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A detailed study of dissipation in weak link networks of high-Tc superconductors has been performed. The
model for dissipation has been elaborated assuming a general correspondence with the problems of inhomo-
geneous charge transport. The model treats the basic experimental ingredients, current-voltage (I -V) and
current-differential resistance (I -dV/dI) characteristics, as a current-induced critical phenomenon. The valid-
ity of a simple relationship between non-Ohmic weak link network and Ohmic classical percolation networks
has been proved, allowing a quantitative interpretation ofI -V characteristics. These characteristics are primary
determined by dynamical features of transport on percolation networks. The model focuses on both aspects of
of the scaling-related power law, its dynamical exponent and its prefactor, and gives specific predictions for
magnetic field and temperature dependencies. The experimental results are in full agreement with both pre-
dictions. In particular, the experimental values of dynamical scaling exponents~t52, s50.7! coincide with
generally accepted literature values for three-dimensional systems.@S0163-1829~96!01826-7#

I. INTRODUCTION

The effect of structural inhomogeneities on transport
properties of cuprate high-Tc superconductors~HTS!, al-
though extensively studied by a number of authors,1 is still
not fully understood yet. The terminhomogeneitiesapplies
here both to intrinsic deviations from the average crystallo-
graphic structure~such as variation of the local structure or
the oxygen stoichiometry on the length scale of the unit cell!
and to extrinsic microstructural features~such as grain
boundary2 weak links onmm scale!. In this work we concen-
trate on the latter, i.e., the weak link aspect of inhomogene-
ities, primarily on the weak link networks~WLN! which
characterize a variety of forms of realistic samples. There are
many reasons for interest in transport properties of weak-
link-dominated samples. Besides general interest in studying
the phenomenon of superconductivity in cuprates, there are
several specific reasons. First, a detailed understanding of the
mechanisms which underlie the onset of dissipation and the
concept of critical current itself is equally important for both
fundamental physics and for the intended practical applica-
tions. Secondly, these samples represent, primarily due to
intrinsically short coherence length3,4 of HTS, an ideal
granular superconductor. This is a system which has at-
tracted, together with Josephson-junction arrays,5 a lot of
attention in the past decades,6 in particular due to the fact
that the questions of long range order~or of the phase coher-
ence! in these heterogeneous systems correspond to quite
general problems of critical phenomena.7,8

The latter aspect will be thoroughly investigated by this
work. In particular, we show that the problem of charge
transport in WLN can be considered within the framework of
transport in heterogeneous media, i.e., as the problem of dy-
namics of percolation~or fractal! networks.7,8 In several re-
cent publications9–11 we presented some experimental argu-
ments which support this approach and demonstrate the
problem of dissipation in HTS, as studied by current-voltage
(I -V), current-differential resistance (I -dV/dI), and
temperature-resistance (T-R) characteristics, to be basically

in agreement with the predictions of classical percolation
theory. In this paper we establish a still missing model ap-
propriate for analysis of charge transport in WLN and the
related current-induced percolation transition. The model is
then applied to the interpretation of new experimental find-
ings in investigatedI -V and I -dV/dI characteristics both in
ranges of varying temperatures and varying~small! magnetic
fields. The level of agreement between the predictions of the
model and the experimental data leads us to recognize the
polycrystalline HTS, a WLN prototype, as a rather unique
model system for experimental studies of dynamical scaling
exponents of current-induced percolation transition, inter-
preted as a critical phenomenon. Also, as a final argument
for the importance of studies of transport in WLN, we point
out that a relatively simple problem of transport in WLN
may serve as a starting model for more complex~or more
intrinsic! problems. For example, there are indications12 that
the global vortex motion in the flux lattice may be subject to
similar macroscopic constraints as those present in WLN.
The similarity of the power-lawI -V characteristics of the
two different systems may be therefore attributed to the com-
mon constraints, and not to the details of the microscopic
mechanisms. In Sec. II we first introduce the basic physics of
Josephson coupled systems, then list some relevant results
which appropriately focus the problem of dissipation in
WLN of HTS and finally elaborate the model for non-
dissipative and dissipative transport itself. Section III deals
with quantitative analysis of experiments and their relevance
for the investigation of dynamical features on percolation
clusters. Section IV specifies the region of fractal growth
within which the present model cannot be applied. The ana-
lytical proof for an expression linking an Ohmic and a non-
Ohmic network, the latter comprising two elementary junc-
tion’s types, is elaborated in the Appendix.

II. MODEL FOR DISSIPATIVE AND NONDISSIPATIVE
TRANSPORT IN WEAK LINK NETWORKS

A. Weak link network as a granular superconductor

The mechanism of Josephson coupling has been invoked
in order to explain the bulk superconductivity in high-
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temperature superconductors in both cases of the intrinsic
interplane~CuO2! coupling

13 and the coupling across micro-
structural objects~grain boundaries, oxygen depleted re-
gions, etc.!.3,4 The transport properties of Josephson-coupled
system depend on the specific parameters of the problem. In
particular, the properties of the systems under consideration,
polycrystalline samples of HTS, are determined by compet-
ing effects between the three characteristic energies: the en-
ergy of intergranular Josephson couplingEJ , the energy of
thermal disorderET , and the electrostatic charging energy
EC .

14 The granular character of transport in these systems is
a consequence, along with the short coherence,3 of these
competing energies.4 The latter two are detrimental for the
Josephson-coupled phase which can therefore be realized
only if the characteristic parameters of a given superconduc-
tor allow sufficiently strongEJ .

15 More specifically, it turns
out that the temperature at whichEJ exceedsET lies close
below Tc , the critical temperature of the intragranular ther-
modynamic phase transition, while the charging energyEC
remains low enough~primarily due to relatively large aver-
age grain sizes15!, thus allowing a sufficiently strong phase
coupling. The important fact is that the long range phase
coherence may be drastically influenced by the parameters
imposed externally~applied current, magnetic field and tem-
perature!, leaving simultaneously the intragranular supercon-
ductor in its Meissner state.

B. Some experimental features of dissipation in WLN

Distinct and separable dissipative contributions belonging
either to superconducting grains or to the system of their
interconnections, WLN, can be identified in various types of
transport measurements16 ~ac susceptibility, dc magnetiza-
tion, voltage noise!. Also, there is a broad experimental
range of temperature, applied current and/or magnetic field
inside which the dissipative excitations~whatever their na-
ture! are localized exclusively in WLN.17,9 It has been firmly
established that precisely these localized excitations are re-
sponsible for the experimentalI -V characteristics of bulk
samples.9 No quantitative agreement with flux-creep~V
}eJ/Jc, J being the applied current density andJc the char-
acteristic current! or flux-flow regime~Rf}H/Hc2, with Rf
defined below! could be detected in these measurements. In
the experimental window of our measurements these classi-
cal dissipative processes may therefore be neglected.18 We
recall here some results which prove that the localized exci-
tations make a discrete set, being limited in its total number
of elements only by microstructure of the polycrystalline
samples.9 In other words the experimental arguments listed
below confirm the existence of a network in its conventional
sense.

~i! There is a sample-dependent quasi-Ohmic high current
saturation level ofI -V characteristics,Rf . Rf is systemati-
cally smaller thanRn , the normal resistance just above the
transition ~Rf50.2Rn typically! and has a very weak mag-
netic field and temperature dependence.

~ii ! There is a pronounced branching in a set ofR-T
characteristics11 ~resistive transition curves taken by measur-
ing currents inside a wide range!. The position of the branch-
ing point coincides9 with Rf .

~iii ! Rf and the branching point systematically depend
only on microstructure of the samples.9

~iv! The onset of dissipation is best described by a power
law, provided the applied currentI is replaced by the reduced
current9 i5I2I c , I c being the critical current. The scaling is
characterized by a sample-~i.e., microstructure! independent
exponent.19,9 The exponent also reveals no temperature and
magnetic field~if H,20 Oe! dependence.

These observations@~i!–~iv!# make a starting point for the
model presented below which treats the onset and growth of
dissipation in WLN, composed of a large but final number of
elements, as a problem of heterogeneous conducting medium
~e.g., random resistor network7! and its well-understood dy-
namical features. In particular, we model the WLN as a sys-
tem composed of grains in the Meissner state, interconnected
with the switching devices~Josephson junctions! in one of
the two possible conducting states20 ~supercurrent ‘‘on’’ or
‘‘off’’ !. The status of a particular junction responds to the
local conditions, i.e., the local values of current, magnetic
field, and temperature. The supercurrent transport in the
model medium is illustrated schematically in Fig. 1.

C. Growth of percolation cluster
in classical and weak link networks

The model for dissipation follows in essence the knowl-
edge of transport in electrically conducting random net-
works. The representative examples7 are random resistor net-
works ~RRN! and random superconductor networks~RSN!
in which a fraction of originally isolating~RRN! or normally
conducting~RSN! sites ~bonds! are randomly replaced by
conducting or superconducting sites~bonds!, respectively.
The ~better! conducting fraction will be hereafter designated
asp. As it is well known, the resistanceR of both networks
follows the power-law~scaling! behavior close to the perco-
lation thresholdpc ,

R}up2pcun. ~1!

This relationship applies to RRN withn[2t ~for p.pc!
and to RSN withn[s ~for p,pc!, respectively. The dy-
namical exponentst ands, which describe divergence ofR
above pc ~RRN! or its vanishingbelow pc ~RSN!, Fig. 2,
have been thoroughly studied during the past decades7,8 for
two-dimensional~2D! and 3D systems. Their values are
known to bet'2 ands'0.7 in 3D. In order to make the

FIG. 1. Schematic view of supercurrent transport in non-Ohmic
WLN of HTS. Phase coherent grains~disordered rectangles! are
interconnected by junctions in one of the two possible states,black
~supercurrenton! or white ~supercurrentoff !. The conductive status
of a junction is determined by local conditions.
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model more complete and realistic we also introduce the
problem of prefactor of this power law. The prefactorRt
should tell how the total resistance scales with the resistance
of dissipative elements at the lattice sitesr 0 and with the size
L of a sample. Ind-dimensional spaceRt scales as

7,21

Rt5S lL D d22

r 0 , ~2!

where l is a size of the network unit cell. Therefore, the
resistanceR of the network~or its conductanceG! reads now

R51/G5S lL D d22

r 0up2pcun. ~3!

It is important to stress that the above expressions are
valid only in the approximation of a very large system
~L→`!. For a real system of finite size there is always a
crossover valuep* , close enough topc , below which the
diverging correlation lengthj ~j}up2pcu

2n! approaches the
sample size,L'j, and a finite-size scaling takes over.7 Inside
the interval (pc ,p* ) a sample-sized cluster becomes a fractal
with non-Euclidean dimensiondf , dfÞd, and Eqs.~1!–~3!
are not obeyed.7 However, as shown in the discussion sec-
tion, the experimental conditions of this report are in most
cases compatible withL@j, i.e., with the percolation regime
of Eqs.~1!–~3!. Due to the reality of a large sample limit in
the experiments we report on, the term ‘‘sample-sized clus-
ter’’ will be replaced by ‘‘infinite cluster’’ in the remaining
text. It is also important to note, in accordance with the ex-
perimental results listed previously, thatRt is represented by
Rf in measurements on real HTS samples. A growth of the
~super!conducting clusters in RRN or RSN which accompa-
nies the rise of~super!conducting fractionp is usually stud-
ied either numerically or, as in some experiments,22 by
physical manipulation with the composition of the samples.
It is assumed here that there is a similar cluster growth in
WLN. The growth is related to current-induced variation of
the relative number of supercurrent carrying links. The WLN
system is self-organized in the sense that its composition as
well as the spatial configurations of property-bearing clusters
are regulated by current itself. The normalized number of
‘‘good’’ links in WLN, which obviously plays the same role
asp in RRN and RSN, may be represented as an unknown
function of the applied current, magnetic field, and tempera-
ture,p5p(I ,H,T). The specific functional form ofp may be
sample dependent following the specific features of an actual
Josephson network, including the microstructure of a given
sample. Here we only assume that, owing to disorder, this
function is nonsingular in its variables.

It can be expected that the behavior of the WLN system is
quantitatively related to the bond percolation problem of
some hypothetical RRN or RSN image network~in the Ap-
pendix we call it ‘‘an Ohmic counterpart of WLN’’!. In order
to justify this connection we first carefully examine the prob-
lem of involved scaling exponents.

1. Two specific dynamics on percolation cluster:
Exponents t and s

The dynamical exponentst ands in Eqs.~1!–~3! express
two different dynamics in the two~RRN,RSN! networks: In
the terminology of diffusion on a percolating network,23 the
dynamical exponents is associated with a random walker
~‘‘termite’’ ! which performs a normal random walk when off
the superconducting cluster but which moves extremely rap-
idly when on the cluster. In contrast, the dynamical exponent
t represents ‘‘the dynamics of an ant’’24 which executes a
normal random walk only on the percolation cluster. In other
words the exponentt is associated with dynamics exclu-
sively on the conducting cluster in its isolating background

FIG. 2. Power-law resistance and conductance of classical per-
colation Ohmic networks close to the percolation thresholdpc of
better-conducting~good! fraction p. Illustration concerns 3D case
so the assumed values of dynamical exponents weret52 and
s50.7, respectively. In~a! the characteristic behavior of random
resistor and random superconductor network was shown while~b!
models a random composite network. The components of the latter
network are both normally conducting but the respective values of
their conductivities differ substantially. The regions characterized
by s- and t-like cluster dynamics or their crossover are marked by
s, t, or s/t, respectively.~c! illustrates the behavior ofdynamical
strengthof infinite cluster in WLN~see text! which is nonzero in
the zero-voltage region ofp. Thick arrow indicates the direction of
variation of p which corresponds to increasing current branch of
experimentalI -V characteristics. Dissipative part of these charac-
teristics, the subject of this study, corresponds to hatched region of
~c!. The characteristic cluster dynamics are marked as in~b!.
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~i.e., there is no distribution of current between two sub-
systems, the incipient cluster and the background!, while s
applies to the case of current being distributed between the
superconducting and normally conducting clusters. The two
exponents are exactly equal ind52 (s5t51.23), but the
strict relationship for higher dimensions has not been firmly
established yet.7,8 The third type of random network which is
of interest here is a random composite network25,26~RCN!. It
allows the study of dynamical features both below and above
the percolation threshold. This network comprises two types
of resistive elements differing significantly@but not qualita-
tively as in RR~S!N cases# in relative values of their resis-
tances. There are two regions of concentrationp where either
s or t dominates the behavior of global resistance of RCN,25

as well as an intermediate interval ofp aroundpc inside
which a matching ofs- and t-like dynamics takes place; see
Fig. 2. The presence of cluster dynamics onbothsides ofpc
in this network is the primary reason why we find it impor-
tant for the interpretation of the onset of dissipation in WLN.
Both in RRN and RSN the dynamical features in the region
below ~RRN! or above~RSN! pc , respectively, cannot be a
subject to resistance~or conductance! measurements due to
the presence of an infinite cluster for allp there. This cluster
eliminates~in RRN! or shunts out~in RSN! any voltage on
the sample of the network. To this extent it is instructive to
decompose the expression for conductance, Eq.~3!, into two
factors, i.e., the geometry and sample dependent network
factor N F , N F 5(L/ l )d22g0 , and the dynamical factor
D , D5up2pcu

2n. In analogy with the conceptually related
static quantity, the probability of an arbitrary site belonging
to the infinite cluster, sometimes also called the cluster
strength,27 D may be calledthe dynamical strength. Unlike
statical strength,D depends only on the backbone mass of
the infinite cluster,28,7,8 the dead ends mass being irrelevant
for global conduction. The advantage ofD is that it can be
introduced, in order to characterize the dynamical features on
an infinite cluster, in the ranges ofp inside which the ob-
servables are zero or infinite. In particular, it is important to
considerD of RSN ~Ref. 29! in the rangep.pc . This range
is characterized by a trivial shunting effect~V50! due to
infinite conductanceg0 of the network elements~i.e.,
N F 5`! and corresponds to the nondissipative branch of
the I -V characteristic of WLN. The dynamical strength of an
infinite ~also phase-coherent! cluster is at its maximum in-
side that range for a network without a normal fraction~p
51! and drops toD50 with decreasingp ~increasingI in
WLN! at p c

1, a breaking point of infinite cluster@see Fig.
2~c!#. The specific dynamics which accompanies the disap-
pearance ofD can be inferred by noting the formal similarity
with dynamics in RRN: The supercurrent bypasses a resis-
tive site in RSN~or an off site in WLN! in the same way,
i.e., without any local branching, as the normal current does
in RRN around isolating sites. Therefore the problem ofD is
formally identical, forp→p c

1, to the problem of vanishing
G in RRN. The value of the exponentn in the expression for
D is accordinglyn52t. The relevant dynamics actually in-
volves, above but close topc , only a backbone of an infinite
cluster7,8,28 and will be hereafter calleda t-like dynamics.
We propose that the samet-like dynamics underlies the dy-
namical strengthD of WLN ~RSN! for p.p c

1 as well.

2. Cluster dynamics of the dissipation onset in WLN

We analyze now the excursion ofp throughpc , following
the routep1→p c

2 and below when the dissipation sets in. In
RRN some of the most critical~red28,7! links in the backbone
become isolating during this course and the global conduc-
tion as well as the backbone’s dynamical strength ceases. In
WLN some of the red links become dissipative, the global
phase coherence disappears and the voltage sets in. Due to
the insertion of this dissipative ‘‘glue’’ the dynamical
strength recovers and can be identified, owing to its partially
dissipative character forp,pc!, with R. The associated clus-
ter dynamics may be inferred from the following consider-
ation. First, it is clear that at the very onset of dissipation
there could be no ‘‘explosion’’ in the number of dissipative
sites as the scaling power lower than 1, e.g.,s50.7 would
imply. Moreover, as the dissipative sites are still tied to the
backbone it turns out that the very onset should be charac-
terized by at-like dynamics as well so thatD is expected to
be symmetric aroundpc in a small interval ofp aroundpc .
More precisely, there is an onset, atp c

2, of a crossover from
backbone relatedt-like dynamics to dynamics which acti-
vates not only the dangling ends of the largest cluster but
also all other disconnected clusters. This sort of cluster dy-
namics will be hereafter calledan s-like dynamics. We note
that the same type of crossover was studied in RCN a long
time ago;25 see Fig. 2. The only difference is that in RSN-
related WLN the crossover interval ofp is not symmetric
aroundpc like in RCN but rather sets in just atpc . Our
reasoning concerns primarily the problem of WLN analyzed
here as a bond RSN problem. We are not certain, however,
whether our conclusion that the very onset of dissipation is
determined by at-like dynamics could be applied to RSN in
general.

D. Quantitative formulation of the model
and its main assumptions

In this work we are mainly interested in experimentalI -V
characteristics, i.e., the continuous reduction ofp by increas-
ing currentI , usually in a fixed magnetic fieldH and tem-
peratureT. As long asp.pc there is an infinite phase co-
herent cluster in WLN and no voltage can be measured along
the sample. Belowpc a dissipative voltage sets in. TheI -V
characteristic can be viewed as a possible scenario for the
experimental path of the pointp(I ,T,H) in the four-
dimensionalp-I -T-H space~T andH are fixed parameters
andp changes due to varying currentI !. The dissipation sets
in at the dissipation onset curve,p(I ,H,T)5pc , regardless
of the previous history of the working pointp(I ,T,H). In
order to simplify the presentation, the further treatment of
the functionp is going to include two variables only, e.g.,
p5p(I ,H). The explicit treatment of the third variable (T)
would lead to the same qualitative behavior. Even in the
two-variable case the full reconstruction of functionp(I ,H)
~a surface in the 3D system of coordinatesI ,H,p! from ex-
periments seems still too ambitious. A precise reconstruction
of the functionp(I ,H,T) is outside the scope of this work.
Instead, it rather relies on the function’s general analytical
properties which can be deduced by physical reasoning: Due
to the broad statistical distribution of several relevant param-
eters characterizing the samples~grain and sample size, junc-
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tions’ quality, etc.! but regardless of the width of this distri-
bution for fixed T and H, the function p(I ,T,H) is a
monotonously decreasing function of the increasing current
I . We first ask about the curves of constantp in the I -H
plane,p(I ,H)5const. These must be some nonlinearly de-
creasingI5I (H) functions. For example, two reasonable as-
sumptions would beI5ae2bH andI5a/(H1b), wherea,b
are parameters. These functions could serve as reasonable
test functions as they are both ‘‘mesoscopically’’ justified:
the first one due to the magnetic field dependence of critical
currents of superconductor–normal-metal–superconductor
~SNS! junctions,30 and the second one due to the sample-size
effects in critical currents.31 The function of constantp in
these two cases would be of the formp5IebH andp5I (H
1b), respectively, with the dissipation onset curves given by
the equationp(I ,H)5pc . In order to proceed with the quan-
titative formulation of the model it is necessary to introduce
some assumptions, primarily about the unknown function
p(I ,H). These assumptions are as follows.

~i! Critical current I c is the current consistent with the
percolation thresholdpc , p(I c)5pc .

~ii ! The functionp(I ,H) is linear in I close toI c . In its
quantitative aspect the model is therefore restricted to the
small current interval aroundI c inside which a linear ap-
proach is permitted.

~iii ! The dependencies onI andH can be factored out,
p(I ,H)5 f (I )g(H). @In previous examplesf (I )5I and
g(H)5ebH or (H1b), respectively.# The function f (I ) al-
lows more complicated forms of current dependence ofp
than the oversimplified linear one. The magnetic field depen-
dent critical current is defined byp[ I c(H)]5 f (I c)g(H)
5pc .

~iv! QuantityR of linear percolation networks has to be
replaced bydV/dI ~differential resistance! of nonlinear
WLN. Due to non-Ohmicity the resistanceR(5V/I ), which
is a well-defined macroscopic observable of Ohmic systems
~RRN,RSN!, fails to play the same role in WLN. The anal-
ogy between the two quantities,R anddV/dI, was justified
by qualitative arguments in Ref. 10. In Appendix this is
proven analytically for two representative networks.

The dynamical state of WLN stems from the difference
p(I ,H)2pc . In the vicinity of I c the linear expansion gives

p2pc5S d fdI D
I c

g~H !@ I2I c~H !#

5~c2 /c1!@pc /I c~H !#@ I2I c~H !#, ~4!

In order to make the model more tractable we introduced
here the coefficientc1 of the line which joins the origin and
the pointf (I c) on f (I ) curve such thatf (I c)5c1I c ~see inset
to Fig. 8!, or I c(H)5pc/[c1(H)g(H)]. The slope off (I ) at
I c(H) is designated in Eq.~4! asc2. If the functionf (I ) were
linear the factorc2/c1 of the current curvef (I ), hereafter
calleda shape factor~see inset to Fig. 8!, would be equal to
one. This factor is field and sample dependent and respon-
sible, together withpc/I c(H), for the field dependence of the
experimental power-law prefactor. By virtue of transforma-
tion R↔dV/dI from Eq. ~3! and using Eq.~4! we get

dV/dI51/G5Rtup2pcun

5S lL D d22

r 0@c2g~H !#n@ I2I c~H !#n ~5!

or

dV/dI5Rf~c2 /c1!
npc

n~ I /I c21!n

5Rf~c2 /c1!
n@pc /I c~H !#n@ I2I c~H !#n. ~6!

The voltage in the measurements ofI -V characteristics
should therefore follow:

V5E ~dV/dI !dI5
Rf

n11
~c2 /c1!

n~pc /I c!
n~ I2I c!

n11.

~7!

In these equations the total resistanceRt of a network was
replaced by its WLN counterpart,Rf . The notation of these
expressions suggests explicitly the conditions of fixed mag-
netic field. Qualitatively, there would be no differences if the
conditions of fixed temperature were assumed and in this
case we may simply replaceH by T. The basic agreement of
the experimentalI -V ~and I -dV/dI! characteristic with a
power-law form has already been demonstrated.9,10 The
value of the exponentn at the very onset of dissipation has
been preliminary identified asn5t. In this work we report,
besides the details of the model as presented above and in the
Appendix, on the full experimental confirmation of the va-
lidity of Eqs. ~5!–~7! for the interpretation of experimental
characteristics. In particular, we show that the relatively
complex structure of the power-law prefactor indeed con-
tains the dependences on all environmental conditions of the
measurements~magnetic field, temperature! and on the spe-
cific properties of the samples, while the exponent depends
only on cluster dynamics and therefore remains insensitive
until the crossover to the alternate dynamical regime takes
place. In the remaining part of the article we quantitatively
test the predictions of the model.

III. QUANTITATIVE ANALYSIS OF I -V
AND I -dV/dI CHARACTERISTICS

A. Samples

The properties we report on in this work concern the weak
link networks of HTS in general, i.e., the properties under
considerations are not related to some specific preparative
conditions. Three samples chosen for presentation belong to
two families of HTS,RBa2Cu3O72x ~R is a rare earth ele-
ment! and Bi2Sr2Ca2Cu3O101y. The rare earth was either ga-
dolinium ~sampleS1, also GBCO! or yttrium ~sampleS2,
also YBCO!. SampleS3 was a lead-substituted compound
~BiPb!2Sr2Ca2Cu3O101y ~BPSCCO!. The preparations fol-
lowed a conventional mixture-of-powders route and the de-
tails are given in references mentioned in Table I. This table
also gives a summary of some of the transport properties of
the samples.
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B. Data representation and power-law exponent

There may be different ways of representing compatibility
of experimental curves with the form of power law. One way
would be a straightforward fit to the power-law form of Eqs.
~5!–~7!. This fit would have three parameters~I c , n, and a
prefactor!, too much for a convincing determination of their
values. It is also very common to plot the experimental (V,I )
points on the logarithmic axes so that the slope of the linear
part, if any, gives the exponent value. In this work we study
the analytical properties of the experimental curves by a
slightly different method. The voltagesV ~or dV/dI! of the
measuredI -V ~or I -dV/dI! curves were first transformed
following V→V1/n, wheren is a trial exponent value, and
subsequently plotted versus the measuring current. The as-
sumed power-law form ofI -V ~or I -dV/dI! characteristic
corresponds to the linear behavior of the transformed data
and its slope to the power-law prefactor. There are no fitting
parameters in this form of data presentation. With a suitable
choice ofn we were able to detect, in numerous samples
investigated so far, two linear~i.e., power-law! regimes, a
trivial nondissipative (I,I c) one and a dissipative one,
crossing each other at the critical currentI c ; see Fig. 3. It
turns out, however, that there is an interval of values ofn,
Fig. 4, inside which anyn seems to lead, at first glance, to an
acceptable fit to the power law. Therefore the proper expo-
nent had to be determined therefore by quantitative tests of
the quality of fits for several values ofn in this interval, as
shown in Fig. 5. The mean-square deviation from the aver-
age straight line of the transformed and normalizedI -V ~or
I -dV/dI! data has been calculated for all of the chosen val-
ues ofn. Figure 6 shows the general forms of these standard
deviations as functions of trial valuesn for samples in zero
or very small applied magnetic fields. These functions are
characterized generally by the presence of a minimum, both
in the measurements ofI -V and I -dV/dI curves. The best
choice for exponentn is, by definition, a value which mini-
mizes the standard deviation. The high resolution measure-
ments ofdV/dI on sampleS1, shown in Fig. 6 given'2.1.
Similarly, the measurements ofI -V curves in the range of
initial dissipation in sampleS2, Fig. 6, given11'3, i.e.,
n'2. Within our model the exponentn is interpreted as the
dynamical exponent for conductivityt, so these experiments

strongly favort'2. This result fort is in good agreement
with numerical results7 on R~S!RN and the theoretical esti-
mates of its lower8 and upper21 bounds.

The values ofn determined by a procedure like that were
experimentally found to be almost insensitive either to tem-
perature changes inside a broad interval~66–90 K! and
variation of magnetic fields~if H,20 Oe! or to the choice of
the family of the sample and its microstructure. The absence
of such dependences is in a full accordance with the prin-
ciples of our model: Dynamics remains unchanged regard-
less of the level of theT- andH-dependent rate of creation of
isolating/dissipative bonds, taking place in increasing cur-
rent.

C. Power-law prefactor and the consistency of the model

The prefactor of the power law in Eqs.~5! and ~6!, here-
after denoted asPf , is a product of three factors, viz., the

TABLE I. Some transport and microstructural properties of the
samples.%RT andRRT are room-temperature resistivity and mea-
sured resistance of the sample, respectively.%at is resistivity just
above the transition andTc0 temperature of zero resistance.^a& is
the average grain size of the samples andJc critical current density
measured at specified temperatures.

S1, GBCO
a S2, YBCO S3, BPSCCO

b

%RT @mV cm# 980 1700 4860
RRT @mV# 45 57 185
Tc0 @K# 93.5 90 104
%at @mV cm# 420 745 2830
Rf @mV# 6.9 4.5 15.8
^a& @mm# 8 35 20
Jc @A cm22# 17 ~88 K! 80 ~80 K! 25 ~80 K!

aFor preparative details see Ref. 9.
bFor preparative details see Ref. 10.

FIG. 3. TypicalI -dV/dI characteristics of polycrystalline HTS
sample. The measured points~inset! are transformed following
dV/dI→(dV/dI)1/n, n52, to demonstrate consistency with the
power-law behavior.

FIG. 4. TransformeddV/dI data of the measurement from Fig.
3 for three trial values ofn. The proper choice, obviously close to
n52, would give a straight line. The other two give either concave-
downward ~n52.6! or concave-upward~n51.4! shapes of trans-
formed curves.
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total resistanceRf , the shape factor (c2/c1)
n of the current

function f (I ) at I c , and the critical current factor
(pc/I c(H,T))

n. While Rf has a very weak dependence on
magnetic field and temperature, the shape factor and espe-
cially the critical current factor are stronglyH andT depen-
dent. In this modelc2/c1 is in a simple geometrical relation-
ship ~see inset to Fig. 8! with thea priori unknown function
f (I ). The spectrum of realistic values forc2/c1 can, how-
ever, be easily determined. If we assume for example that
f (I ) is a power-law function ofI aroundI c , allowing a large

range for its powerr ~from concave-downward functions,
r,1, to concave-upward functions,r.1!, it follows from the
definition ofc2/c1 that it is simply equal tor . Therefore it is
reasonable to expect that the temperature and magnetic field
dependent values ofc2/c1 fall into the interval not broader
than@0,10# at most. It is also important to note thatc2/c1 is
the main representative of the effects of disorder so that
sample dependence of the shape factor can be also expected.
We first demonstrate qualitatively~i.e., without taking ex-
plicitly into account the shape factor and the critical current
factor! the correlation ofPf with Rf . Figure 7 shows the
collective prefactor data at 80 K for several HTS samples of
various families and microstructures, shown as a function of
Rf . The variation of Rf in these samples is a
well-understood9 consequence of different average grain
sizes^a&. The latter quantity can be treated as an effective
spatial coarseness of WLN network, playing therefore the
role of l in Eqs.~2!, ~3!, and~5! thus determiningRf and, in
turn, Pf . However, a full quantitative determination ofPf
depends also on (c2/c1)

n and (pc/I c)
n. In our model these

factors are solely responsible for temperature and magnetic
field dependences ofPf . Before investigating these predicted
dependences ofPf , it is important to test the mutual consis-
tency, within the proposed model, of experimental results for
n and Pf . In the system of data presentation used in this
study, to each value of the trial power-law exponentn we
may associate one experimental value forPf . Pf may be
geometrically represented by the slopeS of the line which
fits the transformed data. In terms of experimental observ-
ables, the model predicts a simple relationship between the
slopeS and the total resistanceRf ,

S5~c2 /c1!~pc /VmI c!Rf
1/n , ~8!

whereVm is the voltage~or differential resistance! used for
data normalization. It is onlyc2/c1 in this formula which is
not known experimentally.Rf can be determined in an inde-
pendentI -V measurement, whileI c is known from theI -V1/n

presentation of the experimentalI -V ~and I -dV/dI! data.
The numerical test we present has also to assume some
choice for the unknown percolation threshold concentration

FIG. 5. TransformeddV/dI data, normalized by their values at
480 mA, for three trial values ofn ~open symbols! and the best fits
to straight line~solid lines!. Quantitative analysis is shown in Fig. 6.

FIG. 6. Mean square deviation of transformed and normalized
data from the best fit to the straight line, for various trial exponent
values.~a! illustrates the result forI -dV/dI and ~b! for and I -V
measurements. The exponent value in the center of the pronounced
minima is in excellent quantitative agreement with literature data
for the conductivity exponentt in 3D.

FIG. 7. Correlation of power-law prefactor values and final re-
sistance~see text! for several samples of different batches and ori-
gins.
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pc . Here we usepc of the 3D cubic~bcc! bond problem,7,8

i.e.,pc'0.18. The realpc of our problem can of course differ
from 0.18 but this would introduce only a slight numerical
difference into the results. Now, the necessary condition for
the consistency of the model is that the shape factorc2/c1
should acquire a reasonable value, i.e., a value inside the
interval @0,10#. In Fig. 8 we show the values forc2/c1 , for
several exponentsn, calculated from Eq.~8! and from the
values forS, I c , Vm , andRf taken from the measurement at
88 K. It is obvious that all of the calculatedc2/c1 fall into the
expected interval. The proper value ofc2/c1 ~at the given
conditions of measurement,H50 Oe,T588 K! is the one
associated to propern. Figure 8 suggests therefore that
c2/c151 ~compatible withn5t52.1!. In other words, the
values ofc2/c1 smaller than 1, as well as those much higher
than 1 are excluded due to the same quantitative arguments
which favor n5t52.1. Furthermore, the value ofc2/c1
much higher than 1 already at 88 K is increasingly improb-
able due to the fact that by decreasing temperaturec2/c1
monotonically increases, starting from some valuec2/c1,1
~below but close toTc!. A typical value ofc2/c1 at 78 K is
c2/c155 ~see the inset to Fig. 11!. It can be concluded there-
fore that there are no basic inconsistencies in our model.

D. Power-law prefactor and dependences onH and T

The physical origin of dependences on magnetic field (H)
and temperature (T) comes, to the first order, simply from
the H- andT-dependent critical current of disordered indi-
vidual Josephson junctions of WLN. This is then reflected
into H- and T-dependent fraction of dissipative elements
p(I ) which introduces also the corresponding dependences
of the global critical currentI c and the shape factorc2/c1 of
the current functionf (I ), thus of the prefactorPf as well.
The sensitivity ofPf to the changes ofH andT contrasts the
experimental findings for scaling exponentn. According to
the model, the exponent is related solely to the cluster dy-
namics, exhibiting therefore basically noH and T depen-
dence, in full agreement with experimental results on sample
S3, shown in Fig. 9. Figure 10 illustrates the temperature
variation ofPf of the same sample, together with the varia-

tion of the quantity (pc/I c)
n (n52). A dependence of the

shape factorc2/c1 is also displayed. The latter quantity de-
creases almost linearly with increasing temperature but re-
mains strictly inside the predicted interval of its values,
@0,10#. The magnetic field dependence of the same quantities
for sampleS2 is shown in Fig. 11. Again,c2/c1 displays a
remarkable decrease in increasing magnetic field, still inside
the same interval. We note that the specific functional depen-
dences ofc2/c1 vary from sample to sample, which allows
somewhat differentc2/c1 values at the same temperature and
magnetic field for different samples. It is also interesting to
note that the approximate cancelation ofpc/I c andc2/c1 is
quite common to occur at 80 K, so that the effective prefac-
tor values ofPf are numerically close toRf at that tempera-
ture. This is also a reason which justifies,a posteriori, the
slope of the straight line in Fig. 7.

E. Crossover of dynamical exponents
in increasing magnetic fields

The voltage which sets in atI c is primary determined, in
our model, by the characteristic dynamics represented by the

FIG. 10. Temperature dependence of power-law prefactor and
two of its factors predicted by this model, (pc/I c)

n, n52, andc2/c1
~inset!, for sampleS3. Dashed lines are guides for the eye only.

FIG. 8. Dependence of the calculated shape factorc2/c1 on trial
exponent values from Fig. 6~a!. Inset: Graphical meaning of the
shape factor.c2 and c1 are coefficients of the two characteristic
lines associated with the point on the current functionf (I ).

FIG. 9. Magnetic field dependence of power-law exponent~ple!
and power-law prefactor~plp! determined from measurements of
I -V characteristics of sampleS3. Corresponding temperature de-
pendence is shown in the inset. Dashed lines are guides for the eye
only.
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exponentt. The model also predicts a possible crossover to
another type of cluster dynamics, i.e., to the dynamics de-
scribed by the dynamical exponents. In the latter case the
model predicts the rise of differential voltage still in the form
of Eqs.~5! and~6!, but withn equal ton5s50.7 instead of
n5t52. In order to investigate the possibility of this cross-
over we studied theI -dV/dI characteristics of sintered
YBCO in a broad range of applied currents, i.e., up to the
currents which produce a voltage much above the range of
initial dissipation. In the broad range of currents one can
expect, according to our model, the fingerprints of three con-
secutive regimes. The first two should reflect a crossover
from t-like [dV/dI;(p2pc)

t] to s-like [dV/dI;(p2pc)
s]

cluster dynamics while the third regime, very far fromI c
~i.e.,pc!, has nothing to do with critical behavior and reflects
a linear conductance-concentration dependence in the effec-
tive medium theory of heterogeneous systems32 (dV/dI;p).
@It is important to note that the exact forms off (I ) andg(H)
are limited therefore by the boundary condition onp, i.e.,
p(I→`,H)51.# This makes a basis of our analysis ofI -dV/
dI curves in a broad range of applied currents. The genericS
shape is a well-known feature of these characteristics; see
Fig. 12. We have already reported10 a qualitative agreement
with the crossover prediction in the absence of applied field.
Here we report on the sequence of measurements in varying
magnetic fields. Figure 12 shows a set ofI -dV/dI character-
istics which all saturate at some characteristic valueRf . A
slight Rf(H) dependence can be attributed to second-order
effects ~partial flux trapping inside the grains33!. Each of
these curves was numerically analyzed in the two regions of
currents, just aboveI c ~hereafter the range ofsmall currents!
to study initial dissipation, and a subsequent range of cur-
rents much higher than the critical one~hereafter the range of
intermediate currents! but still much smaller than the current
in quasi-Ohmic saturationdV/dI5Rf . For small currents the
best power-law exponent was found for each magnetic field
in the investigated range~H,20 Oe! by looking for the stan-
dard deviation minimum~Fig. 6!. This procedure gives the
dynamic exponent values ofn5t'2 for all applied fields,
with the usualH-dependent prefactor. The solid concave-
upward curves in Fig. 13 are corresponding plots of
Pf(I2I c)

t. For intermediate currents the fractionp of super-

conducting links is far away frompc and the validity of
percolation power-law expressions like Eq.~1! is, a priori,
not justified. Nevertheless, the model was tested in that range
too by plotting the expected functional formPs(I2I c)

0.7

where we putn5s50.7; see Fig. 13.Ps is a fitting param-
eter andI c the same critical currents that had been used
previously for small currents. There is obviously a good re-
production of experimental curves, proving at least qualita-
tively the relevance ofs-like cluster dynamics in the inter-
mediate range. In the third range of very large currents,
inside whichI -dV/dI is close to saturation toRf , it is rea-
sonable to assume the validity of Maxwell’s classical theory
of conductivity in electrically heterogeneous media.32 The
latter ~effective medium! approach applies when one fraction
represents only a small perturbation to the other, dominant
fraction, and resistivity~%! scales linearly withp, %}p. In
our case of WLN the range of large currents corresponds
therefore to linear dependence ofdV/dI on p. In that region
the plottedI -dV/dI curves are directly proportional top(I ).
It is interesting to note that the fraction functionp(I ), al-
though still analytically unknown, is basically reconstructed
in two current ranges: for small currents it is represented by
c2/c1 and for large currents it is proportional simply todV/
dI. In order to investigate the crossover between the expo-
nents more closely, it is instructive to study the magnetic
field dependence of bothPf(I2I c)

t andPs(I2I c)
s curves.

One way would be an independent study of these curves as
functions of magnetic field. A shortcut to the results of these
studies may be performed by investigating the crossing point
of the two curves. The crossing point~see Fig. 13! shifts
systematically to the left in the increasing field. It can be
immediately concluded that the prefactors have different de-
pendences onH: If there were a common prefactor, sayP,
then the crossing point would have the coordinate (I c11,P).
This is in clear disagreement with the results, Fig. 13, which
shows decreasing~instead of increasing! ordinate of the
crossing point in growingH. Our model predicts specific
structures of the prefactors,Ps5Rf(c2/c1)

s(pc/I c)
s and

Pf5Rf(c2/c1)
t(pc/I c)

t, respectively. The current that per-

FIG. 11. Magnetic field dependence of power-law prefactor and
two of its factors predicted by this model, (pc/I c)

n, n52, andc2/c1
~inset!, for sampleS2. Dashed lines are guides for the eye only.

FIG. 12. Typical I -dV/dI characteristics in a broad range of
applied currents and in various magnetic fields, sampleS2. Some-
what decreasing level of quasi-Ohmic saturation for high currents in
increasing magnetic field was referred to asfinal resistance Rf in
text.
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tains to crossing point,I * , can be easily calculated to obtain,
as a prediction of our model, the exponent-independent result
I *5I c[11(c1/c2)(1/pc)]. The inset to Fig. 13 compares
these calculated values forI * ~using measuredI c and earlier
c2 ,c1 on the same sample; see inset to Fig. 11! with the
experimentally determinedI * . Although there is not a full
numerical agreement, a reasonably good reproduction of de-
pendence onH is obvious. This proves that the crossover
range can be successfully described in both aspects of dy-
namical exponents and prefactors by the present model in
spite of its clear limitations. The quantitative disagreement
with the prediction of the model deserves some additional
comments. Our measurements were taken until the chosen
low-level voltage~10mV!, the same for all investigatedI -V
characteristics from Fig. 4, has been reached. This voltage

may correspond to various excitation levels, i.e., fractions of
dissipative linksp8(I ) abovepc in the two measurements at
differentT orH. For example at low temperature and in zero
applied field the 10mV criterion may provide a window ofp
inside which the cluster dynamics is strictly governed by the
dynamical exponentt @concerning both the experimental ex-
ponent and the prefactor ofI -V ~or dV/dI! curves#. At
higher temperature and/or in higher field the same criterion
does not necessarily warrant the presence of a single cluster
dynamics. If there is some mixing of the two dynamics, then
the prefactor, as well as the exponent, will not be determined
by either of the derived expressions. This especially applies
to the prefactor, because the effect on the exponent could be
numerically too small to be effective. The latter scenario
seems to be the most important reason that limits quantita-
tively the applicability of the simple expressions derived in
the model. As far as the position of the crossing point is
concerned we may conclude that a full quantitative agree-
ment in a broad range of fields fails due to the ‘‘mixing’’ of
the two prefactors in realI -dV/dI characteristics. The posi-
tion of the crossing point gives, however, a measure for rela-
tive contributions of the two types of cluster dynamics in
different magnetic fields. Above 20 Oe thes-like dynamics
is by far predominant, so that the detection of initialt-like
behavior, although always present, is a matter of voltage
resolution above I c . Our interpretation of asymmetric
S-shapedI -dV/dI curves stems therefore from the crossover
between the two types of cluster dynamics. The earlier inter-
pretation~Ref. 34! of these curves was based on the notion of
the distribution function of critical current density,d2V/dI2,
and treated the role of disorder somewhat differently. While
in the latter approach the disorder isa sourceof features in
I -dV/dI characteristics~in particular, their generic shapes!,
in this model disorder regulates mainlythe width of non-
Ohmic behavior, not the features themselves. The generic
shapes of these characteristics are therefore related, in our
view, to rather universal cluster dynamics and their cross-
over.

IV. DISCUSSION AND CONCLUSION

The majority of equations pertaining to the present model
@e.g., Eqs.~2!, ~3!, and ~5!# refer to the limit of infinite
sample size.7 Its validity questionable in principle and has to
be tested taking into account the circumstances of an actual
sample. As already mentioned in comments following Eq.
~3! the sample size effects become important in close vicinity
Dp5up*2pcu of pc , wherep* is a crossover concentration
below which the sample size is smaller than the diverging
correlation length. InsideDp the fractal nature of the cluster
violates the predicted behavior. It remains therefore to esti-
mate the experimental circumstances compatible with theDp
~fractal! regime. Being satisfied with an order of magnitude
precision we analyze the situation of a typical sample. The
size of the sampleL belongs to the millimeter scale and that
of the network unit celll to the micrometer~average grain
size! scale, e.g., L51 mm, l55 mm. Thus
Dp5( l /L)1/n52.3831023, wheren is the correlation length
exponent,n50.88 in 3D. As the total number of resistive
sites is of the order of the total number of grainsNg , i.e.,
Ng583106, the concentration intervalDp abovepc corre-

FIG. 13. Set of high-currentI -dV/dI characteristics in small
magnetic fields and two relevant power laws~solid curves!. The
concave-upward curves were determined in the range of initial dis-
sipation ~approximately inside symbol size on this scale! and are
consistent with t-like behavior. The concave-downward solid
curves are the single-parameter (Ps) power-law fits,Ps(I2I c)

0.7,
intended to test a crossover tos-like dynamics,s'0.7. The inset
compares magnetic field dependence of the experimental~open
symbols! and calculated position~black symbols! of the crossing
point of these two power laws.
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sponds to 1.93104 links turned into ‘‘off’’ state. The impor-
tant issue is the associated current interval. A typical current
compatible withp51 ~i.e., differential resistanceRf! at 80 K
is 5 A. In linear approximationDp corresponds therefore to
DI512 mA. The latter is the current interval inside which
the proposed scaling should be violated. The current resolu-
tion of the majority of our experiments was of the same order
so that the possible presence of fractal dimension effects was
averaged out inside a first few measuring points. It would be
interesting to see whether the increased current resolution
would be able to detect a real fractal regime.

In conclusion, we presented the model for dissipation in
WLN and applied it to the interpretation of a large number of
measurements on HTS samples in zero or small applied mag-
netic fields. The model treats the problem of dissipation as a
current-induced critical phenomenon which involves two
types of specific dynamics on the relevant percolation clus-
ter. The application of the model leads to reasonable numeri-
cal agreement with the experiments.
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APPENDIX: CURRENT-VOLTAGE CHARACTERISTICS
OF OHMIC AND NON-OHMIC NETWORKS

The purpose of this appendix is to relate the observable
‘‘differential resistance’’,dV/dI, of a non-Ohmic weak link
network ~WLN! to the observable ‘‘resistance,’’R5V/I , of
the Ohmic counterpart of WLN. By the WLN’s Ohmic coun-
terpart we mean a hypothetical random resistor or random
superconductor network~RRN,RSN! identical to the non-
Ohmic WLN in all details except that the fractionp of the
better-conducting component of this Ohmic network is inde-
pendent on current. The variation ofR with p in these Ohmic
networks obeys a well-established power law,R5Aup2pcu

n

~nRRN52t, nRSN5s!. Provided that the approximations of
our model are fulfilled we show here quite generally that the
characteristic dependence of the Ohmic network,
R5A(pc2p) r , where the powerr can be now any real num-
ber, implies the same functional form of the differential re-
sistance (dV/dI) of its non-Ohmic counterpart WLN, i.e.,

dV/dI5B~pc2p!r5B8~ I2I c!
r , ~A1!

whereA, B andB8 are mutually related but here unimportant
constants.

We first reconstruct the shape of theI -V characteristic of
WLN from the assumed form,R5A(pc2p) r , valid in an
Ohmic network. TheI -V diagrams of a network like that are
represented by a family of lines with the slopes
k5A(pc2p) r . The slope progressively changes as a func-
tion of increasing concentration 12p of blockedsites ~i.e.,
insulating or resistive!. There is a quasicontinuum of these
linear characteristics: The two adjacent ones represent the

states which differ in their respective numbern of blocked
sites by one; see Fig. 14. The fraction of blocked sites 12p
is obviously related ton by 12p5n/N, whereN is total
number of sites. In our model of current-induced percolation
transition we infer the creation of blocked sites in WLN to
the current itself. In other words, there is a distinct current
incrementDI that is necessary to change the number of
blocked sites by one.DI induces a jump to the neighboring
characteristic, i.e., to the characteristic of the slopek(n) con-
sistent with the increased numbern. The corresponding volt-
ageVWLN is determined by the characteristick(n) as long as
the increasing current stays belowDI . When the current in-
crement reachesDI again a jump to characteristick(n11)

FIG. 14. Schematic reconstruction ofI -VWLN curves of weak
link network from its linear counterpart, random resistor or random
superconductor network.I -V characteristics of the latter networks
are straight lines of the slopek, shown here by thin lines as a
function of the reduced numbern85n2nc of the insulating/
resistive sites. The scheme of this figure illustrates the case of RSN.
The voltage of non-Ohmic WLN network evolves in increasing
applied current as a steplike curve, while the voltage measured
experimentally follows, in a real situation with a quasicontinuum of
states of differentn8, the curve obtained by joining all the half-
points ~hatched line!. ~a! and ~b! show the cases of two different
junction types~insets!, SIS and SNS. TheI -V curves in these two
cases are both power laws with the common exponent, differing
only in their prefactors.
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takes place, and so on. The voltage of theI -V characteristics
of WLN represents therefore the curve obtained by move-
ment of the working point from one characteristic to another.
This curve depends however on the specific microscopic pro-
cess responsible for ‘‘jumps’’ between characteristics. In our
model this microscopic process is based on the features of
individual Josephson junctions comprising the network.~We
do not explicitly treat the other possible dissipative micro-
scopic processes such as vortex-antivortex creation and
movement, phase slips, etc., although we do not exclude the
possibility that even in these cases the same global behavior
could be expected12!. To proceed we analyze the cases of the
two representative networks composed of different junction
types, superconductor-insulator-superconductor~SIS! and
superconductor–normal-metal–superconductor~SNS!, tak-
ing into account only the first-orderI -V nonlinearities of
these junctions. The second-order effects~such as superim-
posed flux-creep/phase slip which gives some dissipation at
any current, hysteresis, rounding at critical current and spe-
cific non-Ohmic behavior in the dissipative branch of junc-
tion’s characteristics! are neglected in our model for global
dissipation. The characteristics of the two junctions are
therefore of the kind represented schematically in the insets
to Fig. 14. We calculate nowVWLN anddVWLN/dI as func-
tions of current in these two cases.

1. I -VWLN and I -dVWLN/dI for SIS network

The local SIS features lead to vertical switch of voltage
@jump from the characteristic of the slopek(n) to the adja-
cent one of the slopek(n11)# at all current values that are
multiples ofDI . In Fig. 14 we show schematically the very
onset of dissipation which takes place whenn overcomes its
percolation threshold valuenc , nc5pc/N. By n8 we desig-
nate here the reduced value ofn, n852nc . Thereforen851
corresponds to the status of the system in which the number
of blocked sites exceedsnc by one. If the system were linear
its I -V characteristic in this state would be a line of the slope
k~1!. For WLN and in the range of validity of the linearp(I )
approximation,p512bI, the status of the system evolves
with increasing current asn85I /DI , while the voltage fol-
lows a steplike curve~heavy line in Fig. 14!. The voltage
measured in experiments is the envelope curve which joins
all the half-way points. It is easy to show that the coordinates
of these points are

S 2n811

2
k~n8!DI ,

2n811

2
DI D . ~A2!

If we introduce the substitutioni5(n811/2)DI @i.e.,
n85( i /DI )21/2# the voltage at the points is

V~ i !5
i

DI
k~n8!5

i

DI
kS i

DI
21/2D . ~A3!

The continuous functionV(I ) ~actually there is a quasi-
continuum of states of differentn8! that joins all the half-way
points is therefore given by the transformationi→I :

V~ I !5
I

DI
k~n8!5

I

DI
kS I

DI
21/2D . ~A4!

We are interested in the first derivative of this curve, the
differential resistancedV/dI:

dV/dI5
1

DI
k~n8!1

i

DI

dk

dn8

1

DI
. ~A5!

The slopes arek(p)5A(pc2p) r5A(1/N) r(n2nc)
r , i.e., the

slopesk depend onn8 as the power lawk;(n8) r . Taking
into account thatI /DI@1/2 anddk/dn85r (1/N) rn8r21, the
differential resistancedV/dI reads now

dV/dI5
1

DI
kS I

DI D1
I

DI

A

Nr r ~n8!r21
1

DI
. ~A6!

Keeping in mind thatn85I /DI , we finally get the relation-
ship we wanted to prove

dV/dI5
11r

DI
kS I

DI D5
11r

DI
A~pc2p!r5B8~ I2I c!

r .

~A7!

We point out that this result relies upon a simple analytical
property of power law functionsf (x)5xr , i.e., [x/ f (x)](d f /
dx)5r . This expression actually holds for any homogeneous
function. The corresponding expression is known as Euler’s
formula in mathematical literature. It is also interesting to
note that a steplike voltage curve, quite similar to the heavy
line in Fig. 14~a!, has been obtained in the measurements of
I -V characteristics of artificial Josephson networks.35 The
relevance of our analysis for these results is, however,
unclear at present.

2. I -VWLN and I -dVWLN/dI for SNS network

If the local process belongs to the SNS type there will be
no switches~voltages jumps! between adjacent characteris-
tics of differentn; see Fig. 14. It is instructive to follow the
movement of the working point starting from a current just
aboveI c . This point initially follows, similarly as in previ-
ous SIS case, the characteristick~0!. However, when the cur-
rent overcomes the incrementDI the slope changes from the
initial k~0!50 to the slopek~1!, exhibiting at the same time
no voltage jumps. The wholeI -V characteristic is therefore
composed of linear segments the slopes of which are deter-
mined by the slopes of the characteristicsk(n8). The proof
of Eq. ~A1! in this case is thus a straightforward consequence
of the geometrical interpretation of the first derivative:

dV/dI5k~ I /DI !5A~pc2p!r5C~ I2I c!
r . ~A8!

We note that the twoI -V curves derived from elementary
characteristics in these two cases are both power-law func-
tions differing in their prefactors but sharing the same power
law exponent.
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