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Normal modes of vortices in easy-plane antiferromagnets:
Exact results and Born approximation
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We investigate the spin-wave spectrum of two-dimensional easy-plane classical antiferromagnets in the
presence of a planar vortex. The exact wave forms of spin waves are obtained and then compared with the
Born approximation. Two modes in which the characteristic frequencies may be detected in resonance experi-
ments are found.S0163-18206)08133-7

A large variety of layered magnetic insulators has beerate the asymptotic phase-shifted cylindrical spin waves. In
shown to exhibit the experimental characteristic of two-contrast to the ferromagnetic c&see find (besides the con-
dimensional(2D) magnetism and has been useful in testingtinuum statestwo new internal motions of vortices whose
theories pertinent to 2D systems. In classical models fogharacteristic frequencies can be detected in resonance or
these quasi-two-dimensional magnetic materials, it has bednelastic neutron scatteringNS) experiments. Next, the
found that nonlinear excitations play an active role in theBorn approximation(which is the standard procedure used
static thermodynamic propertiésind are expected to be im- by several authofs®~*2j is used to calculate the phase
portant in the spin dynamiés® Mobile vortices and solitons shift 'of the magnons and then compared with the exact result
were considered by some auttbfowith the result that mo-  Obtained here.
tion gives rise to a central peak in the frequency-dependen
correlation function. But another mechanism that can affec
the dynamics is the soliton-magndar vortex-magnohin-
teraction. Recently, the dynamic spin correlation function
owing to a soliton-magnon interaction in the 2D isotropic H=32 [S-S+\(SH?], (1)
classical antiferromagnédtescribed by the 2D nonlinear (LD
mode) has been calculated by Zaspetal” They have WhereJ>0 is the exchange constant>0 is the anisotropy
shown, using the Born approximation, that magnons scatParameter, and is the spin vector at site of magnitude
tered by So|itons resu|t in an e|ectron paramagnetic resqs. The Continuum I|m|t .Of thIS Hamiltonian can be Obtain(?d
nance(EPR) linewidth with a dominant exjils/T) tempera- I t_he usual wa¥f defining normalized vectors of magn_etl-
ture dependence, wherEs is the soliton energy. Their Z&U0NMy=(S;+S;0.1)/2S and the vectors of sublattice
calculations are in good agreement with EPR linewidth datdn@gnetization,= (S~ S+1)/2S, where the subscripts re-

on several previously measured spin-5/2 layered mangane to 2the different sublattices. Vectarsand are related by
compound®® and data on n-propylammonium M +19=1 andm-1=0. In the critical fluctuation region the
tetrachloromanganafe condition|m|< <|l|~1 is satisfied and then the Hamiltonian

Solitons interacting with magnons have been also consid®@n Pe expiessed in terms lobnly.”" Using angular vari-
ered, in the Born approximation, in quantization procedure&P!€s forl, |=(sinfcosp,sinésing,cos), the equation of mo-
and anisotropit) and vortex states in the 2D anisotropic 1\ (320
ferromagnets? It has been found that the quantum correc- Vze—(—)( ):sinecosa
zero-point energy of the spin waves measured with respect to —2\sinfcosd )
the vacuum can change strongly the classical picture, intro- ’

We begin with the Hamiltonian for a classical two-
imensional antiferromagnetic Heisenberg model with easy-
plane symmetry:

1
c2

for soliton states in the 2D nonlinear models(isotropic®  tiOn can be written in the fort

& 2
- has be . 2|7 vor-( 2 (%)
tions to the classical soliton, or vortex, energy, given by the

ducing interactions between solitdfiss well as an internal 1\( 52
degree of freedom for solitors. Vig— (—2) (—2> =—2cotg| (V) (Vo)
. . Lo c ot
The importance of the vortex-magnon interaction in dis-
crete lattices has been studied in easy-plane ferromagnets by 1\(06\[d¢p
Wysin and Vdkel** using numerical diagonalization on —(?> (E) (E) ) 3

small systems. In particular, it has been shown how the spin-
wave modes are related to the instability of vortitgY! wherec=2JS is the spin-wave velocity. Nonlinear excita-
Our purpose in this paper is to study the vortex-magnoriions can be obtained from these equations, but only for
interaction in 2D easy-plane antiferromagnets. Since theome special cases can the excitations be analytically ob-
lowest-order effect of an inhomogeneous vortex is to protained. For the case with=0 (isotropic Heisenberg model
duce an elastic scattering center for the magnons, we calcgeneral localized solutions have been obtained by Belavin
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and PolyakoV® The case of our interesh (>0) is the clas- In Eq. (4), whenV(r) is identically zero(absence of a
sicalxy-like model with excitations being vortices easily ob- vortex), the solution&(r,t) reduces also to the plane wave
tained by integration of the equations of motion in a polare'd" and, as in the latter case, the partial waves become free
(r,¢) coordinate system. The static vortex solution is givencylindrical wavesé,(r,t)=J,(qr)e'"¢e'“2' with frequency
by 6,=6,(r) and ¢,=tan (y/x). In particular, in models w,=(2\+q%)%c. Hence, it is easy to see that the lowest-
of three-component classical spins with easy-plang @n-  order effect of a planar vortex introduced into the system
isotropy, there are two possible types of vortices, known agV(r)=—1/r?] is to produce an elastic scattering center for
“in-plane” and *“out-of-plane” vortices, depending on “out-of-plane” spin waves. The potentid¥(r) associated
whether the static vortex has zero or nonzero out-of-planevith the vortex configuration is cylindrically symmetric, and
spin components, respectively. el et al?® have shown then angular momentum is a good quantum number and the
numerically that for Hamiltoniafl), when\ is larger than a  phase-shift matrix\,,,(q) is diagonal.
critical value (..~0.5) planar vortices are stable, buhifis Writing £,(r,t) = &y (r)€"?e 2", Eq. (4) becomes
smaller than the critical value, out-of-plane vortices become
stable where the central region of the vortex has spins not d 1/d , (n*-1)

arztrlgr) 79—z |éom(N) =0, )

confined to the lattice plane. Other recent numerical simula-
tions have also shown that a free vortex almost never travels: ) s mn 2o _
more than one lattice const&it?? For these reasons, i.e., With w5—2\c?=w*=q“c®. For|n|=1 the solutions of Eq.
since the planar vortex solution is exactly known (7) are Bessel functions of order= Jn?=1, ie.,
[6,=m/2,¢,=tan 1(y/x)] and is stable for an appreciable
rantge of anisotrop§’ we will consider only a static planar fom(N=3,an=3[HP(@n+HZ@n].  ®
vortex.

In order to determine the behavior of small oscillations inFor n=0, we get the solution
the presence of a static planar vortex, we assume that the

spin polar and azimuthal angles can be expressed as Eo0)=De I F (5 +i|1+2i|2igr)
o(r,t)=0,(r)+ &(r,t) and ¢(r,t)= ¢, (r) + n(r,t). Here § I o
and » are assumed to be small quantities which reduce to +Ee 9'r TR(3 —i]1-2if2igr), ©)

spin-wave solutions if no vortices are present. In the pres- . .
ence of a vortex¢ and » give the change in the vortex whereF (a[b|c) are the confluent hypgrggometrlc f%‘”c“ons
configuration as a result of the vortex—spin-wave interaction@ndD andE are constants of renormalization. The difference

Recently, lvanowet al? studied the interaction between the betweento () =J,,(qr) (solution in the presence of a vortex

“out-of-plane” vortex and magnons with the limitation that 2NdJdn(ar) (solution in the absence of a vortes physically

the form 6,(r) was unknown, and so calculations had to beg:lear. As an incoming spin wave approaches the zone of

restricted by approximating, (r) by its asymptotic form. influence of the potential, it is more and more perturbed by

Here, since the planar vortex solution is exactly known, Wethls potential. When, after turning back, it is transformed into

can obtain the exact wave forms éfr.t) and »(r.t). To an outgoing spin wave, it has accumulated a phase shift of

this end, to first order in small quantities, the equations fo2An(q) relative to the free outgoing spin wave that would

0 and ¢ become an uncoupled set of two partial differential lha:e reshult;ad i thfzﬁ‘:}(%”“a“(r) h?d beﬁ n |der|1t|c]:‘fally Z?rﬁ'
equations to be solved farand 7. We get n fact, the factoe summarizes the total effect of the

potential on a magnon of angular momentamso that we
) 1\(d% can write
Veleloe - a2
fom =3 {Hia/(an)+e 25 PHE (@)} (r—).
1\(d*n (10)
P3N il | A
Ven (&)( atz)_o’ (5) By comparing the solutior{10) (valid in r—o) with the

—2ME=V(N)E, (4)

exact solutio of Eq. (7) atr— o, we obtain the phase
whereV(r)=—(V,)?=— 1/r®. Notice that the “in-plane”  ¢pits "ot a-(7) P

spin-wave oscillation(r,t) does not “feel” the presence of

a planar vortesee Eq.(5)], since we have a usual wave Ag(q) =2,
equation without any potential, resulting in free cylindrical
waves solutions associated with the well-defined angular mo- Ay(q)=(n—n?=1)m/2 for n=1, (12)

mentum €) stationary states;, of a free magnon. These
solutions are written as A(Q)=—(n+JP2—T)ym/2 for n<—1.
Notice thatA |, (q) =A _ 5 (q) and that the phase shift of the
1 W 2 S partial waveé, 4(r) does not depend oq, that is, on the
:§[Hn (gr)+Hy”(qr)le"re™ 1, (6) energy. _ _ _ _

Two modes are found in this antiferromagnetic system
where w;=qc and g is the wave vector. At infinity, consideringw=0 with n=0 and n=1. We obtain two
nq(r,t) results from the superposition of an incoming spinmodes with a well-defined frequency determined by the
wave and an outgoing spin wave, whose amplitudes differ bgtrength of the easy-plane anisotropy,= J2\c, the wave
a phase difference equal ta{+ 7/2). forms of which are

7n(r,t) :Jn(qr)ein"De_iwlt
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&, (r)=pBycogInr)+ B,sin(inr)  (r>0), TABLE |. Comparison between the Born approximation and
0 (12) exact result for five momentum angular channels.
gbl(r) =3, Phase shift Exact results Born approximation

A, w2 1/2(w/2)

where 8, B,, and B3 are constants of renormalization. A, 0.268(r/2) 0.25(m/2)
Equations(12) show that planar vortices possess two ad- A, 0.171(/2) 0.166@r/2)
ditional internal degrees of freedom, sifées described by A, 0.127(@#/2) 0.125@7/2)
oscillating functions with constant amplitudes. It is due to Ag 0.101(7/2) 0.100¢7/2)

the fact that the spins can oscillate out of the plane
[IZ=§b0(r)e*""bt or I*= gble"Pe*""bt] without any devia-
tions n from the static in-plane angles. Characteristic fre- -
guencies of the internal motion can be detected in principle Af}):—
by EPR or INS. In our case, whenis larger than a critical 4ln|
value A, (\.~0.5 for the square lattié®, the frequency Forn=0, the integral13) diverges because the vortex core
wp=+/2\c may be observed in experiments with quasi-two-is a singularity in a continuum limit. Usually this means that
dimensional antiferromagnets. In three dimensions, interna short-distance cutdff®> must be applieéd hocto integrals
motion of domain walls in antiferromagnets was experimen-over the spin field, but the cutoff radius itself is not well
tally observed in thulium orthoferrit&. known.
A good candidate for a 2D easy-plane antiferromagnet is The agreement between the approximafigg. (14)] and
B ,Ni»(PO,),, which can be described by the Hamiltonian the exact resul{Egs. (11)] for large angular momentum
(1) with J=11 K, A=0.66, andS=1.%° Of course, this an- channels [n|=2) is presented in Table I. Fdn|=1 the
tiferromagnet does not satisfy our conditions entirely sinceerror is 50%.
Sis small. But with an approximation we expect that a char- As we could expect the Born approximatigfirst orde)
acteristic frequency,~ 2xc~25.2 K of the internal mo- is not good forn=0,+1 angular momentums( and p
tion may be detected in this system by EPR or INS. waves. In fact, in these cases the centrifugal barrier given by
The scattering or continuum states can contribute to th@?/r? [see Eq(7)] is small and hence theandp waves can
correlation function. Vortex motion results in a central peakapproach the zone of strong influence of the potential, where
at zero frequency, which is far removed from EPR resothe Born approximation may fail. Fon|=2, the centrifugal
nance. Hence, the time-dependent mechanism that can coparrier is large and expels the spin waves from the center of
tribute to the EPR linewidth is the vortex-magnon interactionthe vortex, whereV(r)>1. It is easy to see that, when
considered here. The EPR linewidth is the temporal integraln|>1, Egs.(11) reduce to Eq(14). This result is physically
of the four-spin correlation functiof;?” and the determina- important for it implies that an “out-of-plane” spin wave in
tion of this function and its dependence on the vortex excithe state, 4(r,t) is practically unaffected by what happens
tations will probably have to be done numerically and isinside a circle centered at the origimortex-center of the
beyond the scope of this paper. Zasgeal,” using the Born  radiusR,(q) =n/q.
approximation, have shown that solitons interacting with In order to improve the calculations fak§"(q) and
magnons in classical 2D isotropic antiferromagnets results i, (1)(q) we have to consider the second-order Born terms

an EPR linewidth exis/T). But one point to mention in  A2)(q) andA{?(q). However, these calculations present the
their calculations is that they have only considered theSame difficulty we have met in calculatinkj)l)(q), since the

s-wave (1=0) scattering, arguing that it is the main contri- cutoff radius is not well known. In using a value proportional

bution to the sqliton-magnon interaction. However, we hav%0 a (lattice constant we get results that depend on this
seen here that in the case of the vortex, all momentum angyz e and then it seems to be artificial

lar channels seem to be important. To analyze it better we In summary, we have obtained the éxact phase staiftd
hence the exact wave formnef linear spin waves in the
C6resence of a planar vortex in 2D easy-plane antiferromag-

result given by Eqs(11). We can use our exact result to nets. This has been theoretically described in the continuum

fﬁ:gzléﬁaﬁgg;} l?spir?rot)ﬂin;?(telgrr:n?nui ';S"i]r?)égfeslp;gnedvi‘gjfﬁmit, and hence, for the discrete case, the wave forms are
Y q : orrect only for sufficiently large values of far from the

The first-order Born terms for the phase shifts are IV€Nyortex centet* The results were compared with the Born

in general, by approximation, leading to the conclusion that this approxi-
mation works very well for large momentum angular chan-
. nels (n|=2) but it may fail fors andp waves. In addition to

Aﬁ]l)(q)z—zf rdr<J|n‘(qr)e*‘““’V(r)ei”‘PJ|n‘(qr))¢,, the scattering states, two modes with a well-defined fre-
2Jo quencyw;,= v2\c were found. Resonances at characteristic
(13 frequencies of an internal motion can be observed in EPR or
INS experiments. Then, if vortices are present in the system,

where the symbof{- - -) , denotes an angular average. SinceEPR linewidth measurements provide an indirect method to
the “out-of-plane” spin waves “feel” a potential experimentally detect vortices. In fact, this method could
V(r)=—1/r2, we get forn#0 check if vortices dominate the thermodynamics in the fluc-

(n#0). (14
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tuation region immediately above the Kosterlitz-Thoulessalso for use in statistical mechani€sas well as quantiza-
temperaturkT, . Finally, we would like to mention that the tions procedures for soliton staté4® and perturbation

bound statés) and scattering or continuum states may be oftheories® involving soliton responses to external perturba-
fundamental importance not only for the spin dynamics butions.
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