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One-dimensional free-electron spin susceptibility at finite temperature
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The analytical expression of the free-electron spin susceptibilifies and x(r) in one dimension are
derived at finite temperature, where the Sommerfeld expansion is not applicablg-=-n2&r, by a series
expansion method which does not require the restriction of the Sommerfeld method. The main regilts are
the oscillation of the range function decays exponentially as-exfrkgT/g) in the long-range limit andii)
the logarithmic divergence of(q) at q=2kg near T=0 is in the form of[N(O)M§/2]In(4sF/7-rkBT).
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In the long-range limit, the free-electron spin susceptibil-approximations of ' (&) having finite numbers of nondiffer-
ity x(r), which represents the spin polarization due to aentiable points show a beat structure in the envelope of
point interaction, shows an oscillatory decaying behavior. Itx(r) because of the characteristic wave numbers correspond-
is well known that its envelope falls off asri/at zero tem- ing to these nondifferentiable points. The lowest order of
perature in the long range limit in thé-dimensional free- @PProximation which is differentiable and analytically solv-
electron gas modél.The long-range behavior of the free- ablef"() would be a cubic approximation. This form pro-

T . L duces a monotonically decaying envelope, but its decaying
electron susceptibility is important in determining SeVeralbehavior is different from the true one. It is worthwhile to

physical  properties. ~ The  Ruderman-Kittel-Kasuya-pste that higher order approximations do not necessarily give
Yosidg (RKKY) interaction of which the coupling constant petter results as far as the approximate functions are made to
is proportional to the itinerant spin susceptibilgyr) inthe  depend on only one parameter corresponding to temperature
linear response assumption is one example. The pure onky the normalization and differentiability conditions.
dimensional RKKY interaction has the potential to produce The analytical method we proposed in the previous work
the phase transition to spin ordering because phase transitio¢ither approximateb(x) as the Sommerfeld method does
can take place at finite temperature even in one dimension [for approximates Fermi distributidix) in the derivation of

the interaction falls off not faster thanri?3 JT(xX)h(x)dx. Our method does not require the restriction of

At nonzero temperature, however, the long-range oscillaﬁhe Sommerfeld method. The general formalism gives the

tion of the free-electron spin polarization and thereby thetemperature-dependent susceptibility which can be improved

RKKY interaction between local spins are damped as th systematically by considering higher order terms succes-

_ o ) ively by using Euler-Maclaurin series. This series gives the
Fermi surface becomes blurred with increasing temperatur@,g it identical to the one obtained by the Sommerfeld

Our study in three dimensiohS showed thaix(r) decay is  method in the low temperature limit when expanded with
proportional to the exponential forre; ™='7' in low tem-  respect to the powers of temperature, though its precision is
perature wherel' =kgT/ex. Another factor which makes not sensitively dependent on temperature because basically
the algebraically decaying long-range oscillation exponenthis series is not an expansion in terms of the powers of
tially damped is the effect of finite electron mean free path. Itemperature. In this work, we apply this method to the cal-
was shown that the RKKY interaction is exponentially culation of x(q) and x(r) in one dimension at finite tem-
damped due to the effect of the finite electron mean free patRerature. The resulting analytical low temperature expression
in a randomly disordered systéhiThe temperature depen- Shows that the amplitude decay g{r) in one dimension,
dent decay length becomes comparable with the eIectroWh'Ch is algebralc'at'zero temperature, becomes exponential
mean free path at high temperatdfe. in the long-range limit as a function of both temperature and
Traditionally, the temperature dependent behavior of th&istance. _ _ s
Fermi gas has been studied by use of the Sommerfeld expan- A Physical quantity of the Fermi gas written®as
sion method. The Sommerfeld expansion is applicable to the o
derivation of [f(e)h(e)de, or [f(k)h(k)dk wheref is the A(x,T)=f f(k, T)h(k,x)dk, (D)
Fermi distribution function andt is nonsingular and not too ’w
rapidly varying in the neighborhood @&f= . But, this kind  wheref(k,T) represents the Fermi distribution function em-
of approach is not applicable for the derivation of temperaphasizing its temperature dependence explictly, can be cal-
ture dependeny(q), since, in this casd)(k) becomes sin- culated using the contour integral along the infinite semi-
gular atk==*g/2. As an alternative, we can approximate circle in the upper half complex plane. As far as the increase
f(e) to a simple form instead ofi(e) if h(e) is rapidly  of h(k,x) is slower than exponential with respectkpi.e.,
varying near Fermi surfackln this approach, any type of Iimeﬁolim|k|ﬁm|eis"h(k,x)/k|—>0, the result becomes
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in'ké{h(kg,x) h(kg ,X)
+

A(x,T)=2mi 2, Res{f(k,T)h(k,x)]k*+fkkf’ h(kx)dk=—7 kg ko

0

Z, By [ d@7Y [h(k, ,x) h(kn_,x))
+inT K2 = - +—0 , 2
T szl (21)| dn(ZJ 1) k;r kn o ()
where
Ko =7n€'%n, Ky =7pe! (790, &)

are the poles of the Fermi distribution functif(k, T) =1/ 1+ exp((A2/2mksT)(k*—kZ))] in the upper half plane ankt’s
are the poles oh(k,x). Here,B,;’s are the Bernoulli numbers and

T=Ke(L+ (7 T7) 2™,

1
o= Earctang ,

Tr'1=(2n+l)kBT/8|:, (4)

wheren is an integer. The detailed description of this derivation can be found in Ref. 5. In this calculation, the chemical
potential at finite temperature was approximated to the Fermi energy for the simplicity of calculation. This approximation
affects the period of the oscillation only, and this period change is only order of 0.01% even at room temperature.

In the linear response assumption, the free-electron susceptipflify for one dimension can be written

amlLpf (=
x@=—%2 [ fioncoak ©

whereh(k) =1/g%>— 4k2. In the above equatiom(k,q) is algebraic and the residues frds = /2 cancel each other since
f(k) is an even function with respect ko Using the general formula equati¢®) it is straightforward to show that the result
up to the second order, which includgs 1 term in the Eq(2), is

mLu3[1 (q+279c0sp0)2+ (270singg)? 7T k2 1 (7T'k2)?
= ~In . - SiN(@o—2¢4) + 57 —3—7—(9°cog3po— 4
X(Q) ﬂ_ﬁZ q (q_zﬂoCOSPo)z"‘(Z??oS'n‘Po)z 77077(21 n(qDO (Pq) 24 778773 (q S( Po (Pq)

, (6)

—12n3cod ¢o— 4¢q))

whereno=ke(1+(7T")?)"*, po=1/2arctanT andngand  T~0 as [N(0)x2/2]In(1.145/ksT) in one dimensiod?

¢q are defined respectively as whereN(0) is the density of states at the Fermi surface. This
212 m expression was obtained on the assumption that the energy
nq=Ke (1_q_2 +(7T")2 near Fermi surface is linear ag=er+ (|k| —kg)%2ke/m
4ke for |ex—eg|<eg. This logarithmic divergence aj=2kg

) 5 near T~0 appears naturally from the first term of E®)
Pq=¢q (q°>4kp), without any assumptions. From E¢6), it is shown that
in the low temperature limit, it become@N(O),uél

@ 2]In(4eg /7kgT).

The range functiory(r) is given by the Fourier transform

. B of x(q)™*
@y being 1/2arctantT'/|1—q%/4kE[). At zero temperature,
the second and third terms become zero and the first term

ar
57 on  (97<4k}),

1 .
reduces to the well known form, x(r)= E] dqéd y(q)
2mLud | q+2ke 2
(q)= In : (8) 2mblug® (= o [© f(k)
x4q Wﬁzq gq—2kg :W 7wdQéqr 7oodkm. 9)

At finite temperature, Rice and Sssler showed that
x(2kg) diverges with temperature logarithmically near Since
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FIG. 1. They(r) for T'=0.05 and 0.5. The solid lines represent

the exact results obtained numerically fral) and the dashed FIG. 2. The contour for the integral in E¢L3) in the complex
ones represent Eq12). Notice that, forT’'=0.05, the solid and plane.
dashed line coincide with each other.

of Eq. (6) can be done as shown in the next paragraph. How-

w f(k) * 1 ever, a more convenient way to obtai(r) is to take Fourier
J dk—z—zz—iWT/kEZ oy R 1o transform term by term first, then the following form of
—»  q°—4k —o \ k(a7 —4ky%)

x(r) is obtained:

1 mLu3T k2 &
+ m) (10 x(r)= 52 >

o2k @2ikpr
+ .
ki2 o k2 D

if we apply Euler-Maclaurin formula to Eq10) and calcu-  Applying Euler-Maclaurin formula at this stage and calculat-
late up toj=1, Eq.(6) is obtained. Direct Fourier transform ing up toj=1, x(r) becomes

m:“él- = @ Krsineo . 7TT'k|2: —2prsin
x(r)= > Zf —————sin(krcospgy)dk+ >—e~ <70rPocog 2 7or coSpg— 2¢p)
mh 279 k 7o
(mT'kE)? , .
—3774': e 2700 ( 1901 CO 2 7o COSpo— 3¢) — SIN(2770F COSPo— 4p)) | (12
0

The exacty(r)’s are obtained numerically from E¢l1) by directly summing up untilez"“;/(krﬁ/kF)ﬂ becomes less than
10 25 and they are compared with analytical ones in E) for T'=0.05 and 0.5, respectively, in Fig. 1. It shows that
analytical form ofy(r) truncated aj =1 is virtually exact in the range of temperature where the quantum effect is dominant.

The Fourier transform of the second order truncatéq)) in Eq. (6) results iny(r) of Eq.(12) also. The Fourier transform
of the zeroth order term gf(q) [the first term of Eq(6)] is written as

1 (= argq MEMe (= 1 (G=270€! (7" 90)(q—2pe! ™" 0))
(0) - (0) iqr - _ 5 ZIn iqr
X (I’) 277‘[700)( (q)e dq 27T2ﬁ2 7wq|r‘ (q_zﬁoeupo)(q_znoeflq;o) € dq (13)

The integrand in Eq.(13) has four singular points 44

oi(i=1,2,3,4) which are 3qe'*, 27706'_(77 “0, and their  from the infinitesimal semicircle at origin is zero. The calcu-
complex conjugate. Each conjugate pair approachkesa®d |ation of y(!)(r) is straightforword and also give the same
— 2kg, respectively, a3 goes to zero. Defining a contour as result as the second line in Ed.2). The Fourier transform of
shown in Fig. ZX(O)(r) becomes the same as the first line in X(Z)(q) has to be done with care, since its 5ingu|ar pointg
Eg. (12. The calculation was based on the fact thatturn outto be second order. The result is again the same with
(1) the contribution from the infinite semicircle van- the third line in Eqg.(12) which is obtained by the direct
ishes, (2) the contribution from two branch cuts is application of the general formula te(r).

f §°,70dke*krS‘““’Osin(krcogpo)/k, and (3) the contribution
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Finally we point out that if, in Eq(9), the order of inte- difference from the interchange of order of integration be-
gration is changed and integration owpis done first as was comes—(7/2) as shown in Yafeét al!® This difference is

shown in Kittelet al.,! (r) becomes originated from the contribution of the pole k=0 which
would not have been counted in the proper order of integra-
mLu2T' k2 ezik;r e2iknr mLu2 tion. I .-
4B FE n _ MBf(O) (14) The susceptibility at finite temperature cannot be ex-
h? k.2 k2 7 ' pressed as a simple product of temperature dependent damp-

] ) 2102 ing factor and zero temperature susceptibility like
It differs with the correct one by- (mLug/%9)f(0) [see EQ. (T r)xy(T=0y), but in the low temperature limit, an expo-
(11)]. It can be easily shown that &t=0, Eq.(14) is reduced  nential form of damping factor can be factored out in the first
to (2mL,ué/wﬁz)[f;kpsin(kr)/kdk—(w/Z)]. Therefore, the term of Eq.(12) as follows:

SiN(2 7ol COSpg) 2 70f COSPECOY 2 7701 COSPg) — SIN(2 770f COSPg) N

_ e—27]0rsin<p0
271 singg (27or Singo)®

(15

Then all the terms in the series expansion have the commatterivation. The faster decay of range function at finite tem-
exponential damping factor exp@rrsingg) which be-  perature implies that the number of electrons gathering to
comese™ "K'’ in the low temperature limit. The damping Screen a perturbation decreases with increasing temperature.
factor is the same as the one in three dimensions. Kohn anthe exponentially decaying factor in the coupling constant
Vosca? remarked that if the width of the Fermi distribution of the RKKY interaction suppresses the ferromagnetic or an-
function ink space near the Fermi surfaceA&, the ampli-  tiferromagnetic phase transition in one dimension at finite
tude of the oscillation decays by an extra faceor*" for ~ temperature.

large r. The diffuseness of the Fermi surfadk at finite

temperature may be defined af (kg)Ak~1. Since

f'(kg) = Bhke/4m in the free-electron gasy\kr=2T'Ker, We acknowledge that this work was supported partially
which is gualitatively consistent with the exponent in our by the KOSEF under Contract No. 93-05-00-15 and KAIST.
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