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Defect-induced condensation and the central peak at elastic phase transitions
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Static and dynamical properties of elastic phase transitions under the influence of short-range defects, which
locally increase the transition temperature, are investigated. Our approach is based on a Ginzburg-Landau
theory for three-dimensional crystals with one-, two-, or three-dimensional soft sectors, respectively. Systems
with a finite concentrationp of quenched, randomly placed defects display a phase transition at a temperature
T.(np), which can be considerably above the transition tempera‘f@ref the pure system. The phonon
correlation function is calculated in a single-site approximation. FefT (np) a dynamical central peak
appears; upon approachifg(np), its height diverges and its width vanishes. Using an appropriate self-
consistent method, we calculate the spatially inhomogeneous order parameter, the free energy, and the specific
heat, as well as the dynamical correlation function in the ordered phase. The dynamical central peak disappears
again as the temperature is lowered belgynp). The inhomogeneous order parameter causes a static central
peak in the scattering cross section, with a fikitevidth depending on the orientation of the external wave
vectork relative to the soft sector. The jump in the specific heat at the transition temperature of the pure system
is smeared out by the influence of the defects, leading to a distinct maximum instead. In addition, there
emerges a tiny discontinuity of the specific heatTafnp). We also discuss the range of validity of the
mean-field approach and provide a more realistic estimate for the transition temperature.
[S0163-18296)04033-1

| INTRODUCTION the number of defect$yp— o, but np=Np/N=const).

) ) ) In the framework of our mean-field approach, we shall
The influence of defects on the statics and dynamics ofing that defects which locally soften the crystal may induce
structural phase transitions has been of considerable theorefj-i e phase transition at a temperatlign,) >TC. Below
c-

cal interest over the past two decadgSEspecially the ap- s defect-induced phase transition temperature a spatially

pearance of a narrow central peak in the neutron Scatteri”i%homogeneous order parameter emerges, whose average
cross section, well above the transition temperature, for bOtUaIue remains very small in the vicinity d,(np) and only
C

d|stotrrt1|ve9 atnd lela;stéc': Str:CtT.ral trqtr;]s:tloﬁ%pr(c)jmpted \;an becomes noticeable neeif‘c). Similarly, thermodynamic
ous heoretical studies dealing with ‘ocal oraering p enomquantltles(statlc susceptibility, specific heat, etdisplay
ena around short-range static defe(ftw a review of the . : .
: ._prominent, broadened maxima nea'rg, suggesting a
experimental facts, see Ref. 11 and Ref. 12, and for a revie " e . . .
rounded” phase transition; however, the “true” singulari-

of some theoretical results, see Ref).13 . . .
) ties occur afT¢(np), but may not be seen in experiment at

E.g., in Ref 3 a one-dimensional model for continuous all, as their amplitude is only proportional to the defect con-
distortive structural transitions was studied, with the order_’ P y prop

parameter coupling to a single defebigf=1). If the impu- centrationnp. The Bragg peaks of the low-temperature

. , . phase already appear in the scattering cross section for
rity locally increases the transition temperatuT% of the T<T.(np): as a consequence of the spatial inhomogeneity

pure system, this leads to a local condensation of the ord&§; the order parameter, they are accompanied by elastic
pa_lrameter in the defect vicinity. In higher dimensions, forHuang scattering peaks with finitg width. Furthermore,
this local order parameter condensation to occur, the defegfery close toT.(np) an additional dynamic central peak
potential Strength must exceed a certain minimal threShOl%mergeS, which may be interpreted as a dynamica| precursor
Such locally ordered regions in the material emerging welko the defect-induced phase transition.

above the pure transition temperatuTé have played a These mean-field results of course neglect order param-
prominent role in some of the theories attempting to explaireter fluctuations and exaggerate cooperative behavior. In re-
the central peak phenomenon for distortive and elastic struality, at T~T.(np) localized order parameter clusters ap-
tural phase transitions® In this paper, we extend previous pear, whose orientations, however, strongly fluctuate in
work on second-order ferroelastic phase transitiond =il space. Only at a lower temperatufg < T.(np) (if at all)

(Ref. 7 to higher space dimensioms taking into account will they form a collective state with uniform orientation,
the crystalline anisotropy. To this end, we shall generaliza.e., the spatially inhomogeneous configuration predicted by
the methods developed for the distortive &ase(anisotrop-  mean-field theory. In order to provide a more realistic esti-
ic) elastic systems, thus treating consistently a random impumnate of the proposed defect-induced transition temperature,
rity system with finite defect concentration, (in the ther-  we consider the cluster orientations as effectively Ising-like
modynamic limit, both the number of lattice sits—»c and  degrees of freedom, and then determine the cluster ordering
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temperaturel 4 by calculating the free-energy difference of perature dependence of the Ginzburg-Landau coefficients

states with parallel and opposite orientations, respectivelyandc is neglected.

Thus the onset of the order parameter, the Bragg peaks, and In order to describe the influence of short-range defects,

the Huang scattering will be shifted to somewhat lower temWhich locally increase the transition temperature, we assume

peratures, and the results of this work can essentially be usdtiat each defect creates a short-range potential at its site, thus

if T.(np) is replaced byT 4. Provided thafl 4 is still con-  locally modifying the coefficienta andb of the Ginzburg-

siderably larger thaff?, we thus expect the behavior of the Landau functiona(2.1); being interested in long-wavelength

thermodynamic quantities nedf to be very similar to the Properties of the system, we can thus model the defect po-

results presented here. tential in the continuum by & function. The coefficiena
This paper is organized as follows: In Sec. Il we introduceill be particularly sensitive to such a modification, as it

the Ginzburg-Landau functional fordzdimensional system, Pecomes very small near the transition. For the coefficient

with onem-dimensional soft sector, including randomly dis- ¢ @nd the higher-order coefficients the defect influence is less

tributed point defects. The corresponding Langevin-typémp_orta”t_ and will be neglecte_d. We thus arrive at the fol-

equation of motion is formulated. Furthermore, we presentoWing Ginzburg-Landau functional for the perturbed sys-

an expression for the density-density correlation function!®m:

which serves as a starting point for subsequent consider-

ations. In Sec. Il the phonon response function is evaluated d a, L ) ) 4 ,

in the high-temperature phase, and the emergence of a dy-F:f d kf d°k’ 5[(ap™+ba”+cp) o(k—k") QkQ-k

namical central peak and a defect-induced phase transition

well aboveT? is demonstrated. In Sec. IV we proceed to the — i kk ' QuQ_ir 1+ 0(Qp), 2.2

ordered low-temperature phase, by using a suitable self-

consistent approach. We determine the spatially inhomogewhere ¢, . denotes the Fourier transform of the impurity

neous order parameter, the free energy, and specific heat, pstential(created byNy defects

well as the phonon correlation function, and discuss the sin-

gularities in these quantities. In addition, the scattering cross Np
sectionS(k) (i.e., the density-density correlation functjas d(r)=U > 8(r—r,). (2.3
studied. In Sec. V we leave the realm of mean-field theory, ip=1 °

and provide an estimate of the “true” defect-induced transi-

tion temperaturgfor the isotropic case by identifying it  The defect strengtthag)\ is taken to be positive, and
with that temperature where already existing, but still fluctu-therefore the transition temperature is locally increased at the
ating clusters condense to form a nonzero average order pampurities (here, V is the volume of the system and
rameter. In Sec. VI, we briefly discuss the case of extendedg:v/N denotes the volume of the unit cell

disorder_(line or pl_anar defecjs and in Sec. VII we finally The dynamics of the elastic crystal are governed by a
summarize and discuss our results. Langevin-type equation of motion for the soft acoustic
phonons'®
Il. GENERAL EQUATIONS
oF ~
A. Model szQk=—W—iMw(Dp2+Dq2)Qk+rk+hk. (2.4
—k

In order to describe elastic phase transitions of second

order ind dimensions with am-dimensional soft sector, we The term on the left-hand side of E@.4 describes the
use an expansion of the elastic free energy of the U”Fl)flrg“rb%celeration, while the first term on the right-hand side pro-
crystal with respect to phonon normal coordina@s.™ ™  yjdes the restoring force driving the system towards its equi-
We disregard noncritical polarizations; furthermore, aimingjiprium configuration. Note that we have introduced two dif-

at the long-wavelength limit we keep only the Iowe:;t-orderferent diffusive damping constanBs andD for the soft and

terms in the wave vector expansion of the_dispersion relatiogtiﬁ sectors, respectively, denotes a stochastic force with

02;2% ?r?tc()) uig%_%?;g?}gis&g;%;’:’)?tv,,ec\é?nd{%'iézfn gﬁgoig' vanishing average(r,)=0; its second moment satisfies an
pd—m dimensional “stiff’ part q. r ptiv | _f_ Einstein relation, guaranteeing that ex{{/ksT) is the equi-

I(: Ik I)r_ r?dsso h?/v SI h \?a #’Wﬁs&ei terr)r/{ _f(Ft)HQ) 'f " librium probability distribution. Finallyh is an external field
ol 1o, 4 chwabl have Sho at terms ot the 1o hich couples linearly to the order parameter. Equatibd)

4 242 i ; i ati
q 0; 4 gd aret|rrf?le\t/?;‘]1t(|n_t_thel t:e?]ormahzfattt:on grt%l#: will be the basis for our discussion of the dynamical proper-
sensgand do not affect the critical behavior of the syst€m. .4 o subsequent sections.

In this spirit we use the following effective free energy:

B. Density-density correlation function

1
— d di, 2 2 4 ’
F_f d kJ' d°k’ 5[ (ap”+ba”+cp?) 8(k—k")QQ-/] In the following we shall primarily use a discrete lattice
. representation of the elastic system under consideration. The
+0(Qy)- (2.1)  dynamic structure factor observed in scattering experiments

is related to the Fourier-transformed density-density correla-
The coefficienta is assumed to depend linearly on tempera-tion function. Denoting the thermodynamical average by
ture, vanishing aff?: a=a’(T—T9); the very weak tem- (---), its definition is
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1 . . 2kgT

S(k,w)=f dte"‘"<— e KAt u(D]giklatui(0]) Dk, )= ——ImGA(k,®). (2.12
N1<i<n w

(2.9

where a denote the Bravais lattice site®f the high-
temperature phagandu; the displacements from these equi-
librium positions. 1
In the discrete representation, withlattice sites, we can W= 52 KL = (M P = ((PI)))
write the Fourier-transformed defect potential as “p

Finally,

+{({(ofv I (213

is the Debye-Waller factor. Equatid@.8) may be used for

In a system with quenched, randomly distributed defects, al?last'c as well as for distortive phase transitions. Fo_r antifer-
odistortive transitions one has to sum over the distinct sub-

physical quantities have to be averaged over all possible de-

. i nd7 : . ; attices in addition(see Ref. 8 The dynamic phonon-
LF;CE<C_9r?‘;lg.uirtz“gr‘ia\llv;egﬁ::%ﬁ :ggsd(;onﬂguratlonal average phonon correlation function2.1) and the static Huang

scattering contributio2.10 will be discussed in more detall

1N /N
Pucr = =1 (21 }‘5i,i.3‘<5ij)el(kxik M. (2.8

Ip=

Np [q N below.
Con=1L{g2 |- (2.7
1= 'D; Ill. HIGH-TEMPERATURE PHASE
In order to evaluate(S(k,w))), we introduce a cumulant  |n order to calculate the phonon correlation function in

expansion for the combined thermal and configurational avthe high-temperature phase, Eg.2) is inserted in the equa-
erages ofe'<!i(®~u] and keep the terms up to second tion of motion (2.4). Note that nonlinearities in the phonon
order. Next we decompose the deviatiapft) into a static  normal coordinates are neglected, and thus fluctuations are
contribution ¢ and a fluctuating pang;(t), and expand the only being accounted for in the Gaussian approximation.
exponential. Eventually one arrives at the following formulaUpon differentiating the resulting expression with respect to
for the dynamical structure factdfor more details on the h,,, transcribing it to the corresponding discrete version, and
derivation, see Ref.)8 finally using the fact that the average of the stochastic force
re. vanishes, one arrives at the following mean-field recur-
sion relation for the phonon response function:

((S(k,w)»:{NE 5k,g+a2ﬁ k“kﬁ«sgﬁ(k)»}
’ Gkk'IGOk5kk/+GOk§ D KK Gyrger, (3.7

Xe W2rs(w)+

> kKkPDB(K, )
apB

with the free phonon propagator

xe 2V, (2.8 Gol=—Mw?+ap?+bg?+cp*—iM w(Dp?+Dg?).

The three different contributions to the dynamical structure (3.2
factor if‘ Eq.(2.8 a_lre(i) the elastic Bragg peaks appearing atEquation(3.1) may then be systematically iterated, and the
the reciprocal Iattlc_:(_a vectoigof the actual crystal structure, configurational averagé2.7) performed; e.g., applying a
given by the condition standard diagrammatic technique helps in collecting all the

el 9@+ () = 1 (2.9 contributions to a certain order in the defect potential

’ strengthx.1"*® The configurational average yields a transla-

(i) an additional static contribution to the structure factortionally invariant response function
arising from elastic scattering from the random variations of
the local order parametéHuang scattering (G )y =Gy Sk - 3.3

B 1 k() B N 8 Upon collecting all contributions which are proportional to
St (k)= Niz e D= (N KEN), the impurity concentratiomp=Np /N (single-site approxi-
N (2.10 mation; for more details, see Ref), &e result for the pho-
) ) _non susceptibility is
and (i) the dynamical phonon-phonon correlation function

07k [ ot {3 e e utnfion ) )
’ (2.11)

which is connected with the dynamic phonon response func-
tion via the(classical fluctuation-dissipation theorem Here we have introduced the abbreviation

Gy t= —Mw2+ap?+bg?+cp*—iM w(Dp2+Dg?)

Ak?np
~1-Nag/l2m)ig(m)”

(3.9
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A (p*+9?) _
Id(m):J 2 2 2 4_; 2. D2 d"pd®q
0 —Mw“+ap+bg +cp*—iMw(Dp“+Dqg°)

A (p2+q2)pm—1qd—m—l
:m(d_m)Tdefmf pdg, (3.9

=—d
0 —Mw?+ap’+bg?+cp*—iM w(Dp?+Dg?)

and 7, is the volume of then-dimensional unit sphere, D =D and the nonlinearitd (see belowhad to be estimated
without reference to any experiment.
Figure 1 depicts the phonon correlation function
w2 D(k,w) [Eq. (2.12] for different temperature$>T.(np),
Tn:m' (3-8 evaluated for several angles between the external wave
vector and the soft sector. As becomes apparent in Fig. 1, a
A denotes a natural short-wavelength cut¢dfg., corre- dynamical central peak in the phonon correlation function
sponding to the Brillouin zone boundaywhich also helps emerges in addition to the soft phonon péagmpare Ref. 7
to ensure the convergence of the intedigim). Note that for the one-dimensional cas& he height of the central peak
the dimensiorm of the soft sector itk space explicitly enters grows, and its width decreasesBgnp) is approached. The
in Eq. (3.5), and thus determines the importance of the fluc-intensity of the central peak decreases upon increasing the
tuation contributions. angle # between the wave vectérand the soft sector. This
Equation(3.4) implies the very remarkable result that due reflects the fact that wave vectors in the stiff sector do not
to the coupling to the softening defects, the entire systemyope the critical properties of the material. The dynamical
may become unstable towards a new ground state with finitggira) peak may thus be understood as a dynamic precursor

average order parameter at a certain temperdiyi®p), de- 5 the defect-induced second-order phase transition at
pending on the defect concentratiop; the criterion for this (np)
c .

instability is

) 4 5 IV. LOW-TEMPERATURE PHASE
lIim[G, (w=0)/k“]=0. (3.7
k—0

In this section, we use a self-consistent approach designed

As in the distortive casBwe find that in general a certain fOr the calculation of the order parameigrthe specific heat,
minimal defect strength is required for this instability to oc- the phonon correlation function, and finally the dynamical
cur; yet, once this defect-induced phase transition does existtructure factor in the ordered phase, i.e., Ter T¢(np).

the associated transition temperattiig€ny) can be consid-
erably higher than that of the pure syste‘fﬁ, (In Sec. V, we
shall comment on the validity of the mean-field approach,
and estimate the transition temperature on a more realistic
bafNISé have investigated three-dimensional systems with gter is the full non_linear Ginzburg_-Landau functional, which
single one-, two-, or three-dimensional soft sector, respec'—n the discrete lattice representation reads
tively. The qualitative features were found to be very similar
in all these cases. The following figures refer to a three- TABLE I. Ginzburg-Landau parameters, as used in the figures,
dimensional system with a single one-dimensional soft sedf not specified otherwisga=a’(T—TJ)].

tor. We have tried to use model parameters appropriate fof
NbsSn, which displays a second-order elastic phase transi- Te=45 K

tion nearT=45 K:2 accordingly, we have used numerical & =1.0771x10 *?erg K™*

A. Order parameter

The starting point for the calculation of the order param-

values calculated from Refs. 19 and @able ). Thus, we d=1.1363<10 ° erg
have takerT=45 K, andnp=10"%, and adjusted the defect =~ M=1.314<10"*'g
strength in order thal.(np)=65 K. However, a few re- b=1.570<10"* erg

marks are in place here to explain some sources of inaccu- ¢=5x10"% erg cn?

racies. The assumption that the Ginzburg-Landau parameter N/V=6.751x 10?* cm ™3

a is merely linearly temperature dependent is valid only near A=3.0994x10 ! erg

the phase transition temperature of the pure syst€mFur- D=D=1x10"2%cm?s!
thermore, we approximatedandb as independent of tem- k=¢\2a*

perature, and in addition assumiedo be independent of the a*=2mlay=1.189x 10° cm™*!
direction of thek vector in the stiff plane. This is not gener- To(np) =65 K

ally the case for N5Sn, but appears to describe the critical ny=1x10"5

region well. The numerical values of the diffusion constant
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D(k,w)

T=66 K

(@)

-~ T=65.05K
T=65.01 K

0.50

D(k,w)

(b)

6=0.1

— | | |
0.10 0.20 0.30
E[meV]

FIG. 1. Phonon correlation function D(k,w)
=2kgTIMG(k,»)/w (in 102" cm? s) vs phonon energgin meV)
for different temperatures and fixed angle-0 (a), and for fixed

temperature T=65.01 K with different angles 6 (b);
{=kag/2%?7=0.02 was used.
N N N N
1 N D d
F=_ Gily —— 25 4+ — 4
2i,j2=1 7iGoij 221 iD§=:l vidi g 4i=21 Y
N
> hyy. (4.2)
i=1

Herev; denotes the value at lattice sitef that combination
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A general solution of Eq4.3), with its combined nonlin-
earity and randomness, poses a difficult problem. We thus
use an additional approximation, namely, the following
ansat2 for the thermodynamical average of the order param-
eter (denoted byv):

vi=A+BX 8, ; (4.4
'p

i.e., we assume that the order parameter at each lattice point
i may be written as the sum of a homogeneous background
A and an additional contributioB, if there is a defect at site
i, thus enhancing the total value of the order parameter to
A+ B at the defect sites. Thus we explicitly assume that at all
defect sites the order parameter points in the same direction,
and in addition neglect the spatial variation of the order pa-
rameter near the defects. However, as we shall see shortly,
the second, seemingly very crude approximation already
contains the possible relevant modifications caused by the
impurities, namely(i) an enhancement of the spatially aver-
aged order parameté&orresponding to the parametsy and
(i) the ensuing “screening” of the defect potentiade-
scribed by the coefficier®). The more stringent approxima-
tion is the uniform orientation of the defect clusters, as im-
plied by the mean-field approa¢kee Sec. Y.

Inserting Eg.(4.4) into the stationarity equatior(4.3)
yields the recursion relation

Vi=h6keGo(K) +Go(K) >, bucr i (4.5
k!

where we have introduced a renormalized propagator

Go(k) "1=Gy(k) "1+ dA2 (4.6

and a screened defect potenfy{a&, with weakened strength
[see Eq(2.9)]:

N=A—d[(A+B)2-AZ]. 4.7

From Eg. (4.5 and the averaged stationarity equation we
may derive two coupled nonlinear equations that uniquely
determine the mean order paramet@r:lterating the recur-
sion relation(4.5) in a similar way as for the dynamics in the
previous paragraph, performing the configurational average,

of strain tensor components serving as the order parametghd summing the single-site contributions, one arrives at

for the transitionh; is the corresponding external stress act-

ing on sitei, and the static propagat@; is defined by its
Fourier transform

Gol=a+ck?® for d=m,

. ap’+bg®+cp?

ok ="z for d>m. 4.2

-1

v AN
¥: a+dA2—1—_7\-(aO/D2—7T)de . (49
with the abbreviation
k2
‘]d:fddk(a+dA2)p2+(b+dA2)q2+cp4' 4.9

In the framework of the Ginzburg-Landau approximation, (i) On the other hand, immediate averaging of £4.5)
i.e., neglecting order parameter fluctuations, the followingyields

stationarity condition can be derivédith h;=h=const):

SF
gzo@E Ggijvj—\X v +dvi=h. (4.3
i i ip

(4.10

Very assuringly, Eqs(4.8) and (4.10 yield nonzero solu-
tions for {{v)) precisely belowT (np) as determined from

(a+dA?)(A+npB)—Anp(A+B)—h=0.
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FIG. 3. Specific heatC, vs reduced temperature for
np=10"% (@ andnp=10"2 (b). The defect-induced temperature
has been adjusted tQ(np) =0.444 in both cases by changing the
defect potential strength accordingly; see Fig. 2. The temperature

—10-5 \ — - 11 =103
t for nD_loil!l A=3.0994<10"" erg (@, and np=10"", 340 neart (np) is displayed in the insets; note the different
N=3.0949<10 “*erg (b). The temperature range near scales

tc(np)=0.444 is displayed in the insets. Note the different scales of
the two insets; the disorder strength was adjusted to yield the same
T.(np) in both casesa) and(b).

FIG. 2. Average order parametgv)) vs reduced temperature

B. Specific heat

From the knowledge of the mean order parameter, we can

the high-temperature phase. Figure 2 shows that the ord&gadily calculate théaverageiifree energy from Eqi4.1) in
parameter of the perturbed system as functiorToboks e Landau approximation and via

similar to the corresponding curve for the pure system, with

the singularity at'l'g being smeared out by the disorder. The J°F
order parameter sets in continuously Bi(np), with the U:_T(ﬁ
usual mean-field exponet=1/2, assumes small but finite v
values in the rangd (np)>T>T?, and starts to grow to _ -~ _ _ _
larger values only in the vicinity oT¢. Thus the transition ~derive the specific heat, ; see Fig. 3. Obviously, the dis-
temperature of the pure system remains an important parangontinuity atT¢ has been smeared out, in place of which a
eter even in the perturbed system, while the true phase trafiny jump emerges at(np). Although the phase transition
sition atT,(np) may in fact be hardly noticeable in experi- clearly occurs aT¢(np), the transition temperatuf& of the
ments. As before, the results for a three-dimensional systepure system remains of considerable importance; e.g., there
with a single one-dimensional soft sector are depicted, buis a distinct maximum of the specific heat n@gr, while the

the qualitative features remain essentially the same in thextremely minute jump &af.(np) might not be experimen-
cases of a two- or three-dimensional soft sector. tally detectable at all.

(4.11
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‘ ‘ : thus confined to the region aroudd(np). As in the high-
T-64.999 K temperature phase, the intensity of the central peak decreases
upon increasing the angle between the exteknatctor and
the soft sectofwith fixed temperatune
In Fig. 5 the static phonon susceptibilityG(k)
3| ] =G, (w=0) (i.e., the inverse elastic constant, as modified
by the defects is shown. The small but sharp peak at
‘ T.(np) reflects the preordering of the defect regions, while
] the broad and much more prominent peak nfé%rcorre-
sponds to the ordering of the pure bulk crystal, though under
1 ] the influence of the randomly spaced fields originating from
‘ the defect clusters; compare Figs. 2 and 3.

D(k,®)

— T=64.95K

000 010 020 E[meV] 030 040 0:50 D. Dynamical structure factor
In order to describe scattering experiments, we have to
FIG. 4. Phonon correlation functigin 1027 cm? s) vs phonon  calculate the density-density correlation function of Sec. Il.
energy in(meV) for different temperatures beloW,(np) at fixed ~ The first term in Eq(2.8) yields the Bragg scattering, and
angle 6=0. As before,t,(np)=0.444, and{=ka,/2%?7=0.02  does not require any further comment; the third term is con-
was used. nected with the phonon correlation function, and has been
discussed in the previous subsection. We therefore turn our
attention to the second term. Taking into account the soft
C. Phonon correlation function in the ordered phase acoustic phonon mode only, as above, we have to calculate
In order to find the phonon correlation function in the the configurational average &y [Eq. (2.10]; using
temperature region with a finite order parameter, one agaiH'®¢ Same approximations as in the beginning of Sec. Ill, we
has to start from the full Ginzburg-Landau functional and usé™@y use Eq(4.5) in the form
the ansatz for the order parametérd). The crucial point is
that one may then absorb the nonlinear term of the equation

of motion in modified coefficients of the linear terms as fol- kiyk=hGo(0) 5ko+Go(k)2 e, (413
lows: k
a—a+3dA2, b—b+3dA2, A—\—3dB(2A+B). which yields
(4.12
W|th thgse modifications one can use the same equations as Kb = h260(0)25k0+h60(0)22 50k,7k, Seo
in the high-temperature phase. K

The result is depicted in Fig. 4. The central peak in the
correlation function disappears again when the temperature _ _
is lowered belowT;(np). This dynamical central peak is +Go(k)2 D' Vi V—k - (4.14
k!

G(k,0=0)[10 ‘cm?/erg] For this equation again a diagrammatic representation can be
derived® and in a single-site approximatiofie., to order

np) we find the following resultk, denotes the components

of the wave vector which are parallel to the polarization of
the soft modg

K2SEE (k) = nph( (1)) (kL) 2Go(k) Go( — k)

X

’)‘\' _ -2
1—N§‘, Go(k')] . (4.15
k!

This expression can be further reduced using @d). Fi-
nally, we arrive at

t K2Sth(k)=(a+ dAZ)ZT(k'-)ZGO(k)Z. (4.19
FIG. 5. Static phonon susceptibilityinverse elastic constant
G(k) (in 10 % cm?erg 1) vs temperature at fixed angle=0. Collecting all results, the final expression for the dynami-
to(np)=0.444,;=kay/2%?7=0.07. cal structure factor reads
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15 . . which finally condenses to a static order parameter at the
S, — =002 “true” transition temperaturel oy, with TO<T=<T.(Np),
the mean-field transition temperature. One would expect that
such collective behavior of the distinct localized order pa-
rameter clusters arises when the correlation length of the
pure system¢, which determines the size of the defect-
induced condensates, becomes of the order of the average
defect separationy. A somewhat more favorable estimate
e results from the argument that it should actually suffice when
5t e ] ¢ becomes large enough such that the distinct condensates
e ' form a percolating cluster throughout the sample; the condi-
777777777 tion for cooperative behavior then becomes (n.)*rp,
L wheren, denotes the percolation threshold.
15 o5 0:"6 o5 In the follolvvi.ng we gi_ve a more_precise estimdiggy, in _
\ order to see if it may still be considerably above the transi-
tion temperature of the pure syste‘F@. Our strategy is to
FIG. 6. The term«v—»zao(k)z(a_’_dAz)zl denoted byS, (in _calculate thg free-_ener_gy differendd- between the follow-
ing two configurations in a two-defect system below the tem-

units 10 %) vs reduced temperatutefor different wave vectors.

The wave vectok lies in the soft sector. perature where localized clusters may form in two different
orientations{i) both order parameter condensates oriented in
(K1)2 <<V—>>2 the same direction an@'i_) opposite condensate orientatio_ns.
((S(k,w)))=| N>, Skt e The ensemble of localized clusters can then be effectively
g Mo mapped onto an Ising system, wid- assuming the role of
the exchange coupling. The critical temperature is now
X Go(K)2(a+dA2)2|e W27 5(w) readily estimated alss T~ AF/aj (aj is the volume of the
elementary cell We emphasize that we shall restrict our-
+(KH2D(k, w)e~2W. (4.17 selves to an isotropic system here, and consider the general

case of an order parametes described by the usual
Thus we have found three distinct effects, namélynew  Ginzburg-Landau expansion of the free energy, which rather
positions of the Bragg peaks as a result of the finite ordecorresponds to the case of distortive structural transitions, as
parametel shifted and possibly new reciprocal lattice vec- studied in Ref. 8. However, the qualitative behavior is ex-
tors; see Eq(2.9)], (ii) Huang scattering as a result of the pected to be very similar for the anisotropic elastic phase
spatially inhomogeneous order parameter configurationtransitions.
leading to a static central peak with finite widthy Using the continuum representation, the free energy for a
=/(a+dA?)/c (in the soft sectorin Fourier space, andii)  system in three dimensions with a single defect in the origin
inelastic scattering, described by the phonon correlatiomeads
function. Figure 6 shows how the intensity of the Huang g
scattering varies with temperature for different wave vectors
k=p in the soft sector. This additional elastic contribution :f d¥r| [a=g(n)]e(n*+c[Ve(N]*+ E‘P(r)4)’
seots in afl;(np), and then grows to considerable values near (5.1
T,

where ¢(r) is the positives-function defect potential with

strengthU =ag)\. The stationarity equation then becomes
V. ESTIMATE OF THE CLUSTER

ORDERING TEMPERATURE cV2<p(r)=[a— d)(r)](p(r)+dcp(r)3, (5.2
All our previous results for the statics were based entirely

on the Ginzburg-Landau approximation, and dynamic quan\—NhICh fora>0 may be approximately solved by

tities were calculated in the Gaussian ensemble. This mean- o'l e T/E
field treatment of course neglects fluctuations, and apart from r>R: o(r)~ 0 TEE = PO : (5.3
the fact that the critical exponents will be changed near the 1+res™/¢ ri¢
transition, we have to consider the possibility that the above- 32
described defect-induced phase transitiom &hp) will dis- r

X . <R: ~ - .
appear when fluctuations are properly taken into account. r<R e(r)=~eo| 1 282)" 5.4

Namely, our mean-field approach basically implies that as ) ]

soon as local condensates form near the defects, they immethere é=c/a is the correlation length of the pure system
diately lock into some cooperative state and form a nonvanfor ~ T>T2,  @5~(47R3\/3—10a)/d, and R\
ishing average order parameter. In reality, probably first=120mc3(U,,'—U"1)2, with U,=2mca, denoting the
these clusters may emerge at the defect positions, howeverinimum defect strength required for the local order param-
still quite independently fluctuating between their differenteter condensation to occur.

possible orientations. Only as the temperature is lowered Using these results, we can proceed towards the two-
even further will they form a collective vibrational mode defect system  with &(r)=U&(x)8(y)[8(z—rp/2)
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70 : : : from which T4 as function ofnp may be inferred by inver-
TIK] sion[¢é.=\/c/a;, ag=a’(Toq—TY)]. The result is depicted
in Fig. 7. It can be seen that the calculated cluster ordering
temperature may indeed be considerably above the phase
transition temperature of the pure syste‘ﬁﬂ,= 45 K; how-
ever, much larger impurity concentrationg, are required
than in the previous mean-field analysis.

For the anisotropic elastic systems discussed in the bulk
of this paper, fluctuations will be even less important. We
conclude this section with the remark that the upper critical
dimension as function of the dimensiom of the soft sector
was found to b¥

40
0

s s ‘ m
0.25 05 0.75 1 do(m)y=2+ E; (5.12
10°n, . . . ) .
thus in three dimensions mean-field theory yields exact re-

FIG. 7. Cluster orderingprecursor temperaturd,q and mean- sults for a system Wlth a one—dlmen5|onal soft sector, Whlle
field (local) transition temperatur@.(np) (in K) as a function of fo_r the case of a two-dimensional soft sector merely logarith-
the defect concentration, ; the numerical values of Table | were MIC corrections are to be expected.
used here.

VI. EXTENDED DISORDER:

+8(z+rp/2)] by a simple linear superposition ansatz; i.e., LINE AND PLANAR DEFECTS

we shall evaluate the free-energy difference between the \ye now return to the case of elastic phase transitions, and

states, address the question of the influence of extended defects in
. contrast to the previously treated point disorder. Our system
¢==@(Xy.2-Tp/) L e(xy.z+rp2). (59 4y contains randomly placed, but parallel linear or planar
By inserting into Eq(5.1) one readily finds the defect con- defects; the accordingly modified correlated defect potential
tribution [compare Eq(2.3)] reads in the case of line disorder
N
~_ 2 ~rplé e
AFD 8U€00(§/rD)e ) (56) d)(r):UiZl 6(X_XiD)5(y_yiD)v (61)
as well as the linear overlap integabnveniently evaluated °
using elliptical coordinatgs wherex,y,z are the components of andz denotes the di-
rection parallel to the lines;y labels theNp line defects.
AF”nmle‘mc(pSge*rD’f; (5.7 The defect potential for planar defects is defined analo-

i ) gously, namely, for planes normal to tkedirection,
the nonlinear overlap integral turns out to be of order

e 20/t and can thus be neglected fé=rp, when com- Np
pared to the previous terms. Hence we find for the required ¢(r)=U‘2 (X=X,). (6.2
free-energy difference ‘o=t
With these definitions the same calculations as before may
- 2pm-tplél 1 _ _ be performed, and it becomes obvious that the former inte-
AF~16mcegte (1 chrD)’ 68 grals reduce to integrals over thevectors perpendicular to

) . the defects. One gets qualitatively the same results as in the
using th(_a above_ numerical values, we see that the defeglga of point defects.
contribution can in fact be neglected here. In order to compare the effect of the different kinds of

Hence we arrive at our final estimate for the cluster or-gefects, we have calculated the order parameter in all three
dering temperature, which we identify with the “true” caseg(points, lines, and plang$or the same defect strength
defect-induced transition temperature and the same defect concentratiae., the extended defects
are viewed as correlated accumulations of point defects with
the total number of—pointlike—defects held fixed here-
re, the resulting differences solely originate in the different
sorder dimensionality. The one-dimensional soft sector
was taken to be perpendicular to the defects in order to pro-
vide a meaningful comparison. The result is depicted in Fig.
8; it can be seen that the effect of the defects is not a mo-
notonous function of their dimensionality, but depends on

ke Torg~ 16magps(&lag) e o/, (5.9

This expression may be cast into a somewhat more explictg
form by observing that the average defect separation can
written aer=a0n51/3; thus the required defect concentra-
tion for the transition to occur at a certain vallie=Tyq
becomes

¢ [16ma ¢(2) AE _3 the strength of two cpmpeting effects. On the one ha_n_d,
Np= 20 |l =50 2 , (5.10 when the temperature is lowered towards the phase transition
&g KeTora | @0 temperature and the correlation lengtlgrows accordingly,
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are localized; at least for a simplifying one-dimensional
single-defect model no additional localized impurity modes
', appear, but the defect rather causes a localized vibrational
‘. . contribution to the propagating scattering states. For the
! system with . . . .
| long-wavelength phonons this quasiresonant vibration then
|
|
i
!
\

4 -
10 <<v>>

—— line defects ] condenses al.(np) and forms the local order parameter
clusters’ The dynamical central peak may be regarded as a
i‘ “ planar defects precursor of this phase transition; its height also depends on
L point defects ] the angle between the external wave vedtoand the soft
sector. The smaller this angle, the more pronounced is the
central peak.

2 In the low-temperature phade<T.(np), where a finite,
and be it ever so small, order parameter exists, we have used
a self-consistent mean-field calculation in order to calculate
001 the average order parameter, the free energy, specific heat,

and the phonon correlation function. The order parameter
sets in continuously at.(np), remains very small in the
temperature range betwed@p(np) andTg, and reaches ap-
FIG. 8. Order parameter vs reduced temperature for systeMsSreciable values only neé’rg. In this way the order param-
with diffe3rent types of defects; the numerical values of Table | andgtar curve resembles a somewhat rounded curve of the pure
np=10"" were used here. system. Analogously, the temperature dependence of the spe-
cific heat looks like the corresponding smeared-out curve for

the order parameter cluster aroundi‘adimensional defect the pure system. The jump a@ is rounded, and a minute
grows proportional togd=9". This effect renders low- jump at T.(np) appears. Thus the phase transition of the
dimensional defects more effective in influencing bulk prop-perturbed system no longer occursigtbut atT.(np). How-
erties. On the other hand, the system has a finite stiffnessyer, the phase transition temperatﬂ[@eof the pure system
characterized by the parametgrand as a system with un- remains important, as the remnants of the pure transitions
correlated defects is more inhomogeneous than one with thduce marked, but rounded maxima in quantities like the
identical amount of correlated disorder, this effect favorsgrger parameter susceptibility or the specific heat ﬁ-(gar
high-dimensional defects, because then the system stiffness Having thus determined the order parameter, we were
can be more easily overcome by the joint action of neighboryple to calculate the phonon correlation function in the or-
ing defects. With the specific numerical values we have useQjered phase. The dynamical central peak disappears again as
the line defects have only a tiny effect on the order parameteg,e temperature is lowered beldty(np). The dependence
curve in comparison with the point defects. The effect of thegf the central peak on the angle between the momentum
planar defects lies in between. We emphasize that this scgransfer vectok and the soft sector is very similar as above
nario could.be different for other yalues of the stiffness Pa-T_(np). The density-density correlation function determin-
rameterc. Finally, we remark that if one performs the above jng the cross section for scattering experiments consists of
calculations for a system with extended defects, where theree terms: first, the term describing elastic Bragg scatter-
soft sector is not perpendicular to the defects, additionajng second, a term corresponding to Huang scattering
angle dependences ensue, and one has to add an additiopg|;sed by the spatially inhomogeneous order parameter con-
term of the formcg®* to the functional(2.2), in order to figuration; this term yields a contribution to elastic scatter-
correctly account for the stiffness, which tends to prevent th@ng' leading to a static central peak with finkewidth. The
buildup of order parameter clusters. third term finally describes inelastic scattering and has been
discussed along with the phonon correlation function.

We have also discussed the validity of our mean-field
approach and provided an estimétethe isotropic casefor

In this paper we have studied the influence of point andhe “true” precursorT., defined as the cluster ordering tem-
extended defects ondrdimensional elastic system with an peratureT,4, which has to be distinguished from the tem-
m-dimensional soft sector undergoing an elastic phase trarperatureT (np) where localized, but fluctuating order pa-
sition of second order. We have calculated the phononrameter clusters appear. Only beldw,q do the previously
phonon correlation function in the high-temperature phaseindependent ordered regions form a collective state leading
At a certain temperatur€,(np)> T2, an instability marking  to a nonzero average order parameter. Generally, cooperative
a defect-induced phase transition may emerge, if the defedehavior of the defects is to be expected when the correlation
potentials are sufficiently strong. Abolfe(np) a dynamical length of the pure systeng, becomes of the order of the
central peak emerges in the phonon correlation functionmean defect separatiop . Although the ensuing cluster or-
whose intensity grows as the temperature is lowered towarddering temperature is considerably lower thBg(np), the
T<(np). Contrary to the case of distortive phase transitfobns, qualitative features of the present theory should remain
the maximum of the central peak is exactlyaat=0 for all  largely unaffected, provide@.(np) is replaced byT o; i.€.,
temperatures and not at small but finite frequentighis, the mean order parameter appears rounded Higawhile
however, does not imply that the acoustic impurity modesstatic order parameter susceptibility and the specific heat dis-

VIl. SUMMARY AND DISCUSSION
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play a strong but broadened maximum there. Furthermore, iwould constitute a metastable state which is separated from
the anisotropic systems under consideration here, fluctuahe true ground state by high-free-energy barriarsThe
tions may actually be suppressed, rendering mean-fieldypical flip rate would then be proportional to
theory more reliable. Finally, the time scale of the order paexp(—A/kgT); therefore, at low temperatures the true thermo-
rameter condensate fluctuations will divergéT—T,o '  dynamic ground state may not be reached. In the spirit of the
upon approaching 4, Which in experiment would eventu- discussion in Sec. V one could possibly map this problem
ally render them indistinguishable from static inhomogene-onto a random-field Ising modéfor recent reviews, see,
ities, leading to quasielastic Bragg and Huang scattering.g., Ref. 22 the lower critical dimension of which is
peaks. We have also investigated the case of parallel ex;=2, and therefore long-range order is not destroyed in
tended defectglines and planes and found essentially the three dimensions.

same feature%: At last, we would like to contrast our picture with that of

These considerations led us to the qualitative phase dia'glassy” systems. Although some of the features of the dy-
gram displayed in Fig. 7. For very tiny disorder concentra-namical structure factor in glasses are at least qualitatively
tions, the picture of isolated defects applies. Although preorsimilar — e.g., an elastic peak with finiggewidth appears —
dered clusters may form considerably abd{e the ensuing and the static susceptibility and specific heat may display
condensates fluctuate independently and do not form a statdaracteristically rounded and broadened maxima, there are
with nonzero average order parameter. The cluster reorientémportant differences. First, the order parameter of the pure
tion rate will become very low a§'2 is approached, and crystalv would not constitute an appropriate order parameter
coupling of these slow modes to the s@dtousti¢ phonons  for such a disordered, glassy system. Second, the character of
will then lead to a dynamical central peak; see Ref. 1. Fothe phase transition should be entirely different, and in fact
higher, but still small defect concentrations, the clusterdead to experimentally distinguishable behavior. The sce-
emerging afT.(np) will form a state with preordered defect nario described here is a genuine second-order phase transi-
regions and finite, but small average order parameter beloon, though induced by disordéwhich locally softens the
T ora- This phase transition leads to discontinuities in ther-System; i.e., critical phenomena are confined to regions very
modynamic quantities, like the specific heat or the static susclose toT¢(np) (or Toq), and to wave vectors in the soft
ceptibility, which are, however, probably unnoticeably smallsector withp~0. The freezing-in into a glassy state, on the
in experiment_ On the other hand, upon approacﬁ'ig]gthe other_hand, would have to be described by an ergodicity-
phase transition temperature of the pure crystal, the bulk sydreaking (Edwards-Andersonorder parameter, and should
tem orders; due to the influence of the preordered defecctually be rather insensitive ta_Such a glass instability
regions, the transition temperature will be slightly higher0Ccurs, €.g., in orientational glasgdsind possibly in relaxor
than T¢, and the formerly sharp singularities of the meanferroelectrics’ ‘We finally remark that for the case of first-
order parameter, specific heat, and static susceptibility ag2rder martensitic transformations, a model with disorder of
pear characteristically rounded. The above-described theof{}€ randomT. type has been proposed, which can then be
applies precisely to this concentration rarfm very strong Mapped onto a spin glass, and the ensuing glassy features
disorder the single-site approximation breaks dpwFhe Were suggested to explain the prominent tweed microstruc-
central peak phenomenon is thus explained by a combinatioyr® found in these materials, as well as the central peak
of elastic Bragg peaks of the low-temperature phase anBhenomenon there.
static Huang scattering with finite width p space.

However, a different scenario is also conceivable, namely,
that as the cluster reorientation times become very long, the
different, still independent condensates freeze in with spa- U.C.T. acknowledges support from the Deutsche Fors-
tially fluctuating orientations. The ensuing configuration chungsgemeinschafDFG) under Contract No. Ta. 177/1-2.
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