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Static and dynamic properties of the intergranular ordering of ceramic superconductors are studied by Monte
Carlo simulations on a three-dimensional lattice model of a Josephson-junction array with finite self-
inductance. Both cases ofd-wave ands-wave pairing symmetries are studied. In the case ofd-wave ceramics,
intrinsic frustration effects combined with quenched randomness lead to the glassy behavior reminiscent of the
spin glass even in zero magnetic field. It is found that the zero-field nonlinear susceptibility exhibits a nega-
tively divergent behavior, suggesting the occurrence of a cooperative transition into an ordered state charac-
terized by the random freezing of chirality or flux. In this ‘‘chiral-glass’’ state, globalZ2 time-reversal sym-
metry appears to be broken spontaneously with keeping theU~1! gauge symmetry. Dynamic simulations on the
linear ac susceptibility suggest thatd-wave ceramics exhibits much stronger dissipation thans-wave ceramics
in the low-frequency regime. In the case ofs-wave ceramics, standard superconducting transitions with broken
U~1! gauge symmetry occurs where nonlinear susceptibility exhibits only a very weak anomaly. Implications
to experiments on high-Tc ceramics are discussed.@S0163-1829~96!07725-9#

I. INTRODUCTION

There has been a continual interest in the ordering phe-
nomena of ceramic or granular superconductors both from
experimental and theoretical sides. Ceramic superconductors
are often modeled as a weakly coupled random Josephson
network consisting of superconducting grains. Recently, in-
terest in these materials has been renewed by the discovery
of high-Tc superconductors, since these cuprate materials are
often ceramics. In fact, soon after the experimental discovery
of high-Tc superconductors Ba-La-Cu-O, Mu¨ller, Takashige,
and Bednorz reported that this material exhibits a glassy be-
havior reminiscent of the spin glass.1 Although many experi-
mentalists have continuously observed a close analogy to the
spin glass since then,2–4 true origin of the observed spin-
glass-like behavior in ceramic high-Tc superconductors has
yet to be clarified.

In recent years, there accumulated a considerable amount
of experimental evidence that high-Tc cuprate superconduct-
ors are ‘‘anisotropic’’ or unconventional superconductors
with the non-s-wave pairing symmetry.5–7 Most promising
pairing symmetry appears to bedx22y2, with four nodes on
the Fermi surface. Naturally, such anisotropic nature of the
superconducting order parameter is expected to have a pro-
found effect on the ordering of ceramic systems because the
property of Josephson junctions is sensitive to the phase dif-
ference of the Cooper-pair wave functions on both sides of
the junction. In particular, if the crystallographica and b
axes are connected at the junction, the Cooper pair acquires a
phase shift ofp across the junction~p junction!.8 One may
also regard thep junction as a junction with anegativeJo-
sephson couplingJ,0. This should be contrasted to the stan-
dard 0 junction with a positive Josephson couplingJ.0.

Sigrist and Rice invoked suchp junctions arising from
thedx22y2 pairing symmetry as a physical origin of the para-
magnetic behavior observed experimentally in some high-Tc

compounds~paramagnetic Meissner effect!. When one mea-
sures the field-cooled susceptibilityxFC in small dc fields for
certain high-Tc samples,xFC becomespositiveat low tem-
peratures, quite contrary to the standard Meissner effect.9–11

Meanwhile, the zero-field-cooled susceptibilityxZFC remains
always negative. The frustration effect inherent to odd rings
consisting of suchp junctions gives rise to spontaneous cir-
culating supercurrent and orbital moment even in zero exter-
nal field, which may cause the paramagnetic behavior ob-
served experimentally.

In fact, the appearance of spontaneous supercurrents and
the paramagnetic behavior had been anticipated by several
theorists prior to the experimental observation of the para-
magnetic Meissner effect~PME!, although in these earlier
theoretical studies this was not necessarily related to the un-
conventional pairing symmetry.12–15 Kusmartsev called a
state in ceramic superconductors characterized by orbital
paramagnetism and superconductivity an ‘‘orbital-glass’’
state.15 A recent numerical simulation on an orbital-glass
model by Domı´nguez, Jagla, and Balseiro has successfully
reproduced the paramagnetic behavior observed
experimentally.16

However, the true nature of an ‘‘orbital-glass state’’ and
of an ‘‘orbital-glass transition’’ still remains largely ambigu-
ous. The picture by Sigrist and Rice is essentially a single-
loop picture in which the interactions between loops are
irrelevant.8 In their scenario, when the temperature is low-
ered across the superconducting transition temperature of
each grainTc

gr , xFC changes its sign from negative to posi-
tive at a certain temperature,T0, slightly below Tc

gr . It
should be noted that such a change of sign ofxFC, which is
often regarded as a measure of the orbital-glass transition
point, is a crossover not related to any intergranular~inter-
loop! cooperative phenomena. In this picture, the PME arises
as a property of an ensemble of noninteracting loops if there
occurs anintragranular superconducting transition. In fact,
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many of the experimental results on the PME for
Bi-Sr-Ca-Cu-O appear to be explained on the basis of such
independent loop picture.17 By contrast, the possible coop-
erative character of the orbital-glass state was pointed out by
Domı́nguez, Jagla, and Balseiro16 and by Khomskii,10 al-
though these authors did not detail the nature of the coopera-
tive phenomena.

Naturally, one may ask here whether there could be a
thermodynamically stable orbital-glass state characterized by
a spontaneous breaking of certain symmetry over an entire
granular system. An issue to be addressed is whether there
could be some sort of thermodynamicintergranular phase
transition accompanied with a divergent length scale over
grains, and if it is, what is the order parameter of such phase
transition.

Recently, on the basis of an analogy to the three-
dimensionalXY spin glass,18 one of the present authors
~H.K.! claimed that so long as the screening effects could be
neglected, a sharp thermodynamic phase transition might in-
deed occur.23 In this scenario, a possible ordered state of
d-wave ceramic superconductors was associated with a re-
cently proposedchiral-glassstate of anXY spin glass:24–26

In the chiral-glass state of anXY spin glass, only spin
chiralities are frozen randomly, whileXY spins remain dis-
ordered~chirality is an Ising-like quantity representing the
sense or the handedness of the noncollinear spin
structures27!, leading to a spontaneous breaking of spin-
reflection symmetry@Z2# with keeping spin-rotation symme-
try @SO~2!#. In terms ofd-wave ceramics, such a chiral-glass
state is an ordered phasewith a spontaneously broken Z2
time-reversal symmetry, but it is not a true superconductor in
the strict sense since theU(1)5SO(2) gauge symmetry is
not broken even randomly on sufficiently long length and
time scales. It was also shown23 that an external magnetic
field in an Josephson-junction array works as a field conju-
gate to the chirality~chiral field!, and as a consequence, the
zero-fieldnonlinearsusceptibilityx2 exhibits a negative di-
vergence at the transition point. Since the nature of the or-
dered state proposed in Ref. 23 is different from the orbital-
glass state in a single-loop picture,8,15,17something likespin
glassesversussuperparamagnets, we will call the former the
chiral-glass state when the distinction between the two pic-
tures should be better clarified.

It should be emphasized that in Ref. 23 the screening
effects were totally neglected. It is not clear at the present
stage how the thermodynamic properties are affected by the
screening effects. In the present paper, we address this ques-
tion simulating the three-dimensional lattice model of ce-
ramic superconductors with finite self-inductance. The model
studied is the same as the one studied by previous authors, in
particular the model studied by Domı´nguez, Jagla, and
Balseiro.16 However, we extend their calculations in several
ways. First, nonlinear susceptibilities are calculated in addi-
tion to linear susceptibilities which are expected to be the
most sensitive probe of the possible chiral-glass order. Sev-
eral other quantities related to chiral order, including chiral-
ity and flux, are also calculated. Second, we make simula-
tions both ford-wave ands-wave ceramics in parallel, and
make comparison between the two results, aimed at clarify-
ing how the difference in the pairing symmetry would show
up in the thermodynamic properties of ceramic supercon-

ductors. Third, we study not only static properties but also
dynamic properties like linear ac susceptibilities, including
its imaginary part.

In the present Monte Carlo simulation, we will not pay
much attention to the equilibration problem, and the data are
only those obtained within a finite observation-time window.
Thus, main interest in the present paper is not to determine
whether there exists an equilibrium chiral-glass transition,
which will be left to the future work, but rather to see in light
of the possible chiral-glass ordering how various thermody-
namic properties behave in the presence of screening.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our model and physical quantities of
interest. Symmetry properties of the Hamiltonian in zero and
nonzero magnetic fields are analyzed, and the important
meaning of chirality is clarified. Technical details of our
simulations are also given here. In Sec. III, results of simu-
lations on static properties in zero external field are presented
both fors-wave andd-wave models. Linear and nonlinear dc
susceptibilities, chirality and flux are calculated for several
typical values of the inductance. Results of simulations in
nonzero external field are presented in Sec. IV both fors-
andd-wave models. Field-cooled and zero-field-cooled sus-
ceptibilities are calculated, together with spatial flux distri-
butions inside the sample. Dynamical properties of the model
are studied in Sec. V. In particular, the linear ac susceptibil-
ity is calculated both fors- andd-wave models by applying
an external ac field. In Sec. VI, possible implications of the
obtained simulation results to experiments on high-Tc ce-
ramic superconductors, particularly ac susceptibility and
mSR measurements, are discussed in some detail. Section
VII is devoted to summary and discussion. Possible conse-
quence of the recent theoretical suggestion of a ‘‘fractional’’
or time-reversal-symmetry breaking junction is also
discussed.28,29

II. MODEL

We are interested in the interloop~intergranular! ordering
phenomena of granular superconductors. We suppose that
weak links connecting the neighboring grains are distributed
sufficiently dense, so that the system can be viewed as an
infinite network of Josephson junctions, which are not de-
composed into finite clusters. Let us model such ceramic
superconductors by a three-dimensional lattice model of a
Josephson-junction array with finite self-inductance. When
charging effects of the grain can be neglected, the Hamil-
tonian may be given by16

H52(̂
i j &

Ji jcos~u i2u j2Ai j !1
1

2L (
p

~Fp2Fp
ext!2,

~2.1!

Fp5(̂
i j &

p

Ai j , Ai j5
2p

f0
E
i

j

A~r !dr , ~2.2!

where ui ~0<ui,2p! is the phase of the superconducting
order parameter of a grain at thei th site of a simple cubic
lattice,A being the vector potential,f0 the flux quantum,L
the self-inductance of a loop~an elementary plaquette!, and
Ji j is the Josephson coupling between thei th and j th grains.
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Fp is the total magnetic flux threading though thepth
plaquette, whereasFp

ext is the flux due to a uniform external
field applied along thez direction,

Fp
ext5HS, for p on the ^xy& plane,

50, otherwise. ~2.3!

The first sum in Eq.~2.1! is taken over all nearest-neighbor
bonds on the lattice whereas the second sum is taken over all
elementary plaquettes on the lattice. We assume that the
quenched randomness occurs only in the distribution ofJi j ,
while the self-inductance of a loopL and the area of a
plaquetteS are taken common all over the lattice. Mutual
inductance between different loops are neglected. We also
assume that the Josephson couplingJi j is independent of
temperature and magnetic field. This assumption is more or
less justified when the intergranular ordering occurs at a tem-
perature lower than the intragranular superconducting transi-
tion.

The first term of Eq. ~2.1! represents the standard
Josephson-junction energy and the second term represents
the spatial energy of current-induced magnetic fields. Dy-
namical variables of this Hamiltonian are the phase variables
at each site,ui , and the gauge variables at each bond,Ai j .
The dynamical nature of the gauge variablesAi j leads to the
screening effects which were neglected in Ref. 23. Note that
the XY-pseudospin Hamiltonian in Ref. 23 is recovered by
taking the weak-coupling limit,L→0, since in this limit the
induced flux tends to zero due to the second term, andAi j ’s
are quenched to the external-field values.

In s-wave ceramics, sign of the Josephson coupling is
always positive~Ji j.0!, while in d-wave ceramics it could
be either positive~0 junction! or negative~p junction! de-
pending on the relative direction of the junction and the crys-
tal grains on both sides. Ind-wave ceramics, the sign ofJi j is
expected to appear randomly since the spatial orientation of
each crystal grain would be random.

Recently several theorists suggested that the Josephson
junction betweend-wave superconductors under certain cir-
cumstances might have an energy minimum at some frac-
tional value of the phase difference, neither at 0 orp, as a
result of a spontaneous time-reversal-symmetry breaking at
the junction.28,29Possible consequences of such a ‘‘fractional
junction’’ will be discussed later in Sec. VII. For the time
being, we assume that all junctions consist of either 0 orp
junctions ind-wave ceramic superconductors.

In the following, we deal with the following three types of
bond distributions. Model I; the spin-glass-type binary~6J!
distribution modelingd-wave ceramics, whereJi j takes the
values1J ~0 junction! and2J ~p junction! with equal prob-
ability. Model II; the random ‘‘ferromagnetic’’ interaction
modelings-wave ceramics, whereJi j is always positive but
is distributed uniformly between 0 and 2J. Model II8; the
pure ‘‘ferromagnetic’’ interaction modeling regulars-wave
system, whereJi j5J.0 for all ^ i j &.

The model I was first introduced by Domı´nguez, Jagla,
and Balseiro as a model of d-wave ceramic
superconductors.16 These authors simulated the model by the
dynamical Langevin method, and found that the linear sus-
ceptibility exhibits a paramagnetic behavior in the field-
cooling mode, but only a diamagnetic behavior in the zero-

field-cooling mode, thus reproducing the PME observed
experimentally. In our model I, the numbers of positive and
negative couplings are set equal. In this case, half of the total
plaquettes are frustrated, and the fraction of the frustrated
plaquettes becomes maximal. In reald-wave ceramics, some
amount of asymmetry is likely to exist in the distribution of
0 andp junctions. As long as such asymmetry is not so
large, however, it would not affect an essential feature of the
orbital-glass~chiral-glass! ordering. When there occurs a sig-
nificant amount of asymmetry, some new features could ap-
pear in the ordering process. Such asymmetric case has also
been studied by Monte Carlo simulations, and the results will
be published elsewhere.30

Model II8 is a model of conventionals-wave supercon-
ductors, and is expected to exhibit a standard normal-super
transition. This model was studied by Dusgupta and Halperin
by Monte Carlo simulations.31 Model II is a random version
of the model II8, modelings-wave ceramics.

Next, let us examine the global symmetry of the Hamil-
tonian. In zero external fieldFext50, the Hamiltonian~2.1! is
invariant under global U~1! gauge transformation,
u i→u i1Du, Ai j→Ai j , as well as under globalZ2 time-
reversal transformationu i→2u i , Ai j→2Ai j . In the pseu-
dospin terminology used in Ref. 23, theU~1! gauge transfor-
mation corresponds to global spin rotation, while theZ2
time-reversal transformation corresponds to global spin re-
flection. In nonzero external fieldsFextÞ0, by contrast, the
Hamiltonian is no longer invariant under globalZ2 time-
reversal transformation, thought it still remains invariant un-
der globalU~1! gauge transformation. In other words, an
external magnetic field breaks the time-reversal symmetry
only, preserving the gauge symmetry. Due to this symmetry
property, a magnetic field is expected to be an excellent
probe of chiral order in superconductors or Josephson net-
works. It is important to realize that a magnetic field in Jo-
sephson networks has an entirely different meaning from that
in magnets. In magnets, an external magnetic field enters into
the Hamiltonian via the Zeeman term and breaks theSO(2)
5U(1) spin-rotation symmetry of the Hamiltonian.

In addition to the above global symmetries, the Hamil-
tonian~2.1! also has alocal gauge symmetry. In most of our
simulations, we adopt the ‘‘temporal gauge,’’ following
Domı́nguez, Jagla, and Balseiro.16 In this gauge, it is conve-
nient to introduce gauge-invariant phase difference on each
bond defined by

C i j[u i2u j2Ai j . ~2.4!

Then, the dimensionless Hamiltonian may be written in
terms of these new variables as

H̃[
H

J
52(̂

i j &
J̃i jcosC i j1

1

2L̃ (
p

~F̃p2F̃p
ext!2,

~2.5!

F̃p52(̂
i j &

p

C i j , ~2.6!

F̃p
ext5h, for p on the ^xy& plane,

50, otherwise, ~2.7!
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whereJ denotes the typical magnitude of the Josephson cou-
pling and various dimensionless quantities are defined by

J̃i j5
Ji j
J
, h5

2pHS

f0
, L̃5

2pLI c
cf0

, ~2.8!

while I c is the junction maximum critical current defined by

I c5
2pcJ

f0
. ~2.9!

In the form of Eq. ~2.5!, it is easy to see that in the
strong-coupling limitL→`, our model Hamiltonian reduces
to the noninteracting one since the first term becomes the
sum of independent bond terms and the second term just
vanishes. One may define a local chirality at each plaquette
on the lattice by23–26

kp5
1

2&
(̂
i j &

p

J̃i jsin~C i j !, ~2.10!

where the sum runs over a directed contour along the sides of
the plaquette. Note that the chirality is also a gauge-invariant
quantity. If the plaquettep is frustrated, the local chiralitykp
tends to take a value around61, while if it is unfrustrated, it
tends to take a value around zero. Under the global symme-
try transformations of the Hamiltonian, chirality behaves asa
pseudoscalar: Namely, it is invariant under globalU~1!
gauge transformation, while it changes sign under globalZ2
time-reversal transformation. Due to this symmetry property,
chirality can be regarded as an order parameter of the pos-
sible chiral ordering. Physically, the chiralitykp is a half~p!
vortex, being proportional to the supercurrent circulating
around a plaquettep. It takes either positive or negative
value depending on whether the supercurrent around a loop
circulates either in clockwise or counterclockwise direction.

Local induced flux at a plaquettep is given in the dimen-
sionless form by

f p5
Fp2Fp

ext

f0
. ~2.11!

It is also a pseudoscalar like chirality, whose sign represents
the direction of the current-induced magnetic moment
threading the plaquettep. One may also regard the flux as an
order parameter of the possible chiral order in view of the
fact that the flux has the same symmetry property as the
chirality. However, chirality is perhaps more appropriate as
an order parameter, since in the weak-coupling limitL→0
where the chiral-glass transition has been established to take
place,23 the induced flux vanishes identically while the
chirality remains nontrivial.

Total magnetization along thez axis normalized per
plaquettem, is given by

m5
1

4pSNp
(

pP^xy&
~Fp2Fp

ext!, ~2.12!

where the sum is taken over allNp plaquettes on thêxy&
plane. One can introduce the corresponding dimensionless
quantity by

m̃[
4pS

f0
m5

1

Np
(

pP^xy&
f p . ~2.13!

In small fields, the magnetizationm may be expanded in
powers of the field intensityH as

m~H !5m~0!1xH1x1H
21x2H

31••• . ~2.14!

If there is no symmetry breaking, all terms even inH should
vanish in Eq.~2.14!. The linear susceptibilityx can also be
written as

x[
dm

dH
5

dm̃

d~2h!
5xe1xo , ~2.15!

xe5
pb̃Np

L̃
@^m̃2&#J2

1

4p
, ~2.16!

xo52
pb̃Np

L̃
@^m̃&2#J , ~2.17!

where^•••& represents a thermal average and@•••#J represents
a configurational average over the bond distribution,b̃ being
defined by

b̃5 J̃215
J

kBT
. ~2.18!

Here, even and odd parts of the susceptibility are denoted by
xe andxo , respectively. The linear susceptibilityx is dimen-
sionless in cgs units. Likewise, the dimensionless nonlinear
susceptibilityx̃2 can be written as

x̃2[S f0

4pSD
2

x25
1

6 S f0

4pSD
2 d3m

dH3 5x̃2,e1x̃2,o ,

~2.19!

x̃2,e5
1

6
S pb̃Np

L̃ D 3@^m̃4&23^m̃2&2#J , ~2.20!

x̃2,o52
1

6
S pb̃Np

L̃ D 3@4^m̃3&^m̃&212̂ m̃2&^m̃&216^m̃&4#J .

~2.21!

Note that the abovex2, being proportional to the minus of
the third-harmonic component of the ac susceptibility, is
sometimes denoted asx3 in the literature.

We have performed Monte Carlo simulations based on the
standard Metropolis method for the Hamiltonian~2.5! both
in zero and nonzero external fields. The lattices studied are
simple cubic lattices withL3L3L sites with L54,8,12.
Free boundary conditions are adopted. For the random mod-
els ~model I and II!, sample average is usually taken over
100–1000 independent bond realizations except for some
special cases. In each run, 63104 Monte Carlo steps per spin
is generated, with initial 23104 discarded for thermalization.
For the regular model~model II8!, we have made longer
runs, ~102–2!3104 MCS, which are repeated a few times
with different spin initial conditions and different random-
number sequences. As mentioned, no particular attention has
been paid to the equilibration problem, since the main inter-
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est in the present calculation is not to get full equilibrium
properties of the model, but rather to get information con-
nected to the experimental situation.

III. MONTE CARLO SIMULATIONS IN ZERO FIELD

In this section, the results of our Monte Carlo simulations
for the three types of bond distributions~I!, ~II !, and~II 8! are
presented. In Figs. 1~a!–1~c!, the temperature and size de-
pendence of the zero-field linear susceptibilityx of model I
~d-wave ceramics! is shown for each case of the dimension-
less inductanceL̃50.1, 1, and 10. Herex is estimated from
fluctuations of magnetization in zero external field with use

of Eqs. ~2.15!–~2.17!. The same quantity for model II~s-
wave ceramics! is also displayed in Figs. 2~a!–2~c! for each
case ofL̃50.1, 1, and 10. The correspondingx of the regular
s-wave model~model II8! exhibits essentially the same be-
havior as that of model~II ! and is not shown here. From
these figures, one sees that boths- andd-wave models ex-
hibit a diamagnetic response~x,0!. This diamagnetic be-
havior found ind-wave ceramics is in contrast to the para-
magnetic behavior observed previously for theXY-
pseudospin model ofd-wave ceramics where the screening
effect was neglected.23 For both cases ofd- ands-wave mod-
els, an apparent ordering temperature wherex begins to take
a nonzero value decreases with increasing the inductanceL.
As the system size or the inductance is increased, the value

FIG. 1. The temperature and size dependence of the zero-field
linear susceptibilityx of model I ~d-wave ceramics! for the renor-
malized inductanceL̃50.1 ~a!, 1 ~b!, and 10 ~c!. Full Meissner
value is equal to21/~4p!520.796... .

FIG. 2. The temperature and size dependence of the zero-field
linear susceptibilityx of model II ~s-wave ceramics! for the renor-
malized inductanceL̃50.1 ~a!, 1 ~b!, and 10 ~c!. Full Meissner
value is equal to21/~4p!520.796... .
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of x at low temperature tends to the full Meissner value
21/~4p!.

In fact, there is some subtlety in the sign ofx of the
d-wave model. Closer inspection of Fig. 1 shows thatx of
the d-wave model takes slightly positive value around the
ordering temperature and this behavior is more pronounced
for smaller samples. In order to identify the origin of this
behavior, an even part of the linear susceptibilityxe of the
model I, defined by Eq.~2.16!, is shown in Fig. 3. In contrast
to the full susceptibilityx, the even part is found to exhibit a
paramagnetic behavior~xe.0!. For finite systemsin full
equilibrium, any odd quantity should vanish identically,
namely, one should havexo50 andx5xe . Therefore, our
observation of the positivexe strongly suggests that the ob-
served diamagnetic behavior ofx might in fact be a finite-
time effect and that an equilibriumx of the model I is always
positive for finite systems. By contrast,xo could take a non-
zero value in the thermodynamic limit if some sort of sym-
metry breaking occurs, and the sign ofx could be negative.
Such subtlety found in the sign ofx of the d-wave model
may be related to different signs observed experimentally
between in the FC and ZFC modes. In sharp contrast to this,
no appreciable difference has been observed betweenxe and
x in the case ofs-wave models~model II and II8!.

The temperature and size dependence of an even part of
the zero-fieldnonlinear susceptibilityx2,e of model I ~d-
wave ceramics!, estimated in zero field with use of Eq.
~2.20!, is shown in Figs. 4~a!–4~c! for each case ofL̃50.1, 1
and 10. Due to the numerical difficulty in estimating higher-
order quantities, particularly the odd partx2,o, we could get
here only the even partx2,e with reasonable accuracy. In any
finite system in full equilibrium, one should havex25x2,e.
As can be seen in Figs. 4~a!–4~c!, x2,e exhibits a divergent
behavior with negative sign. This negative divergence ofx2
is similar to the one observed in standard spin-glass
models,18 and to the one previously observed for theXY-
pseudospin model.23 As mentioned, to determine whether
this divergence is related to a finite-temperature transition in
true equilibrium is beyond the scope of the present paper.
Note that the specific heat~not shown here! exhibits no ap-
preciable anomaly as in the case of spin glasses.

For comparison, we showx̃2,e of the s-wave models
~models II8 and II! in Figs. 5 and 6. In theses-wave models,
no appreciable difference has been found betweenx̃2
and x̃2,e. The superconducting transition point determined
from the specific-heat peak forL512 sample, which is dis-
played in Fig. 7, is shown by the arrow in these figures. One
sees that the nonlinear susceptibilities of theses-wave mod-
els exhibit behaviors very different from those of thed-wave
model. The value ofx̃2,e is orders of magnitude smaller than
that of thed-wave model. This is related to the fact that a
magnetic field in superconductors is the field conjugate to the
chirality, but not conjugate to the phase of the superconduct-
ing order parameter itself. The temperature dependence
of x̃2,e is also very different from that of thed-wave model:

FIG. 3. The temperature and inductance dependence of an even
part of the zero-field susceptibilityxe of model I ~d-wave ceram-
ics!.

FIG. 4. The temperature and size dependence of an even part of
the zero-field nonlinear susceptibilityx̃2,e of model I ~d-wave ce-
ramics! for the renormalized inductanceL̃50.1 ~a!, 1 ~b!, and 10
~c!.
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In the regulars-wave model,x̃2,e has a small positive peak at
T5Tc , though for larger inductance, a negative dip develops
slightly aboveTc leading to an asymmetric behavior ofx̃2,e.
As can be seen from Fig. 5, similar asymmetric behaviors
of x̃2,e are observed also for the randoms-wave model with
largerL, while for smallerL ~L̃50.1! no appreciable struc-
ture can be seen. In any case, the nonlinear susceptibilityx̃2,e
of thes-wave models exhibits only a very weak anomaly, or
no appreciable anomaly, at the superconducting transition
point.

A symmetry argument in Sec. I suggests that the diver-
gentlike behavior ofx2 observed ind-wave ceramics should
reflect the random freezing of chirality~circulating supercur-
rent! or spontaneous flux. In order to see this more directly,

we also calculated the Edwards-Anderson-type freezing pa-
rameter for chirality defined by

qk5S 1

Np
(

pP^xy&
@^kp&

2#JD 1/2, ~3.1!

together with a root-mean-square magnitude of the local
chirality at each plaquette defined by

k̄5S 1

Np
(

pP^xy&
@^kp

2&#JD 1/2, ~3.2!

FIG. 5. The temperature and size dependence of an even part of
the zero-field nonlinear susceptibilityx̃2,e of model II8 ~regular
s-wave model! for the renormalized inductanceL̃50.1 ~a!, 1 ~b!,
and 10~c!. Arrow in the figure indicates the transition point ob-
tained from the specific-heat peak for theL512 lattice.

FIG. 6. The temperature and size dependence of an even part of
the zero-field nonlinear susceptibilityx̃2,e of model II ~random
s-wave model! for the renormalized inductanceL̃50.1 ~a!, 1 ~b!,
and 10~c!. Arrow in the figure indicates the transition point ob-
tained from the specific-heat peak for theL512 lattice.
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whereNp5L(L21)2. The calculatedk̄ andqk are shown in
Figs. 8~a! and 8~b!, respectively. One sees from Fig. 8~a! that
the local chirality takes a finite value even at low tempera-
ture, which indicates that the local spontaneous supercurrent
indeed exists in the system.~Large values ofk̄ observed at
higher temperatures are due to thermal fluctuations.! At
higher temperatures chirality frequently changes its sign
leading to smallqk values, while at lower temperatures it
tends to be locked within the observation time leading to an
observed growth ofqk . So, the observed behavior of chiral-
ity is consistent with the expectation that the divergent be-
havior ofx2 is associated with the random freezing of chiral-
ity.

For comparison, we show in Fig. 9 the temperature de-
pendence ofk̄ andqk for model II ~s-wave ceramics!. In this
case,k̄ decreases rapidly at lower temperatures indicating
that the local supercurrent is largely suppressed, whileqk
remains very small even belowTc indicating that the order-
ing of thes-wave model is definitely not of chirality origin.

Essentially the same behavior is expected also for spon-
taneous flux. We also calculated the Edwards-Anderson-type
freezing parameter for spontaneous flux, which is defined by

qf5S 1

Np
(

pP^xy&
@^ f p&

2#JD 1/2, ~3.3!

together with a root-mean-square magnitude of the local
spontaneous flux at each plaquette.

f̄5S 1

Np
(

pP^xy&
@^ f p

2&#JD 1/2. ~3.4!

The calculatedf̄ andqf of model I ~d-wave ceramics! are
shown in Figs. 10~a! and 10~b!, respectively. Essentially the
same qualitative behavior as that of chirality has been ob-
served.

It should be emphasized here thatqx andqf shown above
have been estimated only through finite observation time. At
the moment, it is not clear whether an apparent ordering
temperature observed here ford-wave ceramics corresponds
to a true thermodynamic transition. Further careful calcula-
tions paying attention to equilibration are required to settle
this issue.

IV. MONTE CARLO SIMULATIONS
IN NONZERO FIELDS

Although the main interest in the present paper is an in-
tergranular ordering phenomenonin zero-field limit, we wish
to report in this section some of the results of Monte Carlo
simulations performed under finite magnetic fields. The rea-
son of this is that in real experiments one often has to apply
a finite magnetic field for detection. We are mainly interested
in a weak-field regime where an external flux per loop is
smaller than one flux quantumf0.

One remarkable property of thed-wave model in a weak

FIG. 7. The temperature and inductance dependence of the spe-
cific heat calculated from energy fluctuations of model II8 ~regular
s-wave model!; ~a!, and of model II~randoms-wave model!; ~b!.
The lattice size is equal toL512.

FIG. 8. The temperature and inductance dependence of the root-
mean-square magnitude of the local chirality of model I~d-wave
ceramics!; ~a!, and of the Edwards-Anderson-type freezing param-
eter of the chirality of model I;~b!.
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applied field is the appearance of the PME, as was observed
by Domı́nguez, Jagla, and Balseiroet al.We also calculated
field-cooled ~FC! and zero-field-cooled~ZFC! susceptibili-
ties,xFC andxZFC, of model I ~d-wave ceramics! in a weak
field, and reproduced this effect. The obtained results are
displayed in Fig. 11. The lattice size and the inductance are
set toL58 andL̃51, while the configurational average have
been taken over 50 samples. In the FC runs, the temperature
is lowered stepwise under a constant applied field. At each
temperature, 63104 MCS runs have been generated, among
which initial 23104 MCS are used for thermalization and
subsequent 43104 MCS are used for calculating the field-
cooled magnetizationmFC. The field-cooled susceptibility is
estimated with use of Eq.~2.15! xFC5m̃FC/(2h). In the ZFC
runs, the system is first quenched to a low temperature (T
50.03J) in zero field and is thermalized during 63104

MCS. Then, a static dc field is switched on and the tempera-
ture is increased stepwise in a constant dc field under the
same condition as in the FC runs. The zero-field-cooled sus-
ceptibility is estimated fromxZFC5m̃ZFC/(2h).

As can be seen from Fig. 11, a paramagnetic behavior can
clearly been seen in the FC runs in the field rangeh&1,
roughly corresponding toFext;f0/4. The paramagnetic ten-
dency is more pronounced for smaller fields. By contrast,
xZFC remains diamagnetic at low temperatures for any value
of the dc fields studied. These observations are essentially
the same as the previous observation by Domı´nguez, Jagla,

and Balseiro for different parameter values~L̃58 andc50.3,
c being the number density ofp junctions!.16

At the end of some of the FC runs~h50.1 and 0.2!, we
turned off an external field at the lowest temperature reached
(T50.05J), and recorded the resulting remanent magnetiza-
tion mrem. A positive value ofmrem was obtained, which
satisfied the relationmrem.mFC2mZFC, consistent with
some experiments on high-Tc ceramics.

32,33This observation
indicates the occurrence of flux trapping in ourd-wave
model.

In earlier simulation, it was suggested that the paramag-
netic behavior might occur only for larger inductanceL̃*1.16

In contrast to this suggestion, we observed a clear paramag-
netic effect even for smaller inductance. As an example, we
show in Fig. 12 the temperature dependence ofxFC for a very
small inductanceL̃50.1. Still, one has a clear paramagnetic
response in the field-cooling mode, although its magnitude is
considerably suppressed compared with theL̃51 case. It is
likely that the PME persists even for infinitesimal inductance
at least in the present model.34

In this connection, it should be noted that, by analyzing
the properties of a frustratedp loop consisting of only single
p junction, Sigrist and Rice found that there exists a critical
value of the inductance,L̃c51, above which spontaneous
supercurrent arises but below which there is no spontaneous
supercurrent.8 In Appendix A, we made a similar analysis for
a frustratedp loop consisting offour junctions, nothing but

FIG. 9. The temperature and inductance dependence of the root-
mean-square magnitude of the local chirality of model II~s-wave
ceramics!; ~a!, and of the Edwards-Anderson-type freezing param-
eter of the chirality of model II;~b!.

FIG. 10. The temperature and inductance dependence of the
root-mean-square magnitude of the local flux of model I~d-wave
ceramics!; ~a!, and of the Edwards-Anderson-type freezing param-
eter of the flux of model I;~b!.
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an elementary frustrated plaquette of our present lattice
model. It is found that there is no critical value ofL in this
case~Lc50! and spontaneous supercurrent arises even for
infinitesimal inductance in contrast to the case analyzed by
Sigrist and Rice. This observation naturally explains why the
PME has been observed even for very small inductance in
our present simulation.

In Fig. 13, the temperature and field dependence ofxFC
andxZFC of the model II~s-wave ceramics! is shown. Again,
we setL̃51 andL58. The procedure of the calculation is the
same as in the case of model I. The lowest temperature in the
ZFC runs has been chosen to beT50.3J. As expected, the
response here is always diamagnetic. Furthermore, there is
no appreciable difference betweenxFC andxZFC for smaller
dc fields ~h&0.2!: Thesex values also agree withx calcu-
lated from magnetization fluctuations in zero field in Sec. III
~see Fig. 2!. Remanent magnetizationmrem were also calcu-
lated at the end of some of the FC runs~h50.1 and 0.2! as in
the case of model I. Within statistical errorsmrem turned out
to be zero, which is consistent with the relation
mrem5mFC2mZFC.

For completeness, we also simulated the case of rather
strong external fieldh510 for model II ~s-wave ceramics!,
corresponding to the case of more than one flux quantum per
plaquette~h52p!. With this amount of external field, nature
of the ordering appears to be considerably changed from the

zero-field case: The calculated magnetization becomes
slightly positive at low temperatures without any appreciable
anomaly in the specific heat. Chirality takes fairly large val-
ues at low temperatures even for thes-wave model, reflect-
ing the existence of frustration due to magnetic fields.

Note that the nature of ordering under magnetic fields is

FIG. 12. The temperature dependence of the field-cooled sus-
ceptibility of model I~d-wave ceramics! with a smaller inductance
L̃50.1 for several values of external dc fields. The lattice size is
equal toL58.

FIG. 13. The temperature dependence of the field-cooled sus-
ceptibility ~a! and of the zero-field-cooled susceptibility~b! of
model II ~s-wave ceramics! for several values of external dc fields.
The lattice size is equal toL58 and the renormalized inductance is
equal toL̃51.

FIG. 11. The temperature dependence of the field-cooled sus-
ceptibility ~a! and of the zero-field-cooled susceptibility~b! of
model I ~d-wave ceramics! for several values of external dc fields.
The lattice size is equal toL58 and the renormalized inductance is
equal toL̃51.
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very different from that in zero field. In particular, in the case
of d-wave model, there cannot be a chiral-glass transition
under magnetic fields. This is simply due to the fact that the
Hamiltonian under nonzero magnetic fields~gauge-glass
Hamiltonian! doesnot possess a discreteZ2 time-reversal
symmetry any longer, only a continuousU~1! gauge symme-
try being left. A possible ordered state under magnetic fields,
a vortex-glass state,35 is characterized by the spontaneous
breaking of thisU~1! gauge symmetry under fields. Although
a stable vortex-glass phase has been expected in the absence
of screening,36 a recent calculation suggests that in the pres-
ence of screening there might not exist a stable vortex-glass
phase in external fields.22 Anyway, the application of an ex-
ternal field of orderf0/4 per loop completely changes the
nature of zero-field intergranular orderings~chiral-glass or-
dering ind-wave ceramics or standard superconducting tran-
sition in s-wave ceramics!.

We also studied the spatial distribution of flux inside the
sample. In Figs. 14~a! and 14~b!, such spatial flux distribu-
tions obtained in the FC and ZFC runs are displayed for each
case ofd- ands-wave ceramics~models I and II! as a func-
tion of x, a distance from the surface in units of lattice spac-

ing. For both cases ofd- ands-wave models, we setL512,
L̃51 andh50.2, the configuration average being taken over
40 samples and four equivalent directions along the6x and
6y axes. In the ZFC runs, on switching on an external field,
flux gradually enters into the sample from the surface, while
in the FC runs flux is gradually squeezed out of the sample
from the surface. One sees from Fig. 14 that the flux distri-
bution of thes-wave model does not depend on FC/ZFC
modes, and thus, is expected to be fairly close to the equi-
librium distribution. By contrast, in the case of thed-wave
model, some difference is observed between the FC and ZFC
runs: In the FC runs, flux is distributed rather uniformly fully
penetrating into the sample, while in the ZFC runs, flux pen-
etration remains incomplete at low temperatures due to the
flux pinning. @Here note that the spatial flux distribution of
each individual sample of thed-wave model is much more
erratic reflecting the particular distribution of frustrated
plaquettes inside the sample. Rather smooth distribution dis-
played in Fig. 14~a! has been obtained only after the sample
average.#

One phenomenological model often used in giving spatial
flux distributions inside the sample is the so-called critical-
state model:37–42 It is a strongly nonequilibrium model in
which the induced supercurrent inside the sample is assumed
to be either6I c or 0 depending on its history. A large su-
percurrent inside the sample is supposed to be maintained by
the strong pinning effect. Spatial flux distribution calculated
by applying such a critical-state model to the ZFC runs of the
present lattice model is also displayed in the figure.~Some
of the derivation is given in Appendix B.! Note that the
critical-state model is a macroscopic model making no dis-
tinction betweens-wave andd-wave pairing symmetries,
and gives the same flux distribution for both cases. From the
figure, one sees that the flux distribution observed in our
present simulation is much more gradual than the one ex-
pected from the critical-state model: Namely, net supercur-
rents circulating inside the sample are much smaller than
those expected in the critical-state model. It means that flux
pinning is certainly happening in ourd-wave model, but its
magnitude is much weaker than the type of strong pinning
assumed in the critical-state model.

V. SIMULATIONS OF AC SUSCEPTIBILITIES

So far, we have concentrated our attention on the static
properties of the model. In the present section, we study the
dynamic properties of the model, particularly the linear ac
susceptibility, by Monte Carlo technique. While Monte Carlo
simulations involve no real dynamics, one can still expect
that they give useful information about the long-time behav-
ior of the system.

From the experimental side, measurements of ac suscep-
tibilities have been one of the useful tools to study conven-
tional as well as high-Tc superconductors.2,3,41,43–49It has
been known that in these superconducting materials the real
part of the linear ac susceptibilityx8 shows a diamagnetic
behavior, whereas the imaginary partx9 shows a maximum
below a critical temperature. On increasing the ac-field in-
tensity, or on decreasing the ac-field frequency, the maxima
of x9 tend to shift toward lower temperature. Several models,
including the critical-state model,37–42 superconducting-loop

FIG. 14. Spatial flux distributions at several temperatures inside
the sample of model I~d-wave ceramics!; ~a!, and of model II
~s-wave ceramics!; ~b!, for both cases of the field-cooling~FC! and
zero-field-cooling~ZFC! runs. Applied dc field is equal toh50.2.
Distance from the surface of the sample,x, is measured in units of
lattice spacing. The data are averaged over 40 independent bond
realizations and over four equivalent directions~6x and6y axes!.
The flux distribution calculated by applying the phenomenological
critical-state model to the ZFC runs is also shown~see text and
Appendix B!.
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model,43,48,50–52and superconducting-glass model,1–3,47have
been proposed to account for those and other properties of
superconducting materials.

In this section, we simulate model I~random d-wave
model! and II8 ~regulars-wave model! under oscillating ac
fields of magnitudeHac and of frequencyv,

H5Haccos~vt !, ~5.1!

in order to obtain the dynamical properties of the model,
particularly the linear ac susceptibilityx5x81ix9. It should
be noted that the ac susceptibilities of a similar Josephson-
network model with finite self-inductance were numerically
investigated by Wolf and Majhofer.53 However, these au-
thors dealt with thes-wave system in two dimensions, and
also applied very strong ac fields corresponding to
HacS.100f0. In the present paper, we simulate both the
s-wave andd-wave systems in three dimensions, and apply
much weaker ac fields corresponding toHacS,f0.

Via the dimensionless magnetization defined by Eq.
~2.13!, m̃, the real and imaginary parts of the ac susceptibil-
ity x8~v! andx9~v! are calculated as

x8~v!5
1

phac
E
0

2p

m̃~ t !cos~vt !d~vt !,

~5.2!

x9~v!5
1

phac
E
0

2p

m̃~ t !sin~vt !d~vt !,

wheret denotes the Monte Carlo time and the dimensionless
ac-field intensityhac is normalized as in Eq.~2.8!. In this
section, we have chosen the gauge where all the bond vari-
ablesAi j along thez direction are fixed to be zero, and have
set the dimensionless inductance to beL̃51. The sample
average is taken over 10–20 independent bond realizations.
Other conditions are the same as in the previous sections.

x~v! has been estimated following the procedure in Refs.
54 and 55: Namely, at the beginning of a given Monte Carlo
run at each temperature, we first switch on the ac field~5.1!.
Then, after waiting for initialt0 Monte Carlo steps per spin
~MCS!, we start to monitor the time variation of the magne-
tization, t0 being chosen so that all transient phenomena can
be considered extinct. We sett0 to be 23104 MCS in our
following simulations. After passing the pointt5t0, m̃(t) is
averaged over typically 200–1500 periods, each period con-
taining tT MCS ~tT52p/v!. The real and imaginary parts of
the susceptibility are then extracted via Eq.~5.2!.

The results of our calculations on model I~random
d-wave model! with L58 are presented in Fig. 15. We set
hac50.1, corresponding to.0.016 flux quantum per
plaquette. Smaller values ofhac have turned out to leave the
results almost unchanged. As can be seen from Fig. 15, the
real partx8~v! shows a diamagnetic behavior. Since the ac
susceptibilities for smallv would be closer to the zero-field-
cooled susceptibilities rather than the field-cooled suscepti-
bilities, the diamagnetic behavior observed here seems con-
sistent with our dc results in Sec. IV. As expected, on
decreasingv, x8~v! approaches the static susceptibility
x~v50!.

One sees from the figure that both the real partx8 and the
imaginary partx9 show a significantv dependence. In par-
ticular, the location of the peak ofx9 shifts toward lower

temperature very quickly, and the shape of the peak sharpens
up. In fact, the observed behavior ofx9 is reminiscent of the
x9 recently observed in the spin-glass model~three-
dimensional6J Ising model!,55 and suggests the existence
of a slow dynamics in these systems. Qualitatively similarv
dependence has also been observed in experiments, but to
much less extent.2,46,47Presumably, the observed quantitative

FIG. 16. The temperature and ac-field intensity dependence of
the real and imaginary parts of the linear ac susceptibility,x8~v!
and x9~v!, of model I ~d-wave ceramics! with L58, L̃51, and
v50.001. The squares, triangles, hexagons, and circles represent
hac50.1, 0.35, 1.0, and 3.0, respectively.

FIG. 15. The temperature dependence of the real and imaginary
parts of the linear ac susceptibility,x8~v! and x9~v!, of model I
~d-wave ceramics!. The dimensionless parameters arehac50.1 and
L̃51, and the system size isL58. Open squares, black hexagons,
triangles, and squares representv50 ~static case!, 0.001, 0.01, and
0.025, respectively. The error bars are smaller than the symbols.
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difference simply reflects the fact that our ac fields corre-
spond to extremely rapid oscillations in real time.

Thehac dependence ofx of model I is shown in Fig. 16.
Here we setL58 andv50.001. On decreasinghac, the peak
of x9 moves toward higher temperature. This tendency is
consistent with experimental results3,39,41,43,44,47,48and also
with a few phenomenological models, e.g., critical-state
model39,40and superconducting-loop model.52 Thus, a simple
lattice model of a Josephson-junction array with self-
inductance is found to reproduce qualitative features of ac
susceptibility experiments. The size dependence ofx of
model I has also been studied forhac50.1 andv50.001, and
the results are presented in Fig. 17. The peak ofx9 moves
toward higher temperature as the system size is increased.

Our results for model II8 ~regular s-wave model! with
L58 andhac50.1 are shown in Fig. 18. As expected, the real
part shows a diamagnetic behavior while the imaginary part
exhibits a broad maximum. If one compares the results with
the corresponding results of model I in Fig. 15, several
points are noticed. At higher frequencies, there is very little
difference between thex of the d- and s-wave models. In
fact, at the highest frequency studiedv50.025,x of the two
models are similar even quantitatively. On the other hand, at
lower frequencies, clear differences shows up: First, the
magnitude ofx9 of the s-wave model becomes an order of
magnitude smaller than that of thed-wave model, indicating
that thed-wave model exhibits much stronger dissipation in
the low-frequency regime. This tendency is expected to be
more enhanced if one goes further to lower frequencies. Sec-
ond, thev dependence observed in the peak position ofx9 as
well as in the onset temperature of diamagnetism inx8 is
much less in thes-wave case than in thed-wave case. Slow
dynamics which give rise to the significantv dependence in
thed-wave model seem to be absent in thes-wave model.

Unfortunately, in the present dynamical simulation we

could not calculate with reasonable accuracy thenonlinear
ac susceptibility, and thus, could not directly probe the pos-
sible chiral-glass ordering ind-wave ceramics. Nevertheless,
a close similarity observed between thex9 of d-wave ceram-
ics and that of the spin glass as well as strong dissipation
observed in the low-frequency regime ofd-wave ceramics
are consistent with the chiral-glass picture discussed in the
previous sections based on the static results.

VI. IMPLICATIONS TO EXPERIMENTS
ON HIGH- Tc CERAMICS

In this section, on the basis of the results obtained in the
previous sections, we wish to discuss several possible impli-
cations to experiments on high-Tc ceramic superconductors.
One of the most prominent characteristics of the chiral-glass
ordering is a negative divergence of the zero-field nonlinear
susceptibility. Experimentally,x2 is often measured by the ac
technique, in which one applies an oscillating ac field,
h(t)5haccos(vt), and measures the coefficient of the third-
harmonic component of the response,x~3v!haccos(3vt).
Then the nonlinear susceptibilityx2 is related tox~3v! via
x2'2x~3v!. Although the predicted divergence ofx2 is a
static property in zero field, v→0 andhac→0, one needs to
apply a detection field of finite amplitudehac and finite fre-
quencyv in real ac measurements. Here it is important to
make sure thathac and v are kept sufficiently small: For
example, in order to probe intrinsic zero-field critical prop-
erties, the value ofhac should certainly be much smaller than
f0/4 per loop. Under certain circumstances, this requirement
could be rather severe. If the mean diameter of a loop~com-
parable to grain size! is of order 10mm, then the value ofhac
should be much smaller than 50 mG. If the mean diameter of

FIG. 17. The temperature and size dependence of the real and
imaginary parts of the linear ac susceptibility,x8~v! andx9~v!, of
model I ~d-wave ceramics! with hac50.1, L̃51, andv50.001. The
triangles, hexagons, and squares representL54, 8, and 12, respec-
tively.

FIG. 18. The temperature dependence of the real and imaginary
parts of the linear ac susceptibility,x8~v! andx9~v!, of model II8
~regulars-wave model!. The dimensionless parameters arehac50.1
and L̃51, and the system size isL58. Open squares, black hexa-
gons, triangles, and squares representv50 ~static case!, 0.001,
0.01, and 0.025, respectively.
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a loop is of order 1mm, this condition is somewhat loosened
to hac!5 G. Perhaps, in the largerhac or v regime, the dif-
ference between thed- ands-wave models would be washed
out as seen in Sec. V, and the resulting nonequilibrium state
may well be described by the macroscopic critical-state
model. The negative divergence ofx2 could only be seen in
equilibrium, or at least near equilibrium condition in zero-
field limit.

It should be mentioned here that the critical-state model
also gives rise to a peak inx2 if one further assumes the
temperature dependence of the Josephson coupling Ji j .

37–42

However, such a peak expected in the critical-state model
with temperature dependentJi j is a rounded one not related
to any singularity, unlike the divergent behavior observed in
our model I. ~Note that, since we did not consider any tem-
perature dependence ofJi j in our present model, the negative
divergence ofx2 observed in the present simulation is not
explicable by the critical-state model anyway.!

At the moment, there is at least one experimental result
which appears to support the chiral-glass picture. Thus, Mat-
suuraet al. recently measured the nonlinear susceptibility of
ceramic samples of YBa2Cu4O8 consisting of single-crystal
grains of diameter less than 1mm.49 Two well separate tran-
sitions were observed: The one at a higher temperature asso-
ciated with the intragranular ordering and the other at a lower
temperature with the intergranular ordering.33 While both
xFC and xZFC were diamagnetic without any paramagnetic
behavior, Matsuuraet al. observed a negatively divergent
anomaly ofx2 at the intergranular transition point with using
the ac field ofhac510 mG and f5v/~2p!50.1 Hz. This
rather sharp anomaly was interpreted by these authors as
arising from an intrinsic intergranular critical phenomenon,
possibly associated with the chiral-glass transition. Further
detailed experimental studies, including static and dynamic
scaling analyses,56 are highly desirable. It is also worthwhile
to try systematic experimental surveys for other types of
high-Tc ceramics including Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O
1-2-3 compounds.

The PME may also be regarded as an attribute ofd-wave
ceramic superconductors. While observation of the PME
may be regarded as a hint of the nontrivial pairing
symmetry,8 the converse is not true: Namely, as discussed
below, anisotropic~d wave! ceramic superconductors may
well exhibit diamagnetic behavior only as many experiments
on high-Tc ceramics have shown. It should also be noted that
Thompsonet al. recently reported the observation of the
PME in conventional superconductors, niobium, and as-
cribed it to the strong flux pinning at the surface as well as to
the geometric shape of the sample.57

Since the PME has clearly been observed in the present
model, the reason why the PME is observed so rarely in real
experiments should be attributed to the effects not taken into
account in our model. One possible cause might be a dia-
magnetic contribution coming fromintragranular supercur-
rents which have totally been neglected in our model. An-
other source may be the possible field and temperature
dependence of the Josephson couplingJi j which have also
been neglected in the present model.

In any case, it should be emphasized that the mere sign of
x depends on many nonuniversal details of the system. Thus,
the mere sign ofx is also not an indicator of the chiral-glass

state: In the chiral-glass state in real ceramics,xFC could be
either positive or negative. It is also completely possible that
the state showing a positivexFC, which one may regard as
being in the orbital-glass state, doesnot exhibit a negative
divergence ofx2 and isnot in the chiral-glass state. In fact,
as can been seen from Fig. 11~a!, a positivexFC is realized
well above the intergranular ordering temperature, which in-
dicates that the intragranular superconductivity alone is
enough to cause the positivexFC.

8,17

In sharp contrast to the sign ofx, the negative divergence
of x2 is expected to be auniversal propertywhich should be
robust to most of the details of the system as long as there
occurs an intergranular chiral-glass ordering. Since the be-
havior ofx2 of the s-wave system has turned out to be very
different from that of thed-wave system, one may use the
behavior ofx2 at the intergranular transition point as an in-
dicator of the pairing symmetry as proposed in Ref. 23.58

One other experimental method which might give useful
information on the possible chiral-glass ordering is muon
spin relaxation~mSR!. The chiral-glass state is characterized
by frozen-in circulating supercurrents and orbital momentsin
zero external field. Such moments are distributed spatially
random, but remain stable over a long period of time. Since
the origin of possible time-reversal-symmetry breaking
comes from weak links, not from the bulk superconducting
order parameter, it is essential to perform measurements on
ceramic samples containing sufficiently many weak links,
rather than on high-quality single crystals.

VII. SUMMARY AND DISCUSSION

Intergranular ordering phenomena of ceramic supercon-
ductors are studied by Monte Carlo simulations on a three-
dimensional lattice model of a Josephson-junction array with
finite self-inductance. Both cases ofd-wave ands-wave sys-
tems are studied. In the case ofd-wave ceramics, intrinsic
frustration effects combined with quenched randomness lead
to the glassy behavior reminiscent of the spin glass even in
zero field.

The main finding of the present simulation is that the
nonlinear susceptibility ofd-wave ceramics exhibits a nega-
tive divergence indicative of the occurrence of a cooperative
phase transition. The calculated Edwards-Anderson-type
freezing parameter of chirality and of flux has shown that
this cooperative phenomenon is associated with the random
freezing of chirality or of spontaneous flux~chiral-glass tran-
sition proposed in Ref. 23!. Thus, a globalZ2 time-reversal
symmetry appears to be broken at least within a finite obser-
vation time of simulations. It remains to be seen whether the
observed cooperative phenomenon is a true thermodynamic
phase transition at a finite temperature or a dynamical freez-
ing phenomenon reflecting slow dynamics associated with a
zero-temperature transition.

Dynamical simulations on the linear ac susceptibility have
revealed a close similarity between the ordering ofd-wave
ceramics and that of the spin glass, particularly in the behav-
ior of the imaginary part of the ac susceptibility. It is also
found that thed-wave model exhibits much stronger dissipa-
tion than thes-wave model in the low-frequency regime.

Although our present simulation ofd-wave ceramics has
been made for a lattice model with some specific bond dis-
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tribution ~6J distribution!, the above physical conclusion
would not depend on the details of the bond distribution.
Essential ingredients are~i! three-dimensional connectivity
of weak links,~ii ! frustration,~iii ! randomness, and~iv! time-
reversal symmetry in the Hamiltonian~chiral degeneracy!.

In sharp contrast to such glassy behavior found ind-wave
ceramics,s-wave models~both random and regular! exhibit a
conventional normal-super phase transition accompanied
with a sharp anomaly in the specific heat. This transition is
associated with a spontaneous breaking of globalU~1! gauge
symmetry which has nothing to do with the chirality. The
zero-field nonlinear susceptibility shows a behavior very dif-
ferent from that ofd-wave ceramics: It exhibits only a very
weak anomaly~positive peak, asymmetric behavior, etc.! or
no appreciable anomaly at all at the superconducting transi-
tion point.

Recent experiments strongly suggest that cuprate high-Tc
superconductors are anisotropic or unconventional supercon-
ductors characterized by the non-s-wave pairing
symmetry.5–7 At present the most promising symmetry ap-
pears to bedx22y2. There also exists a strong experimental
evidence that heavy fermion superconductors are also aniso-
tropic superconductors.59 Although we have described our
model I asd-wave ceramics in the present paper, essentially
the same physical results are expected for other types of
non-s-wave symmetries such asp wave.60 The essential in-
gredient is that the superconducting order parameter has
nodes on the Fermi surface where it changes sign. In that
sense, even an extended-s-wave state could exhibit the same
behavior as long as nodes appear on the Fermi surface~there
are eight such nodes in contrast to four in the case ofd
wave!. For all these anisotropic superconductors, the nature
of the chiral-glass ordering would be rather insensitive to the
details of the order parameter: For example, ceramics with
dx22y2 anddxy pairing symmetries would exhibit essentially
the same ordering behavior.

Recently, Sigrist and co-workers and Tanaka and Kashi-
waya argued that although the bulk order parameter of
high-Tc superconductors does not break the time-reversal
symmetry~dx22y2 waves!, the one at the Josephson junction
or at the interface might break the time-reversal symmetry
spontaneously.28,29It should be emphasized that in these sce-
narios the time-reversal symmetry of the junction Hamil-
tonian itself is preserved, i.e.,E(C)5E(2C) or I (C)5
2I (2C), and only the ‘‘state’’ spontaneously breaks the
time-reversal symmetry. In such a case, although the result-
ing junction-Hamiltonian no longer has a local energy mini-
mum at 0 orp, symmetry properties of the Hamiltonian re-
main the same as the model studied here, bothU~1! andZ2
symmetries being kept intact. Thus, one expects essentially
the same type of chiral-glass transition characterized by the
spontaneous breaking of globalZ2 time-reversal symmetry
even for such fractional-junction array.

Recent finding of anisotropic superconductivity in
high-Tc cuprates and heavy fermions opens up a valuable
opportunity to study thermodynamic properties of a new
state of matter. Clearly, further experimental as well as theo-
retical studies are required to fully explore this interesting
possibility.
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APPENDIX A: GROUND-STATE PROPERTIES OF AN
ISOLATED FRUSTRATED PLAQUETTE

In this appendix, we analyze the ground-state properties
of an isolated frustrated plaquette, an elementary unit of our
lattice model. The plaquette consists of four bonds~junc-
tions! among which one is ap junction with negative cou-
pling constant2J,0, and other three are 0 junctions with
positive coupling constanteJ.0: See Fig. 19. Here, an arbi-
trary positive number 0,e,` has been introduced, while
our original model corresponds toe51. By this extension, a
frustrated loop with a singlep junction previously analyzed
by Sigrist and Rice8 can be incorporated into the model sim-
ply by taking the limite→`. For simplicity an external mag-
netic field is assumed to be zero, though an extension to
finite fields is straightforward.

In the temporal gauge, the dimensionless Hamiltonian
~energy! of a plaquette is given

H̃5cosC12cosC22cosC32cosC4

1
1

2L̃
~C11C21C31C4!

2, ~A1!

where we denote the gauge-invariant phases asC1 atp junc-
tion, and asC2;C4 at 0 junctions. Other notations are the
same as in Sec. II. MinimizingH̃ with respect toC1;C4,
we get four coupled equations. After a little algebra, one sees
that the ground-state configuration should satisfy the rela-
tions

FIG. 19. An isolated frustrated loop consisting of four junctions,
one of which is ap junction of magnitude2J and the other three
are 0 junctions of magnitudeeJ with 0,e,`. The casee51 cor-
responds to an elementary frustrated plaquette of our model I, while
the casee5` corresponds to the frustrated loop with singlep junc-
tion analyzed by Sigrist and Rice~Ref. 8!.
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C25C35C45C, C15sin21~2e sinC!, ~A2!

with C being determined by solving the equation

2e sinC5y~C![3C1sin21~e sinC!2p. ~A3!

By analyzing the functional form ofy~C!, one sees that ife
is smaller than three, this equation always has doubly degen-
erate solutionsC56C* which correspond to the chiral
states with mutually opposite chiralities or fluxes. A sponta-
neous moment~either1 or 2! arises for an arbitrary value
of the inductance. Ife is larger than three, on the other hand,
there appears a finite critical value of the inductance
L̃c~e!512~3/e!: For a larger inductanceL̃.L̃c~e!, there
again exist doubly degenerate solutionsC56C* , while for
smaller inductanceL̃,L̃c~e!, only one trivial solution exists
atC50 corresponding to the achiral state without spontane-
ous supercurrent or flux. An elementary frustrated plaquette
of our original lattice model~e51! corresponds to the case
where spontaneous moment arises for an arbitrary value of
inductance, while a single-junction loop analyzed by Sigrist
and Rice~e5`! corresponds to the case where spontaneous
moment does not occur for smaller inductanceL̃,L̃c~e!. In-
deed, if one setse5` in the expression ofL̃c , one recovers
the critical value obtained by Sigrist and Rice,8 L̃c51.

Physically, the above result suggests that spontaneous or-
bital moments could arise, in principle, even for smaller in-
ductance, particularly in the type of ceramic samples where
weak links of nearly the same magnitude are distributed
densely.

In the casee51, chirality and spontaneous flux are calcu-
lated in the limits of small and large inductances as

k'61, f'6
L̃

2&p
, for L̃!1, ~A4!

k'6
&p

L̃
, f'6

1

2
, for L̃@1. ~A5!

Note that, for smaller inductance, spontaneous flux remains
nonzero but becomes small as can be seen from Eq.~A4!.
Therefore, in real ceramic samples where one has an addi-
tional diamagnetic contribution from intragranular supercur-
rents, which has been neglected in the present model, a small
paramagnetic contribution arising from the intergranular su-

percurrents might easily be masked. Therefore, in practice,
moderately large inductance would be necessary to observe
the paramagnetic behavior.

APPENDIX B: CRITICAL-STATE MODEL

In this appendix, the phenomenological critical-state
model37–42 is applied to our lattice-model Hamiltonian, to
calculate the spatial flux distribution inside the sample. As-
suming that the local physical quantities depend only on the
distance from the surface of the samplex, which is measured
in units of lattice spacingd, the Maxwell equation can be
written as

dBz~x!

d~xd!
52

4p

c
j y~x!, ~B1!

whereBz(x) is a magnetic flux density andj (x) is a local
current density. Here a magnetic field is applied along thez
direction and the current flows along they direction. With
settingI (x)5d2 j (x) andL54pS/d, Eq. ~B1! can be rewrit-
ten in the dimensionless form as

dF̃~x!

dx
52L̃

I ~x!

I c
. ~B2!

In the critical-state model, one simply assumes that the
current inside the sample is equal to either6I c or 0 depend-
ing on the history. In the case where a static external field is
switched on as in the case of ZFC runs,I (x) should be equal
to I c or 0. Remember that in our lattice modelI c has been
chosen constant independent of magnetic field~and of tem-
perature!, which corresponds to the simplest version of the
critical-state model~Bean’s model37!. Thus, settingI (x)5I c
or 0, one has

dF̃~x!

dx
52L̃ or 0, ~B3!

which gives the flux distributionindependent of temperature,

F̃~x!5h2L̃x, for 0,x,h/L̃,

50, for x.h/L̃. ~B4!
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