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Static and dynamic properties of the intergranular ordering of ceramic superconductors are studied by Monte
Carlo simulations on a three-dimensional lattice model of a Josephson-junction array with finite self-
inductance. Both cases dfwave ands-wave pairing symmetries are studied. In the casd-ofave ceramics,
intrinsic frustration effects combined with quenched randomness lead to the glassy behavior reminiscent of the
spin glass even in zero magnetic field. It is found that the zero-field nonlinear susceptibility exhibits a nega-
tively divergent behavior, suggesting the occurrence of a cooperative transition into an ordered state charac-
terized by the random freezing of chirality or flux. In this “chiral-glass” state, glabatime-reversal sym-
metry appears to be broken spontaneously with keeping {ilegauge symmetry. Dynamic simulations on the
linear ac susceptibility suggest thdtwave ceramics exhibits much stronger dissipation tharave ceramics
in the low-frequency regime. In the casessfvave ceramics, standard superconducting transitions with broken
U(1) gauge symmetry occurs where nonlinear susceptibility exhibits only a very weak anomaly. Implications
to experiments on higfiz. ceramics are discuss€0163-182896)07725-9

[. INTRODUCTION compoundgparamagnetic Meissner effectWhen one mea-
sures the field-cooled susceptibilig¢c in small dc fields for
There has been a continual interest in the ordering phesertain highT. samples,y.c becomesositive at low tem-
nomena of ceramic or granular superconductors both fronperatures, quite contrary to the standard Meissner etfétt.
experimental and theoretical sides. Ceramic superconductoMeanwhile, the zero-field-cooled susceptibility-c remains
are often modeled as a weakly coupled random Josephs@iways negative. The frustration effect inherent to odd rings
network consisting of superconducting grains. Recently, inconsisting of suchr junctions gives rise to spontaneous cir-
terest in these materials has been renewed by the discovecylating supercurrent and orbital moment even in zero exter-
of high-T. superconductors, since these cuprate materials ameal field, which may cause the paramagnetic behavior ob-
often ceramics. In fact, soon after the experimental discovergerved experimentally.
of high-T, superconductors Ba-La-Cu-O, Mer, Takashige, In fact, the appearance of spontaneous supercurrents and
and Bednorz reported that this material exhibits a glassy bahe paramagnetic behavior had been anticipated by several
havior reminiscent of the spin glas&lthough many experi- theorists prior to the experimental observation of the para-
mentalists have continuously observed a close analogy to thmeagnetic Meissner effedPME), although in these earlier
spin glass since then? true origin of the observed spin- theoretical studies this was not necessarily related to the un-
glass-like behavior in ceramic high: superconductors has conventional pairing symmet?-*° Kusmartsev called a
yet to be clarified. state in ceramic superconductors characterized by orbital
In recent years, there accumulated a considerable amouparamagnetism and superconductivity an ‘“orbital-glass”
of experimental evidence that high-cuprate superconduct- state!® A recent numerical simulation on an orbital-glass
ors are “anisotropic” or unconventional superconductorsmodel by Dommguez, Jagla, and Balseiro has successfully
with the nons-wave pairing symmetry-’ Most promising reproduced the paramagnetic  behavior  observed
pairing symmetry appears to lugz_2, with four nodes on experimentally® _
the Fermi surface. Naturally, such anisotropic nature of the However, the true nature of an “orbital-glass state” and
superconducting order parameter is expected to have a préf an “orbital-glass transition” still remains largely ambigu-
found effect on the ordering of ceramic systems because theus. The picture by Sigrist and Rice is essentially a single-
property of Josephson junctions is sensitive to the phase difoop picture in which the interactions between loops are
ference of the Cooper-pair wave functions on both sides ofifelevant? In their scenario, when the temperature is low-
the junction. In particular, if the crystallographi and b ered across the superconducting transition temperature of
axes are connected at the junction, the Cooper pair acquirese&ch grainT¢', xgc changes its sign from negative to posi-
phase shift ofr across the junctiofir junction).2 One may tive at a certain temperaturd,,, slightly below TZ". It
also regard ther junction as a junction with amegativeJo-  should be noted that such a change of sigy&f, which is
sephson coupling<<0. This should be contrasted to the stan-often regarded as a measure of the orbital-glass transition
dard 0O junction with a positive Josephson coupling0. point, is a crossover not related to any intergranyiiarer-
Sigrist and Rice invoked suchr junctions arising from loop) cooperative phenomena. In this picture, the PME arises
thed,2_,2 pairing symmetry as a physical origin of the para-as a property of an ensemble of noninteracting loops if there
magnetic behavior observed experimentally in some fAigh- occurs anintragranular superconducting transition. In fact,
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many of the experimental results on the PME forductors. Third, we study not only static properties but also
Bi-Sr-Ca-Cu-O appear to be explained on the basis of suctlynamic properties like linear ac susceptibilities, including
independent loop picturE. By contrast, the possible coop- its imaginary part. . _ '

erative character of the orbital-glass state was pointed out by In the present Monte Carlo simulation, we will not pay

Dominguez, Jagla, and Balsetfoand by Khomskit® al- ~ much attention to the equilibration problem, and the data are
though these authors did not detail the nature of the cooper@nly those obtained within a finite observation-time window.
tive phenomena. Thus, main interest in the present paper is not to determine

Naturally, one may ask here whether there could be Avhether there exists an equilibrium chiral-glass transition,
thermodynamically stable orbital-glass state characterized byyhich will be left to the future work, but rather to see in light
a spontaneous breaking of certain symmetry over an entir fth_e p035|bl_e chwal-glas_s ordering how various th_ermody-
granular system. An issue to be addressed is whether theP@MIC Propeft'es behav_e in the presence of screening.
could be some sort of thermodynaniftergranular phase The remainder of this paper is organized as follows. In

transition accompanied with a divergent length scale ove?ec' Il, we introduce our model and physical quantities of

grains, and if it is, what is the order parameter of such phasgnereSt' Symmetry p.roperties of the Hamiltonian in Z€ero and
transition ' nonzero magnetic fields are analyzed, and the important

Recently, on the basis of an analogy to the three_meaning of chirality is clarified. Technical details of our

dimensional XY spin glass® one of the present authors simulations are also given here. In Sec. Ill, results of simu-

(H.K.) claimed that so long as the screening effects could br%ations on static properties in zero external field are presented

neglected, a sharp thermodynamic phase transition might i oth for;—yygve angﬂ-vyave models. Linear and nonlinear dc
deed occuf? In this scenario, a possible ordered state Ofsusceptlbllltles, chirality and flux are calculated for several
d-wave ceramic superconduc'tors was associated with a rdyPical values of the inductance. Results of simulations in

Al ; 26 honzero external field are presented in Sec. IV bothsfor
Tr?nttr?(/e pgﬁi? gls_glcgzlsrafsg{aessosfta;;?f :;;]iﬁYgIS;sI,Z gl)an:iif‘ spin and d-wave models. Field-cooled and zero-field-cooled sus-

chiralities are frozen randomly, whilXY spins remain dis- ceptibilities are calculated, together with spatial flux distri-
ordered(chirality is an Ising-like quantity representing the butions inside the sample. Dynamical properties of the model

sense or the handedness of the noncollinear spif'i;e studied in Sec. V. In particular, the linear ac susceptibil-
structure$’), leading to a spontaneous breaking of spin-I is calculated .bOth fos- andd-wave_moqlels_by _applylng
reflection symmetryZ,] with keeping spin-rotation symme- an external ac field. In Sec. VI, possible implications of the

try [SO(2)]. In terms ofd-wave ceramics, such a chiral-glass Obt*”?'”ed simulation results tc_) experiments on th_h.ee—
state is an ordered phaseth a spontaneously broken,Z ramic superconductors, particularly ac susceptibility and

time-reversal symmetrput it is not a true superconductor in '“SR measurements, are dlscuss_ed In some de_ta|l. Section
the strict sense since the(1)=SO(2) gauge symmetry is VIl is devoted to summary and discussion. Possible conse-

not broken even randomly on sufficiently long length angauence of the recent theoretical suggestion of a “fractional”

time scales. It was also shofirthat an external magnetic ggscalgiég\zlgrsal-symmetry breaking junction is  also

field in an Josephson-junction array works as a field conju-
gate to the chirality(chiral field, and as a consequence, the
zero-field nonlinear susceptibility y, exhibits a negative di- Il. MODEL
vergence at the transition point. Since the nature of the or-

dered state proposed in Ref. 23 is different from the orbital We are interested in the interlogitergranulay ordering

‘Phenomena of granular superconductors. We suppose that

. . . 5’17 . . .
g:ass state in a single-loop pictute; lllsorr?lettr:un]g] I'keﬁpﬂ? weak links connecting the neighboring grains are distributed
glasses/ersussuperparamagnefsve will call the former the sufficiently dense, so that the system can be viewed as an

chiral-glass state when the distinction between the two PIC; finite network of Josephson junctions, which are not de-

tures should be better clarified. composed into finite clusters. Let us model such ceramic

It should be emphasized that in Ref. 23 the SCreen'n%uperconductors by a three-dimensional lattice model of a

effects were totally neglecteq. It is nqt clear at the presen osephson-junction array with finite self-inductance. When
stage how the thermodynamic properties are affected by th arging effects of the grain can be neglected, the Hamil-
screening effects. In the present paper, we address this quUESTian may be given bB§ '

tion simulating the three-dimensional lattice model of ce-
ramic superconductors with finite self-inductance. The model 1
studied is the same as the one studied by previous authors, in. 7= — >, Jijcod 6;— 6,— Aij) + 5— > (cpp—cngI)Z,
particular the model studied by Donguez, Jagla, and y 22 %

Balseiro® However, we extend their calculations in several 2.9
ways. First, nonlinear susceptibilities are calculated in addi- 0 ) '

tion to linear susceptibilities which are expected to be the ]

most sensitive probe of the possible chiral-glass order. Sev- CDP_% Aijr A T o J’, A(r)dr, 2.2
eral other quantities related to chiral order, including chiral-

ity and flux, are also calculated. Second, we make simulawhere 6 (0<6<2m) is the phase of the superconducting
tions both ford-wave ands-wave ceramics in parallel, and order parameter of a grain at th#h site of a simple cubic
make comparison between the two results, aimed at clarifylattice, A being the vector potentiaty, the flux quantum,”’
ing how the difference in the pairing symmetry would showthe self-inductance of a loofan elementary plaquejteand
up in the thermodynamic properties of ceramic supercond;; is the Josephson coupling between ittteandjth grains.
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®, is the total magnetic flux threading though tip¢h
plaquette, wherea®*' is the flux due to a uniform external

p
field applied along the direction,

®X'=HS, for p on the (xy) plane,

=0, otherwise. (2.3

The first sum in Eq(2.1) is taken over all nearest-neighbor

bonds on the lattice whereas the second sum is taken over &
elementary plaquettes on the lattice. We assume that tHd

quenched randomness occurs only in the distributiod;af
while the self-inductance of a loop” and the area of a
plaquetteS are taken common all over the lattice. Mutua

inductance between different loops are neglected. We als

assume that the Josephson coupliigis independent of
temperature and magnetic field. This assumption is more
less justified when the intergranular ordering occurs at a te

perature lower than the intragranular superconducting transP

tion.
The first term of Eq.(2.1) represents the standard

Josephson-junction energy and the second term represeﬁ
the spatial energy of current-induced magnetic fields. Dy
namical variables of this Hamiltonian are the phase variable

at each sitef}, and the gauge variables at each bofg,
The dynamical nature of the gauge variab¥¢sleads to the
screening effects which were neglected in Ref. 23. Note th

the XY-pseudospin Hamiltonian in Ref. 23 is recovered by

taking the weak-coupling limitZz—0, since in this limit the
induced flux tends to zero due to the second term, Ad
are quenched to the external-field values.

In s-wave ceramics, sign of the Josephson coupling i

always positive(J;;>0), while in d-wave ceramics it could
be either positive0 junction or negative(s junction de-
pending on the relative direction of the junction and the cry
tal grains on both sides. birwave ceramics, the sign df; is
expected to appear randomly since the spatial orientation
each crystal grain would be random.

junction betweerd-wave superconductors under certain cir-
cumstances might have an energy minimum at some fra

tional value of the phase difference, neither at Ompras a
result of a spontaneous time-reversal-symmetry breaking

the junction?®?° Possible consequences of such a “fractional

junction” will be discussed later in Sec. VII. For the time
being, we assume that all junctions consist of either Gror
junctions ind-wave ceramic superconductors.

In the following, we deal with the following three types of
bond distributions. Model |; the spin-glass-type binétyJ)
distribution modelingd-wave ceramics, wherg; takes the
values+J (0 junction and—J ( junction) with equal prob-
ability. Model II; the random “ferromagnetic” interaction
modelings-wave ceramics, wherg; is always positive but
is distributed uniformly between 0 and}2Model II'; the
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c-
tonian(2.1) also has docal gauge symmetry. In most of our
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field-cooling mode, thus reproducing the PME observed
experimentally. In our model I, the numbers of positive and
negative couplings are set equal. In this case, half of the total
plaquettes are frustrated, and the fraction of the frustrated
plaguettes becomes maximal. In relalvave ceramics, some
amount of asymmetry is likely to exist in the distribution of
0 and 7 junctions. As long as such asymmetry is not so
large, however, it would not affect an essential feature of the
[bital-glass(chiral—glassordering. When there occurs a sig-
ficant amount of asymmetry, some new features could ap-
pear in the ordering process. Such asymmetric case has also
been studied by Monte Carlo simulations, and the results will

| be published elsewher8.

Model Il is a model of conventionad-wave supercon-
uctors, and is expected to exhibit a standard normal-super
ansition. This model was studied by Dusgupta and Halperin

by Monte Carlo simulationd! Model Il is a random version
of the model I, modelings-wave ceramics.
Next, let us examine the global symmetry of the Hamil-
tonian. In zero external fielh,,=0, the Hamiltonian(2.1) is
invariant - under global U(1) gauge transformation,
0i— 0;+A60, Ajj—A;;, as well as under global, time-
eversal transformatiod,— — ¢;, Ajj— —Aj;. In the pseu-
ospin terminology used in Ref. 23, thK1) gauge transfor-
mation corresponds to global spin rotation, while the
ime-reversal transformation corresponds to global spin re-
ection. In nonzero external field®,,#0, by contrast, the
Hamiltonian is no longer invariant under globa) time-
reversal transformation, thought it still remains invariant un-
der globalU(1) gauge transformation. In other words, an

5'external magnetic field breaks the time-reversal symmetry

only, preserving the gauge symmetry. Due to this symmetry
property, a magnetic field is expected to be an excellent

Sprobe of chiral order in superconductors or Josephson net-
works. It is important to realize that a magnetic field in Jo-
0qlephson networks has an entirely different meaning from that

In magnets. In magnets, an external magnetic field enters into

H?]e Hamiltonian via the Zeeman term and breaksS3i2)

=U(1) spin-rotation symmetry of the Hamiltonian.
In addition to the above global symmetries, the Hamil-

imulations, we adopt the “temporal gauge,” following
ominguez, Jagla, and Balseit®In this gauge, it is conve-
nient to introduce gauge-invariant phase difference on each
bond defined by

‘l’ijzei—b’j—Aij. (24)

Then, the dimensionless Hamiltonian may be written in
terms of these new variables as

~ T ~ 1 35 _&
H=—=—2, JicoV, + — Bp— D2,
(izj) ij ij 2%% ( p p )

pure “ferromagnetic” interaction modeling regularwave 2.9
system, wherg;;=J>0 for all (ij). 0

The model | was first introduced by Donguez, Jagla, 3 =—E V.. 2.6
and Balseiro as a model ofd-wave ceramic P '
superconductorf These authors simulated the model by the
dynamical Langevin method, and found that the linear sus- DX=h, for p on the (xy) plane,
ceptibility exhibits a paramagnetic behavior in the field- P
cooling mode, but only a diamagnetic behavior in the zero- =0, otherwise, (2.7
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whereJ denotes the typical magnitude of the Josephson cou- _  47S 1
pling and various dimensionless quantities are defined by m=-——m=3" 2 fp. (213
¢o p pe(xy)
~ Jjj _27HS - 2@Ll, In small fields, the magnetizatiom may be expanded in
Jj=7, h= , L= ' (2.8 powers of the field intensitid as
J ®o Céo
while I, is the junction maximum critical current defined by m(H)=m(0)+ xH+ x;H*+ xoH3+--- . (2.19
2mcd If there is no symmetry breaking, all terms everHrshould
l.= ) (2.9  vanish in Eq.(2.14). The linear susceptibility can also be
bo written as
In the form of Eq.(2.5), it is easy to see that in the dm dm
strong-coupling limitC—oo, our model Hamiltonian reduces X=4qn "~ m=xe+ Xos (219

to the noninteracting one since the first term becomes the
sum of independent bond terms and the second term just ~

. . o N 1
vanishes. One may define a local chirality at each plaquette zﬁ m2)],— —. (2.16
on the lattice b§*~2¢ X7 (M5, 4
LS s, (2.10 LIS (.19
Ka—=—— -S| ),y . = — — m , .
W & ij ij Xo 7 J

where the sum runs over a directed contour along the sides #fhere(:--) represents a thermal average @nel|; represents
the plaquette. Note that the chirality is also a gauge-invarian configurational average over the bond distributigreing
quantity. If the plaquette is frustrated, the local chirality, defined by

tends to take a value aroundl, while if it is unfrustrated, it

tends to take a value around zero. Under the global symme- E:'j—lzi. (2.18
try transformations of the Hamiltonian, chirality behavesas kgT

pseudoscalar Namely, it is invariant under globalU(1)
gauge transformation, while it changes sign under gl@al
time-reversal transformation. Due to this symmetry property
chirality can be regarded as an order parameter of the pos
sible chiral ordering Physically, the chiralityc, is a half(w)

Here, even and odd parts of the susceptibility are denoted by
Xe @ndx, , respectively. The linear susceptibilityis dimen-
sionless in cgs units. Likewise, the dimensionless nonlinear
“susceptibilityy, can be written as

vortex, being proportional to the superggrrent circula_lting _ bo |2 1( ¢ \2d°m _  _
around a plaquettg. It takes either positive or negative X2=\ 75 X275 | 275 W=X2,e+ X201
value depending on whether the supercurrent around a loop (2.19
circulates either in clockwise or counterclockwise direction. '
Local induced flux at a plaquetteis given in the dimen- 1 wEN 3
sionless form by }2’6:6 ( = Pl (Y —3(MP)2];,  (2.20
o _q)ext
f=— P (2.11) AL
P _ 1{ 78BN o o e _
%o X20= " ¢ ( = p) [4(M)(M) — 1(M?)(M)?+ 6(M)™];.

It is also a pseudoscalar like chirality, whose sign represents (2.2
the direction of the current-induced magnetic moment '

threading the plaquetie. One may also regard the flux as an Note that the abovg,, being proportional to the minus of
order parameter of the possible chiral order in view of thethe third-harmonic component of the ac susceptibility, is
fact that the flux has the same symmetry property as theometimes denoted ag in the literature.

chirality. However, chirality is perhaps more appropriate as We have performed Monte Carlo simulations based on the
an order parameter, since in the weak-coupling lidit:0  standard Metropolis method for the Hamiltoniéh5) both
where the chiral-glass transition has been established to talke zero and nonzero external fields. The lattices studied are
place? the induced flux vanishes identically while the simple cubic lattices withL XL XL sites with L=4,8,12.

chirality remains nontrivial. Free boundary conditions are adopted. For the random mod-
Total magnetization along the axis normalized per els (model | and 1), sample average is usually taken over
plaquettem, is given by 100-1000 independent bond realizations except for some
special cases. In each run<&0* Monte Carlo steps per spin
1 ext is generated, with initial 10* discarded for thermalization.
m= 47SN, pe%w (Pp=Dp), (212 For the regular mode{model '), we have made longer

runs, (102-2x10* MCS, which are repeated a few times
where the sum is taken over &, plaquettes on thgxy)  with different spin initial conditions and different random-
plane. One can introduce the corresponding dimensionlessumber sequences. As mentioned, no particular attention has
quantity by been paid to the equilibration problem, since the main inter-
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d FIG. 2. The temperature and size dependence of the zero-field
linear susceptibilityy of model Il (s-wave ceramigdsfor the renor-
malized inductanceC=0.1 (a), 1 (b), and 10(c). Full Meissner
value is equal to-1/(4m)=-0.796... .

FIG. 1. The temperature and size dependence of the zero-fiel
linear susceptibilityy of model | (d-wave ceramicsfor the renor-
malized inductance£=0.1 (a), 1 (b), and 10(c). Full Meissner
value is equal to-1/(4m)=-0.796... .

est in the present calculation is not to get full equilibrium of Egs. (2.19—(2.17). The same quantity for model [s-
properties of the model, but rather to get information con-Wwave ceramicsis also displayed in Figs.(8)—2(c) for each
nected to the experimenta| situation. case OfCZO.l, 1, and 10. The Correspondijgg)f the regular
s-wave model(model II') exhibits essentially the same be-
havior as that of mode{ll) and is not shown here. From
lll. MONTE CARLO SIMULATIONS IN ZERO FIELD these figures, one sees that bethand d-wave models ex-
hibit a diamagnetic respongg<0). This diamagnetic be-
In this section, the results of our Monte Carlo simulationshavior found ind-wave ceramics is in contrast to the para-
for the three types of bond distributiofis, (1), and(ll’) are  magnetic behavior observed previously for théY-
presented. In Figs.(&-1(c), the temperature and size de- pseudospin model of-wave ceramics where the screening
pendence of the zero-field linear susceptibilityf model | effect was neglectetf.For both cases af- ands-wave mod-
(d-wave ceramigsis shown for each case of the dimension- els, an apparent ordering temperature whelegins to take
less inductanc&€=0.1, 1, and 10. Herg is estimated from a nonzero value decreases with increasing the inducténce
fluctuations of magnetization in zero external field with useAs the system size or the inductance is increased, the value
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0'3- [random d-wave] L=12 0 F x = 07 s i ; LA (a)
} X f=0.1 ¢ : L =0.1
° L =1 . L .
0.2r o Z: =10 50 % %
X [ i
I X {{ -100 &
0.1 i é E 3 [ " 2e [random d-wave]
[ 3 [ X L=4
I % émignil -150 | * L8
0 ] » % o L=12
T/J
01.,,,,T/J 200o 0.1 0.2 03 04 05 0.6
0 ¢ it -
0 0.1 0.2 0.3 0.4 0.5 0.6 [ - : CRAeR ()
FIG. 3. The temperature and inductance dependence of aneven ;oo [ % } . L=
part of the zero-field susceptibility, of model | (d-wave ceram- [~ %
ics). I X2,e {
200
of x at low temperature tends to the full Meissner value % {
—1/(4). .300 F [random d-wave]
In fact, there is some subtlety in the sign gfof the X L4
d-wave model. Closer inspection of Fig. 1 shows tlatf 400 L e -8
the d-wave model takes slightly positive value around the i o L=i2
ordering temperature and this behavior is more pronounced ; T/J
for smaller samples. In order to identify the origin of this 500 ot e
behavior, an even part of the linear susceptibityof the 0 0 01 - (,{2 " =o..§1_o..4_-_ou.e
model |, defined by Eq2.16), is shown in Fig. 3. In contrast 1 ® m (c)
to the full susceptibilityy, the even part is found to exhibit a : ¥ 3 b % 7 =10
paramagnetic behaviofy,>0). For finite systemsn full [~ B
equilibrium any odd quantity should vanish identically, :XZ’e {{
namely, one should havg,=0 and y=y,.. Therefore, our :
observation of the positivg, strongly suggests that the ob- .50 F
served diamagnetic behavior gfmight in fact be a finite- I [random d-wave]
time effect and that an equilibriumpof the model | is always - 1
positive for finite systems. By contragt, could take a non- I ).( :::g
zero value in the thermodynamic limit if some sort of sym- [ o L=12
metry breaking occurs, and the sign ptould be negative. - 1
Such subtlety found in the sign of of the d-wave model 2100 Lo N LIC B
may be related to different signs observed experimentally Y 0.1 0.2 0.3 0.4 0.5 0.6

between in the FC and ZFC modes. In sharp contrast to this,

no appreciable difference has been observed betwgend FIG. 4. The temperature and size dependence of an even part of
x in the case o-wave modelgmodel Il and II). the zero-field nonlinear susceptibilify, of model I (d-wave ce-

The temperature and size dependence of an even part gfmicg for the renormalized inductancé=0.1 (a), 1 (b), and 10
the zero-fieldnonlinear susceptibility x,, of model | (d-  (c).

wave ceramics estimated in zero field with use of Eq.

(2.20), is shown in Figs. &)—4(c) for each case of£=0.1, 1 For comparison, we shovy,. of the s-wave models
and 10. Due to the numerical difficulty in estimating higher- (models Il and Il) in Figs. 5 and 6. In these-wave models,
order quantities, particularly the odd pa#,, we could get no appreciable difference has been found betwggn
here only the even pajt . with reasonable accuracy. In any and’y, .. The superconducting transition point determined
finite system in full equilibrium, one should hawg=x,..  from the specific-heat peak far=12 sample, which is dis-
As can be seen in Figs(&@—4(c), x,. exhibits a divergent played in Fig. 7, is shown by the arrow in these figures. One
behavior with negative sign. This negative divergence.pf sees that the nonlinear susceptibilities of theseave mod-

is similar to the one observed in standard spin-glas®ls exhibit behaviors very different from those of tihavave
models® and to the one previously observed for tK&-  model. The value 0k 2. is orders of magnitude smaller than
pseudospin modéP As mentioned, to determine whether that of thed-wave model. This is related to the fact that a
this divergence is related to a finite-temperature transition irmagnetic field in superconductors is the field conjugate to the
true equilibrium is beyond the scope of the present paperhirality, but not conjugate to the phase of the superconduct-
Note that the specific he@hot shown hereexhibits no ap- ing order parameter itself. The temperature dependence
preciable anomaly as in the case of spin glasses. of X, is also very different from that of thé-wave model:
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FIG. 5. The temperature and size dependence of an even part of ¢\ g The temperature and size dependence of an even part of
the zero-field nonlinear susceptibility,, of model II" (regular 6 760 field nonlinear susceptibilify,, of model Il (random
s-wave model for the renormalized inductanc€=0.1 (@, 1 (b),  g.\yaye model for the renormalized inductancé=0.1 (a), 1 (b),

aqd 10(c). Arrow in _the figure indicates the trar_15ition point ob- and 10(c). Arrow in the figure indicates the transition point ob-
tained from the specific-heat peak for the-12 lattice. tained from the specific-heat peak for the=12 lattice.

In the regulais-wave modely, . has a small positive peak at

T=T,, though for larger inductance, a negative dip developsve also calculated the Edwards-Anderson-type freezing pa-
slightly aboveT, leading to an asymmetric behavior p§ . rameter for chirality defined by

As can be seen from Fig. 5, similar asymmetric behaviors

of ¥ are observed also for the rand@awave model with 12

larger £, while for smaller{ (£=0.1) no appreciable struc- q.= i E [(x >2] 3.1)

ture can be seen. In any case, the nonlinear susceptibility * A Np petxy) prAI '

of the s-wave models exhibits only a very weak anomaly, or

no appreciable anomaly, at the superconducting transitiopOgether with a root-mean-square magnitude of the local

point. 2 )
A symmetry argument in Sec. | suggests that the diver-Chlrallty at each plaquette defined by

gentlike behavior ofy, observed ind-wave ceramics should
reflect the random freezing of chiralitgirculating supercur-

L 1 1/2
rent or spontaneous flux. In order to see this more directly, K=<N— ; > [(K;2)>]J) , (3.2
P pe(xy
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FIG. 7. The temperature and inductance dependence of the spe- FIG. 8. The temperature and inductance dependence of the root-
cific heat calculated from energy fluctuations of modél(tegular ~ mean-square magnitude of the local chirality of modétliwave
s-wave model;, (a), and of model ll(randoms-wave mode); (b). ceramicg; (a), and of the Edwards-Anderson-type freezing param-
The lattice size is equal tb=12. eter of the chirality of model I(b).

whereN,=L(L— 1)2 The calculatedc andq, are shown in /1 112
Figs. 8a) and 8b), respectively. One sees from Figagthat f= N 2 [(fﬁ)h) . (3.9
the local chirality takes a finite value even at low tempera- P pelxy)

ture, which indicates that the local spontaneous supercurrent — _

indeed exists in the systerflL.arge values ofc observed at The calculated andg of model I (d-wave ceramicsare

higher temperatures are due to thermal fluctuatjo¢.  Shown in Figs. 1(®) and 1@b), respectively. Essentially the

higher temperatures chirality frequently changes its sigrfame gualitative behavior as that of chirality has been ob-

leading to smallq, values, while at lower temperatures it Served. _

tends to be locked within the observation time leading to an !t should be emphasized here tligtandq; shown above

observed growth off,.. So, the observed behavior of chiral- have been est_|m_ated only through finite observation tlme._At

ity is consistent with the expectation that the divergent befhe moment, it is not clear whether an apparent ordering

havior of , is associated with the random freezing of chiral- temperature observed here fibwave ceramics corresponds

ity. to a true _thermody.nam|c transition. Further careful calcula-
For comparison, we show in Fig. 9 the temperature deIIQI’IS. paying attention to equilibration are required to settle

pendence ok andg, for model Il (s-wave ceramics In this  this issue.

case,«x decreases rapidly at lower temperatures indicating

that the local supercurrent is largely suppressed, wijle

remains very small even beloW,; indicating that the order-

ing of thes-wave model is definitely not of chirality origin. o ) ) ]
Essentially the same behavior is expected also for spon- Although the main interest In the presen'g paper is an in-

taneous flux. We also calculated the Edwards-Anderson-typé&rdranular ordering phenomenanzero-field limit we wish

freezing parameter for spontaneous flux, which is defined by° r€Port in this section some of the results of Monte Carlo
simulations performed under finite magnetic fields. The rea-
1 1/2
qf=(N— > [<fp>’-‘1J) : 33

son of this is that in real experiments one often has to apply
a finite magnetic field for detection. We are mainly interested
P pe(xy, - . - -
in a weak-field regime where an external flux per loop is
together with a root-mean-square magnitude of the locatmaller than one flux quantui,.
spontaneous flux at each plaquette. One remarkable property of tllbwave model in a weak

IV. MONTE CARLO SIMULATIONS
IN NONZERO FIELDS
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FIG. 9. The temperature and inductance dependence of the root- FIG. 10. The temperature and inductance dependence of the
mean-square magnitude of the local chirality of modelsiwave  root-mean-square magnitude of the local flux of modéd-wave
ceramic$; (a), and of the Edwards-Anderson-type freezing param-ceramic$; (a), and of the Edwards-Anderson-type freezing param-
eter of the chirality of model li{b). eter of the flux of model I{b).

applied field is the appearance of the PME, as was observeahd Balseiro for different parameter valugs=8 andc=0.3,

by Domnguez, Jagla, and Balseied al. We also calculated c¢ being the number density of junctions.*®

field-cooled (FC) and zero-field-cooledZFC) susceptibili- At the end of some of the FC runth=0.1 and 0.2, we

ties, xgc and xzec, of model | (d-wave ceramicsin a weak turned off an external field at the lowest temperature reached
field, and reproduced this effect. The obtained results aréT=0.05]), and recorded the resulting remanent magnetiza-
displayed in Fig. 11. The lattice size and the inductance aron m,,. A positive value ofm.,, was obtained, which
set toL =8 andL=1, while the configurational average have satisfied the relationm,=Mgc—Mzc, consistent with
been taken over 50 samples. In the FC runs, the temperatuseme experiments on highs ceramics’>*3This observation

is lowered stepwise under a constant applied field. At eacindicates the occurrence of flux trapping in odfwave
temperature, 810" MCS runs have been generated, amongmodel.

which initial 2x10* MCS are used for thermalization and  In earlier simulation, it was suggested that the paramag-
subsequent 410" MCS are used for calculating the field- netic behavior might occur only for larger inductante 1.16
cooled magnetizatiomg. The field-cooled susceptibility is In contrast to this suggestion, we observed a clear paramag-
estimated with use of Eq2.19 xgc=MgJ(2h). In the ZFC  netic effect even for smaller inductance. As an example, we
runs, the system is first quenched to a low temperatilire (show in Fig. 12 the temperature dependencgggffor a very
=0.03)) in zero field and is thermalized duringx@0*  small inductance=0.1. Still, one has a clear paramagnetic
MCS. Then, a static dc field is switched on and the temperaresponse in the field-cooling mode, although its magnitude is
ture is increased stepwise in a constant dc field under theonsiderably suppressed compared with flrel case. It is
same condition as in the FC runs. The zero-field-cooled sudikely that the PME persists even for infinitesimal inductance
ceptibility is estimated fromyzec=mMzed(2h). at least in the present mod¥l.

As can be seen from Fig. 11, a paramagnetic behavior can In this connection, it should be noted that, by analyzing
clearly been seen in the FC runs in the field ramgel, the properties of a frustratedloop consisting of only single
roughly corresponding t®.,~ ¢y/4. The paramagnetic ten-  junction, Sigrist and Rice found that there exists a critical
dency is more pronounced for smaller fields. By contrastyalue of the inductancef.=1, above which spontaneous
Xzrc Ffemains diamagnetic at low temperatures for any valusupercurrent arises but below which there is no spontaneous
of the dc fields studied. These observations are essentialwpercurren‘f.ln Appendix A, we made a similar analysis for
the same as the previous observation by Dajuez, Jagla, a frustrateds loop consisting ofour junctions, nothing but
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.0.03F * + h=02 anomaly in the specific heat. Chirality takes fairly large val-
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FIG. 11. The temperature dependence of the field-cooled sus-
ceptibility (a) and of the zero-field-cooled susceptibiliyp) of
model | (d-wave ceramicsfor several values of external dc fields.
The lattice size is equal tb=8 and the renormalized inductance is
equal toL=1.

an elementary frustrated plaquette of our present lattice
model. It is found that there is no critical value 6fin this
case(L.=0) and spontaneous supercurrent arises even for
infinitesimal inductance in contrast to the case analyzed by
Sigrist and Rice. This observation naturally explains why the
PME has been observed even for very small inductance in
our present simulation.

In Fig. 13, the temperature and field dependenceof
and yzgc of the model lI(s-wave ceramicsis shown. Again,
we setL=1 andL =8. The procedure of the calculation is the
same as in the case of model I. The lowest temperature in the
ZFC runs has been chosen to e 0.3]. As expected, the

response here is always diamagnetic. Furthermore, there is .

no appreciable difference betwegp: and xzgc for smaller
dc fields (h=0.2): Thesey values also agree witly calcu-
lated from magnetization fluctuations in zero field in Sec. llI
(see Fig. 2 Remanent magnetizatian,.,, were also calcu-
lated at the end of some of the FC ruhs=0.1 and 0.2as in
the case of model I. Within statistical errarg,,, turned out
to be zero, which is consistent with the relation

Myem™=Mec™Mzec-

0 0.5 1 1.5 2 2.5

x+

X o

For completeness, we also simulated the case of rather giG, 13. The temperature dependence of the field-cooled sus-
strong external fielh=10 for model Il (s-wave ceramics  ceptibility (a) and of the zero-field-cooled susceptibilitp) of
corresponding to the case of more than one flux quantum pefiodel Il (s-wave ceramigsfor several values of external dc fields.
plaquette(h=2m). With this amount of external field, nature The lattice size is equal to=8 and the renormalized inductance is
of the ordering appears to be considerably changed from thequal to£=1.
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ing. For both cases af- ands-wave models, we sdt=12,

0.25 : ; .
[ (a) [random d-wave] h=0.2 [_ 5 e 1 g1 £=1 andh=0.2, the configuration average being taken over
ia(x) —o—FC T=0.2 40 samples and four equivalent directions along-theand

0.24 +y axes. In the ZFC runs, on switching on an external field,

flux gradually enters into the sample from the surface, while
in the FC runs flux is gradually squeezed out of the sample
from the surface. One sees from Fig. 14 that the flux distri-
bution of thes-wave model does not depend on FC/ZFC
modes, and thus, is expected to be fairly close to the equi-
librium distribution. By contrast, in the case of thewave
model, some difference is observed between the FC and ZFC
critical-state model runs: In the FC runs, flux is distributed rather uniformly fully
N penetrating into the sample, while in the ZFC runs, flux pen-
o 1 2 3 4 5 X 6 etration remains incomplete at low temperatures due to the
0.25 flux pinning. [Here note that the spatial flux distribution of
[ SE) [random s-wave] h=0.2 each individual sample of thé-wave model is much more
L ®(X) erratic reflecting the particular distribution of frustrated
plaguettes inside the sample. Rather smooth distribution dis-
played in Fig. 14a) has been obtained only after the sample
averagel
One phenomenological model often used in giving spatial
flux distributions inside the sample is the so-called critical-
state modef’*2 1t is a strongly nonequilibrium model in
which the induced supercurrent inside the sample is assumed
to be either=I, or O depending on its history. A large su-
percurrent inside the sample is supposed to be maintained by
o =, . the strong pinning effect. Spatial flux distribution calculated
0 1 2 3 4 5 X 6 by applying such a critical-state model to the ZFC runs of the
present lattice model is also displayed in the figuréSome
FIG. 14. Spatial flux distributions at several temperatures insideof the derivation is given in Appendix B. Note that the
the sample of model (d-wave ceramics (a), and of model Il critical-state model is a macroscopic model making no dis-
(s-wave ceramics (b), for both cases of the field-coolin§C) and  tinction betweens-wave andd-wave pairing symmetries,
zero-field-cooling(ZFC) runs. Applied dc field is equal th=0.2.  and gives the same flux distribution for both cases. From the
Distance from the surface of the samptejs measured in units of ~ figure, one sees that the flux distribution observed in our
lattice spacing. The data are averaged over 40 independent bo’ﬁ?esent simulation is much more gradual than the one ex-
realizations and over four equivalent directidisx and+y axe3.  pected from the critical-state model: Namely, net supercur-
Thg flux distribution calculated by applylng the phenomenologlcalrentS circulating inside the sample are much smaller than
Zrnmal;j;tate model to the ZFC runs is also shoee text and  yh,qe expected in the critical-state model. It means that flux
ppendix B. pinning is certainly happening in oa-wave model, but its
magnitude is much weaker than the type of strong pinning
ssumed in the critical-state model.

0.15
0.1f

0.05 |

0.15

0.1

0.05 |

very different from that in zero field. In particular, in the case
of d-wave model, there cannot be a chiral-glass transitior"
under magnetic fields. This is simply due to the fact that the

Hamilton@an under nonzero magnetic fielqlgauge-glass V. SIMULATIONS OF AC SUSCEPTIBILITIES
Hamiltoniar) doesnot possess a discretg, time-reversal
symmetry any longer, only a continuoUi1) gauge symme- So far, we have concentrated our attention on the static

try being left. A possible ordered state under magnetic fieldsproperties of the model. In the present section, we study the
a vortex-glass stat®, is characterized by the spontaneousdynamic properties of the model, particularly the linear ac
breaking of thidJ (1) gauge symmetry under fields. Although susceptibility, by Monte Carlo technique. While Monte Carlo
a stable vortex-glass phase has been expected in the absesgaulations involve no real dynamics, one can still expect
of screening® a recent calculation suggests that in the presthat they give useful information about the long-time behav-
ence of screening there might not exist a stable vortex-glager of the system.
phase in external field$.Anyway, the application of an ex- From the experimental side, measurements of ac suscep-
ternal field of order¢y/4 per loop completely changes the tibilities have been one of the useful tools to study conven-
nature of zero-field intergranular orderingzhiral-glass or-  tional as well as highF, superconductors®*143-4%|t has
dering ind-wave ceramics or standard superconducting tranbeen known that in these superconducting materials the real
sition in s-wave ceramics part of the linear ac susceptibility’ shows a diamagnetic
We also studied the spatial distribution of flux inside thebehavior, whereas the imaginary pgftshows a maximum
sample. In Figs. 14) and 14b), such spatial flux distribu- below a critical temperature. On increasing the ac-field in-
tions obtained in the FC and ZFC runs are displayed for eactensity, or on decreasing the ac-field frequency, the maxima
case ofd- ands-wave ceramicgmodels | and I} as a func-  of Y tend to shift toward lower temperature. Several models,

tion of x, a distance from the surface in units of lattice spac-including the critical-state mod@&i;*2 superconducting-loop
p
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model/248:50-5%3nd superconducting-glass modet*’ have

been proposed to account for those and other properties of
superconducting materials.

0.03

In this section, we simulate model (fandom d-wave 0.02
mode) and II' (regulars-wave model under oscillating ac
fields of magnitudeH ;. and of frequencyw, 0.01

H=H_,coq wt), (5.2 . 0.00

in order to obtain the dynamical properties of the model, X _0.01
particularly the linear ac susceptibilify=x"+i x”. It should e
be noted that the ac susceptibilities of a similar Josephson- —0.02
network model with finite self-inductance were numerically
investigated by Wolf and Majhoféf. However, these au- ~0.03
thors dealt with thes-wave system in two dimensions, and '
also applied very strong ac fields corresponding to 0,04
H.S=100¢,. In the present paper, we simulate both the
s-wave andd-wave systems in three dimensions, and apply —0.05

much weaker ac fields correspondingHg S<dy.

Via the dimensionless magnetization defined by Eq.
(2.13, m, the real and imaginary parts of the ac susceptibil-
ity x'(w) and y'(w) are calculated as FIG. 15. The temperature dependence of the real and imaginary

parts of the linear ac susceptibility, (w) and x¥"(w), of model |
1 27 _ (d-wave ceramigs The dimensionless parameters hgg=0.1 and
X' ()= pury f m(t)coq wt)d(wt), £=1, and the system size [s=8. Open squares, black hexagons,
ac 0 triangles, and squares represent0 (static casg 0.001, 0.01, and
(5.2 0.025, respectively. The error bars are smaller than the symbols.

271'~
X" (w)= fo m(t)sin(wt)d(wt),

e temperature very quickly, and the shape of the peak sharpens
wheret denotes the Monte Carlo time and the dimensionlessip. In fact, the observed behavior gf is reminiscent of the
ac-field intensityh,. is normalized as in Eq(2.8). In this X’ recently observed in the spin-glass modghree-
section, we have chosen the gauge where all the bond vardimensional=J Ising mode),>® and suggests the existence
ablesA;; along thez direction are fixed to be zero, and have of a slow dynamics in these systems. Qualitatively similar
set the dimensionless inductance to Be1l. The sample dependence has also been observed in experiments, but to
average is taken over 10—20 independent bond realizationsiuch less exterft*®4’Presumably, the observed quantitative
Other conditions are the same as in the previous sections.
x(w) has been estimated following the procedure in Refs.
54 and 55: Namely, at the beginning of a given Monte Carlo 0.02
run at each temperature, we first switch on the ac figld).
Then, after waiting for initiat, Monte Carlo steps per spin 0.01
(MCS), we start to monitor the time variation of the magne-
tization, t, being chosen so that all transient phenomena can
be considered extinct. We s to be 2<10* MCS in our 0.00
following simulations. After passing the poit#=t,, m(t) is
averaged over typically 200—1500 periods, each period con- :_ —0.01 -
tainingty MCS (ty=27/w). The real and imaginary parts of ) &
the susceptibility are then extracted via K£§.2). e —0.02 A < d—wave, w=0.001
The results of our calculations on model (tandom e A h,,
d-wave model with L =8 are presented in Fig. 15. We set v A
h,=0.1, corresponding t0=0.016 flux quantum per —0.03 O
plaquette. Smaller values bf have turned out to leave the X e 038
results almost unchanged. As can be seen from Fig. 15, the  -0.04 |-
real party’(w) shows a diamagnetic behavior. Since the ac e 30
susceptibilities for smakb would be closer to the zero-field- —0.05 | [ | | |
cooled susceptibilities rather than the field-cooled suscepti- T 00 0.2 0.4 0.6 0.8 1.0
bilities, the diamagnetic behavior observed here seems con- T/J
sistent with our dc results in Sec. IV. As expected, on

decreasingw, x'(w) approaches the static susceptibility FiG. 16. The temperature and ac-field intensity dependence of
x(0=0). the real and imaginary parts of the linear ac susceptibijity)

One sees from the figure that both the real parand the  and y(w), of model | (d-wave ceramicswith L=8, £=1, and
imaginary party” show a significantv dependence. In par- »=0.001. The squares, triangles, hexagons, and circles represent
ticular, the location of the peak of’ shifts toward lower h,=0.1, 0.35, 1.0, and 3.0, respectively.
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FIG. 17. The temperature and size dependence of the real and
imaginary parts of the linear ac susceptibilif/{(w) and y"(w), of
model I (d-wave ceramicswith h,.=0.1, £L=1, andw=0.001. The
triangles, hexagons, and squares reprekemnt, 8, and 12, respec-
tively.

FIG. 18. The temperature dependence of the real and imaginary
parts of the linear ac susceptibility, (w) and y"(w), of model I
(regulars-wave model. The dimensionless parameters hrg=0.1

and £=1, and the system size is=8. Open squares, black hexa-
gons, triangles, and squares representO (static casg 0.001,

. . . 0.01, and 0.025, respectively.
difference simply reflects the fact that our ac fields corre- P y

spond to extremely rapid oscillations in real time. ) .
The h,. dependence of of model I is shown in Fig. 16. could not calculate with reasonable accuracy tioalinear

Here we set. =8 andw=0.001. On decreasirty,,, the peak ac susceptibility, and thus, could not directly probe the pos-
. . (3]

of ¥’ moves toward higher temperature. This tendency iss'blle chwgl-_gljla_ss otr)derlngdu:)-wave cerz,imflc(:js. Nevertheless,
consistent with experimental resgifg4143444748nq g)50 @ close similarity observed between tiieof d-wave ceram-

with a few phenomenological models, e.g., critical-stateics and that of the spin glass as well as strong dissipation

modef®*°and superconducting-loop mod&Thus, a simple observed_ in the _Iow-frequency regimg ofwave ceramics
lattice model of a Josephson-junction array with self.are consistent with the chiral-glass picture discussed in the

inductance is found to reproduce qualitative features of aPr€Vious sections based on the static results.
susceptibility experiments. The size dependencey obf
model | has also been studied foj,=0.1 andw=0.001, and
the results are presented in Fig. 17. The peak/ofmoves
toward higher temperature as the system size is increased.
Our results for model [l (regular s-wave model with In this section, on the basis of the results obtained in the
L=8 andh,=0.1 are shown in Fig. 18. As expected, the realprevious sections, we wish to discuss several possible impli-
part shows a diamagnetic behavior while the imaginary parcations to experiments on high: ceramic superconductors.
exhibits a broad maximum. If one compares the results wittDne of the most prominent characteristics of the chiral-glass
the corresponding results of model | in Fig. 15, severalordering is a negative divergence of the zero-field nonlinear
points are noticed. At higher frequencies, there is very littlesusceptibility. Experimentallyy, is often measured by the ac
difference between thg of the d- and s-wave models. In technique, in which one applies an oscillating ac field,
fact, at the highest frequency studiee=0.025, y of the two  h(t) =h,cos(wt), and measures the coefficient of the third-
models are similar even quantitatively. On the other hand, atarmonic component of the responsg3w)h,cos(3wt).
lower frequencies, clear differences shows up: First, thé'hen the nonlinear susceptibility, is related toy(3w) via
magnitude ofy” of the s-wave model becomes an order of y,~—x(3w). Although the predicted divergence & is a
magnitude smaller than that of tidlewave model, indicating static property in zero fieldo—0 andh,.—0, one needs to
that thed-wave model exhibits much stronger dissipation inapply a detection field of finite amplitude,. and finite fre-
the low-frequency regime. This tendency is expected to bguencyw in real ac measurements. Here it is important to
more enhanced if one goes further to lower frequencies. Secrake sure thah,. and w are kept sufficiently small: For
ond, thew dependence observed in the peak positiog’afls  example, in order to probe intrinsic zero-field critical prop-
well as in the onset temperature of diamagnetisnmy'ins  erties, the value dfi,. should certainly be much smaller than
much less in thes-wave case than in thé-wave case. Slow ¢g/4 per loop. Under certain circumstances, this requirement
dynamics which give rise to the significamtdependence in could be rather severe. If the mean diameter of a l@mm-
the d-wave model seem to be absent in giave model. parable to grain si2ds of order 10um, then the value dfi
Unfortunately, in the present dynamical simulation weshould be much smaller than 50 mG. If the mean diameter of

VI. IMPLICATIONS TO EXPERIMENTS
ON HIGH- T, CERAMICS
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a loop is of order Jum, this condition is somewhat loosened state: In the chiral-glass state in real ceramjgs, could be

to h,<5 G. Perhaps, in the largér,. or w regime, the dif- either positive or negative. It is also completely possible that
ference between thad- ands-wave models would be washed the state showing a positivg-c, which one may regard as
out as seen in Sec. V, and the resulting nonequilibrium statéeing in the orbital-glass state, doest exhibit a negative
may well be described by the macroscopic critical-statedivergence ofy, and isnot in the chiral-glass state. In fact,
model. The negative divergence pf could only be seen in @s can been seen from Fig.(a a positivexec is realized

equilibrium, or at least near equilibrium condition in zero- Well above the intergranular ordering temperature, which in-
field limit. dicates that the intragranular superconductivity alone is

e 8,17
It should be mentioned here that the critical-state modefN0ugh to cause the positiyec. o
also gives rise to a peak ig, if one further assumes the In ;harp contrast to the_ sign gf the negat!ve divergence
temperature dependence of the Josephson coupl]nﬁ]if‘z of x, is expected to be aniversal propertywhich should be

However, such a peak expected in the critical-state modearPbUSt 10" most of the detalps of the system as I(_)ng as there
with temperature depende; is a rounded one not related occurs an intergranular chiral-glass ordering. Since the be-

to any singularity, unlike the divergent behavior observed inh"’“/'or of x, of the s-wave system has turned out to be very

our model I. (Note that, since we did not consider any tem—d'ffere_nt from that Of_ thed-wave system, one may use the
perature dependence &f in our present model, the negative b_ehawor ofx, at _the intergranular transition point asg,gsm n-
divergence ofy, observed in the present simulation is not dicator of the pairing symmetry as proposeq n R‘?f- s
explicable by the critical-state model anyway. . One cher experlmentgl meth_od which m|ghF give useful
At the moment, there is at least one experimental resuI'Pf.Ormatlon on the pOSSIble. chiral-glass OFde“”g IS muon
which appears to support the chiral-glass picture. Thus, Ma >pin relaxgtlor(#SR). The chiral-glass state IS charactgrlzed
suuraet al. recently measured the nonlinear susceptibility of y frozen-in C|rf_:ulat|ng supercurrents and_ or_bltal momemts
ceramic samples of YBEU,Og consisting of single-crystal zero external f|eIc!Such moments are dlst_rlbuted_ spatle_llly
grains of diameter less thandm *® Two well separate tran- random, .but remain ;table_ over a long period of time. Sl_nce
sitions were observed: The one at a higher temperature ass%‘-e origin _of pos§|ble time-reversal-symmetry breakllng
ciated with the intragranular ordering and the other at a lowefOMES from WeaK I|.nks, not from the bulk superconducting
temperature with the intergranular orderiigWhile both order parameter, it Is esfs_entlal to p_erform measurements on
Xec and yzrc Were diamagnetic without any paramagneticceram'c sample_s contal_nmg_ sufficiently many weak links,
behavior, Matsuurzt al. observed a negatively divergent "ather than on high-quality single crystals.
anomaly ofy, at the intergranular transition point with using
the ac field ofh,.=10 mG andf=w/(277)=0.1 Hz. This
rather sharp anomaly was interpreted by these authors as
arising from an intrinsic intergranular critical phenomenon, Intergranular ordering phenomena of ceramic supercon-
possibly associated with the chiral-glass transition. Furtheductors are studied by Monte Carlo simulations on a three-
detailed experimental studies, including static and dynamiclimensional lattice model of a Josephson-junction array with
scaling analyse¥ are highly desirable. It is also worthwhile finite self-inductance. Both casesafwave ands-wave sys-
to try systematic experimental surveys for other types otems are studied. In the case afwave ceramics, intrinsic
high-T, ceramics including Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O frustration effects combined with quenched randomness lead
1-2-3 compounds. to the glassy behavior reminiscent of the spin glass even in
The PME may also be regarded as an attributd-afave  zero field.
ceramic superconductors. While observation of the PME The main finding of the present simulation is that the
may be regarded as a hint of the nontrivial pairingnonlinear susceptibility ofl-wave ceramics exhibits a nega-
symmetry? the converse is not true: Namely, as discussedive divergence indicative of the occurrence of a cooperative
below, anisotropidd wave ceramic superconductors may phase transition. The calculated Edwards-Anderson-type
well exhibit diamagnetic behavior only as many experimentdreezing parameter of chirality and of flux has shown that
on high-T ceramics have shown. It should also be noted thathis cooperative phenomenon is associated with the random
Thompsonet al. recently reported the observation of the freezing of chirality or of spontaneous flgghiral-glass tran-
PME in conventional superconductors, niobium, and assition proposed in Ref. 23Thus, a globalZ, time-reversal
cribed it to the strong flux pinning at the surface as well as tasymmetry appears to be broken at least within a finite obser-
the geometric shape of the sample. vation time of simulations. It remains to be seen whether the
Since the PME has clearly been observed in the presemtserved cooperative phenomenon is a true thermodynamic
model, the reason why the PME is observed so rarely in regbthase transition at a finite temperature or a dynamical freez-
experiments should be attributed to the effects not taken intang phenomenon reflecting slow dynamics associated with a
account in our model. One possible cause might be a diazero-temperature transition.
magnetic contribution coming frorimtragranular supercur- Dynamical simulations on the linear ac susceptibility have
rents which have totally been neglected in our model. An+evealed a close similarity between the orderingdefrave
other source may be the possible field and temperatureeramics and that of the spin glass, particularly in the behav-
dependence of the Josephson couplifgwhich have also ior of the imaginary part of the ac susceptibility. It is also
been neglected in the present model. found that thed-wave model exhibits much stronger dissipa-
In any case, it should be emphasized that the mere sign dion than thes-wave model in the low-frequency regime.
x depends on many nonuniversal details of the system. Thus, Although our present simulation af-wave ceramics has
the mere sign ok is also not an indicator of the chiral-glass been made for a lattice model with some specific bond dis-

VIl. SUMMARY AND DISCUSSION
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tribution (=J distribution, the above physical conclusion
would not depend on the details of the bond distribution.
Essential ingredients ang@) three-dimensional connectivity
of weak links,(ii) frustration,(iii ) randomness, an@v) time-
reversal symmetry in the Hamiltonigohiral degeneragy

In sharp contrast to such glassy behavior found-iwave
ceramicss-wave modelgboth random and regulaexhibit a €Jd -J
conventional normal-super phase transition accompanied
with a sharp anomaly in the specific heat. This transition is
associated with a spontaneous breaking of gldk@d) gauge
symmetry which has nothing to do with the chirality. The
zero-field nonlinear susceptibility shows a behavior very dif- €d
ferent from that ofd-wave ceramics: It exhibits only a very

weak anomalypositive peak, asymmetric behavior, gtor FIG. 19. An isolated frustrated loop consisting of four junctions,

no appreciable anomaly at all at the superconducting transpne of which is ar junction of magnitude-J and the other three

tion point. are 0 junctions of magnitude] with 0<e<c. The cases=1 cor-
Recent experiments strongly suggest that cuprate Hjgh- responds to an elementary frustrated plaquette of our model I, while

superconductors are anisotropic or unconventional supercothe case=o corresponds to the frustrated loop with singlgunc-

ductors characterized by the nefwave pairing tion analyzed by Sigrist and Ri¢®ef. 8.

symmetry>~’ At present the most promising symmetry ap-

pears to bel,2 2. There also exists a strong experimental ACKNOWLEDGMENTS
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behavior as long as nodes appear on the Fermi suftaeee

are eight such nodes in contrast to four in the casel of APPENDIX A: GROUND-STATE PROPERTIES OF AN
wave. For all these anisotropic superconductors, the nature ISOLATED FRUSTRATED PLAQUETTE

of the chiral-glass ordering would be rather insensitive to the

details of the order parameter: For example, ceramics with N this appendix, we analyze the ground-state properties
deo .2 andd,, pairing symmetries would exhibit essentially of an isolated frustrated plaquette, an elementary gnlt of our
thxe s%ame orélyering behavior lattice model. The plaquette consists of four borfpsic-

Recently, Sigrist and co-workers and Tanaka and Kashiyons) among which one is a junction with negative cou-

wava arqued that althouah the bulk order parameter OPling constant—J<O0, and other three are 0 junctions with
ay g g b3 ositive coupling constard]>0: See Fig. 19. Here, an arbi-
high-T. superconductors does not break the time-revers

. - ary positive number €e< has been introduced, while
symmetry(dz-,2 waves, the one at the Josephson junction ;"o riginal model corresponds to=1. By this extension, a

or at the |nterfa2%e might break the time-reversal symmetry sirated loop with a singler junction previously analyzed
spontaneousl§®*It should be emphasized that in these SCey Sigrist and Rickcan be incorporated into the model sim-
narios the time-reversal symmetry of the junction Hamil-pjy py taking the limite—ce. For simplicity an external mag-
tonian itself is preserved, i.eE(V)=E(—-¥) or I(¥)=  netic field is assumed to be zero, though an extension to
—I(="V), and only the “state” spontaneously breaks thefinite fields is straightforward.

time-reversal symmetry. In such a case, although the result- In the temporal gauge, the dimensionless Hamiltonian
ing junction-Hamiltonian no longer has a local energy mini- (energy of a plaquette is given

mum at 0 orsr, symmetry properties of the Hamiltonian re-

main the same as the model studied here, hbth) andZ, ﬂzcogpl_cogpz_cogp3_cogy4

symmetries being kept intact. Thus, one expects essentially
the same type of chiral-glass transition characterized by the
spontaneous breaking of globa} time-reversal symmetry
even for such fractional-junction array.

Recent finding of anisotropic superconductivity in where we denote the gauge-invariant phasel gat 7 junc-
high-T. cuprates and heavy fermions opens up a valuabléion, and as¥,~W¥, at O junctions. Other notations are the
opportunity to study thermodynamic properties of a newsame as in Sec. Il. Minimizing{ with respect to¥,~¥,,
state of matter. Clearly, further experimental as well as theowe get four coupled equations. After a little algebra, one sees
retical studies are required to fully explore this interestingthat the ground-state configuration should satisfy the rela-
possibility. tions

€d

1
+2—Z(‘Pl+‘l'2+\1’3+q’4)2' (Al)



634 HIKARU KAWAMURA AND MAI SUAN LI 54

V,=V,=V,=¥, V¥, ,=sin }(—esin¥), (A2) percurrents might easily be masked. Therefore, in practice,

, ) . ) . moderately large inductance would be necessary to observe
with ¥ being determined by solving the equation the paramagnetic behavior.

—esii=y(¥)=3V¥ +sin (e sin?)—m. (A3)

By analyzing the functional form of(¥), one sees that i

is smaller than three, this equation always has doubly degen- In this appendix, the phenomenological critical-state

erate solutions¥=+W¥* which correspond to the chiral modef’*?is applied to our lattice-model Hamiltonian, to

states with mutually opposite chiralities or fluxes. A sponta-Calculate the spatial flux distribution inside the sample. As-

neous momenteither + or —) arises for an arbitrary value suming that the local physical quantities depend only on the

of the inductance. It is larger than three, on the other hand, distance from the surface of the samplavhich is measured

there appears a finite critical value of the inductancén units of lattice spacingl, the Maxwell equation can be

L.(€)=1—(3le): For a larger inductanceC>L.(e), there written as

again exist doubly degenerate solutioks- +W¥*, while for

smaller inductanc&€</L.(e), only one trivial solution exists dB,(x) 41

at =0 corresponding to the achiral state without spontane- Axd) e Jy(x), (B1)

ous supercurrent or flux. An elementary frustrated plaquette

of our original lattice mode(e=1) corresponds to the case whereB,(x) is a magnetic flux density ang(x) is a local

where spontaneous moment arises for an arbitrary value Qurrent density. Here a magnetic field is applied alongzthe

inductance, while a single-junction loop analyzed by Sigristdirection and the current flows along tlyedirection. With

and Rice(e=x) corresponds to the case where_spontaneousettingl (x) = d?j(x) andL=47S/d, Eq.(B1) can be rewrit-

moment does not occur for smaller inductarte L.(e). In-  ten in the dimensionless form as

deed, if one setg= in the expression of ., one recovers

the critical value obtained by Sigrist and Rft&,=1. ~
Physically, the above result suggests that spontaneous or- dd(x) -_7 1(x)

bital moments could arise, in principle, even for smaller in- dx o’

ductance, particularly in the type of ceramic samples where

weak links of nearly the same magnitude are distributed In the critical-state model, one simply assumes that the

APPENDIX B: CRITICAL-STATE MODEL

(B2)

densely. current inside the sample is equal to eithdr, or 0 depend-
In the casee=1, chirality and spontaneous flux are calcu- ing on the history. In the case where a static external field is
lated in the limits of small and large inductances as switched on as in the case of ZFC ruh&) should be equal

to I, or 0. Remember that in our lattice model has been
~ chosen constant independent of magnetic flalid of tem-

k~-+1 f~-+ £ for £<1 (A4) perature, which corresponds to the simplest version of the
’ 22w ' critical-state mode(Bean’s modé’). Thus, settind (x)=1,
or 0, one has
V2w 1 ~ ~
k~*—, f=~=x—  for L>1. (AS) d(D(X) ~
L 2 =—L or O, (B3)

dx

Note that, for smaller inductance, spontaneous flux remains ] S
nonzero but becomes small as can be seen from(&).  Which gives the flux distributiomdependent of temperatyre

Therefore, in real ceramic samples where one has an addi-

tional diamagnetic contribution from intragranular supercur- d(x)=h—Lx, for 0<x<h/Z,

rents, which has been neglected in the present model, a small _

paramagnetic contribution arising from the intergranular su- =0, for x>h/L. (B4)
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