKd2 and
hence the correction to Eq.~5.9! will be of order ~Kd2!

2. In
this approximation

X5S 3j 0

23j

j

0 2j

D , X85S j

2j 0

3j

0 23j

D
~5.61!

and

T85S 0
0
W
0

0
0
0
W

21
0
0
0

0
21
0
0
D , ~5.62!

with W59K22«(v/c)2. The modified eigenvalues take the
form

l185
i ĥ1

„12~3/8!~Kd2!
2
…

, ~5.63!

l285
i ĥ2

„12~3/8!~Kd2!
2
…

, ~5.64!

with

ĥ i5K2~12r8!21j22« i S v

c D 2x, ~5.65!

where

r85
7

8
~Kd2!

2 ~5.66!

and

x5~12r8!S 11
1

8
~Kd2!

2D . ~5.67!

The modified boundary conditions take exactly the same
form as in Eq.~5.23! with hi replaced byĥ i andj replaced
by j85j„12~3/8!~Kd2!

2
…. Algebraic manipulation identical

FIG. 12. Sketch of light at normal incidence coupling to the
modes of a corrugate surface containing theK ~solid line! and 2K
~dotted line! components. There is a component of the incident field
normal to the surface of theK component at all points except at the
maxima and minima of the surface profile.
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to that used in the preceeding sections, taking care to distin-
guish betweenj8 in the boundary conditions andj in the
definition of ĥ i @equation~5.65!# and noting that~j22j82! is
of order ~Kd2!

4, yields the result that up to and including
terms of order~Kd2!

3 the normalized central position and
gap width are given by

1

2 F S v1

c D 21S v2

c D 2G5S v0

c D 2„12~Kd2!
2
… ~5.68!

and

S v1

c D 22S v2

c D 25 4K2

A2«1«2
~Kd2!S 12

7

2
~Kd2!

2D .
~5.69!

VI. COMPARISON WITH OTHER THEORIES,
AND BETWEEN THEORY AND EXPERIMENT

A. Comparison with other theories in the literature

Previous investigations using general optical response
theory have investigated the size of the SPP gap. Mills9 de-
duced that for a SPP traveling along a corrugated metal/air
interface i.e.,u«2u@«151, with the SPP propagation direction
making an angleg/2 with the grating grooves, the gap was
given by

dv

v0
5

4K

Au«2u
uS sin g

2D 2, ~6.1!

where u was the amplitude of the wave components
exp~6iKx!; thus in our notationu5d2/2.

More recently Seshadri40 has investigated the size of the
gap including the frequency dependence of the ‘‘ideal
metal’’ dielectric constant. This latter effect changes the gap
by approximately 5% and if we ignore this contribution his
analysis yields

dv

v0
5

hKs cos
2u

Au«2u
, ~6.2!

whereh may be identified withd2, u is the angle the SPP
makes with respect to thenormal to the grooves, i.e.,u590°
2g/2, andKs is the wave vector of the grating component
that couples the two modes, i.e.,Ks52K.

To compare these results with ours we approximate Eq.
~5.55! assuming the value of the band gap,dv, to be small,
and find

dv

v0
5

2Kd2
A2«1«2

S «1«2
«11«2

D S 122~Kd2!
2

1
~Kd2!

2

2~2«1«2!
S «1«2
«11«2

D 21O~Kd2!
4D , ~6.3!

which in the limit thatu«2u@«151 andKd2!1 yields

dv

v0
5
2Kd2
Au«2u

. ~6.4!

This result agrees with that of Seshadri~at u50°! and Mills
~at g/2590°!, in the limit u«2u@1. Thus all three analyses are
consistent in their predictions of the gap width for SPP
propagation normal to the grating grooves.

B. Comparisons between experiment and theory
in the literature

The comparison with experiment has until recently been
somewhat confusing. Raether20 compared the results of
Pockrand41 with the theory of Mills9 and reported the theo-
retically predicted gap to be greater than the experimentally
measured one by a large factor. Seshadri40 compared his
theoretical results directly with the experimental data of
Pockrand41 and reported better agreement, obtaining half the
experimental value. The gap measured by Pockrand was for
an SPP propagation angle ofu565° ~g/2525°!, and
Seshadri40 noted that in spite of the apparent discrepancy
between his results and those of Mills, their two expressions
agreed atu50°. Since the gap at oblique incidence is simply
related to that at normal incidence by an angular factor upon
which they agree there is clearly an inconsistency some-
where.

This inconsistency arises because in applying Mills’ for-
mula to Pockrand’s results Raether made two mistakes. First
he identifiedu with d2 rather thand2/2 producing an over-
estimate of 2; further he tookg/2565° rather than 25° pro-
ducing a further factor of tan2~65°!54.6. Making these modi-
fications Mills’ 9 and Seshadri’s40 expressions produce a
consistent estimate of the gap that is roughly half the experi-
mental value. However, Raether makes it clear that Pockrand
measureddk/k and assumes thatdv/v'dk/k. Weber and
Mills19 have however highlighted the danger of making such
an interpretation, one that we discussed extensively in Sec.
III, and so one must conclude that the often quoted disagree-
ment is not well founded. For this reason we have carried out
a series of detailed experiments to precisely determine the
dependence of the gap, for SPP propagation at normal inci-
dence to the grooves, upon the amplitude of the grating,d2,
that gives rise to the gap.

C. Comparisons with our own experimental work

As described above, the comparisons between experiment
and theory that have been made to date have been unsatis-
factory. To remedy this we have recently conducted a series
of experiments to allow a proper comparison between theory
and experiment to be made. The details of these experiments
have been reported elsewhere,6,42 so that here we examine
the results and only describe those aspects of the experiments
that are relevant to the present discussion.

We have used two methods to examine the SPP band gap
as a function of the modulation depth of the grating that
gives rise to the gap.

In the first6 we used the double corrugation method dis-
cussed in Sec. III. The data obtained allowed us to verify the
validity of Eq. ~5.69!, but not ~5.68!. This is because the
amplitude of the 2K component,d2, is always small com-
pared to that of theK component,d1. To achieve ad2 big
enough to show a noticeable change in the mean frequency
of the gap would require a value ofd1 that would allow only
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very poor coupling between the SPP modes and photons,
thus making accurate interpretation of the experimental data
impossible.

Our second approach42 has been to use a prism rather than
a second grating to couple the SPP modes to photons. The
prism coupling technique is outlined in Fig. 13. Since the
fundamental of the grating is no longer being used to couple
light in and out of the sample, it may now be used as the
grating that gives rise to the gap. Consequently, this tech-
nique allows the study of much greater corrugation depths.
We have been able to go as far as 2Kd2'0.23 ~note that for
consistency in the prism coupling work we define the Bragg
vector of the grating that gives rise to the gap as 2K; a useful
measure of the grating modulation is the product of the
Bragg vector and the amplitude, i.e., 2Kd2!. The double grat-
ing technique was limited to 2Kd2'0.06, compared to the
2Kd2'0.23 of the prism technique discussed above. These
correspond to gaps~defined asdv/v0! of 7% and 36%, re-
spectively. The values of 2Kd2 anddv/v0 are not in direct
proportion owing to the different metal used in the two
cases; see Eq.~6.3!. In the small gap case gold was used and
in the large gap case, silver.

The data obtained using the prism technique, together
with theoretical expectations based on both our first order
@Eqs.~5.55! and~5.57!# and our extended theory@~5.68! and
~5.69!#, are shown in Fig. 14. The agreement between our
extended theory and the data is seen to be good over the
range of grating modulation studied. Looking at the data of
Fig. 14, the inclusion of higher order terms in our extended
theory is particularly important for the central position. Our
model, Eqs.~5.68! and ~5.69!, therefore appears to be valid
for values of 2Kd2 up to at least 0.23. We note that the
agreement at large 2Kd2 is good despite the fact that the
model neglects the effect of dispersion in the permittivity of
the silver over the measured frequency range. To describe
still larger gaps it may be necessary to take account of this

dispersion. Also, the imaginary component of the optical
permittivity of silver,« i /u« r u'0.03, does not appear to have
had a significant effect on the width or central position of the
gap.

Figure 14 shows that there is a decrease in the central
position of the gap as the grating depth increases, in good
agreement with our theory. This result has not been experi-
mentally verified before.

VII. FUTURE WORK

There remain a whole range of questions still to be ad-
dressed concerning the physics of SPP band gaps. It is not
our purpose to provide a full discussion of these issues here,
rather we mention each briefly to indicate areas that future
research may take.

A. Bigger band gaps—problems with the light lines

We can see from Fig. 3 that as the band gap increases the
high frequency branch approaches the light line, as we dis-
cussed at the end of Sec. V E. This provides a limit on how
far this upper cutoff can be raised. As the mode approaches
the light line it becomes more radiative in character, and is
progressively less well confined to the surface; see Fig. 10.
The limits on the width of the band gap that can be obtained
experimentally have still to be investigated.

FIG. 13. Dispersion curve for surface plasmon polaritons exam-
ined with prism coupling. Surface modes are excited from the prism
side, coupling taking place via the evanescent field that occurs on
total internal reflection; see inset. Owing to the relatively high index
of the prism, the light line for photons in the prism is shifted out in
momentum. It is now possible to couple to modes in the region of
the gap that arises from a corrugated surface with just one grating
component, 2K.

FIG. 14. The normalized central position and width of the gap
~as defined in Sec. V E! as a function of surface modulation. The
experimental data, taken from a prism coupling experiment~Ref.
42! are shown as dots, whilst the results of the analytic model are
shown as lines, dotted for the first order theory, Eqs.~5.55! and
~5.57!, and solid for the extended theory that includes higher order
terms, Eqs.~5.68! and ~5.69!.
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B. Band gaps for other surface modes

We have discussed here only the surface plasmon polar-
iton mode; there are other surface modes that we could con-
sider, notably the surface exciton polariton. We expect that
the basic physics will remain the same; whether a substantial
surface mode gap will be seen is likely to depend on whether
low loss surface exciton polariton modes can be examined,
i.e., the natural width of each mode can be made significantly
less than the gap width. Such investigations may be particu-
larly important in the context of wavelength scale optoelec-
tronic semiconductor devices.

C. Band gap vs propagation angle

We have considered only the case of surface modes
propagating in a direction normal to the grating grooves. As
the propagation direction of the surface modes moves away
from this direction, so the mean frequency of the associated
band gap increases. This occurs because it is the component
of the surface mode momentum in the direction normal to
the grating grooves that must match the appropriate grating
vector. Thus if the surface mode propagation direction makes
an anglex with the direction normal to the grating grooves,
then we expect that the central position will have risen from
v0 at x50° to v0/cosx. This together with predictions con-
cerning the effect of the propagation direction on the band
gap width9,40 have yet to be checked experimentally.

D. The photonic surface

Following on from the above, it is clear that no matter
how big the gap for a propagation angle ofu50°, there will
not be a band gap that covers all possible directions of propa-
gation. An obvious extension of the geometry considered so
far is to examine a bigrating, i.e., two gratings, one rotated
with respect to the other by 90°, or a trigrating, the gratings
being rotated 60° with respect to one another. In this way we
hope that it may be possible to construct a textured surface
on which, for some range of frequencies, no surface modes
may propagate. In analogy with developments in bulk pho-
tonic band gap work we call this thephotonic surface.

E. The effect of SPP band gaps on other optical processes

Spontaneous emission from dye layers above surfaces ex-
hibiting SPP band gaps,25 together with their influence on the
surface enhanced Raman11 effect have been reported. How-
ever, the effect of such phenomena on the decay kinetics of

excited molecules in close proximity to such surfaces has not
so far been investigated. If the excited molecule/surface
separation is appropriate then the dominant decay route for
the molecule may be to excite an SPP mode. If, at the emis-
sion frequency of the molecule, the surface morphology pre-
cludes the existence of SPP modes then decay of the molecu-
lar excitation via this route will be blocked. This should alter
the decay rate of the molecule, an alteration that should be
observable.~Note, to properly describe this situation we
would need to extend our analytic model to take account of
the overlayer.!

VIII. CONCLUSIONS

We have seen how surface modes may scatter from the
grating on which they propagate to form a standing wave.
The standing wave has two solutions, one with field extrema
at the grating peaks, the other with extrema at the troughs.
We have shown that these two solutions have different ener-
gies, thus opening up a band gap in the propagation of the
surface modes. This has been done by developing an analytic
model based on illustrating the underlying physics by con-
centrating on finding analytic expressions for the spatial field
and surface charge distributions associated with the modes.
The predictions of our theory have been compared with the
theory of others and they have been found to be consistent
for the band gap, provided various misunderstandings in the
literature are recognized.

By comparing the results of our experimental work with
our theory the validity of our model has been verified for
gratings with a modulation as high as amplitude/pitch50.05
~2Kd250.23!. Further, we have shown that the central posi-
tion of the gap falls as the grating depth rises, a result pre-
viously unverified. The good agreement that we find between
experiment and theory provides a good test of the Chandezon
technique when applied to the type of problem discussed
here.

In addition we have highlighted some areas that are in
need of further investigation; we are vigorously pursuing
these.
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