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Static and dynamical properties of elastic phase transitions under the influence of short-range defects, which
locally increase the transition temperature, are investigated. Our approach is based on a Ginzburg-Landau
theory for three-dimensional crystals with one-, two-, or three-dimensional soft sectors, respectively. Systems
with a finite concentrationnD of quenched, randomly placed defects display a phase transition at a temperature
Tc(nD), which can be considerably above the transition temperatureTc

0 of the pure system. The phonon
correlation function is calculated in a single-site approximation. ForT.Tc(nD) a dynamical central peak
appears; upon approachingTc(nD), its height diverges and its width vanishes. Using an appropriate self-
consistent method, we calculate the spatially inhomogeneous order parameter, the free energy, and the specific
heat, as well as the dynamical correlation function in the ordered phase. The dynamical central peak disappears
again as the temperature is lowered belowTc(nD). The inhomogeneous order parameter causes a static central
peak in the scattering cross section, with a finitek width depending on the orientation of the external wave
vectork relative to the soft sector. The jump in the specific heat at the transition temperature of the pure system
is smeared out by the influence of the defects, leading to a distinct maximum instead. In addition, there
emerges a tiny discontinuity of the specific heat atTc(nD). We also discuss the range of validity of the
mean-field approach and provide a more realistic estimate for the transition temperature.
@S0163-1829~96!04033-7#

I. INTRODUCTION

The influence of defects on the statics and dynamics of
structural phase transitions has been of considerable theoreti-
cal interest over the past two decades.1–8 Especially the ap-
pearance of a narrow central peak in the neutron scattering
cross section, well above the transition temperature, for both
distortive9 and elastic structural transitions,10 prompted vari-
ous theoretical studies dealing with local ordering phenom-
ena around short-range static defects~for a review of the
experimental facts, see Ref. 11 and Ref. 12, and for a review
of some theoretical results, see Ref. 13!.

E.g., in Ref. 3 a one-dimensional model for continuous
distortive structural transitions was studied, with the order
parameter coupling to a single defect (ND51). If the impu-
rity locally increases the transition temperatureTc

0 of the
pure system, this leads to a local condensation of the order
parameter in the defect vicinity. In higher dimensions, for
this local order parameter condensation to occur, the defect
potential strength must exceed a certain minimal threshold.
Such locally ordered regions in the material emerging well
above the pure transition temperatureTc

0 have played a
prominent role in some of the theories attempting to explain
the central peak phenomenon for distortive and elastic struc-
tural phase transitions.1–6 In this paper, we extend previous
work on second-order ferroelastic phase transitions ind51
~Ref. 7! to higher space dimensionsd, taking into account
the crystalline anisotropy. To this end, we shall generalize
the methods developed for the distortive case8 to ~anisotrop-
ic! elastic systems, thus treating consistently a random impu-
rity system with finite defect concentrationnD ~in the ther-
modynamic limit, both the number of lattice sitesN→` and

the number of defects,ND→`, but nD5ND /N5const).
In the framework of our mean-field approach, we shall

find that defects which locally soften the crystal may induce
a true phase transition at a temperatureTc(nD).Tc

0 . Below
this defect-induced phase transition temperature a spatially
inhomogeneous order parameter emerges, whose average
value remains very small in the vicinity ofTc(nD) and only
becomes noticeable nearTc

0 . Similarly, thermodynamic
quantities ~static susceptibility, specific heat, etc.! display
prominent, broadened maxima nearTc

0 , suggesting a
‘‘rounded’’ phase transition; however, the ‘‘true’’ singulari-
ties occur atTc(nD), but may not be seen in experiment at
all, as their amplitude is only proportional to the defect con-
centration nD . The Bragg peaks of the low-temperature
phase already appear in the scattering cross section for
T,Tc(nD); as a consequence of the spatial inhomogeneity
of the order parameter, they are accompanied by elastic
Huang scattering peaks with finiteq width. Furthermore,
very close toTc(nD) an additional dynamic central peak
emerges, which may be interpreted as a dynamical precursor
to the defect-induced phase transition.

These mean-field results of course neglect order param-
eter fluctuations and exaggerate cooperative behavior. In re-
ality, at T'Tc(nD) localized order parameter clusters ap-
pear, whose orientations, however, strongly fluctuate in
space. Only at a lower temperatureTord,Tc(nD) ~if at all!
will they form a collective state with uniform orientation,
i.e., the spatially inhomogeneous configuration predicted by
mean-field theory. In order to provide a more realistic esti-
mate of the proposed defect-induced transition temperature,
we consider the cluster orientations as effectively Ising-like
degrees of freedom, and then determine the cluster ordering
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temperatureTord by calculating the free-energy difference of
states with parallel and opposite orientations, respectively.
Thus the onset of the order parameter, the Bragg peaks, and
the Huang scattering will be shifted to somewhat lower tem-
peratures, and the results of this work can essentially be used
if Tc(nD) is replaced byTord. Provided thatTord is still con-
siderably larger thanTc

0 , we thus expect the behavior of the
thermodynamic quantities nearTc

0 to be very similar to the
results presented here.

This paper is organized as follows: In Sec. II we introduce
the Ginzburg-Landau functional for ad-dimensional system,
with onem-dimensional soft sector, including randomly dis-
tributed point defects. The corresponding Langevin-type
equation of motion is formulated. Furthermore, we present
an expression for the density-density correlation function,
which serves as a starting point for subsequent consider-
ations. In Sec. III the phonon response function is evaluated
in the high-temperature phase, and the emergence of a dy-
namical central peak and a defect-induced phase transition
well aboveTc

0 is demonstrated. In Sec. IV we proceed to the
ordered low-temperature phase, by using a suitable self-
consistent approach. We determine the spatially inhomoge-
neous order parameter, the free energy, and specific heat, as
well as the phonon correlation function, and discuss the sin-
gularities in these quantities. In addition, the scattering cross
sectionS(k) ~i.e., the density-density correlation function! is
studied. In Sec. V we leave the realm of mean-field theory,
and provide an estimate of the ‘‘true’’ defect-induced transi-
tion temperature~for the isotropic case!, by identifying it
with that temperature where already existing, but still fluctu-
ating clusters condense to form a nonzero average order pa-
rameter. In Sec. VI, we briefly discuss the case of extended
disorder~line or planar defects!, and in Sec. VII we finally
summarize and discuss our results.

II. GENERAL EQUATIONS

A. Model

In order to describe elastic phase transitions of second
order ind dimensions with anm-dimensional soft sector, we
use an expansion of the elastic free energy of the unperturbed
crystal with respect to phonon normal coordinatesQk .

14,15

We disregard noncritical polarizations; furthermore, aiming
at the long-wavelength limit we keep only the lowest-order
terms in the wave vector expansion of the dispersion relation
of the acoustic phonons. The wave vectork is then decom-
posed into itsm-dimensional ‘‘soft’’ componentsp and its
(d2m)-dimensional ‘‘stiff’’ part q, respectively:k5(p,q).
Folk, Iro, and Schwabl have shown that terms of the form
q4 or q2p2 are irrelevant~in the renormalization group
sense! and do not affect the critical behavior of the system.14

In this spirit we use the following effective free energy:

F5E ddkE ddk8
1

2
@~ap21bq21cp4!d~k2k8!QkQ2k8#

1O~Qk
4!. ~2.1!

The coefficienta is assumed to depend linearly on tempera-
ture, vanishing atTc

0 : a5a8(T2Tc
0); the very weak tem-

perature dependence of the Ginzburg-Landau coefficientsb
andc is neglected.

In order to describe the influence of short-range defects,
which locally increase the transition temperature, we assume
that each defect creates a short-range potential at its site, thus
locally modifying the coefficientsa andb of the Ginzburg-
Landau functional~2.1!; being interested in long-wavelength
properties of the system, we can thus model the defect po-
tential in the continuum by ad function. The coefficienta
will be particularly sensitive to such a modification, as it
becomes very small near the transition. For the coefficient
c and the higher-order coefficients the defect influence is less
important and will be neglected. We thus arrive at the fol-
lowing Ginzburg-Landau functional for the perturbed sys-
tem:

F5E ddkE ddk8
1

2
@~ap21bq21cp4!d~k2k8!QkQ2k8

2fk,k8kk 8QkQ2k8#1O~Qk
4!, ~2.2!

wherefk,k8 denotes the Fourier transform of the impurity
potential~created byND defects!

f~r !5U (
i D51

ND

d~r2r i D!. ~2.3!

The defect strengthU5a0
dl is taken to be positive, and

therefore the transition temperature is locally increased at the
impurities ~here, V is the volume of the system and
a0
d5V/N denotes the volume of the unit cell!.
The dynamics of the elastic crystal are governed by a

Langevin-type equation of motion for the soft acoustic
phonons,16

Mv2Qk52
dF

dQ2k
2 iMv~Dp21D̃q2!Qk1r k1hk . ~2.4!

The term on the left-hand side of Eq.~2.4! describes the
acceleration, while the first term on the right-hand side pro-
vides the restoring force driving the system towards its equi-
librium configuration. Note that we have introduced two dif-
ferent diffusive damping constantsD andD̃ for the soft and
stiff sectors, respectively.r k denotes a stochastic force with
vanishing average,̂r k&50; its second moment satisfies an
Einstein relation, guaranteeing that exp(2F/kBT) is the equi-
librium probability distribution. Finally,h is an external field
which couples linearly to the order parameter. Equation~2.4!
will be the basis for our discussion of the dynamical proper-
ties in the subsequent sections.

B. Density-density correlation function

In the following we shall primarily use a discrete lattice
representation of the elastic system under consideration. The
dynamic structure factor observed in scattering experiments
is related to the Fourier-transformed density-density correla-
tion function. Denoting the thermodynamical average by
^•••&, its definition is
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S~k,v!5E dteivtK 1N (
1< i , j<N

e2 ik@ai1ui ~ t !#eik@aj1uj ~0!#L ,
~2.5!

where ai denote the Bravais lattice sites~of the high-
temperature phase! andui the displacements from these equi-
librium positions.

In the discrete representation, withN lattice sites, we can
write the Fourier-transformed defect potential as

fkk85
1

N (
i , j51

N S (
i D51

ND

ld i ,i Dd i j D e2 i ~kxi2k8xj !. ~2.6!

In a system with quenched, randomly distributed defects, all
physical quantities have to be averaged over all possible de-
fect configurations.17 We denote this configurational average
by ^^•••&&; its formal definition reads

^^•••&&5)
j51

ND F 1N(
i D j

N G . . . . ~2.7!

In order to evaluatê^S(k,v)&&, we introduce a cumulant
expansion for the combined thermal and configurational av-
erages ofeik@uj (0)2ui (t)# and keep the terms up to second
order. Next we decompose the deviationsui(t) into a static
contributionci and a fluctuating partvi(t), and expand the
exponential. Eventually one arrives at the following formula
for the dynamical structure factor~for more details on the
derivation, see Ref. 8!:

^^S~k,v!&&5FN(
g

dk,g1(
ab

kakb^^Sc
ab~k!&&G

3e22W2pd~v!1F(
ab

kakbDab~k,v!G
3e22W. ~2.8!

The three different contributions to the dynamical structure
factor in Eq.~2.8! are~i! the elastic Bragg peaks appearing at
the reciprocal lattice vectorsg of the actual crystal structure,
given by the condition

eig~ai1^^ci &&!51, ~2.9!

~ii ! an additional static contribution to the structure factor
arising from elastic scattering from the random variations of
the local order parameter~Huang scattering!,

Sc
ab~k!5

1

N(
i , j

e2 ik~ai2aj !~c i
ac j

b2^^c i
a&&^^c j

b&&!,

~2.10!

and ~iii ! the dynamical phonon-phonon correlation function

Dab~k,v!5E dteivtK K 1N(
i , j

e2 ik~ai2aj !^v i
a~ t !v j

b~0!&L L ,
~2.11!

which is connected with the dynamic phonon response func-
tion via the~classical! fluctuation-dissipation theorem

Dab~k,v!5
2kBT

v
ImGab~k,v!. ~2.12!

Finally,

W5
1

2(ab
kakb@^^~c i

a2^^c i
a&&!~c i

b2^^c i
b&&!&&

1^^^v i
av i

b&&&] ~2.13!

is the Debye-Waller factor. Equation~2.8! may be used for
elastic as well as for distortive phase transitions. For antifer-
rodistortive transitions one has to sum over the distinct sub-
lattices in addition ~see Ref. 8!. The dynamic phonon-
phonon correlation function~2.11! and the static Huang
scattering contribution~2.10! will be discussed in more detail
below.

III. HIGH-TEMPERATURE PHASE

In order to calculate the phonon correlation function in
the high-temperature phase, Eq.~2.2! is inserted in the equa-
tion of motion ~2.4!. Note that nonlinearities in the phonon
normal coordinates are neglected, and thus fluctuations are
only being accounted for in the Gaussian approximation.
Upon differentiating the resulting expression with respect to
hk8, transcribing it to the corresponding discrete version, and
finally using the fact that the average of the stochastic force
r k8 vanishes, one arrives at the following mean-field recur-
sion relation for the phonon response function:

Gkk85G0kdkk81G0k(
k9

fkk9kk 9Gk9k8, ~3.1!

with the free phonon propagator

G0k
2152Mv21ap21bq21cp42 iMv~Dp21D̃q2!.

~3.2!

Equation~3.1! may then be systematically iterated, and the
configurational average~2.7! performed; e.g., applying a
standard diagrammatic technique helps in collecting all the
contributions to a certain order in the defect potential
strengthl.17,18 The configurational average yields a transla-
tionally invariant response function

^^Gkk8&&5Gkdkk8. ~3.3!

Upon collecting all contributions which are proportional to
the impurity concentrationnD5ND /N ~single-site approxi-
mation; for more details, see Ref. 8!, the result for the pho-
non susceptibility is

Gk
2152Mv21ap21bq21cp42 iMv~Dp21D̃q2!

2
lk2nD

12l~a0 /2p!dI d~m!
. ~3.4!

Here we have introduced the abbreviation
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I d~m!5E
0

L ~p21q2!

2Mv21ap21bq21cp42 iMv~Dp21D̃q2!
dmpdd2mq

5m~d2m!tmtd2mE
0

L ~p21q2!pm21qd2m21

2Mv21ap21bq21cp42 iMv~Dp21D̃q2!
dpdq, ~3.5!

andtn is the volume of then-dimensional unit sphere,

tn5
pn/2

G~n/211!
. ~3.6!

L denotes a natural short-wavelength cutoff~e.g., corre-
sponding to the Brillouin zone boundary!, which also helps
to ensure the convergence of the integralI d(m). Note that
the dimensionm of the soft sector ink space explicitly enters
in Eq. ~3.5!, and thus determines the importance of the fluc-
tuation contributions.

Equation~3.4! implies the very remarkable result that due
to the coupling to the softening defects, the entire system
may become unstable towards a new ground state with finite
average order parameter at a certain temperatureTc(nD), de-
pending on the defect concentrationnD ; the criterion for this
instability is

lim
k→0

@Gk
21~v50!/k2#50. ~3.7!

As in the distortive case,8 we find that in general a certain
minimal defect strength is required for this instability to oc-
cur; yet, once this defect-induced phase transition does exist,
the associated transition temperatureTc(nD) can be consid-
erably higher than that of the pure system,Tc

0 . ~In Sec. V, we
shall comment on the validity of the mean-field approach,
and estimate the transition temperature on a more realistic
basis.!

We have investigated three-dimensional systems with a
single one-, two-, or three-dimensional soft sector, respec-
tively. The qualitative features were found to be very similar
in all these cases. The following figures refer to a three-
dimensional system with a single one-dimensional soft sec-
tor. We have tried to use model parameters appropriate for
Nb3Sn, which displays a second-order elastic phase transi-
tion nearT545 K;20 accordingly, we have used numerical
values calculated from Refs. 19 and 20~Table I!. Thus, we
have takenTc

0545 K, andnD51025, and adjusted the defect
strength in order thatTc(nD)565 K. However, a few re-
marks are in place here to explain some sources of inaccu-
racies. The assumption that the Ginzburg-Landau parameter
a is merely linearly temperature dependent is valid only near
the phase transition temperature of the pure system,Tc

0 . Fur-
thermore, we approximatedc andb as independent of tem-
perature, and in addition assumedb to be independent of the
direction of thek vector in the stiff plane. This is not gener-
ally the case for Nb3Sn, but appears to describe the critical
region well. The numerical values of the diffusion constant

D5D̃ and the nonlinearityd ~see below! had to be estimated
without reference to any experiment.

Figure 1 depicts the phonon correlation function
D(k,v) @Eq. ~2.12!# for different temperaturesT.Tc(nD),
evaluated for several anglesu between the external wave
vector and the soft sector. As becomes apparent in Fig. 1, a
dynamical central peak in the phonon correlation function
emerges in addition to the soft phonon peak~compare Ref. 7
for the one-dimensional case!. The height of the central peak
grows, and its width decreases asTc(nD) is approached. The
intensity of the central peak decreases upon increasing the
angleu between the wave vectork and the soft sector. This
reflects the fact that wave vectors in the stiff sector do not
probe the critical properties of the material. The dynamical
central peak may thus be understood as a dynamic precursor
to the defect-induced second-order phase transition at
Tc(nD).

IV. LOW-TEMPERATURE PHASE

In this section, we use a self-consistent approach designed
for the calculation of the order parametern, the specific heat,
the phonon correlation function, and finally the dynamical
structure factor in the ordered phase, i.e., forT,Tc(nD).

A. Order parameter

The starting point for the calculation of the order param-
eter is the full nonlinear Ginzburg-Landau functional, which
in the discrete lattice representation reads

TABLE I. Ginzburg-Landau parameters, as used in the figures,
if not specified otherwise@a5a8(T2Tc

0)#.

Tc
0545 K

a851.0771310212 erg K21

d51.136331028 erg
M51.314310221 g
b51.570310210 erg
c55310226 erg cm2

N/V56.75131021 cm23

l53.0994310211 erg

D5D̃5131023 cm2 s21

k5zA2a*
a*52p/a051.1893108 cm21

Tc(nD)565 K
nD5131025
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F5
1

2 (
i , j51

N

n iG0i j
21n j2

l

2(i51

N

(
i D51

ND

n i
2d i i D1

d

4(i51

N

n i
4

2(
i51

N

hin i . ~4.1!

Heren i denotes the value at lattice sitei of that combination
of strain tensor components serving as the order parameter
for the transition,hi is the corresponding external stress act-
ing on sitei , and the static propagatorG0i j is defined by its
Fourier transform

G0k
215a1ck2 for d5m,

G0k
215

ap21bq21cp4

k2
for d.m. ~4.2!

In the framework of the Ginzburg-Landau approximation,
i.e., neglecting order parameter fluctuations, the following
stationarity condition can be derived~with hi5h5const):

dF

dn i
50⇔(

j
G0i j

21n j2l(
i D

n id i ,i D1dn i
35h. ~4.3!

A general solution of Eq.~4.3!, with its combined nonlin-
earity and randomness, poses a difficult problem. We thus
use an additional approximation, namely, the following
ansatz8 for the thermodynamical average of the order param-
eter ~denoted byn̄):

n̄ i5A1B(
i D

d i ,i D; ~4.4!

i.e., we assume that the order parameter at each lattice point
i may be written as the sum of a homogeneous background
A and an additional contributionB, if there is a defect at site
i , thus enhancing the total value of the order parameter to
A1B at the defect sites. Thus we explicitly assume that at all
defect sites the order parameter points in the same direction,
and in addition neglect the spatial variation of the order pa-
rameter near the defects. However, as we shall see shortly,
the second, seemingly very crude approximation already
contains the possible relevant modifications caused by the
impurities, namely,~i! an enhancement of the spatially aver-
aged order parameter~corresponding to the parameterA) and
~ii ! the ensuing ‘‘screening’’ of the defect potential~de-
scribed by the coefficientB). The more stringent approxima-
tion is the uniform orientation of the defect clusters, as im-
plied by the mean-field approach~see Sec. V!.

Inserting Eq. ~4.4! into the stationarity equation~4.3!
yields the recursion relation

n̄ k5hdk0G̃0~k!1G̃0~k!(
k8

f̃kk8n̄k8, ~4.5!

where we have introduced a renormalized propagator

G̃0~k!215G0~k!211dA2 ~4.6!

and a screened defect potentialf̃kk8 with weakened strength
@see Eq.~2.6!#:

l̃5l2d@~A1B!22A2#. ~4.7!

From Eq. ~4.5! and the averaged stationarity equation we
may derive two coupled nonlinear equations that uniquely
determine the mean order parameter:~i! Iterating the recur-
sion relation~4.5! in a similar way as for the dynamics in the
previous paragraph, performing the configurational average,
and summing the single-site contributions, one arrives at

^^n̄&&
h

5Fa1dA22
l̃nD

12l̃~a0 /2p!dJd
G21

, ~4.8!

with the abbreviation

Jd5E ddk
k2

~a1dA2!p21~b1dA2!q21cp4
. ~4.9!

~ii ! On the other hand, immediate averaging of Eq.~4.5!
yields

~a1dA2!~A1nDB!2l̃nD~A1B!2h50. ~4.10!

Very assuringly, Eqs.~4.8! and ~4.10! yield nonzero solu-
tions for ^^n̄&& precisely belowTc(nD) as determined from

FIG. 1. Phonon correlation function D(k,v)
52kBT ImG(k,v)/v ~in 10227 cm2 s! vs phonon energy~in meV!
for different temperatures and fixed angleu50 ~a!, and for fixed
temperature T565.01 K with different angles u ~b!;
z5ka0 /2

3/2p50.02 was used.
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the high-temperature phase. Figure 2 shows that the order
parameter of the perturbed system as function ofT looks
similar to the corresponding curve for the pure system, with
the singularity atTc

0 being smeared out by the disorder. The
order parameter sets in continuously atTc(nD), with the
usual mean-field exponentb51/2, assumes small but finite
values in the rangeTc(nD).T.Tc

0 , and starts to grow to
larger values only in the vicinity ofTc

0 . Thus the transition
temperature of the pure system remains an important param-
eter even in the perturbed system, while the true phase tran-
sition atTc(nD) may in fact be hardly noticeable in experi-
ments. As before, the results for a three-dimensional system
with a single one-dimensional soft sector are depicted, but
the qualitative features remain essentially the same in the
cases of a two- or three-dimensional soft sector.

B. Specific heat

From the knowledge of the mean order parameter, we can
readily calculate the~averaged! free energy from Eq.~4.1! in
the Landau approximation and via

Cv52TS ]2F

]T2D
V

~4.11!

derive the specific heatCv ; see Fig. 3. Obviously, the dis-
continuity atTc

0 has been smeared out, in place of which a
tiny jump emerges atTc(nD). Although the phase transition
clearly occurs atTc(nD), the transition temperatureTc

0 of the
pure system remains of considerable importance; e.g., there
is a distinct maximum of the specific heat nearTc

0 , while the
extremely minute jump atTc(nD) might not be experimen-
tally detectable at all.

FIG. 2. Average order parameter^^n̄&& vs reduced temperature
t for nD51025, l53.0994310211 erg ~a!, and nD51023,
l53.0949310211 erg ~b!. The temperature range near
tc(nD)50.444 is displayed in the insets. Note the different scales of
the two insets; the disorder strength was adjusted to yield the same
Tc(nD) in both cases~a! and ~b!.

FIG. 3. Specific heatCv vs reduced temperaturet for
nD51025 ~a! and nD51023 ~b!. The defect-induced temperature
has been adjusted totc(nD)50.444 in both cases by changing the
defect potential strength accordingly; see Fig. 2. The temperature
range neartc(nD) is displayed in the insets; note the different
scales.
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C. Phonon correlation function in the ordered phase

In order to find the phonon correlation function in the
temperature region with a finite order parameter, one again
has to start from the full Ginzburg-Landau functional and use
the ansatz for the order parameter~4.4!. The crucial point is
that one may then absorb the nonlinear term of the equation
of motion in modified coefficients of the linear terms as fol-
lows:

a→a13dA2, b→b13dA2, l→l23dB~2A1B!.
~4.12!

With these modifications one can use the same equations as
in the high-temperature phase.

The result is depicted in Fig. 4. The central peak in the
correlation function disappears again when the temperature
is lowered belowTc(n D). This dynamical central peak is

thus confined to the region aroundTc(nD). As in the high-
temperature phase, the intensity of the central peak decreases
upon increasing the angle between the externalk vector and
the soft sector~with fixed temperature!.

In Fig. 5 the static phonon susceptibilityG(k)
5Gk(v50) ~i.e., the inverse elastic constant, as modified
by the defects! is shown. The small but sharp peak at
Tc(nD) reflects the preordering of the defect regions, while
the broad and much more prominent peak nearTc

0 corre-
sponds to the ordering of the pure bulk crystal, though under
the influence of the randomly spaced fields originating from
the defect clusters; compare Figs. 2 and 3.

D. Dynamical structure factor

In order to describe scattering experiments, we have to
calculate the density-density correlation function of Sec. II.
The first term in Eq.~2.8! yields the Bragg scattering, and
does not require any further comment; the third term is con-
nected with the phonon correlation function, and has been
discussed in the previous subsection. We therefore turn our
attention to the second term. Taking into account the soft
acoustic phonon mode only, as above, we have to calculate
the configurational average ofk2ckc2k @Eq. ~2.10!#; using
the same approximations as in the beginning of Sec. III, we
may use Eq.~4.5! in the form

kck5hG̃0~0!dk01G̃0~k!(
k8

f̃kk8n̄k8, ~4.13!

which yields

k2ckc2k5h2G̃0~0!2dk01hG̃0~0!2(
k8

f̃0k8n̄k8dk0

1G̃0~k!(
k8

f̃kk8n̄k8n̄2k . ~4.14!

For this equation again a diagrammatic representation can be
derived,8 and in a single-site approximation~i.e., to order
nD) we find the following result (kL denotes the components
of the wave vector which are parallel to the polarization of
the soft mode!:

k2Sc
LL~k!5nDl̃2^^n̄&&2~kL!2G̃0~k!G̃0~2k!

3F12
l̃

N(
k8

G̃0~k8!G22

. ~4.15!

This expression can be further reduced using Eq.~4.8!. Fi-
nally, we arrive at

k2Sc
LL~k!5~a1dA2!2

^^n&&2

nD
~kL!2G̃0~k!2. ~4.16!

Collecting all results, the final expression for the dynami-
cal structure factor reads

FIG. 4. Phonon correlation function~in 10227 cm2 s! vs phonon
energy in~meV! for different temperatures belowTc(n D) at fixed
angle u50. As before,tc(nD)50.444, andz5ka0 /2

3/2p50.02
was used.

FIG. 5. Static phonon susceptibility~inverse elastic constant!
G(k) ~in 1024 cm2 erg21) vs temperature at fixed angleu50.
tc(nD)50.444,z5ka0 /2

3/2p50.07.
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^^S~k,v!&&5FN(
g

dg,k1
~kL!2

k2
^^n̄&&2

nD

3G̃0~k!2~a1dA2!2Ge22W2pd~v!

1~kL!2D~k,v!e22W. ~4.17!

Thus we have found three distinct effects, namely,~i! new
positions of the Bragg peaks as a result of the finite order
parameter@shifted and possibly new reciprocal lattice vec-
tors; see Eq.~2.9!#, ~ii ! Huang scattering as a result of the
spatially inhomogeneous order parameter configuration,
leading to a static central peak with finite widthg
5A(a1dA2)/c ~in the soft sector! in Fourier space, and~iii !
inelastic scattering, described by the phonon correlation
function. Figure 6 shows how the intensity of the Huang
scattering varies with temperature for different wave vectors
k5p in the soft sector. This additional elastic contribution
sets in atTc(nD), and then grows to considerable values near
Tc
0 .

V. ESTIMATE OF THE CLUSTER
ORDERING TEMPERATURE

All our previous results for the statics were based entirely
on the Ginzburg-Landau approximation, and dynamic quan-
tities were calculated in the Gaussian ensemble. This mean-
field treatment of course neglects fluctuations, and apart from
the fact that the critical exponents will be changed near the
transition, we have to consider the possibility that the above-
described defect-induced phase transition atTc(nD) will dis-
appear when fluctuations are properly taken into account.
Namely, our mean-field approach basically implies that as
soon as local condensates form near the defects, they imme-
diately lock into some cooperative state and form a nonvan-
ishing average order parameter. In reality, probably first
these clusters may emerge at the defect positions, however
still quite independently fluctuating between their different
possible orientations. Only as the temperature is lowered
even further will they form a collective vibrational mode

which finally condenses to a static order parameter at the
‘‘true’’ transition temperatureTord, with Tc

0<Tord<Tc(nD),
the mean-field transition temperature. One would expect that
such collective behavior of the distinct localized order pa-
rameter clusters arises when the correlation length of the
pure system,j, which determines the size of the defect-
induced condensates, becomes of the order of the average
defect separationr D . A somewhat more favorable estimate
results from the argument that it should actually suffice when
j becomes large enough such that the distinct condensates
form a percolating cluster throughout the sample; the condi-
tion for cooperative behavior then becomesj'(nc)

1/dr D ,
wherenc denotes the percolation threshold.

In the following we give a more precise estimateTord, in
order to see if it may still be considerably above the transi-
tion temperature of the pure systemTc

0 . Our strategy is to
calculate the free-energy differenceDF between the follow-
ing two configurations in a two-defect system below the tem-
perature where localized clusters may form in two different
orientations:~i! both order parameter condensates oriented in
the same direction and~ii ! opposite condensate orientations.
The ensemble of localized clusters can then be effectively
mapped onto an Ising system, withDF assuming the role of
the exchange coupling. The critical temperature is now
readily estimated askBTord'DF/a0

3 (a0
3 is the volume of the

elementary cell!. We emphasize that we shall restrict our-
selves to an isotropic system here, and consider the general
case of an order parameterw described by the usual
Ginzburg-Landau expansion of the free energy, which rather
corresponds to the case of distortive structural transitions, as
studied in Ref. 8. However, the qualitative behavior is ex-
pected to be very similar for the anisotropic elastic phase
transitions.

Using the continuum representation, the free energy for a
system in three dimensions with a single defect in the origin
reads3

F5E d3r S @a2f~r !#w~r !21c@¹w~r !#21
d

2
w~r !4D ,

~5.1!

wheref(r ) is the positived-function defect potential with
strengthU5a0

3l. The stationarity equation then becomes

c¹2w~r !5@a2f~r !#w~r !1dw~r !3, ~5.2!

which for a.0 may be approximately solved by

r.R: w~r !'
w0e

r /j

11re2r /j/j
'w0

e2r /j

r /j
; ~5.3!

r,R: w~r !'w0S 12
3r 2

2j2D , ~5.4!

wherej5Ac/a is the correlation length of the pure system
for T.Tc

0 , w0
2'(4pR3l/3210a)/d, and R3l

5120pc3(Um
212U21)2, with Um52pca0 denoting the

minimum defect strength required for the local order param-
eter condensation to occur.

Using these results, we can proceed towards the two-
defect system with f(r )5Ud(x)d(y)@d(z2r D/2)

FIG. 6. The term^^n̄&&2G̃0(k)
2(a1dA2)2, denoted bySh ~in

units 10211) vs reduced temperaturet for different wave vectors.
The wave vectork lies in the soft sector.
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1d(z1r D/2)# by a simple linear superposition ansatz; i.e.,
we shall evaluate the free-energy difference between the
states,

w65w~x,y,z2r D/2!6w~x,y,z1r D/2!. ~5.5!

By inserting into Eq.~5.1! one readily finds the defect con-
tribution

DFD'28Uw0
2~j/r D!e2r D /j, ~5.6!

as well as the linear overlap integral~conveniently evaluated
using elliptical coordinates!

DF lin'16pcw0
2je2rD /j; ~5.7!

the nonlinear overlap integral turns out to be of order
e22rD /j and can thus be neglected forj<r D , when com-
pared to the previous terms. Hence we find for the required
free-energy difference

DF'16pcw0
2je2rD /jS 12

U

2pcrD
D ; ~5.8!

using the above numerical values, we see that the defect
contribution can in fact be neglected here.

Hence we arrive at our final estimate for the cluster or-
dering temperature, which we identify with the ‘‘true’’
defect-induced transition temperature

kBTord'16paw0
2~j/a0!

3e2rD /j. ~5.9!

This expression may be cast into a somewhat more explicit
form by observing that the average defect separation can be
written asr D5a0nD

21/3; thus the required defect concentra-
tion for the transition to occur at a certain valueT5Tord
becomes

nD5S jc
a0
lnF16pacf0

2

kBTord
S jc
a0

D 3G D 23

, ~5.10!

from whichTord as function ofnD may be inferred by inver-
sion @jc5Ac/ac, ac5a8(Tord2Tc

0)#. The result is depicted
in Fig. 7. It can be seen that the calculated cluster ordering
temperature may indeed be considerably above the phase
transition temperature of the pure system,Tc

0545 K; how-
ever, much larger impurity concentrationsnD are required
than in the previous mean-field analysis.

For the anisotropic elastic systems discussed in the bulk
of this paper, fluctuations will be even less important. We
conclude this section with the remark that the upper critical
dimension as function of the dimensionm of the soft sector
was found to be14

dc~m!521
m

2
; ~5.11!

thus in three dimensions mean-field theory yields exact re-
sults for a system with a one-dimensional soft sector, while
for the case of a two-dimensional soft sector merely logarith-
mic corrections are to be expected.

VI. EXTENDED DISORDER:
LINE AND PLANAR DEFECTS

We now return to the case of elastic phase transitions, and
address the question of the influence of extended defects in
contrast to the previously treated point disorder. Our system
now contains randomly placed, but parallel linear or planar
defects; the accordingly modified correlated defect potential
@compare Eq.~2.3!# reads in the case of line disorder

f~r !5U (
i D51

ND

d~x2xiD!d~y2yiD!, ~6.1!

wherex,y,z are the components ofr andz denotes the di-
rection parallel to the lines;i D labels theND line defects.
The defect potential for planar defects is defined analo-
gously, namely, for planes normal to thex direction,

f~r !5U (
i D51

ND

d~x2xiD!. ~6.2!

With these definitions the same calculations as before may
be performed, and it becomes obvious that the former inte-
grals reduce to integrals over thek vectors perpendicular to
the defects. One gets qualitatively the same results as in the
case of point defects.

In order to compare the effect of the different kinds of
defects, we have calculated the order parameter in all three
cases~points, lines, and planes! for the same defect strength
and the same defect concentration~i.e., the extended defects
are viewed as correlated accumulations of point defects with
the total number of—pointlike—defects held fixed!. There-
fore, the resulting differences solely originate in the different
disorder dimensionality. The one-dimensional soft sector
was taken to be perpendicular to the defects in order to pro-
vide a meaningful comparison. The result is depicted in Fig.
8; it can be seen that the effect of the defects is not a mo-
notonous function of their dimensionality, but depends on
the strength of two competing effects. On the one hand,
when the temperature is lowered towards the phase transition
temperature and the correlation lengthj grows accordingly,

FIG. 7. Cluster ordering~precursor! temperatureTord and mean-
field ~local! transition temperatureTc(nD) ~in K! as a function of
the defect concentrationnD ; the numerical values of Table I were
used here.
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the order parameter cluster around ad8-dimensional defect
grows proportional tojd2d8. This effect renders low-
dimensional defects more effective in influencing bulk prop-
erties. On the other hand, the system has a finite stiffness,
characterized by the parameterc, and as a system with un-
correlated defects is more inhomogeneous than one with the
identical amount of correlated disorder, this effect favors
high-dimensional defects, because then the system stiffness
can be more easily overcome by the joint action of neighbor-
ing defects. With the specific numerical values we have used,
the line defects have only a tiny effect on the order parameter
curve in comparison with the point defects. The effect of the
planar defects lies in between. We emphasize that this sce-
nario could be different for other values of the stiffness pa-
rameterc. Finally, we remark that if one performs the above
calculations for a system with extended defects, where the
soft sector is not perpendicular to the defects, additional
angle dependences ensue, and one has to add an additional
term of the formcq4 to the functional~2.2!, in order to
correctly account for the stiffness, which tends to prevent the
buildup of order parameter clusters.

VII. SUMMARY AND DISCUSSION

In this paper we have studied the influence of point and
extended defects on ad-dimensional elastic system with an
m-dimensional soft sector undergoing an elastic phase tran-
sition of second order. We have calculated the phonon-
phonon correlation function in the high-temperature phase.
At a certain temperatureTc(nD)@Tc

0 , an instability marking
a defect-induced phase transition may emerge, if the defect
potentials are sufficiently strong. AboveTc(nD) a dynamical
central peak emerges in the phonon correlation function,
whose intensity grows as the temperature is lowered towards
Tc(nD). Contrary to the case of distortive phase transitions,

8

the maximum of the central peak is exactly atv50 for all
temperatures and not at small but finite frequencies.7 This,
however, does not imply that the acoustic impurity modes

are localized; at least for a simplifying one-dimensional
single-defect model no additional localized impurity modes
appear, but the defect rather causes a localized vibrational
contribution to the propagating scattering states. For the
long-wavelength phonons this quasiresonant vibration then
condenses atTc(nD) and forms the local order parameter
clusters.7 The dynamical central peak may be regarded as a
precursor of this phase transition; its height also depends on
the angle between the external wave vectork and the soft
sector. The smaller this angle, the more pronounced is the
central peak.

In the low-temperature phaseT,Tc(nD), where a finite,
and be it ever so small, order parameter exists, we have used
a self-consistent mean-field calculation in order to calculate
the average order parameter, the free energy, specific heat,
and the phonon correlation function. The order parameter
sets in continuously atTc(nD), remains very small in the
temperature range betweenTc(nD) andTc

0 , and reaches ap-
preciable values only nearTc

0 . In this way the order param-
eter curve resembles a somewhat rounded curve of the pure
system. Analogously, the temperature dependence of the spe-
cific heat looks like the corresponding smeared-out curve for
the pure system. The jump atTc

0 is rounded, and a minute
jump at Tc(nD) appears. Thus the phase transition of the
perturbed system no longer occurs atTc

0 but atTc(nD). How-
ever, the phase transition temperatureTc

0 of the pure system
remains important, as the remnants of the pure transitions
induce marked, but rounded maxima in quantities like the
order parameter susceptibility or the specific heat nearTc

0 .
Having thus determined the order parameter, we were

able to calculate the phonon correlation function in the or-
dered phase. The dynamical central peak disappears again as
the temperature is lowered belowTc(nD). The dependence
of the central peak on the angle between the momentum
transfer vectork and the soft sector is very similar as above
Tc(nD). The density-density correlation function determin-
ing the cross section for scattering experiments consists of
three terms: first, the term describing elastic Bragg scatter-
ing, second, a term corresponding to Huang scattering
caused by the spatially inhomogeneous order parameter con-
figuration; this term yields a contribution to elastic scatter-
ing, leading to a static central peak with finitek width. The
third term finally describes inelastic scattering and has been
discussed along with the phonon correlation function.

We have also discussed the validity of our mean-field
approach and provided an estimate~in the isotropic case! for
the ‘‘true’’ precursorTc , defined as the cluster ordering tem-
peratureTord, which has to be distinguished from the tem-
peratureTc(nD) where localized, but fluctuating order pa-
rameter clusters appear. Only belowTord do the previously
independent ordered regions form a collective state leading
to a nonzero average order parameter. Generally, cooperative
behavior of the defects is to be expected when the correlation
length of the pure system,j, becomes of the order of the
mean defect separationr D . Although the ensuing cluster or-
dering temperature is considerably lower thanTc(nD), the
qualitative features of the present theory should remain
largely unaffected, providedTc(nD) is replaced byTord; i.e.,
the mean order parameter appears rounded nearTc

0 , while
static order parameter susceptibility and the specific heat dis-

FIG. 8. Order parameter vs reduced temperature for systems
with different types of defects; the numerical values of Table I and
nD51023 were used here.
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play a strong but broadened maximum there. Furthermore, in
the anisotropic systems under consideration here, fluctua-
tions may actually be suppressed, rendering mean-field
theory more reliable. Finally, the time scale of the order pa-
rameter condensate fluctuations will diverge}(T2Tord)

21

upon approachingTord, which in experiment would eventu-
ally render them indistinguishable from static inhomogene-
ities, leading to quasielastic Bragg and Huang scattering
peaks. We have also investigated the case of parallel ex-
tended defects~lines and planes!, and found essentially the
same features.21

These considerations led us to the qualitative phase dia-
gram displayed in Fig. 7. For very tiny disorder concentra-
tions, the picture of isolated defects applies. Although preor-
dered clusters may form considerably aboveTc

0 , the ensuing
condensates fluctuate independently and do not form a state
with nonzero average order parameter. The cluster reorienta-
tion rate will become very low asTc

0 is approached, and
coupling of these slow modes to the soft~acoustic! phonons
will then lead to a dynamical central peak; see Ref. 1. For
higher, but still small defect concentrations, the clusters
emerging atTc(nD) will form a state with preordered defect
regions and finite, but small average order parameter below
T ord. This phase transition leads to discontinuities in ther-
modynamic quantities, like the specific heat or the static sus-
ceptibility, which are, however, probably unnoticeably small
in experiment. On the other hand, upon approachingTc

0 , the
phase transition temperature of the pure crystal, the bulk sys-
tem orders; due to the influence of the preordered defect
regions, the transition temperature will be slightly higher
than Tc

0 , and the formerly sharp singularities of the mean
order parameter, specific heat, and static susceptibility ap-
pear characteristically rounded. The above-described theory
applies precisely to this concentration range~for very strong
disorder the single-site approximation breaks down!. The
central peak phenomenon is thus explained by a combination
of elastic Bragg peaks of the low-temperature phase and
static Huang scattering with finite width inq space.

However, a different scenario is also conceivable, namely,
that as the cluster reorientation times become very long, the
different, still independent condensates freeze in with spa-
tially fluctuating orientations. The ensuing configuration

would constitute a metastable state which is separated from
the true ground state by high-free-energy barriersD. The
typical flip rate would then be proportional to
exp(2D/kBT); therefore, at low temperatures the true thermo-
dynamic ground state may not be reached. In the spirit of the
discussion in Sec. V one could possibly map this problem
onto a random-field Ising model~for recent reviews, see,
e.g., Ref. 22!, the lower critical dimension of which is
dl52, and therefore long-range order is not destroyed in
three dimensions.

At last, we would like to contrast our picture with that of
‘‘glassy’’ systems. Although some of the features of the dy-
namical structure factor in glasses are at least qualitatively
similar — e.g., an elastic peak with finiteq width appears —
and the static susceptibility and specific heat may display
characteristically rounded and broadened maxima, there are
important differences. First, the order parameter of the pure
crystaln̄ would not constitute an appropriate order parameter
for such a disordered, glassy system. Second, the character of
the phase transition should be entirely different, and in fact
lead to experimentally distinguishable behavior. The sce-
nario described here is a genuine second-order phase transi-
tion, though induced by disorder~which locally softens the
system!; i.e., critical phenomena are confined to regions very
close toTc(nD) ~or Tord), and to wave vectors in the soft
sector withp'0. The freezing-in into a glassy state, on the
other hand, would have to be described by an ergodicity-
breaking ~Edwards-Anderson! order parameter, and should
actually be rather insensitive tok. Such a glass instability
occurs, e.g., in orientational glasses,23 and possibly in relaxor
ferroelectrics.24 We finally remark that for the case of first-
order martensitic transformations, a model with disorder of
the randomTc type has been proposed, which can then be
mapped onto a spin glass, and the ensuing glassy features
were suggested to explain the prominent tweed microstruc-
ture found in these materials, as well as the central peak
phenomenon there.25
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