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Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings
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We present an analytic model to describe the existence of photonic energy gaps in the propagation of surface
plasmon polaritons on corrugated surfaces. We concentrate on elucidating the physical origin of the band gap,
and accordingly we place strong emphasis on the physical reasoning and assumptions that we use. Our model
is designed to give direct access to expressions for the electromagnetic field and surface charge distributions
associated with modes at the band edges, thus allowing their physical character to be easily appreciated.
Having established why a band gap occurs we then find expressions for the central position and width of the
gap. We compare the results of our model for the gap width with those already in the literature, and find
excellent agreement. Our results for the central position of the gap, notably the prediction that it should fall as
the corrugation amplitude rises, contradicts one prediction made in the literature. We also reexamine the
comparisons made in the literature between experiment and theory for the gap width, and find them inadequate
because the theories have been compared to inappropriate experimental data. Consequently we present our own
recent experimental data, enabling us to validate our theoretical results, in particular confirming our prediction
that the central position of the gap falls as the corrugation amplitude is increased. The limitations of our model
are discussed, as well as possible extensions and areas for future rek®at6i3-18206)07433-4

[. INTRODUCTION The paper is organized as follows. In Sec. Il we present a
brief summary of the nature of photonic band gaps with ref-
Photonic materials are currently the subject of intensiveerence to a particularly simple system, the quarter wave di-
and widespread studgRefs. 1, 2, and references thepein electric stack, and place our subsequent discussion of SPP
These materials are based on the interaction between an opRergy gaps in this context. In this section we also review
tical field and a material exhibiting periodicity on the scalePrevious work in the field. In Sec. Ill we discuss the impor-
of the wavelength of light. The periodicity modifies the tance of the detailed nature of the surface profile on the en-
propagation of the optical wave within the material, and un-€rgy gap and in particular look at the implications this has in
der appropriate circumstances may prohibit propagation ovepterpreting experimental data. In Sec. IV we discuss previ-
some range of optical frequencies—a photonic band gap. IUS theoretical work, thus setting our own in context. In Sec.
terest in such systems stems from the potential they offer tf We develop in detail our analytic theory, ultimately finding
control the optical properties of materials, particularly spon-€xpressions for the central position, the width of the gap and
taneous emission, since this has important applications i€ field and surface charge distributions. By incorporating
such areas as the reduction of noise in laser diodes and ligh2€ results of some numerical modeling we provide a simple
emitting diode(LED) emissiort physical picture for the nature of the energy gap for SPP’s. In
The photonic materials generally considered are bulk in>€c. VI we compare the results from our model with experi-
nature, for example the quarter wave dielectric stack used d8ental data, and discuss the limitations of our model. Sec-
both mirror and filter, and the face centered cubic lattice.  tion VII provides a summary together with suggestions for
such systems the photon is dressed by the periodifuture work.
material—this dressed state is called a polariton mode of the

system. One can also consider a system that involves surface Il BACKGROUND
rather than bulk modes; if the surface is metallic then the '
relevant mode is a surface plasmon polari(6f/P (Ref. 5 We start by looking at the simplest periodic photonic ma-

and a corrugated surface may be used to provide the perioterial, the quarter wave dielectric stack; see Fig:®Lon-

icity. Just as in the bulk case, under appropriate conditionsider light propagating normal to the interface planes. When
this periodicity may result in an energy band gap in thethe optical wave vector is equal to half of the Bragg vector
propagation of the surface modes. In a recent Brief R&portcorresponding to the stack periodicity, Bragg scattering re-
we outlined an analytic description of the photonic gap thasults in both forward and backward traveling waves that in-
exists for SPP’s propagating on a metallic grating, and useterfere constructively to set up a standing wave. We can use
it to show the physical origin of the band gap. In this papersimple symmetry arguments to find where the standing wave
we provide the detailed formulation of our theory and exam-is positioned with respect to the dielectric stack. If, at some
ine the effect of the surface profile on the gap. We alsgoint in the stack the two wavedforward and backwandare
discuss the merits of our theory in comparison with previousn phase the subsequently Bragg scattered waves must arrive
work, discuss the theory’s limitations, and present experiback at this point still in phase. Since both waves will suffer
mental data of previously untested aspects of SPP energn identical phase change on scattering they must travel an
gaps that support our analysis. equal optical path length, thus requiring that the original
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Z axis

FIG. 1. A sketch of the standing waves in the dielectric stack.
The boxed regions are of high-refractive index. The low frequency
standing wave, top, has field extrema concentrated in the high index
regions; the high frequency solution has the extrema in the low

index regions(Note that the fields drawn are only to give an indi- FIG. 2. Sketch of the corrugated surface considered, together

cation of the distribution; in practice they will not be sinusoidal, with the spatial axes. The surface is described by a shape function
e.g., the low frequency field will be more tightly concentrated in thes(x).

high index region.

point under consideration be in the middle of a low indextor this results in the formation of a standing wave and again
region or the middle of a high index region; see Fig. 1. the mode distribution on the surface may then take two con-

The origin of an energy difference between these twdigurations, having different energies. We may qualitatively
standing wave configurations becomes apparent when w&ee the origin of this energy difference once we consider the
consider the nature of the modes involved. Light within anature of SPP modes. A nonradiative SPP mode is bound to
material is no longer just an optical field, it is now intimately the interface between a dielectric and a metal, it consists of
linked with the optical response of the material, the mode isan electromagnetic field oscillation coupled to an oscillating
a polariton rather than a photon. The interaction between thsurface charge density. The energy of an SPP standing wave
optical field and the material is represented by the complexvill thus depend on the energy stored both in the electromag-
dielectric permittivity and thus the index of refraction. As we netic field and the surface charge distribution. Since the two
have just seen the standing wave within the stack can haw&anding wave solutions take different positions with respect
two configurations, one when the standing wave has the oge the peaks and troughs of the gratiftese are the ana-
tical field concentrated in the high index layers, the othedogues of the high and low index regions of the dielectric
when it is concentrated in the low index layers. The differentstack it is not unreasonable to suppose that the electromag-
refractive indices of the two regions mean that the twonetic field and surface charge distributions will differ in the
modes have different energiénd therefore frequencieas-  two modes. As we shall show below, it is by considering the
sociated with them whilst still having the same nature of these standing wave solutions in detail that we are
periodicity—a band gap has been opened up. Frequencieble to determine quantitatively the magnitude and central
between these two values, i.e., in the gap, are unable tposition of this energy gap. The experimental existence of
propagate since they correspond to forward and backwarenergy gaps, alternatively described as frequency gaps,
traveling waves that destructively interfere within the stack.in the propagation of surface plasmons on corrugated metal-
Such an energy gap is exploited in the manufacture of dieledic surfaces, is now well establish€d® (note that these are
tric stacks for use as filters and mirrors since, when propasometimes referred to as minigaps in the literature since the
gation is prohibited, an incident optical beam is totally re-ratio of gap width to central position has usually been small,
flected rather than transmitted. typically 0.02.

To summarize then, if the internal optical wavelength is To understand what follows we must be clear about the
twice the periodicity of the stack a standing wave may beeffect the corrugated surface has on the dispersion of the SPP
formed and two possible standing wave configurations omode. For an ideal metal the dispersion curve for SPP propa-
modes exist, having different energies. This difference arisegation on a flat surface takes on a particularly simple form,
because the optical field of the two modes are concentratess shown in Fig. 3. If the modulation depth of the grating is
in regions of different refractive index. small then the SPP mode wave vectkgsp, Will only be

We can now go on to consider the situation for surfaceperturbed by the surface modulation when it is close to half
modes; see Fig. 2. We restrict ourselves to nonradiative suthe value of the Bragg wave vectorK2 The Bragg wave
face plasmon polariton$SPP’g propagating on a corrugated vector is defined as R=2w/\, where )\, is the pitch of
surface, although other surface modes, particularly acousticorrugation; the reason for not defining it ldswill become
have also been considergd\s with the dielectric stack, if clear in Sec. Ill. At this value of the mode wave vector a
the surface mode propagates on a corrugated surface and theergy gap opens up in the dispersion curve, see Fig. 3, in
mode wave vector is half the value of the grating wave vecdirect analogy with the energy gaps found in the dispersion
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FIG. 3. The surface plasmon polariton dispersion curve. The FIG. 4. The surface plasmon dispersion curve for a doubly cor-
dashed line shows the dispersion curve for a flat surface, the dottd§gated surface, i.e., one having two grating components, one with
line that for a corrugated surface. Notice how a frequency gap i$ragg vector X, the other with Bragg vectoK. The dispersion
opened up in the case of the corrugated surface. The gap occurs @rve scattered by thek2component(dotted curvé has gaps out-
=K, the zone boundary, the Bragg vector of the corrugation beingide the light lines, and is therefore unable to couple to photons. To
2K. Also shown are the light lines. These are the dispersion curve§xamine the gap experimentally a second grating compdqest
for photons traveling at grazing incidence to the interface betweetiSed. The dispersion curve scattered by kheomponent(dashed
the metal and the dielectric, i.e., those having the largest possiblgurve exhibits a gap within the light lines thus allowing experimen-
value ofk,: we see that it is not possible to couple the surfacetal investigation.
modes directly to photons; the surface modes always have more
momentum than the photon of the same frequency. Scattering from the corrugated surface provides an easy mo-

mentum matching route. The SPP’s can gain or lose momen-

curve of electrons propagating in crystalline lattices and thafum in integer multiples of B by such scattering, thus pro-
discussed for the dielectric stack above. viding coupling to photons. However, the portion of the

It is the principle aim of this paper to explain in detail the dispers_;ion curve near _the f!rst Brillouin zone boun.dary al-
physical origin of this gap. There was for some time concerVays Ile_s outside the light lines, even after scattenng from
about whether such gaps were gaps in frequency or wavd'€ grating, and so cannot couple to photons; see Fig. 3. A
vector. As we shall see below, this confusion arose from £0mmon solution to this problem is to introduce another
poor interpretation of experimental data rooted in a lack offfedulation onto the surface. If the modulation has a longer
understanding of the way in which the SPP modes couple tBitch than the original then it may couple the energy gap
photons. Although this problem has now been resolved if€dion to photons; see Fig. 4. _
favor of frequency gaps, its legacy has persisted when com- Corrugated surfaces are commonly made by exposing
parison between experimental and theoretical work has beé?hotpresst to a holographic interference pattern. Nonlineari-
attempted by some authors; it is therefore important to unties in the exposure and development process lead to a grat-
derstand the nature of the problem and see how it is resolvedf’d Profile that contains higher harmonics in addition to the

To do this we need to look at how experimental data on Spfundamental. Typically only the lowest harmonic is impor-
energy gaps is obtained. tant (the importance of the existence of higher harmonic

components in the surface profile has been recognized by

many author$"'% and the surface profiles(x), may be rep-
lll. THE INTERPRETATION OF EXPERIMENTAL DATA resented as

ON SPP ENERGY GAPS

= i + i + .
Our aim in this section is to look at the way in which S(x)=diSin(KX) + doSin(2Kx+ ¢5), 3.3

experimental data on SPP energy gaps has been obtainedherex is the spatial coordinate, andd, are the amplitude
with particular emphasis on how the data may be interpretedf the two harmonic components, arf) is their relative
We summarize the results of previous investigations angbhase. It is important to be clear on the role that the different
highlight the importance of having a detailed knowledge ofcomponents play. Th&E component of the surface modula-
the surface profile of the grating in making such interpretation provides the coupling to photons whilst th& Zompo-
tions; we use numerical modelin@liscussed later in this nent produces the energy gap. We note that the modulation
papej to emphasize the relevant points. with Bragg vectorK will also produce a band gap, but in a
The observation of SPP energy gaps can be achieved Wifferent frequency region, this fact is ignored in Fig. 4. Hav-
studying the resonant interaction between SPP’s and radiang thus identified the role of the two components it is clear
tive modes, e.g., photons. However, an important property ofhat there is no physical requirement for them to be har-
SPP’s is that their momentum is greater than that of a freenonic. We should also note that a pure sinusoid can carry
space photon of the same frequency, kapp>ky; photons  out both functions, i.e., gap creation and momentum match-
can only access the region within the light lines of Fig. 2.ing. Second order scattering from tkecomponent can give
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rise to a gap, however, this second order process is gk
Sec. V) and need not be considered further in the present
discussion.

We need now to consider the experimental details of the
coupling between SPP’s and photons, since the way the ex-

D
7,
07N
1)
O .

N
7
7
%
///

D
7

%
27
7

7

%

=
=

N

periment is carried out has important implications for the 10

interpretation of the data. The purpose of such experiments is ’{;/_ o

to reconstruct the dispersion curve, thus allowing the width %,/2 ‘660
and central position of the gap to be determined. The prin- A

ciple method by which this has been achieved is as follows.
Light of a given frequency is incident on the grating in the
plane containing the grating vector and the surface normal, at
some angled with respect to the surface normal and the ey Mg 6 645
reflectivity monitored. If this angle is such that

then the light may couple to the SPP mode. The reflection
coefficient contains components due to specular reflection
and reradiation by the SPP mode. Typically the inclusion of
the SPP reradiation results in a significant reduction in the
reflected intensity due to the phase difference between the
specular and reradiated ligtt!” Data are acquired by mea-
suring the reflection coefficient as a function of incident fre-
guency and angle. It is the interpretation of the reflection 4 ,
data so obtained that we wish now to concentrate on. In the 45 10 05 00 05 10 15
following we make use of numerical modeling to explore the Angle of Incidence (degrees)
reflectivity under various experimental conditions. The nu-
merical modeling is based on the same techniques that we FIG. 5. Numerically modeled reflectivity of a singly corrugated
use later in Sec. V to develop our analytic model. The detailsurface. The upper picture shows a reflectivity surface map, reflec-
of the numerical models have been reported elsewtere. tivity being plotted as a function of both angle of incidence and
We start by mapping the reflectivity of a purely sinusoidalWavelength. The surface has Bragg vedigrthus allowing cou-
silver grating as a function of incident wavelength and angle,p“ng. of photons to surface modes, bu.t not providing t.he scattering
see Fig. 5. The crossing between the branches scattered [gfiuiréd to set up a gap. The lower picture shows this clearly; the
+K occurs for light at normal incidence. For this sinusoidal _reflectlwty minimum is a continuous functlon_ of Wavelength, there
profile there is no significant interaction between the two'S "C 98P Where the branches craééote that in the lower picture
branches of the dispersion curve as shown by the absence f d2rker the region the lower the reflectivitfthe parameters
a gap in this case. Adding ak2component to the surface use.d In the modeling were grating piteh34 nm, anl'tUd@ll_S
- . . 7 nm; the metal parameters were fixedept —17.5,¢,=0.7, charac-
profile provides an mteracnon between the two branches, th ristic of those for silver in this wavelength range.
forward and backward traveling surface modes are couple
by this component and an energy gap opens up as shown af wavelengths there are circumstances in which we will
Fig. 6. only see one minimum. Consequently, using the minima
Experimentally there are two distinct ways in which datafrom angle scanned data will not in general yield the true
of this type may be obtained. One is to fix the angle ofdispersion curve of the SPP modes. It is better to scan the
incidence and scan the reflectivity as the frequency isvavelength for fixed angles of incidence, or, better still, to
changed. The other is to fix the frequency and scan the anglebtain the reflectivity as a function of both so as to be able to
of incidence. As has been noted by others, the two techexamine the data as we have done here for the numerically
niques can produce rather different resiftt’ Figure 7 modeled data presented in Fig. 4—6.
shows sections through Fig. 6 corresponding to the two dif- There was for some time confusion in the literature con-
ferent types of scan. The wavelength scan, Fig),#for a  cerning the existence d gaps, i.e., gaps that occurred in
constant incident angle, in this case 0°, shows two cleamomentum rather than enerd}?%2! Although it has now
minima indicating the presence of an energy gap. By conbeen establishéd??~?*that there are no momentum gaps for
trast, the angle scan at a constant wavelength, Fig. i€ the propagation of SPP’s on grating surfaces and that the
quite different, showing only one reflectivity minimum. At appearance of such gaps in reflectivity data is an artifact of
first sight this is rather surprising since we chose our fixedhe coupling between the SPP and a photon, it is still worth
wavelength to be in the middle of the gap. We can see whyeuvisiting this problem as it has important consequences for
this is from Figs. 5 and 6 where, due to the finite width of thethe type of model that should be used in looking at SPP band
resonances, a clear saddle point exists in the gap. The mingaps.
mum reflectivity in this cas€Fig. 7(b)] which is only about Thatk gaps are due simply to over coupling is easily seen
5% deep, represents coupling to the wings of the resonancdsy reproducing the data used to produce Fig. 5 but with an
Thus if we scan the wavelength for a range of fixed anglesncreased amplitudel, of the fundamental surface profile
we always see two minima. If we scan the angle for a rangeomponentK; see Fig. 8. To understand the origin of tkis

Wavelength (nm)
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FIG. 7. Slices taken through the data of Fig. 6. The upper scan
FIG. 6. As Fig. 5, except that now a second grating componenta) shows the reflectivity that would be recorded if a wavelength
has been addedi,=2 nm, ¢,=0°, into the surface profile. Note scan was made for fixed incident angle through the intersection
how a clear energy gap has now opened up at the intersection bbetween the two branches of the dispersion curve; two minima are
tween the two branches. clearly seen. The lower scdh) shows the reflectivity that would be
. . recorded if an angle scan was made for a fixed wavelength, chosen
gap we must consider what the reflectivity we measure repg, pe at the center of the gap—only one minimum is seen, and there
resents. As discussed above, the reflected light comprises;@nq evidence in this type of data for an energy gap.
component due to specular reflection and one due to reradi-
ated SPP emission. By increasing the depth of the grating wgy data that will be obtained and how it should be inter-
increase the coupling between the photon and the SPreted. The presence of two Fourier components are required
thereby decreasing the reflected signal and increasing thespp pand gaps are to be observed optically. Their magni-
reradiated. At the optimum coupling depth the reflected angude and phase have a significant effect on the reflectivity,
reradiated components are equal in amplitude and out ahrough their effect on the coupling between the SPP modes
phase, resulting in zero net reflectivity—100% coupling.and photons, and must therefore be considered carefully in
Now suppose that we have two such perfectly coupledyaluating data obtained in this way. In fact, as we shall see
mOdeS, one either side of the CrOSSing pOint of F|g 5. 1If th Sec. VIC itis possib|e to use prism Coup“ng the SPP
now bring these modes closer in frequency to the crossingnodes to photons, thus avoiding the need for a second cor-
point then the two 100% coupled modes will overlap. rugation component.
Clearly they cannot add to produce 200% coupling, instead e also note at this stage that information concerning
an increased rEfleCtiVity is recorded. This is Clearly visible ONSPP band gaps can be obtained by examining emission rather
a constant wavelength scan through the middle of Fig. 8than reflectivity dat&> In this case a layer of excited mol-
There now appears to be a reflectivity maximum betweerxcyles immediately above the metal surface lose their energy
two weaker minima and a “momentum gap” has appearedpy generating an SPP mode of the appropriate frequency. We
The foregoing highlights the care with which reflectivity will not discuss this work further here since it introduces an
minima must be treated when trying to construct a dispersiogxtra complication into our model, i.e., it requires the inclu-
curve. Ideally experiments should be conducted with verysjon of a third medium, the layer of excited molecules. We
shallow gratings so that this type of distortion of the apparenkhall however return to this subject in Sec. VIl when consid-

mode position does not occur. _ . ering directions for future work.
To complete our examination of the care with which ex-
perimental data must be acquired and analyzed we need to IV. THEORETICAL APPROACHES

consider one further detail of the surface profile, the relative

phase,,, of the K and K components. For reasons of  The goal of any model for the SPP band gap is to allow us

clarity this discussion will be delayed until Sec. V F. to calculate how the gap width and central position depend
We can summarize this section by noting that the detailsipon the grating profile, in particular on the amplitude of the

of the surface profile are critical in determining the reflectiv-modulation. One approach is to set up a model for the inter-



6232 BARNES, PREIST, KITSON, AND SAMBLES 54
sition of this latter region being periodically modulated. The
electromagnetic fields in the two half spaces are constructed
as Fourier sums that possess the Bloch periodicity property.
The boundary conditions are satisfied by assuming that the
expressions for the fields in the two half spaces are valid all
the way in to the interface—this is the Rayleigh hypothesis.
This approach has been discussed by many auffd?s?!
and can be used to obtain an analytic expression for the
width of the band gap’ The method is however only
approximate—it can only be proved to be valid for small
amplitude gratings up tal,/\ ~0.1% although it appears
that the range of validity is actually greater than expected
from Ref. 32; see the following section.

B. Green’s function method (also known as the extinction
theorem method

In this method the boundary conditions are included ex-
actly, and analytic expressions in the form of two simulta-
neous matrix equations containing the Fourier coefficients of
the field$®3133 are obtained. These equations have been
solved numerically® Further, the identity of the solutions
obtained by this method with those found using the Rayleigh

15 10 05 00 05 10 15 hypothesis allows the range of validity of the Rayleigh hy-
Angle of incidence (degrees) pothesis to be extended beyond the expected range to
d,/\g~1. We should emphasize that agreement here is with

FIG. 8. As Fig. 5, except that now the grating amplitude hasanother theory, not with experiment. Although the Green’s
been increased from 5 to 30 nm. Now rather than an energy gap, weinction method has not been applied specifically to band
see a gap ik, . This is thus seen to be an artifact of over coupling gaps in the dispersion of SPP’s it has been used to study
between SPP’s and photons. band gaps in the propagation of Rayleigh surface waves on a

grating®
action between electromagnetic radiation and the grating, as
has been undertaken by many auttf§r&,and to then evalu-
ate the scattering coefficients for the different diffracted or- C. Perturbation approach

ders of the reflected light, the dispersion relation can then be This approach takes the solution for the plane surface and
obtained numerically from the poles of the scattering PP P

coefficients?® (Zeros in the scattering coefficients could not expands the solution; using a standard form of perturbatipn
be used since, as we have seen above, it is not always pdi€o"y- The perturbation approach produces not one equation
sible to identify reflectivity minima with mode solutions, [0 the mode solutions, but a whole hierarchy of equations,
Although this method allows the numerical calculation of theMaking solutions to any particular problem tedious unless
gap parameters, it provides little physical insight, the Veryllmlted to lowest, i.e., first, order. Such a perturbation treat-
thing we wish to concentrate on here; we must therefore seeRent was given by MillS, the use of only the first order
another approach, one that can lead us more directly to thiéniting the range of validity of the technique to small am-
dispersion relation in the vicinity of the band gap, and inplitude gratings. The limited range of applicability of this
particular that can improve our physical understanding.  approach was also shown by Da Sikgal 3* Seshadf® has
The crucial factor determining the existence of a SPRdeveloped a perturbation treatment that is applicable to
mode is that of satisfying the electromagnetic boundary conkarger amplitude gratings although the validity of this later
ditions across the interface. In the case of a flat surface this iwork must be in question as it makes predictions about the
straightforward®?°but for a corrugated surface the determi- central position of the gap that are not borne out either by
nation is more involved. Many authors have addressed thether theoretical workS our own theoretical work or
problem of solving for the SPP gap parameters, and severa&xperiment—see Secs. V and VI.
approaches have been pursued; they can be divided into four Even if we could ignore the problems with the perturba-
categories, detailed below. tion treatment of Ref. 35, none of the above techniques are
ideally suited to our purpose. The reason for this is as fol-
lows. To gain physical insight we wish to study the field and
charge distributions associated with the mode solutions and
The essential details of this method are these. Space e would ideally like simple analytic expressions for these.
divided into three regions, one that is all dielectfisually In all of the above treatments the fields comprise a Fourier
air or vacuum, another that is all metal, and a selvedgeexpansion involving the Bragg vectors. We could write an
region in which both metal and dielectric exist, the compo-expanded field component as

Wavelength (nm)

A. The Rayleigh method
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based on the Rayleigh methéRef. 27, Table 1 and associ-
H(x,2)= 2 am exp(i Bn2)expli(ketmK)X), (4.1 ated text In fact, as we shall see, a single dominant term
m describes the SPP standing wave on a small amplitude grat-

whereg,, are the Bragg vectors and whete=2m/\ 4, Ay is ing and satisfies the boundary conditions directly, i.e., only
the pitch of the fundamental component of the surface proone term is needed in the summation. We are thus able to
file. As the amplitude of the grating increases, producing @btain simple analytic expressions for the fields associated
greater distortion of the fields, more terms need to be inwith the SPP modes.
cluded to represent the resulting fields. We are particularly In summary, whilst several methods exist, we have based
interested in the SPP modes that decay evanescently awayir approach on the method of Chandertrl?’ Although
from the corrugated interface. The field components assocthe range of validity of the model for the SPP band gap as we
ated with these modes will thus contain Fourier coefficientglevelop it below is no better than some of the other tech-

with imaginary values of3,,, given by Ref. 37, niques used, notably the Rayleigh and Green’s function
methods, it does allow the fields and charge distributions

_ ) 0?12 associated with the modes to be readily obtained; the tech-

Bm=1| (ksppt mK)“— 2 (4.2 nique is thus advantageous in improving our physical insight

into the mechanism behind the formation of SPP band gaps.
Thus as the value ah rises the associated field component
decays very rapidly away from the interface. Further, ghe V. ANALYTIC THEORY
are independent of the surface shape. As a consequence of
these two facts, the number of terms required to construct a The Chandezon approach involves solving Maxwell’'s
solution to a given precision increases extremely rapidly agquations in the vicinity of a corrugated surface by making
the depth of the grating rises. Mode solutions thus contain &se of a coordinate transformation technique. The procedure
large number of components and can only really be investiwe adopt is as follows.
gated numerically. It is for this reason that the above meth- (A) Set up the scheme for the mode solutions following
ods are not a very direct way of examining the fields associChandezon. We thus flatten the surface by making use of an
ated with the mode solutions, even in the small gratingappropriate coordinate transformation. We then express
amplitude regime. An alternative technique that does providdaxwell's equations in the new coordinate system, making
a more direct route to the fields is discussed next. use of the periodicity to expand the fields as eigenmode so-
lutions.

(B) Seek solutions to Maxwell's equations for the case
) when the surface modulation Bragg scatters the SPP mode,

Here an altogether different approach developed by Chamgssuming that we need only consider first order Bragg scat-
dezonet al?’ is adopted. First the spatial coordinates aretering.
transformed to a system in which the surface is flat. Max- (C) Apply the boundary conditions appropriate for the
well's equations are then expressed in these new coordinat@kistence of SPP’s on a grating.
and solved for the SPP existence and boundary conditions (p) Examine the field distributions and surface charge
(we shall see what these are in the next segtitising the density, thus identifying the physical origin of the gap.
Chandezon framework we have dEVEIOped a perturbation ap- (E) Derive expressions for the central position and gap
proach to provide analytic expressions for the band®ap. width.

The primary advantage of this approach for our purpose is  (F) Look at the importance of the phase of the grating in
that it y|e|dS eigenmode solutions for the fields which can bqhe context of Optica' examination of the SPP band gap
expanded in the form (G) Examine the effect of refining the model to include

higher order terms.

D. Chandezon approach

H(x,2)=>, >, 3 expiN9(z—s(x))expli (ke+mK)x),
m q

“.3 The crucial factor determining the existence of a surface
wheres(x) is the shape function of the surface, i.en the  plasmon excitation on a flat surface is the necessity of satis-
surface z=s(x), \% the eigenvalue of the mode, afd, the  fying the electromagnetic boundary conditions across the in-
amplitude of themth Fourier component of thid field in the  terface. If the interface is nonplanar then the solution of
gth eigenmode; these details will be dealt with more thor-Maxwell's equations in rectangular coordinates is not a great
oughly in the next section. This expression for the field, Eqdeal of help in ensuring that the corresponding boundary
(4.3), already contains information on the surface profile inconditions are exactly satisfied, instead we adopt the method
the first exponent. Another important point not immediatelyof Chandezoret al?” The detail of their method is set out in
obvious at this stagébut discussed in Sec. V)Bs that the their paper; in our case we are particularly interested in the
eigenvalues\® also depend on the surface profile. Thistransverse magnetidM polarized solutions since the SPP
should be contrasted with the Rayleigh expansion where thaode is TM polarized; ak field normal to the metal surface
equivalent of the eigenvalues are the Bragg veciBgs is required to generate the surface charge density variations
which, as discussed above, are independent of the surfatieat constitute a component of the SPP mode. Further, we
profile. Thus, when we need to perform the Fourier sum taconsider only that surface profile component that gives direct
evaluate the relevant fields the summation based on these to the SPP band gap, i.e., the component with Bragg
Chandezon technique needs fewer terms than the summatigector X.

A. The Chandezon technique



6234 BARNES, PREIST, KITSON, AND SAMBLES 54

In essence the method used by Chandestaa. proceeds )
in a number of stages. F(u,p)=2 Fu(uexpiamw),
(i) The coordinate system is transformed frany,z to m

(5.5
u=z—s(x), G(u,v)=2, Gpu)expiam),
v=X, 5.1 where
w=y, am=K,+mK, m=0,x1,%2,.., (5.6)

where s(x) is a periodic function defining the grating sur- andk, is thex component of the wave vector of the mode
face. In our case the profile of the grating is given by Eqg.under consideration.
(3.1) with d; set to zero; thus(x) =d,sin(2Kx+ ¢,). Note (v) Substitution of these expansiofgs. (5.5)] into the
that we retain the phase terg for future use even though it new form of Maxwell's Eqs.(5.4) yields an infinite set of
is not strictly required here. The position of the interfaceequations forF,(u) and G,,(u) that can be written in the
between the regions of relative permittivity ande, is de-  form
fined asu=0; &, is assumed to be real and negative, i.e.,
metallic. ) T 5.7

(i) For convenience the field variableésandH are reex- du ' '
pressed a§ and G, whereF and G contain the field com-
ponents in a form appropriate to the new coordinate systemn. .
F andG are defined so thdt contains the field components of u and {(u) is a column vector of the for_mg(u_)
perpendicular to the symmetry plane, i.e., ther w com-  _ (F+N:Fan-1 Fon.Goin/e,Goiy-a/e,G_y/e), 1€, in
ponent, whilstG is related to the field component in the the I.'m't N—e It contains the field components from the
symmetry plane and tangential to the local surface. Expresgz-our.Ier expansions.5). .
ing the fields in this way simplifies the application of the (V) The normal mode solutions haveuadependence of
boundary conditions, i.e., that the local tangential field com—the form exp{A"u), and we thus write
ponents are continuous across the corrugated interface. For

rrY\/hereT is a matrix of infinite size that is independent

a4y) = oo i)\
TM polarizationF andG take the form FH(W)= ¢ expiniu). 8
The normal mode solutions can be found by extracting the
F=2ZyHy, eigenvalues of, i.e.,,\% and the associated eigenvectafs,
from
G=—koeE1+5'?, 5.2
o8 62 (T—\91)yd=0, (5.9
where where\? are the eigenvalues df.
L 1) 12 s . K s Writing
0~ 8_0 ’ S = 51 O_E ( . ) f?n
E, is the component of the electric field locally parallel to the m
surface, andH, is the component of the magnetic field nor- then
mal to the symmetry plane.
(i ) Maxwell's equations, expressed in termsFofind G Fl(u)=flexp(iNu),
in the new coordinate systemuv,w give, for the TM polar- (5.11)
ized case under consideration, Gl (u)=gdexp(iru).
JE s’ JF iG We can now express the mode solutions in the form quoted
U 1rs% 0 + 1re2 in Sec. IV D. First we find thé& vector corresponding to the

mode solution by substitutingp.11) into (5.5) to give
i oF

v 1+s'2 gv

: Fi(u,v)=>, flexpiNiuexpiamw). (5.12
(5.4 "

! 14
_ +_
1+s'? G} )

) ] o ) For TM polarizationF (u,v) =ZyH(x,z); see Eq(5.2). If we
wheree is the relative permittivity of the appropriate me- fyrther convert back to the,y,z coordinate system and sub-
dium. Once these two coupled equations are solved we wilkitte for a;, through Eq.(5.6) then we find

have found the tangential components of EhandH fields,

i.e.,F andG, from which the normaE-field component can

be found by differentiation. H(x,2)=2 2 faexdir(z—s(x)]expli(kamK)x),
(iv) In finding the solutions to the above equations we moA (5.13

recognize the periodicity of the fields in thevariable and '

express= andG as Fourier expansions of the form which is identical with Eq(4.3) (ignoring the constant).
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(vii) To obtain a solution to Eq5.9) we must truncate the the surfacd. This degeneracy can be removed by coupling
Fourier expansion at some finite value ofi, i.e., the two modes via the surface Fourier components that have
—N=m=N. wave vectorst2K. The dominant effect occurs through the
coupling of them==*1 components via thi$ 2K term in the
surface profile and is analogous to the degenerate perturba-
tion theory calculation in quantum mechanics. In the follow-

We are considering the case in which there is a degenng we will assume that the splitting is dominated by the
eracy between the right and left traveling SPP’s, havingcoupling of them=+1 terms and will omit all other Fourier
wave vectoranK wherem=*1, i.e.,ksps==K. [Note that components associated with the plasmon.
this situation corresponds Q=0 in Eq.(5.6), i.e., a photon The T matrix in the eigenvalue equatids.9), is now a
coupled to this SPP mode would have to propagate normal téX4 matrix given by

B. Solutions that are coupled by Bragg scattering

KC_,

C,, andD,, are defined by

1
——=> C,expimKv),
m

1+s'?
(5.15
s =>D imK
W— - mexmm U),
with
Js
s’=%=2Kdzcos(2Kv+¢2). (5.16

Notice that the shape of the surface only enters the matrix
through the coefficients & andD. We now assume that for
our lowest order scattering we need only retain terms to or:
der(Kd2)3; this assumption is discussed further in Sec. V G.

Equatiort5.15 then becomes
Co=1-2(Kd,)?=1—p,
Ci2:ov
(5.17

D.,=Kd,y(1—3p/2)exp(xi¢p,y)=E& exp(ipy)/K,
with p and ¢ defined as

p=2(Kd,)?,
(5.18
£=K?d,(1—3p/2).
The eigenvalues ofT —\l) are then found to be
) 2
N=¢ E) (1—p)—K2(1—p)?— &% (twice).
(5.19

—K?Cote

KD, —KD, Co C,
KD_, —KD, Cc_, Co
® 2
T=| —K2Cy+ S(E) KC, KDy  KGC, (5.14

©)® ~KD_, —KD
E -2 0

The eigenvectors are found by substituting Eg.17) into
(5.9. There is some flexibility in the choice of the two inde-
pendent eigenvectors due to the degeneracy of the eigenval-
ues; see Eq5.19. We choose to express them in the form
shown below since, as we shall see in Sec. V D, this choice
gives quickest access to the physics involved,

1 1
e7i¢2 —e7i¢2
N+ E N—¢&
o= 1-p v Y= 1-p
)\;ge_i¢2 _)\_ge_i¢2
1-p 1-p

(5.20

With suitable normalization factor&see later the first two
elements determine the amplitudes of the tangehtjgl .,
fields and the second two determine the amplitudes of the
tangentialE,_ .., fields. Our task in the next section is to
find those combinations of the above eigenvectors that rep-
resent solutions to the situation under consideration, i.e., un-
der the appropriate boundary conditions.

C. The boundary conditions

In each regionj, on either side of the interface, the sur-
face mode solution is a mixture of the two eigenvectors, i.e.,

P = (g, + miy)b, (5.20)

where b' is an overall amplitude angy is the relative
strength ofy, to ¢, in the mixture. In addition\ must be
chosen appropriately to give solutions that decay away from
the interface.

At the boundaryu=0 and the matching conditions on the
tangentiaH components derived from Eqg&.5 and(5.11)
give
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bY(1+ wq)=b%(1+ u,), D. Field distributions, surface charge density,
(5.22 and mode energy
b (11— uy)=b%(1— u,), In this section we find explicit expressions for the field
1 w2 distributions and the surface charge density. We then use
so thatb™=b* and = po=p. _ » these expressions to evaluate the electromagnetic energy as-
Similarly, noting thatE=G/e, the matching conditions = gqcjated with the modes. Apart from an overall normaliza-
on the tangentiak components yield tion factor the tangentiatl andE field amplitudes, which we

write as H)E and E;, are obtained by dividingF by

1 M 1 M d :( 1 dG b _ / 12\1/2 H
MO (A —E) = Aot E)F — (A= ), o= (ugleg)™< an y (—welc)(1+s%)"“ Hence, using
81( 1é) gl( 17 ¢) 32( 2+ é) 82( 2~ ¢) Eq. (5.5), together with(5.9), (5.20, and(5.21), we find that
(5.23  at the surface
1 Lt 1 ~ * o— g7\ AiKV o —ifT —iKv
8_1(7\1_§)+8_1(_)\1_5):8_2()\2_5)"‘8_2(_)\2_5)- Hi =A(f{FifDe v+ (f7,5if7)e ")z,
These coupled equations replace the fietentica) bound- =Ho COSKv + §of25 7/4), (5.39
ary conditions, with Hy=2v2A/Z,. We also find
A A E"_':_A(( T T)eiKD
_1: _2' (5.24) I g1 d:
€1 &> iK Cc 1 )
+(g2,FigT e "
that apply for a planar surfadg=0). As mentioned above, (9=1719°0) ) w.e | (1+s'2)1

the surface plasmon solution must have fields that decay

away from the interface, so that - (A"Fig)c  ZoHo

e(l-pw. (1+5)2 cogKv + /2% m/4).

)\1:i 71, )\2:_| 72, (525) (532)
where, using Eq(5.19, In evaluating this expression it is important to recall Eq.
(5.29, i.e.,
® 2 1/2
—| K2 24 ¢2 s . + .
7i(w)=|K(1-p)°+¢§ —si(g) (1—p)} . (5.2 A =im(os), N =—in(w.). (5.33

) N The component of, normal to the surfaceEy may be
The solution of the boundary conditions, E§.23 to-  geduced fromH * by differentiation, viz.,
gether with Eq.(5.25 has two solutions,

. B i Zoc JH;
m==+1. (5'27) N_(l—f—s'z)l/zswt Jdv

Further, we find that __i_ﬁ ZoHo (Ko + /25 i)

e 11 = Swi—rl+3/2)123n( vt ¢ol2% mlh).

1 2 —
e (528 (534
h The expressiong5.31), (5.32, and (5.34) determine the
where fields on the boundary=0, whilst the surface charge den-
. sity, o, , can be found fronE  since
7 =ni(w-). (5.29
+_ EX —EZ
Combining Eqgs(5.26—5.29 gives o =eoEy, "By
2 1\ 282 2¢ i K ( t 1 Ho (Ko + ¢,/27 ml4)
+ . =1 —|— 7 Sl v +ml4),
(—) (1-p)=K%(1—-p)Y| —+ — |+ —=*x— 9] ws e &) (1+8'9)Y? 2
C €1 L3} €1 €1
(5.39
1 1\ 2& 2¢ N N .
=KX (1-p)2|—+— |+ —F—1,. whereEy andEy_are the normal field components at the
€1 €2/ & & ! 2

surface in the two media. We have also used the fact that
(5.30 goCZo=1. We can summarize the spatial dependence of the

In deriving the above we find thab=cw. for u=Fi. That fields and surface charge density along the surface as

the two different solutions have different energies is now H  ES «cog Ko + ¢ol2F /),
clear. We could now proceed immediately to find algebraic (5.36
expressions for the gap width and central position; however, EL o osin(Ko + ¢of2+ mld). ’

we prefer at this stage to develop expressions for the field
distributions since it is these that provide the insight into thet is from these expressions that we can see the origin of the
origin of the gap. energy gap between the two modes. The extrema of the nor-
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Flat surface
------ Corrugated surface o,

7 Field strength

VTP , R LT SO Corrugated surface o_

Dielectric Metal

--- +++ o, FIG. 10. A plot of the way in which the fields decay away from
the interface. Decays are shown for the flat surface, and for the two
FIG. 9. Sketch of the fIE|dE) and surface charge distributions So|uti0ns(high frequency dashed, low frequency do)teﬁthe cor-

for the two standing wave solutions at the gap boundaries. Theugated surface. Notice how the field in the dielectric for the high
upper sketch is for the low frequency solution, the lower sketch isrequency solution becomes less well confined to the interface, as
for the high frequency solution. Notice that the field lines are moregne might expect since this branch is pushed closer to the light line;
distorted in the lower sketch, illustrating the greater energy storedee Fig. 3.
in the fields by this mode.

1/2
mal field component and surface charge distribution for the g = —j Ke ( _ 1 ) ZO'?'; 75 COSKv + h,/2
high frequency solution occur at the troughs of the surface (OF= €187 (1+s'9)
component that has periodicityK2 whereas for the low fre- + mld) (5.40

guency solution they occur at the peaks. These distributions

are illustrated in Fig. 9, from which it is clear that, owing to .. . - . : . .
the relative distortion of the fields between the two solutions)[’;/]gmmh a:tscxﬁllg? é)onngi?it:hsmes of the interfacas required by

and the associated difference in location of the surface The total electromagnetic energy associated with the

charge, a different energy will be associated with the WOnodes is comprised of that stored in the fields on either side

distributions. Before finding an expression for this ENCTGYot the interface and the energy associated with the surface

difference, we can gain further physical insight by consider- gt L
ing the decay lengths of the modes into the surrounding mec[_:)r;arge distribution. The latter surface energy density is given

dia.

Using EQgs.(5.8 and (5.25 we see that away from the
surface the fields are modulated by the factors exg; u) s :i f oV dl (5.41)
in region 1(u>0) and by expz;u) in region 2(u<0); 7; S 2\g ’ ’

and 7, are thus the inverse decay lengths of the modes away
from the interface. Combining Eqgg5.26, (5.29, and where the integration is carried out along the surface for a

(5.30, we find the following expressions for them: full period Ay(=27/K). Hence
1/2
P=K(1-p)| — 2| 7 K [
n =K@A=p) = —| +& 2555 f oV(v)(1+s'?)¥dv, (542
" (5.37) °
+ €2
772_=K(1—p){——} + & where
€1
Thus comparing withy °= #,(d,=0), the decay lengths for v ,
the flat surface(i) for the », solution, V(v)= _f Edl=— fo E(1+s?)Ydy.  (5.43

+_ .0 + 0
TSI T2 2 (5.38 Substitution of the relevant, previously derived, expressions
so that this plasmon field distribution is “shifted” to the [Egs.(5.35 and(5.40] yields the result that the time aver-
dielectric side of the interface whilsii) for the w_ solution  aged surface energy density is

7]I> ’)72, 77]J_r< 772, (539) — 1(Kc 2 /'LOHg 1 1 1 1/2
that is the plasmon field distribution is “shifted” towards the s="g (I) K (8_1_ 8_2) ( B 8182) '
metal side of the interface. These shifts in distribution are (5.49

depicted in Fig. 10, showing again how the two modes differ.
Using the expressiorn($.37 for 7; the expression foE;~  The corresponding time averaged energies stored in the
simplifies to fields per unit(flat) surface area is
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_1__ o )\g —+2 _iZ (O 2 w_ 2
EE_Z_)\Q wdufo eoe |E) |+ |En|*1dv (T ry
B :U'OHS ( Kc)z ( 1 1 )( 1 1 ) and thenormalized central positioto be
16 \w- P g1 &)\n My 1 (0.\2 (0_\2
(5.49 2llc) "))
and, similarly, Later, when we need the more conventional definition of gap
E_i—i * duj)\g A7 [2d width, i.e., dw=w, —w_, we shall derive it from our expres-
Ho2ng J =)o KolMy 1HHU sion for the normalized gap width. With these definitions we
find from Eq.(5.30 that
woH3 ( 1 1 5.48
16 \ny  n ) ' w w- 2¢ - 2¢
o2 (f) _(T) (1—/l7):£—(771r+771):—8—(772+
These appear to differ but algebraic manipulation using the ! 2
relationship betweenn. and 7, previously derived[Eq. +15) (5.49
(5.26] shows tha ;=3¢ and so the total electromagnetic
: . : == and
field energy per unit area is ther®2.
Hence the total energy per unit area associated with thti\ 0. \2 (o \2
modes is 5 (%) + T) (1-p)
— uoH3 Kc)2(1 1) (K K)(l )
t= — | = —|l==—=|(1-p 1 2
8K \w+) \&1 &f[\ny =K2(1-p)?| —+ — +i+£(ﬂ1+_ﬂi)
( 1 )1/2 €1 €9 €1 &
- . (5.47 1 242
o2 =KX (1=p)? —+ — +8i+§(n§—n£)- (5.50
After further manipulation it is possible to show that for roee 2 2
small ¢ Further manipulation shows that
ST oo |9+ 2 (w2 + . i _
T3« E - E , (5.48) 71— M =—(772 —772)2—2.5, (5.51)
as one might expect. so that

Although this section has allowed us to examine the ’ ) )
physical origin of the band gap it yields little that allows us L (“’_+) +<“’_) }sz(l—p) :(ﬂ) (1-p)
to test our model against experiment. In the next section we2 |\ C c c
derive expressions for the dependence of the gap width and 2
central position on the surface profile that allow such tests to - (@) (1—2(Kd,)?), (5.52
be made. c

_+_
€1 €2

, » ) where
E. Expressions for the central position and gap width
We first define the parameters for which we shall find
analytic expressions since they are not immediately obvious wg)?
if the above discussion is not familiar. Following the mode
solutions derived in Sec. V C, in particular E¢p.30, we
define thenormalized gap widtho be Also

2(1 1)
=K2 =+ —|. (5.53

(1-p)?[[{ws\2 [0_\¥? (262 (77 n1\° (71 =
. —| == | +|=] =|—+—| +|——
4¢ c c £ g1 & €1 &
42 -\ 2
€1 €1

K¥1-p)* 2¢

=2{2 +
[ e1 ef

=

(5.59

- 2 2

_K-p2 48 4((00)2(1_13)2
€1 €1
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giving, for the normalized gap width, 670 g
[ 2 |w_\?
i trs =4¢&)—K?% g e, T 6607
2 , ?,’ 650
=4(Kdy) === (1-3(Kdy)"). °
VT €182 g
6401
(5.59 i
Further, using Eq(5.52), we find that 670 g
@= Zz(ﬂ 2(1—2(Kd )2) —~ 660+
c c 2 £
2 , ? 650
+2(Kdy) ——— (1—-3(Kd,)?). (5.56 ©
V=18 2
6401
In this expressior; ande, should be interpreted as the local , , : , , J
values of relative permitivities ab., as appropriate. If the 6 -0 05 00 05 10 15
variation in their values over the range of the band gap is Angle of Incidence (degrees)

unimportant then the equations above represent a solution to ) o )

the problem. If the frequency variation is significant then it _ FIG- 11. Numerically modeled reflectivity plots showing the

remains to solve each equation self-consistentlydoror ~ Sffect of the phasep, between the two grating components. Al

_ given a functional form foE,(w) ande,(w). We can now .though the size of the gap is unaffected by the phase, the coupling
is

express the central position as

guency branch is not affected in this way and consequently

2 2 2 2
22_:} (ﬁ n &) :(@) [1-2(Kd,)2]. the central position of the two modes falls as the grating
C 2 c Cc c modulation is increased.
(5.57
We now have expressions for the normalized gap width and F. The phase of the grating
the normalized central position, Ed5.55 and(5.57). These As we mentioned at the end of Sec. lll, it is important to

expressions will be compared with experimental data in Secconsider the role of the relative phasgg,, between the fun-
VI. In examining these two equations we note two importantdamental(the K grating and first harmonic componefthe
facts in the small modulation limit, i.e.,Kd,<1. 2K grating. In Sec. V E we showed that the frequencies
First, the gap width,dw, is linear in modulation ampli- are independent of the phase of thK 3rating. However,
tude,d,. This is not at first sight obvious from E¢5.59), phase does become important when we consider the coupling
but if the normalized gap width is reexpressed in termé®f of SPP modes at the edge of the band gap to photons.
then we find dw>d,. We leave this derivation until Sec. We can best illustrate this by numerically examining the
VI A so that we can include the higher order terms of Secreflectivity of a corrugated surface with the two grating com-
V G in our model. Having already examined the field andponents present with various valuesgf. Figure 11 shows
surface charge distributions it is clear widw>d,. As the  such reflectivity contour plots for the same grating as Fig. 6,
modulation depth increases, so the distortion of the fieldshut with ¢,=*+90°. Both cases still exhibit energy gaps of
and thus the energy associated with them will also increaséhe same magnitude and position as beféfig. 5), but the
To a first order approximation the frequency differenze  coupling strength of one of the branches is now reduced to
will therefore be linear ird,. zero. Whilst the importance of the relative phase of the sur-
Secondly, we see from E¢5.57) that the central position face components in determining the coupling strength of the
falls as the corrugation amplitudel,, is increased. The two modes has been known for some titfé®*%it is worth
physical reason lying behind this fall is seen by consideringapplying our analytic model to uncover the physics involved.
the energy associated with each mode. As we have seen the As discussed in Sec. lll, for a corrugated surface possess-
energy is a consequence of the field and surface charge digg grating component& and XK, photons normally inci-
tributions. In particular, the high energy solution has fieldsdent on the surface will couple to the SPP modes at the edges
that extend further into the half space above the metal; seef the band gap. For coupling between the photons and the
Fig. 10. This mode thus becomes less well bound to thetanding wave to occur there must be some component of the
surface as the grating modulation increases. This change iscident optical field normal to the surface, at the appropriate
limited since the greatest distortion with respect to the planapoints on the surface, to generate the surface charges neces-
situation occurs when the fields extend without decay intcsary for the standing wave; see Fig. 12. For normal incidence
the half space above the metal, i.e., the high frequencyhere will be no component of the optical field normal to the
branch approaches the light lif€ig. 3). There is thus an surface where the surface has zero gradient. As Fig. 12
upper limit on the frequency of this mode. The low fre- shows, whenp,=90°, the troughs of thel2 component cor-
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(Kd,)? to the results previously derived. It is however rela-
tively straightforward to correct for this in a perturbative way
which we outline below.

To include these extra terms we extend the eigenvalue
matrix of Eq.(5.14) to containm==3 as well asm==*1
terms. The corresponding eigenvalue matrix is now88
rather than 44 and has the structure

R IFIN——

whereT is the original 44 matrix, \" is the modified ei-
genvaluep contains the eigenvector field components asso-
ciated with the=K modes, and)’ contains those associated
with the 3K modes. The latter may be eliminated to yield
a modified version of Eq5.9),

! AN AV .\ /

FIG. 12. Sketch of light at normal incidence coupling to the (THXN =T XD)g=N"y. (5.60
modes of a corrugate surface containing khésolid line) and X SinceX andX' contain only terms that coupleK modes to
(dotted ling components. There is a component of the incident field+ 3K modes, their leading order terms are of ordet, and
normal to the surface of th€ component at all points except at the hence the correction to E.9 will be of order(Kdz)Z. In
maxima and minima of the surface profile. this approximation

respond to flat regions of the surface, the mode having 3¢ 0 £

maxima at the troughs will not therefore couple to photons; —3¢ —¢ 0

see Fig. 11a). When ¢,=—90°, the peaks of theR com- x= L X' =

ponent correspond to flat regions of the surface and the mode 3

having maxima at the peaks is now uncoupled; see Fig. 0 —¢ 0 -3¢

11(b). For ¢,=0° the peaks and troughs of th& Zompo-

nent occur at equivalent points with respect to kheompo-

nent; the coupling is therefore the same for both; see Fig. é’.md
The reasoning given in the above paragraph can be rein- 0 0

forced using the results we derived in Sec. VD. We can 0 0 0 -1

express the normek field component of the SPP modes, T = W 0 0 L (5.62

Ey, using Eq.(5.34), as
N g Eq.(5.39 0O W o0 0

with W=9K?—¢(w/c)?. The modified eigenvalues take the

In the particular situation under consideration, i.e., the amform
plitude of theK grating is much larger than the amplitude of

Eroesin(Kv + /27 m/d). (5.59

the K grating, the component of the incident field normal to N = 171 (5.63
the corrugated surface is primarily that normal to kheom- 1 (1-(3/8)(Kdp)?)’ '
ponent. The spatial dependence of this field will thus be .

cos(Kv). Comparing this with Eq(5.58 we see that for 172

¢»,=90° E (i.e., the low frequency brangtwill have the A2 (5.69

same spatial dependence as the incident field, i.e.Kegs( .
and will thus be coupled whilsE;; (the high frequency With

branch will have an orthogonal spatial dependence, i.e., IRE:

sin(Kv), and will thus not be coup_led. F_c¢2=—90° the _ 7=K?(1-p")%+ §2—6i(—) X (5.6H
spatial dependence, and thus coupling, will be reversescé. This c

explains the feature found experimentally by Naefal. where

where simply inverting the grating reversed the strengths of

T (1-(38)(Kdp)d)"

the coupling to the two branches. 7 5
p'=g (Kdy) (5.66
G. Extension of the model q
an
Some care has been taken to retain all terms of order
(Kd2)3 correctly within the modehs definedso as to estab- 1 )
lish clearly the role of the B component in causing the band x=(1=p")| 1+ 3 (Kd2)?|. (5.67)

gap. However, at this level of accuracy there are terms of
order(Kd,)? which have been excluded. These arise becaus€he modified boundary conditions take exactly the same
the 2K components of the grating will also couple thé& to  form as in Eq.(5.23 with 7 replaced byz; and ¢ replaced
the £3K modes yielding an additional contribution of order by §’=§(1—(3/8)(Kd2)2). Algebraic manipulation identical
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to that used in the preceeding sections, taking care to distiriFhis result agrees with that of Seshagxi 6=0°) and Mills

guish betweeré’ in the boundary conditions anélin the
definition of %, [equation(5.65] and noting that&?—¢'?) is

of order (Kd,)*, yields the result that up to and including
terms of order(Kd2)3 the normalized central position and

gap width are given by

2 w72
c

J’_

w4

(O] 2
- =(?) (1-(Kdp)  (5.68

and

) el g
o) o) T s, e 1 g (K
(5.69

VI. COMPARISON WITH OTHER THEORIES,
AND BETWEEN THEORY AND EXPERIMENT

A. Comparison with other theories in the literature

Previous investigations using general optical respons

theory have investigated the size of the SPP gap. Mils

duced that for a SPP traveling along a corrugated metal/air
interface i.e.)e,|>e,=1, with the SPP propagation direction
making an angley/2 with the grating grooves, the gap was

given by

Sw 4K (_y)Z
=—=4ulSsSIin<| ,

o \]e,) 2

(6.2

(at 4/2=90°), in the limit |e,|>1. Thus all three analyses are
consistent in their predictions of the gap width for SPP
propagation normal to the grating grooves.

B. Comparisons between experiment and theory
in the literature

The comparison with experiment has until recently been
somewhat confusing. Raetf®rcompared the results of
Pockrand® with the theory of MillS and reported the theo-
retically predicted gap to be greater than the experimentally
measured one by a large factor. SesHdtbmpared his
theoretical results directly with the experimental data of
Pockrand® and reported better agreement, obtaining half the
experimental value. The gap measured by Pockrand was for
an SPP propagation angle of=65° (1/2=25°, and
Seshadf noted that in spite of the apparent discrepancy
between his results and those of Mills, their two expressions
agreed ap=0°. Since the gap at oblique incidence is simply
related to that at normal incidence by an angular factor upon
fuhich they agree there is clearly an inconsistency some-
here.

This inconsistency arises because in applying Mills’ for-
mula to Pockrand’s results Raether made two mistakes. First
he identifiedu with d, rather thand,/2 producing an over-
estimate of 2; further he took/2=65° rather than 25° pro-
ducing a further factor of t65° =4.6. Making these modi-
fications Mills’® and Seshadrid expressions produce a
consistent estimate of the gap that is roughly half the experi-
mental value. However, Raether makes it clear that Pockrand

where u was the amplitude of the wave componentsmeasuredsk/k and assumes thatw/w~dk/k. Weber and

exp(=iKx); thus in our notatioru=d,/2.

Mills*® have however highlighted the danger of making such

More recently Seshadfihas investigated the size of the an interpretation, one that we discussed extensively in Sec.

gap including the frequency dependence of the “ideallll, and so one must conclude that the often quoted disagree-
metal” dielectric constant. This latter effect changes the gapment is not well founded. For this reason we have carried out
by approximately 5% and if we ignore this contribution his a series of detailed experiments to precisely determine the

analysis yields

bw 7Kg cogd 6.2
“o Ve .

where » may be identified withd,, 6 is the angle the SPP

makes with respect to theormalto the grooves, i.e§=90°

dependence of the gap, for SPP propagation at normal inci-
dence to the grooves, upon the amplitude of the grating,
that gives rise to the gap.

C. Comparisons with our own experimental work

As described above, the comparisons between experiment

—112, andKg is the wave vector of the grating component and theory that have been made to date have been unsatis-

that couples the two modes, i.&,=2K.

factory. To remedy this we have recently conducted a series

To compare these results with ours we approximate Ecef experiments to allow a proper comparison between theory

(5.55 assuming the value of the band gd, to be small,
and find

Sw 2Kd2 €1&9 2
= 1-2(Kd,)
(&) V—E1€2 81+82
(Kdp)? [ g18, |2 4
2 (—egoy) | o1t oy +0(Kdy)*|, (6.3

which in the limit that|e,|>&,=1 andKd,<1 yields

w0 eyl '

and experiment to be made. The details of these experiments
have been reported elsewhéf® so that here we examine
the results and only describe those aspects of the experiments
that are relevant to the present discussion.

We have used two methods to examine the SPP band gap
as a function of the modulation depth of the grating that
gives rise to the gap.

In the firsP we used the double corrugation method dis-
cussed in Sec. lll. The data obtained allowed us to verify the
validity of Eq. (5.69, but not(5.68. This is because the
amplitude of the K componentd,, is always small com-
pared to that of th&K componentd,. To achieve &, big
enough to show a noticeable change in the mean frequency
of the gap would require a value df that would allow only
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FIG. 13. Dispersion curve for surface plasmon polaritons exam- g’
ined with prism coupling. Surface modes are excited from the prism 8 010 °
side, coupling taking place via the evanescent field that occurs on g . ;o
total internal reflection; see inset. Owing to the relatively high index g 0.05 o
of the prism, the light line for photons in the prism is shifted out in 2z
momentum. It is now possible to couple to modes in the region of 0.00 —
the gap that arises from a corrugated surface with just one grating 0.00 0.05 0.10 0.15 0.20 0.25
component, K.
2Kd,

very poor coupling between the SPP modes and photons, g, 14. The normalized central position and width of the gap
thus making accurate interpretation of the experimental datgys gefined in Sec. V)Eas a function of surface modulation. The
impossible. ) experimental data, taken from a prism coupling experin{&f.
Our second approathhas been to use a prism rather thana) are shown as dots, whilst the results of the analytic model are
a second grating to couple the SPP modes to photons. Th@own as lines, dotted for the first order theory, E@s55 and
prism coupling technique is outlined in Fig. 13. Since the(5.57), and solid for the extended theory that includes higher order
fundamental of the grating is no longer being used to coupleerms, Eqs(5.68 and (5.69.
light in and out of the sample, it may now be used as the

grating that gives rise to the gap. Consequently, this teChigighersion. Also, the imaginary component of the optical
nigue allows the study of much greater corrugation depthspermittivity of silver, e,/|e,|~0.03, does not appear to have
We have been able to go as far dsd;~0.23(note that for 54 5 significant effect on the width or central position of the
consistency in the prism coupling work we define the Brag

vector of the grating that gives rise to the gap & 2 useful Figure 14 shows that there is a decrease in the central

measure of the grating modulation is the product of theposition of the gap as the grating depth increases, in good

Bragg vector and the amplitude, i.eK@,). The double grat-  54reement with our theory. This result has not been experi-
ing technique was limited to Rd,~0.06, compared to the mentally verified before.

2K d,~0.23 of the prism technique discussed above. These

correspond to gap&lefined aséw/wg) of 7% and 36%, re-

spectively. The values ofRd, and dw/w, are not in direct VII. FUTURE WORK

proportion owing to the different metal used in the two

cases; see E@6.3). In the small gap case gold was used and There remain a whole range of questions still to be ad-

in the large gap case, silver. dressed concerning the physics of SPP band gaps. It is not
The data obtained using the prism technique, togethePur purpose to provide a full discussion of these issues here,

with theoretical expectations based on both our first ordefather we mention each briefly to indicate areas that future

[Egs.(5.59 and(5.57)] and our extended theofy5.68 and  research may take.

(5.69], are shown in Fig. 14. The agreement between our

extended theory and the data is seen to be good over the

range of grating modulation studied. Looking at the data of

Fig. 14, the inclusion of higher order terms in our extended We can see from Fig. 3 that as the band gap increases the

theory is particularly important for the central position. Our high frequency branch approaches the light line, as we dis-

model, Eqs(5.68 and(5.69, therefore appears to be valid cussed at the end of Sec. V E. This provides a limit on how

for values of Kd, up to at least 0.23. We note that the far this upper cutoff can be raised. As the mode approaches

agreement at largekd, is good despite the fact that the the light line it becomes more radiative in character, and is

model neglects the effect of dispersion in the permittivity of progressively less well confined to the surface; see Fig. 10.

the silver over the measured frequency range. To describEhe limits on the width of the band gap that can be obtained

still larger gaps it may be necessary to take account of thiexperimentally have still to be investigated.

A. Bigger band gaps—problems with the light lines
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B. Band gaps for other surface modes excited molecules in close proximity to such surfaces has not

We have discussed here only the surface plasmon polaf® far pee_n investiggted. If the excit(_ed molecule/surface
iton mode; there are other surface modes that we could corfeParation is appropriate then the dominant decay route for
sider, notably the surface exciton polariton. We expect that® molecule may be to excite an SPP mode. If, at the emis-
the basic physics will remain the same: whether a substanti&©" frequency of the molecule, the surface morphology pre-
surface mode gap will be seen is likely to depend on whethef!Udes the existence of SPP modes then decay of the molecu-
low loss surface exciton polariton modes can be examined@' excitation via this route will be blocked. Thls should alter
i.e., the natural width of each mode can be made significanti{?€ decay rate of the molecule, an alteration that should be

less than the gap width. Such investigations may be particLF-’bservab|e-(N0te, to properly describe this situation we

larly important in the context of wavelength scale optoelecWould néed to extend our analytic model to take account of
tronic semiconductor devices. the overlaye.

C. Band gap vs propagation angle VIIl. CONCLUSIONS

We have considered only the case of surface modes We have seen how surface modes may scatter from the
propagating in a direction normal to the grating grooves. Agyrating on which they propagate to form a standing wave.
the propagation direction of the surface modes moves awayhe standing wave has two solutions, one with field extrema
from this direction, so the mean frequency of the associatedt the grating peaks, the other with extrema at the troughs.
band gap increases. This occurs because it is the componeme have shown that these two solutions have different ener-
of the surface mode momentum in the direction normal tagies, thus opening up a band gap in the propagation of the
the grating grooves that must match the appropriate gratingurface modes. This has been done by developing an analytic
vector. Thus if the surface mode propagation direction makefmodel based on illustrating the underlying physics by con-
an angley with the direction normal to the grating grooves, centrating on finding analytic expressions for the spatial field
then we expect that the central position will have risen fromand surface charge distributions associated with the modes.
wy at x=0° to wy/cosy. This together with predictions con- The predictions of our theory have been compared with the
cerning the effect of the propagation direction on the bandheory of others and they have been found to be consistent

gap width*? have yet to be checked experimentally. for the band gap, provided various misunderstandings in the
literature are recognized.
D. The photonic surface By comparing the results of our experimental work with

. o our theory the validity of our model has been verified for
Following on from the above, it is clear that no matter : . ) : . .

how big theggap for a propagation angle®£0°, there will gratings with a modulation as high as amplitude/pit€h05 _
not be a band gap that covers all possible directions of propi.dez:O-z@- Further, we have shown that the central posi-

gation. An obvious extension of the geometry considered s jon of the gap falls as the grating depth rises, a result pre-
far is to examine a bigrating, i.e., two gratings, one rotated”ous'y unverified. The good agreement that we find between

with respect to the other by 90°, or a trigrating, the grating eexcpher:ilrr:;ntv\‘,’;‘r?gnth;o?ile%ri\gdtise85[gogdo;esigggri %?:Cnudsiz%n
being rotated 60° with respect to one another. In this way w q PP yp P

hope that it may be possible to construct a textured surfaceerlﬁ' addition we have hiahliahted some areas that are in
on which, for some range of frequencies, no surface mOdersleed of further investi at?on'gwe are vigorously pursuin
may propagate. In analogy with developments in bulk pho- 9 ' 9 yp 9

tonic band gap work we call this thghotonic surface these.
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