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The analytical expression of the free-electron spin susceptibilitiesx(q) and x(r ) in one dimension are
derived at finite temperature, where the Sommerfeld expansion is not applicable nearq52kF , by a series
expansion method which does not require the restriction of the Sommerfeld method. The main results are~i!
the oscillation of the range function decays exponentially as exp(2pkFrkBT/«F) in the long-range limit and~ii !
the logarithmic divergence ofx(q) at q52kF near T50 is in the form of @N(0)mB

2/2# ln(4«F /pkBT).
@S0163-1829~96!05133-8#

In the long-range limit, the free-electron spin susceptibil-
ity x(r ), which represents the spin polarization due to a
point interaction, shows an oscillatory decaying behavior. It
is well known that its envelope falls off as 1/r d at zero tem-
perature in the long range limit in thed-dimensional free-
electron gas model.1 The long-range behavior of the free-
electron susceptibility is important in determining several
physical properties. The Ruderman-Kittel-Kasuya-
Yosida2 ~RKKY ! interaction of which the coupling constant
is proportional to the itinerant spin susceptibilityx(r ) in the
linear response assumption is one example. The pure one-
dimensional RKKY interaction has the potential to produce
the phase transition to spin ordering because phase transition
can take place at finite temperature even in one dimension if
the interaction falls off not faster than 1/r .2,3

At nonzero temperature, however, the long-range oscilla-
tion of the free-electron spin polarization and thereby the
RKKY interaction between local spins are damped as the
Fermi surface becomes blurred with increasing temperature.
Our study in three dimensions4,5 showed thatx(r ) decay is
proportional to the exponential form,e2pkFrT8, in low tem-
perature whereT85kBT/«F . Another factor which makes
the algebraically decaying long-range oscillation exponen-
tially damped is the effect of finite electron mean free path. It
was shown that the RKKY interaction is exponentially
damped due to the effect of the finite electron mean free path
in a randomly disordered system.6 The temperature depen-
dent decay length becomes comparable with the electron
mean free path at high temperature.7,8

Traditionally, the temperature dependent behavior of the
Fermi gas has been studied by use of the Sommerfeld expan-
sion method. The Sommerfeld expansion is applicable to the
derivation of* f («)h(«)d«, or * f (k)h(k)dk where f is the
Fermi distribution function andh is nonsingular and not too
rapidly varying in the neighborhood of«5m. But, this kind
of approach is not applicable for the derivation of tempera-
ture dependentx(q), since, in this case,h(k) becomes sin-
gular at k56q/2. As an alternative, we can approximate
f («) to a simple form instead ofh(«) if h(«) is rapidly
varying near Fermi surface.9 In this approach, any type of

approximations off 8(«) having finite numbers of nondiffer-
entiable points show a beat structure in the envelope of
x(r ) because of the characteristic wave numbers correspond-
ing to these nondifferentiable points. The lowest order of
approximation which is differentiable and analytically solv-
able f 8(«) would be a cubic approximation. This form pro-
duces a monotonically decaying envelope, but its decaying
behavior is different from the true one. It is worthwhile to
note that higher order approximations do not necessarily give
better results as far as the approximate functions are made to
depend on only one parameter corresponding to temperature
by the normalization and differentiability conditions.

The analytical method we proposed in the previous work5

neither approximatesh(x) as the Sommerfeld method does
nor approximates Fermi distributionf (x) in the derivation of
* f (x)h(x)dx. Our method does not require the restriction of
the Sommerfeld method. The general formalism gives the
temperature-dependent susceptibility which can be improved
systematically by considering higher order terms succes-
sively by using Euler-Maclaurin series. This series gives the
result identical to the one obtained by the Sommerfeld
method in the low temperature limit when expanded with
respect to the powers of temperature, though its precision is
not sensitively dependent on temperature because basically
this series is not an expansion in terms of the powers of
temperature. In this work, we apply this method to the cal-
culation of x(q) and x(r ) in one dimension at finite tem-
perature. The resulting analytical low temperature expression
shows that the amplitude decay ofx(r ) in one dimension,
which is algebraic at zero temperature, becomes exponential
in the long-range limit as a function of both temperature and
distance.

A physical quantity of the Fermi gas written as5

A~x,T!5E
2`

`

f ~k,T!h~k,x!dk, ~1!

where f (k,T) represents the Fermi distribution function em-
phasizing its temperature dependence explictly, can be cal-
culated using the contour integral along the infinite semi-
circle in the upper half complex plane. As far as the increase
of h(k,x) is slower than exponential with respect tok, i.e.,
lime→0limuku→`uei«kh(k,x)/ku→0, the result becomes
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where

kn
15hne

iwn, kn
25hne

i ~p2wn!, ~3!

are the poles of the Fermi distribution functionf (k,T)51/@11exp„(\2/2mkBT)(k
22kF

2)…# in the upper half plane andk* ’s
are the poles ofh(k,x). Here,B2 j ’s are the Bernoulli numbers and

hn5kF„11~pTn8!2…1/4,

wn5
1

2
arctanpTn8 ,

Tn85~2n11!kBT/«F , ~4!

wheren is an integer. The detailed description of this derivation can be found in Ref. 5. In this calculation, the chemical
potential at finite temperature was approximated to the Fermi energy for the simplicity of calculation. This approximation
affects the period of the oscillation only, and this period change is only order of 0.01% even at room temperature.5

In the linear response assumption, the free-electron susceptibilityx(q) for one dimension can be written

x~q!5
4mLmB

2

p\2 E
2`

`

f ~k!h~k!dk, ~5!

whereh(k)51/q224k2. In the above equation,h(k,q) is algebraic and the residues fromk56q/2 cancel each other since
f (k) is an even function with respect tok. Using the general formula equation~2! it is straightforward to show that the result
up to the second order, which includesj51 term in the Eq.~2!, is

x~q!5
mLmB

2

p\2 F1q ln~q12h0cosw0!
21~2h0sinw0!

2

~q22h0cosw0!
21~2h0sinw0!

2 2
pT8kF

2

h0hq
2 sin~w022wq!1

1

24

~pT8kF
2 !2

h0
3hq

4 „q2cos~3w024wq!

212h0
2cos~w024wq!…G , ~6!

whereh05kF„11(pT8)2…1/4, w051/2arctanpT8 andhq and
wq are defined respectively as

hq5kFUS 12
q2

4kF
2 D 21~pT8!2U1/4

wq5wq* ~q2.4kF
2 !,

p

2
2wq* ~q2,4kF

2 !, ~7!

wq* being 1/2arctan(pT8/u12q2/4kF
2 u). At zero temperature,

the second and third terms become zero and the first term
reduces to the well known form,

x~q!5
2mLmB

2

p\2q
lnU q12kF

q22kF
U. ~8!

At finite temperature, Rice and Stra¨ssler showed that
x(2kF) diverges with temperature logarithmically near

T;0 as @N(0)mB
2/2# ln(1.14«B /kBT) in one dimension,10

whereN(0) is the density of states at the Fermi surface. This
expression was obtained on the assumption that the energy
near Fermi surface is linear as«k5«F1(uku2kF)\

2kF /m
for u«k2«Fu,«B . This logarithmic divergence atq52kF
nearT;0 appears naturally from the first term of Eq.~6!
without any assumptions. From Eq.~6!, it is shown that
in the low temperature limit, it becomes@N(0)mB

2/
2]ln(4«F /pkBT).

The range functionx(r ) is given by the Fourier transform
of x(q)11

x~r !5
1

2pE dqeiqrx~q!

5
2mLmB

2

p2\2 E
2`

`

dqeiqrE
2`

`

dk
f ~k!

q224k2
. ~9!

Since
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if we apply Euler-Maclaurin formula to Eq.~10! and calcu-
late up toj51, Eq.~6! is obtained. Direct Fourier transform

of Eq. ~6! can be done as shown in the next paragraph. How-
ever, a more convenient way to obtainx(r ) is to take Fourier
transform term by term first, then the following form of
x(r ) is obtained:

x~r !5
mLmB

2T8kF
2

\2 (
m50

` S e2ikm1r
km

12 1
e2ikm

2r

km
22 D . ~11!

Applying Euler-Maclaurin formula at this stage and calculat-
ing up to j51, x(r ) becomes

x~r !5
mmB

2L

p\2 F2E
2h0

` e2krsinw0

k
sin~krcosw0!dk1

pT8kF
2

h0
2 e22h0rsinw0cos~2h0rcosw022w0!

1
~pT8kF

2 !2

3h0
4 e22h0rsinw0

„h0rcos~2h0rcosw023w0!2sin~2h0rcosw024w0!…G . ~12!

The exactx(r )’s are obtained numerically from Eq.~11! by directly summing up untilue2irkm
6

/(km
6/kF)

2u becomes less than
10225 and they are compared with analytical ones in Eq.~12! for T850.05 and 0.5, respectively, in Fig. 1. It shows that
analytical form ofx(r ) truncated atj51 is virtually exact in the range of temperature where the quantum effect is dominant.

The Fourier transform of the second order truncatedx(q) in Eq. ~6! results inx(r ) of Eq. ~12! also. The Fourier transform
of the zeroth order term ofx(q) @the first term of Eq.~6!# is written as

x~0!~r !5
1

2pE2`

`

x~0!~q!eiqrdq5
mLmB

2

2p2\2E
2`

` 1

q
ln

~q22h0e
i ~p1w0!!~q22h0e

i ~p2w0!!

~q22h0e
iw0!~q22h0e

2 iw0!
eiqrdq. ~13!

The integrand in Eq. ~13! has four singular points
s i( i51,2,3,4) which are 2h0e

iw0, 2h0e
i (p2w0), and their

complex conjugate. Each conjugate pair approaches 2kF and
22kF , respectively, asT goes to zero. Defining a contour as
shown in Fig. 2,x (0)(r ) becomes the same as the first line in
Eq. ~12!. The calculation was based on the fact that
~1! the contribution from the infinite semicircle van-
ishes, ~2! the contribution from two branch cuts is

4p*2h0
` dke2krsinw0sin(krcosw0)/k, and ~3! the contribution

from the infinitesimal semicircle at origin is zero. The calcu-
lation of x (1)(r ) is straightforword and also give the same
result as the second line in Eq.~12!. The Fourier transform of
x (2)(q) has to be done with care, since its singular points
turn out to be second order. The result is again the same with
the third line in Eq.~12! which is obtained by the direct
application of the general formula tox(r ).

FIG. 1. Thex(r ) for T850.05 and 0.5. The solid lines represent
the exact results obtained numerically from~11! and the dashed
ones represent Eq.~12!. Notice that, forT850.05, the solid and
dashed line coincide with each other.

FIG. 2. The contour for the integral in Eq.~13! in the complex
plane.
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Finally we point out that if, in Eq.~9!, the order of inte-
gration is changed and integration overq is done first as was
shown in Kittelet al.,1 x(r ) becomes

mLmB
2T8kF

2

\2 ( S e2ikm1r
km

12 1
e2ikm

2r

km
22 D 2

mLmB
2

\2 f ~0!. ~14!

It differs with the correct one by2(mLmB
2/\2) f (0) @see Eq.

~11!#. It can be easily shown that atT50, Eq.~14! is reduced
to (2mLmB

2/p\2)@*2kF
` sin(kr)/kdk2(p/2)#. Therefore, the

difference from the interchange of order of integration be-
comes2(p/2) as shown in Yafetet al.13 This difference is
originated from the contribution of the pole atk50 which
would not have been counted in the proper order of integra-
tion.

The susceptibility at finite temperature cannot be ex-
pressed as a simple product of temperature dependent damp-
ing factor and zero temperature susceptibility like
F(T,r )x(T50,r ), but in the low temperature limit, an expo-
nential form of damping factor can be factored out in the first
term of Eq.~12! as follows:

2e22h0rsinw0Fsin~2h0rcosw0!

2h0rsinw0
1
2h0rcosw0cos~2h0rcosw0!2sin~2h0rcosw0!

~2h0rsinw0!
2 1••• G . ~15!

Then all the terms in the series expansion have the common
exponential damping factor exp(22h0rsinw0) which be-
comese2pkFrT8 in the low temperature limit. The damping
factor is the same as the one in three dimensions. Kohn and
Vosco12 remarked that if the width of the Fermi distribution
function ink space near the Fermi surface isDk, the ampli-
tude of the oscillation decays by an extra factore2Dkr for
large r . The diffuseness of the Fermi surfaceDk at finite
temperature may be defined asf 8(kF)Dk;1. Since
f 8(kF)5b\2kF/4m in the free-electron gas,Dkr52T8kFr ,
which is qualitatively consistent with the exponent in our

derivation. The faster decay of range function at finite tem-
perature implies that the number of electrons gathering to
screen a perturbation decreases with increasing temperature.
The exponentially decaying factor in the coupling constant
of the RKKY interaction suppresses the ferromagnetic or an-
tiferromagnetic phase transition in one dimension at finite
temperature.

We acknowledge that this work was supported partially
by the KOSEF under Contract No. 93-05-00-15 and KAIST.

1C. Kittel, in Solid State Physics, edited by F. Seitz, D. Turnbull,
and H. Ehrenreich~Academic Press, New York, 1968!, Vol. 22.

2M.A. Ruderman and C. Kittel, Phys. Rev.96, 99 ~1954!; T. Ka-
suya, Prog. Theor. Phys.16, 45 ~1956!; K.Yosida, Phys. Rev.
106, 893 ~1957!.

3F.J. Dyson, Commun. Math. Phys.12, 91 ~1969!.
4J.G. Kim, E.K. Lee, and S. Lee, Phys. Rev. B51, 670 ~1995!.
5J.G. Kim, E.K. Lee, and S. Lee, Phys. Rev. Lett.75, 2019~1995!.
6P.G. de Gennes, J. Phys. Radium23, 630 ~1962!.
7G. Bergmann, Phys. Rev. B36, 2469~1987!.

8M.R.A. Shegelski and D.J.W. Geldart, Phys. Rev. B46, 5318
~1992!.

9E.K. Lee, E.K. Lee, and S. Lee, J. Phys. Condens. Matter6, 1037
~1994!.

10M.J. Rice, inLow-dimensional Cooperative Phenomena, Vol. 7
of NATO Advanced Study Institute, Series B: Theory of the quasi
one-dimensional band conductor, edited by H. J. Keller~Plenum
Press, New York, 1975!.

11J.H. Van Vleck, Rev. Mod. Phys.34, 681 ~1962!.
12W. Kohn and S.H. Vosko, Phys. Rev.119, 912 ~1960!.
13Y. Yafet, Phys. Rev. B36, 3948~1987!.

6080 54BRIEF REPORTS


