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We investigate the spin-wave spectrum of two-dimensional easy-plane classical antiferromagnets in the
presence of a planar vortex. The exact wave forms of spin waves are obtained and then compared with the
Born approximation. Two modes in which the characteristic frequencies may be detected in resonance experi-
ments are found.@S0163-1829~96!08133-7#

A large variety of layered magnetic insulators has been
shown to exhibit the experimental characteristic of two-
dimensional~2D! magnetism and has been useful in testing
theories pertinent to 2D systems. In classical models for
these quasi-two-dimensional magnetic materials, it has been
found that nonlinear excitations play an active role in the
static thermodynamic properties,1 and are expected to be im-
portant in the spin dynamics.2–6Mobile vortices and solitons
were considered by some authors3–6 with the result that mo-
tion gives rise to a central peak in the frequency-dependent
correlation function. But another mechanism that can affect
the dynamics is the soliton-magnon~or vortex-magnon! in-
teraction. Recently, the dynamic spin correlation function
owing to a soliton-magnon interaction in the 2D isotropic
classical antiferromagnet~described by the 2D nonlinears
model! has been calculated by Zaspelet al.7 They have
shown, using the Born approximation, that magnons scat-
tered by solitons result in an electron paramagnetic reso-
nance~EPR! linewidth with a dominant exp(ES/T) tempera-
ture dependence, whereES is the soliton energy. Their
calculations are in good agreement with EPR linewidth data
on several previously measured spin-5/2 layered manganese
compounds8,9 and data on n-propylammonium
tetrachloromanganate.7

Solitons interacting with magnons have been also consid-
ered, in the Born approximation, in quantization procedures
for soliton states in the 2D nonlinears models~isotropic10

and anisotropic11! and vortex states in the 2D anisotropic
ferromagnets.12 It has been found that the quantum correc-
tions to the classical soliton, or vortex, energy, given by the
zero-point energy of the spin waves measured with respect to
the vacuum can change strongly the classical picture, intro-
ducing interactions between solitons10 as well as an internal
degree of freedom for solitons.11

The importance of the vortex-magnon interaction in dis-
crete lattices has been studied in easy-plane ferromagnets by
Wysin and Völkel13 using numerical diagonalization on
small systems. In particular, it has been shown how the spin-
wave modes are related to the instability of vortices.13,14

Our purpose in this paper is to study the vortex-magnon
interaction in 2D easy-plane antiferromagnets. Since the
lowest-order effect of an inhomogeneous vortex is to pro-
duce an elastic scattering center for the magnons, we calcu-

late the asymptotic phase-shifted cylindrical spin waves. In
contrast to the ferromagnetic case15 we find~besides the con-
tinuum states! two new internal motions of vortices whose
characteristic frequencies can be detected in resonance or
inelastic neutron scattering~INS! experiments. Next, the
Born approximation~which is the standard procedure used
by several authors7,10–12,15! is used to calculate the phase
shift of the magnons and then compared with the exact result
obtained here.

We begin with the Hamiltonian for a classical two-
dimensional antiferromagnetic Heisenberg model with easy-
plane symmetry:

H5J(
^ i , j &

@Si•Sj1l~Si
z!2#, ~1!

whereJ.0 is the exchange constant,l.0 is the anisotropy
parameter, andSi is the spin vector at sitei of magnitude
S. The continuum limit of this Hamiltonian can be obtained
in the usual way16 defining normalized vectors of magneti-
zation mn5(S2n1S2n11)/2S and the vectors of sublattice
magnetizationln5(S2n2S2n11)/2S, where the subscripts re-
fer to the different sublattices. Vectorsm andl are related by
m21 l251 andm• l50. In the critical fluctuation region the
conditionumu,,u lu'1 is satisfied and then the Hamiltonian
can be expressed in terms ofl only.17 Using angular vari-
ables forl, l5(sinucosf,sinusinf,cosu), the equation of mo-
tion can be written in the form18

¹2u2S 1c2D S ]2u

]t2 D5sinucosuF ~¹f!22S 1c2D S ]f

]t D
2G

22lsinucosu, ~2!

¹2f2S 1c2D S ]2f

]t2 D522cotuF ~¹u!•~¹f!

2S 1c2D S ]u

]t D S ]f

]t D G , ~3!

wherec52JS is the spin-wave velocity. Nonlinear excita-
tions can be obtained from these equations, but only for
some special cases can the excitations be analytically ob-
tained. For the case withl50 ~isotropic Heisenberg model!
general localized solutions have been obtained by Belavin
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and Polyakov.19 The case of our interest (l.0) is the clas-
sicalxy-like model with excitations being vortices easily ob-
tained by integration of the equations of motion in a polar
(r ,w) coordinate system. The static vortex solution is given
by uv5uv(r ) andfv5tan21(y/x). In particular, in models
of three-component classical spins with easy-plane (xy) an-
isotropy, there are two possible types of vortices, known as
‘‘in-plane’’ and ‘‘out-of-plane’’ vortices, depending on
whether the static vortex has zero or nonzero out-of-plane
spin components, respectively. Vo¨lkel et al.20 have shown
numerically that for Hamiltonian~1!, whenl is larger than a
critical value (lc'0.5) planar vortices are stable, but ifl is
smaller than the critical value, out-of-plane vortices become
stable where the central region of the vortex has spins not
confined to the lattice plane. Other recent numerical simula-
tions have also shown that a free vortex almost never travels
more than one lattice constant.21,22 For these reasons, i.e.,
since the planar vortex solution is exactly known
@uv5p/2,fv5tan21(y/x)# and is stable for an appreciable
range of anisotropy,20 we will consider only a static planar
vortex.

In order to determine the behavior of small oscillations in
the presence of a static planar vortex, we assume that the
spin polar and azimuthal angles can be expressed as
u(r ,t)5uv(r )1j(r ,t) and f(r ,t)5fv(r )1h(r ,t). Here j
and h are assumed to be small quantities which reduce to
spin-wave solutions if no vortices are present. In the pres-
ence of a vortex,j and h give the change in the vortex
configuration as a result of the vortex–spin-wave interaction.
Recently, Ivanovet al.23 studied the interaction between the
‘‘out-of-plane’’ vortex and magnons with the limitation that
the formuv(r ) was unknown, and so calculations had to be
restricted by approximatinguv(r ) by its asymptotic form.
Here, since the planar vortex solution is exactly known, we
can obtain the exact wave forms ofj(r ,t) and h(r ,t). To
this end, to first order in small quantities, the equations for
u andf become an uncoupled set of two partial differential
equations to be solved forj andh. We get

¹2j2S 1c2D S ]2j

]t2 D22lj5V~r !j, ~4!

¹2h2S 1c2D S ]2h

]t2 D50, ~5!

whereV(r )52(¹fv)
2521/r 2. Notice that the ‘‘in-plane’’

spin-wave oscillationh(r ,t) does not ‘‘feel’’ the presence of
a planar vortex@see Eq.~5!#, since we have a usual wave
equation without any potential, resulting in free cylindrical
waves solutions associated with the well-defined angular mo-
mentum (n) stationary stateshn of a free magnon. These
solutions are written as

hn~r ,t !5Jn~qr !e
inwe2 iv1t

5
1

2
@Hn

~1!~qr !1Hn
~2!~qr !#einwe2 iv1t, ~6!

where v15qc and q is the wave vector. At infinity,
hn(r ,t) results from the superposition of an incoming spin
wave and an outgoing spin wave, whose amplitudes differ by
a phase difference equal to (np1p/2).

In Eq. ~4!, whenV(r ) is identically zero~absence of a
vortex!, the solutionj(r ,t) reduces also to the plane wave
eiq•r and, as in the latter case, the partial waves become free
cylindrical wavesjn(r ,t)5Jn(qr)e

inwe2 iv2t with frequency
v25(2l1q2)1/2c. Hence, it is easy to see that the lowest-
order effect of a planar vortex introduced into the system
@V(r )521/r 2# is to produce an elastic scattering center for
‘‘out-of-plane’’ spin waves. The potentialV(r ) associated
with the vortex configuration is cylindrically symmetric, and
then angular momentum is a good quantum number and the
phase-shift matrixDnn8

(q) is diagonal.
Writing jn(r ,t)5j0(n)(r )e

inwe2 iv2t, Eq. ~4! becomes

F d2dr2 1
1

r S ddr D1q22
~n221!

r 2 Gj0~n!~r !50, ~7!

with v2
222lc25ṽ25q2c2. For unu>1 the solutions of Eq.

~7! are Bessel functions of orderm5An221, i.e.,

j0~n!~r !5Jm~qr !5 1
2 @Hm

~1!~qr !1Hm
~2!~qr !#. ~8!

For n50, we get the solution

j0~0!5De2 iqr r iF~ 1
2 1 i u112i u2iqr !

1Ee2 iqr r2 iF~ 1
2 2 i u122i u2iqr !, ~9!

whereF(aubuc) are the confluent hypergeometric functions
andD andE are constants of renormalization. The difference
betweenj0(n)5Jm(qr) ~solution in the presence of a vortex!
andJn(qr) ~solution in the absence of a vortex! is physically
clear. As an incoming spin wave approaches the zone of
influence of the potential, it is more and more perturbed by
this potential. When, after turning back, it is transformed into
an outgoing spin wave, it has accumulated a phase shift of
2Dn(q) relative to the free outgoing spin wave that would
have resulted if the potentialV(r ) had been identically zero.
In fact, the factore22iDn(q) summarizes the total effect of the
potential on a magnon of angular momentumn, so that we
can write

j0~n!5
1
2 $H unu

~1!~qr !1e22iDn~q!H unu
~2!~qr !% ~r→`!.

~10!

By comparing the solution~10! ~valid in r→`) with the
exact solutionj0(n) of Eq. ~7! at r→`, we obtain the phase
shifts

D0~q!52p,

Dn~q!5~n2An221!p/2 for n>1, ~11!

Dn~q!52~n1An221!p/2 for n<21.

Notice thatD unu(q)5D2unu(q) and that the phase shift of the
partial wavejn,q(r ) does not depend onq, that is, on the
energy.

Two modes are found in this antiferromagnetic system
considering ṽ50 with n50 and n51. We obtain two
modes with a well-defined frequency determined by the
strength of the easy-plane anisotropy,vb5A2lc, the wave
forms of which are
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jb0~r !5b1cos~ lnr !1b2sin~ lnr ! ~r.0!,

~12!

jb1~r !5b3 ,

whereb1, b2, andb3 are constants of renormalization.
Equations~12! show that planar vortices possess two ad-

ditional internal degrees of freedom, sincel z is described by
oscillating functions with constant amplitudes. It is due to
the fact that the spins can oscillate out of the plane
@ l z5jb0(r )e

2 ivbt or l z5jb1e
iwe2 ivbt# without any devia-

tions h from the static in-plane angles. Characteristic fre-
quencies of the internal motion can be detected in principle
by EPR or INS. In our case, whenl is larger than a critical
value lc (lc'0.5 for the square lattice20!, the frequency
vb5A2lc may be observed in experiments with quasi-two-
dimensional antiferromagnets. In three dimensions, internal
motion of domain walls in antiferromagnets was experimen-
tally observed in thulium orthoferrite.24.

A good candidate for a 2D easy-plane antiferromagnet is
B aNi 2~PO4)2, which can be described by the Hamiltonian
~1! with J511 K, l50.66, andS51.25 Of course, this an-
tiferromagnet does not satisfy our conditions entirely since
S is small. But with an approximation we expect that a char-
acteristic frequencyvb'A2lc'25.2 K of the internal mo-
tion may be detected in this system by EPR or INS.

The scattering or continuum states can contribute to the
correlation function. Vortex motion results in a central peak
at zero frequency, which is far removed from EPR reso-
nance. Hence, the time-dependent mechanism that can con-
tribute to the EPR linewidth is the vortex-magnon interaction
considered here. The EPR linewidth is the temporal integral
of the four-spin correlation function,26,27 and the determina-
tion of this function and its dependence on the vortex exci-
tations will probably have to be done numerically and is
beyond the scope of this paper. Zaspelet al.,7 using the Born
approximation, have shown that solitons interacting with
magnons in classical 2D isotropic antiferromagnets results in
an EPR linewidth exp(Es/T). But one point to mention in
their calculations is that they have only considered the
s-wave (n50) scattering, arguing that it is the main contri-
bution to the soliton-magnon interaction. However, we have
seen here that in the case of the vortex, all momentum angu-
lar channels seem to be important. To analyze it better we
will calculate the phase shiftsDn(q) using the Born approxi-
mation and then compare the approximation with the exact
result given by Eqs.~11!. We can use our exact result to
check the Born approximation and it may help to evaluate
the calculations using this technique as in Refs. 7 and 10–12.

The first-order Born terms for the phase shifts are given,
in general, by

Dn
~1!~q!52

p

2E0
`

rdr ^Junu~qr !e
2 inwV~r !einwJunu~qr !&w ,

~13!

where the symbol̂•••&w denotes an angular average. Since
the ‘‘out-of-plane’’ spin waves ‘‘feel’’ a potential
V(r )521/r 2, we get fornÞ0

Dn
~1!5

p

4unu ~nÞ0!. ~14!

For n50, the integral~13! diverges because the vortex core
is a singularity in a continuum limit. Usually this means that
a short-distance cutoff1,15must be appliedad hocto integrals
over the spin field, but the cutoff radius itself is not well
known.

The agreement between the approximation@Eq. ~14!# and
the exact result@Eqs. ~11!# for large angular momentum
channels (unu>2) is presented in Table I. Forunu51 the
error is 50%.

As we could expect the Born approximation~first order!
is not good for n50,61 angular momentum (s and p
waves!. In fact, in these cases the centrifugal barrier given by
n2/r 2 @see Eq.~7!# is small and hence thes andp waves can
approach the zone of strong influence of the potential, where
the Born approximation may fail. Forunu>2, the centrifugal
barrier is large and expels the spin waves from the center of
the vortex, whereV(r )@1. It is easy to see that, when
unu@1, Eqs.~11! reduce to Eq.~14!. This result is physically
important for it implies that an ‘‘out-of-plane’’ spin wave in
the statejn,q(r ,t) is practically unaffected by what happens
inside a circle centered at the origin~vortex-center! of the
radiusRn(q)5n/q.

In order to improve the calculations forD0
(1)(q) and

D1
(1)(q) we have to consider the second-order Born terms

D0
(2)(q) andD1

(2)(q). However, these calculations present the
same difficulty we have met in calculatingD0

(1)(q), since the
cutoff radius is not well known. In using a value proportional
to a ~lattice constant!, we get results that depend on this
value and then it seems to be artificial.

In summary, we have obtained the exact phase shifts~and
hence the exact wave forms! of linear spin waves in the
presence of a planar vortex in 2D easy-plane antiferromag-
nets. This has been theoretically described in the continuum
limit, and hence, for the discrete case, the wave forms are
correct only for sufficiently large values ofr , far from the
vortex center.14 The results were compared with the Born
approximation, leading to the conclusion that this approxi-
mation works very well for large momentum angular chan-
nels (unu>2) but it may fail fors andp waves. In addition to
the scattering states, two modes with a well-defined fre-
quencyvb5A2lc were found. Resonances at characteristic
frequencies of an internal motion can be observed in EPR or
INS experiments. Then, if vortices are present in the system,
EPR linewidth measurements provide an indirect method to
experimentally detect vortices. In fact, this method could
check if vortices dominate the thermodynamics in the fluc-

TABLE I. Comparison between the Born approximation and
exact result for five momentum angular channels.

Phase shift Exact results Born approximation

D1 p/2 1/2(p/2)
D2 0.268(p/2) 0.25(p/2)
D3 0.171(p/2) 0.166(p/2)
D4 0.127(p/2) 0.125(p/2)
D5 0.101(p/2) 0.100(p/2)
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tuation region immediately above the Kosterlitz-Thouless
temperature1 TKT . Finally, we would like to mention that the
bound state~s! and scattering or continuum states may be of
fundamental importance not only for the spin dynamics but

also for use in statistical mechanics,28 as well as quantiza-
tions procedures for soliton states11,29 and perturbation
theories30 involving soliton responses to external perturba-
tions.
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