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A detailed study of dissipation in weak link networks of higip-superconductors has been performed. The
model for dissipation has been elaborated assuming a general correspondence with the problems of inhomo-
geneous charge transport. The model treats the basic experimental ingredients, current-Voltagend
current-differential resistancé-dV/dl) characteristics, as a current-induced critical phenomenon. The valid-
ity of a simple relationship between non-Ohmic weak link network and Ohmic classical percolation networks
has been proved, allowing a quantitative interpretatioh-@fcharacteristics. These characteristics are primary
determined by dynamical features of transport on percolation networks. The model focuses on both aspects of
of the scaling-related power law, its dynamical exponent and its prefactor, and gives specific predictions for
magnetic field and temperature dependencies. The experimental results are in full agreement with both pre-
dictions. In particular, the experimental values of dynamical scaling expofiens s=0.7) coincide with
generally accepted literature values for three-dimensional sysf&0$63-182€06)01826-1

I. INTRODUCTION in agreement with the predictions of classical percolation
theory. In this paper we establish a still missing model ap-

The effect of structural inhomogeneities on transportPropriate for analysis of charge transport in WLN and the
properties of cuprate highi; superconductor§HTS), al-  related current-induced percolation transition. The model is

though extensively studied by a number of autHois stil then applied to the interpretation of new experimental find-

not fully understood yet. The terimhomogeneitiespplies  N9S IN infvestigated-v andl-dV/dIdchar)zcteriBtics both in

S o ranges of varying temperatures and vary{sgall) magnetic
here t.)Oth to Intrinsic dewauqng from the average CryStaIIOfields. The level of agreement between the predictions of the
graphic structurésuch as variation of the local structure or

th toichi N the lenath le of th . IImodel and the experimental data leads us to recognize the
e oxygen stoichiometry on the length scale of the unif ce polycrystalline HTS, a WLN prototype, as a rather unique

and to extrinsic microstructural featurgsuch as grain  qqe|'system for experimental studies of dynamical scaling
boundary weak links onum scalg. In this work we concen-  exponents of current-induced percolation transition, inter-
trate on the latter, i.e., the weak link aspect of inhomogenepreted as a critical phenomenon. Also, as a final argument
ities, primarily on the weak link network6/VLN) which  for the importance of studies of transport in WLN, we point
characterize a variety of forms of realistic samples. There argyt that a relatively simple problem of transport in WLN
many reasons for interest in transport properties of weakmay serve as a starting model for more complex more
link-dominated samples. Besides general interest in studyingtrinsic) problems. For example, there are indicatiGribat

the phenomenon of superconductivity in cuprates, there arghe global vortex motion in the flux lattice may be subject to
several specific reasons. First, a detailed understanding of tlemilar macroscopic constraints as those present in WLN.
mechanisms which underlie the onset of dissipation and th&he similarity of the power-law-V characteristics of the
concept of critical current itself is equally important for both two different systems may be therefore attributed to the com-
fundamental physics and for the intended practical applicamon constraints, and not to the details of the microscopic
tions. Secondly, these samples represent, primarily due t@€chanisms. In Sec. Il we first introduce the basic physics of
intrinsically short coherence length of HTS, an ideal Josephson coupled systems, then list some relevant results
granular superconductor. This is a system which has athich appropriately focus the problem of dissipation in

tracted, together with Josephson-junction arfagsjot of ~WLN of HTS and finally elaborate the model for non-
attention in the past decad®dn particular due to the fact dissipative and dissipative transport itself. Section Il deals
that the questions of long range order of the phase coher- with quantitative analysis of experiments and their relevance

enco in these heterogencous systems conespond to quifl 1€ Yesigation of dynamcl feaures on percolaon
general problems of critical phenomeffa. : P 9 9

The latter aspect will be thoroughly investigated by thiSW|th|n which the present model cannot be applied. The ana-

| icul how that th bl f oh lytical proof for an expression linking an Ohmic and a non-
work. In particuiar, we show that th€ problem Of Chargeqpmic network, the latter comprising two elementary junc-
transport in WLN can be considered within the framework of;, ;.o types, is elaborated in the Appendix.

transport in heterogeneous media, i.e., as the problem of dy-

namics of percolatiorfor fracta) networks”® In several re- II. MODEL EOR DISSIPATIVE AND NONDISSIPATIVE
cent publications ™! we presented some experimental argu- TRANSPORT IN WEAK LINK NETWORKS
ments which support this approach and demonstrate the
problem of dissipation in HTS, as studied by current-voltage
(I-V), current-differential resistance I-dVv/dl), and The mechanism of Josephson coupling has been invoked
temperature-resistanc& {R) characteristics, to be basically in order to explain the bulk superconductivity in high-

A. Weak link network as a granular superconductor
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temperature superconductors in both cases of the intrinsic

interplane(CuQ,) coupling® and the coupling across micro- %
structural objects(grain boundaries, oxygen depleted re-
gions, etd.>* The transport properties of Josephson-coupled
system depend on the specific parameters of the problem. In
particular, the properties of the systems under consideration,
polycrystalline samples of HTS, are determined by compet-
ing effects between the three characteristic energies: the en-
ergy of intergranular Josephson coupligg, the energy of
thermal disordefE;, and the electrostatic charging energy
Ec .} The granular character of transport in these systems is
a consequence, along with the short coherénog these
competing energiesThe latter two are detrimental for the
Josephson-coupled phase which can therefore be realiz%g
only if the characteristic parameters of a given superconduqf1
tor allow sufficiently strongg;.*> More specifically, it turns
out that the temperature at whi@y exceedsE lies close
below T, the critical temperature of the intragranular ther-

5N
Dm
:

By

FIG. 1. Schematic view of supercurrent transport in non-Ohmic
LN of HTS. Phase coherent grairidisordered rectanglgsare
terconnected by junctions in one of the two possible stéiesk
(supercurrenbn) or white (supercurrenoff ). The conductive status
of a junction is determined by local conditions.

modynamic phase transition, while the charging endtgy (iv) The onset of dissipation is best described by a power
remains low enouglfprimarily due to relatively large aver- |4y provided the applied currehis replaced by the reduced
age grain size$), thus allowing a sufficiently strong phase cyrrenfi=|- I, I, being the critical current. The scaling is

coupling. The important fact is that the long range phas&naracterized by a samplé-e., microstructurgindependent

coherence may be drastically influenced by the parameteis,nonent®® The exponent also reveals no temperature and
imposed externallyapplied current, magnetic field and tem- magnetic field(if H<20 Oe dependence.

peraturg, leaving simultaneously the intragranular supercon-  These observatiorj§)—(iv)] make a starting point for the

ductor in its Meissner state. model presented below which treats the onset and growth of
) o dissipation in WLN, composed of a large but final number of
B. Some experimental features of dissipation in WLN elements, as a problem of heterogeneous conducting medium

Distinct and separable dissipative contributions belongind€.g., random resistor netwdjkand its well-understood dy-
either to superconducting grains or to the system of theinamical features. In particular, we model the WLN as a sys-
interconnections, WLN, can be identified in various types oftem composed of grains in the Meissner state, interconnected
transport measuremehts(ac susceptibility, dc magnetiza- With the switching devicegJosephson junctiopsn one of
tion, voltage noise Also, there is a broad experimental the two possible conducting statégsupercurrent “on” or
range of temperature, applied current and/or magnetic fieldoff” ). The status of a particular junction responds to the
inside which the dissipative excitatiorfiwhatever their na- local conditions, i.e., the local values of current, magnetic
ture) are localized exclusively in WLN'°It has been firmly ~ field, and temperature. The supercurrent transport in the
established that precisely these localized excitations are rénodel medium is illustrated schematically in Fig. 1.
sponsible for the experiment&tV characteristics of bulk
samples. No quantitative agreement with flux-creely C. Growth of percolation cluster
«e’Je, J being the applied current density adgdthe char- in classical and weak link networks

acteristic currentor flux-flow regime(Ry>H/Hc,, with Ry The model for dissipation follows in essence the knowl-
defined below could be detected in these measurements. I%dge of transport in electrically conducting random net-

the e_xp_erlm_ental window of our measurements these Class\'/\'/orks. The representative exampglase random resistor net-
cal dissipative processes may therefore be negléttéde

. . works (RRN) and random superconductor netwoil&SN)
reqall by some resuilts which prove _that .th(.e A EXChL which a fraction of originally isolatingRRN) or normally
tations make a discrete set, being limited in its total number

of elements only by microstructure of the polycrystalline conducting(RSN) sites (bonds are randomly replaced by

: . conducting or superconducting sitélsonds, respectively.
samples. Ir! other Wo_rds the experlmental_ arguments I!StedThe(betteD conducting fraction will be hereafter designated
below confirm the existence of a network in its conventional

sense asp. As it is well known, the resistand® of both networks
() There is a sample-dependent quasi-Ohmic high curre follows the power-law(scaling behavior close to the perco-

! en . IMeN4tion threshol
saturation level ofl -V characteristicsR; . R; is systemati- ation thres olebe

cally smaller tharR,,, the normal resistance just above the Rx|p—pq|". (1)
transition (R;=0.2R,, typically) and has a very weak mag- ¢
netic field and temperature dependence. This relationship applies to RRN with=—t (for p>p,)

(i) There is a pronounced branching in a setRfT  and to RSN withn=s (for p<p.), respectively. The dy-
characteristics (resistive transition curves taken by measur-namical exponents ands, which describe divergence &
ing currents inside a wide rang&he position of the branch- above p (RRN) or its vanishingbelow p. (RSN), Fig. 2,
ing point coincideSwith R;. have been thoroughly studied during the past decddes

(i) Ry and the branching point systematically dependtwo-dimensional(2D) and 3D systems. Their values are
only on microstructure of the sampl&s. known to bet~2 ands~0.7 in 3D. In order to make the
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wherel is a size of the network unit cell. Therefore, the
resistancedr of the network(or its conductanc&) reads now

I d-2
R=1/G=(E) Folp—pc|" (&)

It is important to stress that the above expressions are
valid only in the approximation of a very large system
(L—). For a real system of finite size there is always a
crossover valug*, close enough tg., below which the
diverging correlation lengtlg (éx|p—p.| ~*) approaches the
sample sizel.~¢, and a finite-size scaling takes ovenside
the interval p.,p*) a sample-sized cluster becomes a fractal
with non-Euclidean dimensiod;, d;#d, and Egs.(1)—(3)
are not obeyed.However, as shown in the discussion sec-
tion, the experimental conditions of this report are in most
cases compatible with>¢, i.e., with the percolation regime
of Egs.(1)—(3). Due to the reality of a large sample limit in
the experiments we report on, the term “sample-sized clus-
ter” will be replaced by “infinite cluster” in the remaining
text. It is also important to note, in accordance with the ex-
perimental results listed previously, tHatis represented by
R¢ in measurements on real HTS samples. A growth of the
(supejconducting clusters in RRN or RSN which accompa-
nies the rise ofsupejconducting fractiorp is usually stud-
ied either numerically or, as in some experimefitdy
physical manipulation with the composition of the samples.
It is assumed here that there is a similar cluster growth in
WLN. The growth is related to current-induced variation of
the relative number of supercurrent carrying links. The WLN
system is self-organized in the sense that its composition as
well as the spatial configurations of property-bearing clusters
are regulated by current itself. The normalized number of
“good” links in WLN, which obviously plays the same role

"good" fraction p asp in RRN and RSN, may be represented as an unknown
function of the applied current, magnetic field, and tempera-

FIG. 2. Power-law resistance and conductance of classical pefUreé,P=p(l,H,T). The specific functional form gb may be
colation Ohmic networks close to the percolation threstmicbf ~ Sample dependent following the specific features of an actual
better-conductinggood fraction p. lllustration concerns 3D case Josephson network, including the microstructure of a given
so the assumed values of dynamical exponents wer2 and Sample. Here we only assume that, owing to disorder, this
s=0.7, respectively. In@ the characteristic behavior of random function is nonsingular in its variables.
resistor and random superconductor network was shown wiile It can be expected that the behavior of the WLN system is
models a random composite network. The components of the latteuantitatively related to the bond percolation problem of
network are both normally conducting but the respective values ofome hypothetical RRN or RSN image netwdik the Ap-
their conductivities differ substantially. The regions characterizedpendix we call it “an Ohmic counterpart of WLN In order

by s- andt-like cluster dynamics or their crossover are marked byto justify this connection we first carefully examine the prob-
s, t, or s/t, respectively(c) illustrates the behavior afynamical  |em of involved scaling exponents.

strengthof infinite cluster in WLN (see text which is nonzero in
the zero-voltage region gf. Thick arrow indicates the direction of
variation of p which corresponds to increasing current branch of
experimentall -V characteristics. Dissipative part of these charac- ) )
teristics, the subject of this study, corresponds to hatched region of The dynamical exponentsands in Egs.(1)—(3) express
(0). The characteristic cluster dynamics are marked a¥)in two different dynamics in the twéRRN,RSN networks: In
the terminology of diffusion on a percolating netwdfkhe

model more complete and realistic we also introduce thalynamical exponens is associated with a random walker
problem of prefactor of this power law. The prefact®y  (“termite” ) which performs a normal random walk when off
should tell how the total resistance scales with the resistandéie superconducting cluster but which moves extremely rap-
of dissipative elements at the lattice sitgsand with the size idly when on the cluster. In contrast, the dynamical exponent
L of a sample. Ird-dimensional spac®, scales as*! t represents “the dynamics of an adf’which executes a

| normal random walk only on the percolation cluster. In other

Rt: ( E

conductance (arb. units)
resistance (arb. units)

: . L 0
0.0 0.2 0.4 0.6 0.8 1.0

dynamical strength (arb. units)
dynamical strength (arb. units)

1. Two specific dynamics on percolation cluster:
Exponents t and s

d-2 : ) . )
@) words the exponent is associated with dynamics exclu-

fo, sively on the conducting cluster in its isolating background
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(i.e., there is no distribution of current between two sub- 2. Cluster dynamics of the dissipation onset in WLN

systems, the incipient cluster and the backgroumdile s We analyze now the excursion pfthroughp,, following
applies to the_ case of current being d|§tr|buted between thgye routep* —p - and below when the dissipation sets in. In
superconducting and normally conducting clusters. The tW@gRRN some of the most criticéted?®? links in the backbone
exponents are exactly equal @=2 (s=t=1.23), but the pecome isolating during this course and the global conduc-
strict relationship for higher dimensions has not been firmlytion as well as the backbone’s dynamical strength ceases. In
established yet8 The third type of random network which is WLN some of the red links become dissipative, the global
of interest here is a random composite neti®fR(RCN). It phase coherence disappears and the voltage sets in. Due to
allows the study of dynamical features both below and abovéhe insertion of this dissipative “glue” the dynamical
the percolation threshold. This network comprises two typestrength recovers and can be identified, owing to its partially
of resistive elements differing significantfput not qualita- ~ dissipative character fgr<<p.), with R. The associated clus-
tively as in RRS)N cases in relative values of their resis- ter dynamics may be inferred from the following consider-
tances. There are two regions of concentrafiomhere either ~ ation. First, it is clear that at the very onset of dissipation
s ort dominates the behavior of global resistance of REN, there could be no “explosion™ in the number of dissipative
as well as an intermediate interval pfaroundp, inside Sites as the scaling power lower than 1, esg=0.7 would
which a matching o&- andt-like dynamics takes place; see imply. Morgover, as the dissipative sites are still tied to the
Fig. 2. The presence of cluster dynamicshmih sides ofp, bag:kbone it turns out that the very onset ;hould be charac-
in this network is the primary reason why we find it impor- terized by a-like dynamics as well so tha’ is expected to

tant for the interpretation of the onset of dissipation in WLN. f\)ﬂeorsgmrrgggg art%irr]gcis":ar? jrr:;iltl 'nter(\)’f""zliocffosggsggfpr% .m
Both in RRN and RSN the dynamical features in the regiorb P Y, thel ; B, . . .
below (RRN) or above(RSN) p., respectively, cannot be a ackbone related-like dy_nam|cs to dynamics which acti-

: : c K vates not only the dangling ends of the largest cluster but
subject to resistanc@r conductancemeasurements due to

h £ an infinite ol for alith This cl also all other disconnected clusters. This sort of cluster dy-
the presence of an infinite cluster for plthere. ThiS cluster 5 nics will be hereafter callegn slike dynamics. We note
eliminates(in RRN) or shunts outin RSN) any voltage on

! Y ) that the same type of crossover was studied in RCN a long
the sample of the network. To this extent it is instructive t04jme ago® see Fig. 2. The only difference is that in RSN-

decompose the expression for conductance(&qinto two  yg|ated WLN the crossover interval @f is not symmetric
factors, i.e., the geometry and sample dependent networound p. like in RCN but rather sets in just gi.. Our
factor .17, .1 .7=(LII)*"?g,, and the dynamical factor reasoning concerns primarily the problem of WLN analyzed
Z, Z=|p—pc| " In analogy with the conceptually related here as a bond RSN problem. We are not certain, however,
static quantity, the probability of an arbitrary site belongingwhether our conclusion that the very onset of dissipation is
to the infinite cluster, sometimes also called the clustedetermined by a-like dynamics could be applied to RSN in
strength?” & may be calledhe dynamical strengtiUnlike  general.
statical strengthZ depends only on the backbone mass of

the infinite clustef®”8the dead ends mass being irrelevant

for global conduction. The advantage @fis that it can be
introduced, in order to characterize the dynamical features on

an infinite cluster, in the ranges @f inside which the ob- In this work we are mainly interested in experimertal
servables are zero or infinite. In particular, it is important tocharacteristics, i.e., the continuous reductiom diy increas-
considerZ of RSN (Ref. 29 in the rangep>p... This range ing currentl, usually in a fixed magnetic fieltd and tem-

is characterized by a trivial shunting effe@=0) due to  peratureT. As long asp>p. there is an infinite phase co-
infinite conductanceg, of the network elementdi.e., herent cluster in WLN and no voltage can be measured along
V. 7=x) and corresponds to the nondissipative branch othe sample. Belowp, a dissipative voltage sets in. TheV
thel-V characteristic of WLN. The dynamical strength of an characteristic can be viewed as a possible scenario for the
infinite (also phase-coherentluster is at its maximum in- experimental path of the poinp(l,T,H) in the four-
side that range for a network without a normal fractign  dimensionalp-1-T-H space(T andH are fixed parameters
=1) and drops toZ=0 with decreasing (increasingl in andp changes due to varying curreint The dissipation sets
WLN) at p_, a breaking point of infinite clusteisee Fig. in at the dissipation onset curvp(l,H,T)=p., regardless
2(c)]. The specific dynamics which accompanies the disapef the previous history of the working poim(l,T,H). In
pearance ofZ can be inferred by noting the formal similarity order to simplify the presentation, the further treatment of
with dynamics in RRN: The supercurrent bypasses a resighe functionp is going to include two variables only, e.g.,
tive site in RSN(or an off site in WLN in the same way, p=p(l,H). The explicit treatment of the third variabld)

i.e., without any local branching, as the normal current doesvould lead to the same qualitative behavior. Even in the
in RRN around isolating sites. Therefore the problenvof  two-variable case the full reconstruction of functip@l ,H)
formally identical, forp—p_, to the problem of vanishing (a surface in the 3D system of coordinatel,p) from ex-

G in RRN. The value of the exponentin the expression for periments seems still too ambitious. A precise reconstruction
Zis accordinglyn= —t. The relevant dynamics actually in- of the functionp(l,H,T) is outside the scope of this work.
volves, above but close fo., only a backbone of an infinite Instead, it rather relies on the function’s general analytical
cluster®28 and will be hereafter called t-like dynamics. properties which can be deduced by physical reasoning: Due
We propose that the santidike dynamics underlies the dy- to the broad statistical distribution of several relevant param-
namical strengthz of WLN (RSN) for p>p ¢ as well. eters characterizing the samplgsain and sample size, junc-

D. Quantitative formulation of the model
and its main assumptions
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tions’ quality, etc) but regardless of the width of this distri- dV/d1=1/G=R|p—p¢|"

bution for fixed T and H, the function p(I,T,H) is a 42

monotonously decreasing function of the increasing current | nry n

|. We first ask about the curves of constamin the I-H _(L) Fol C2g(H) I =1c(H)] ®)
plane,p(l,H)=const. These must be some nonlinearly de-

creasing = I (H) functions. For example, two reasonable as-q,

sumptions would bé=ae " andl =a/(H +b), wherea,b

are parameters. These functions could serve as reasonable

test functions as they are both “mesoscopically” justified: dV/dl=Rs(cy/cy)"pe(1/1,—1)"

the first one due to the magnetic field dependence of critical B N N n

currents of superconductor—normal-metal—superconductor =Ri(cz/cy)"[pc/1c(H) ][ =1c(H)]". (6)
(SNS junctions?® and the second one due to the sample-size

effects in critical currents! The function of constanp in The voltage in the measurements bfV characteristics
these two cases would be of the fopr 1" and p=1(H should therefore follow:

+b), respectively, with the dissipation onset curves given by
the equatiomp(l,H)=p.. In order to proceed with the quan-
titative formulation of the model it is necessary to introduce

— — Rf n n n+1
some assumptions, primarily about the unknown function V_f (dVidhdi= n+1 (€2/€1)(pe/1e)"(1 =1c)"

p(l,H). These assumptions are as follows. @)
(i) Critical currentl. is the current consistent with the
percolation thresholgc, p(lc)=pc - In these equations the total resistariReof a network was

(ii) The functionp(l,H) is linear inl close tolc. IN itS  yepiaced by its WLN counterpar®; . The notation of these
quantitative aspect the model is _therefo_re rest_ncted to th@xpressions suggests explicitly the conditions of fixed mag-
small current interval around, inside which a linear ap-  peyic field. Qualitatively, there would be no differences if the
proach is permitted. conditions of fixed temperature were assumed and in this

(i) The dependencies an andH can be factored out, ;56 we may simply repla¢¢ by T. The basic agreement of
p(1,H)=1(1)g(H). [In previous examplesf(l)=I and  ho eyperimental-V (and I-dV/dI) characteristic with a
g(H)=e"" or (H+b), respectivelyl The functionf(l) al- power-law form has already been demonstrat¥dThe
lows more complicated forms of current dependencepof 4,6 of the exponem at the very onset of dissipation has
than the_ pverS|mpI|f|eq Ilnear one. The magnetic field depenpaap preliminary identified as=t. In this work we report,
dent critical current is defined bp[l(H)]=f(Ic)g(H)  pesides the details of the model as presented above and in the
=Pc- . ) ) Appendix, on the full experimental confirmation of the va-

(iv) Quantity R of linear percolation networks has to be jigity of Egs. (5)—(7) for the interpretation of experimental
replaced bydV/dl (differential resistande of nonlinear  cparacteristics. In particular, we show that the relatively
WLN. Due to non-Ohmicity the resistan@(=V/1), which  complex structure of the power-law prefactor indeed con-
is a well-defined macroscopic observable of Ohmic systemgyins the dependences on all environmental conditions of the
(RRN,RSN, fails to play the same role in WLN. The anal- ye5s5urementémagnetic field, temperaturand on the spe-
ogy between the two quantitieR, anddV/dl, was justified ific properties of the samples, while the exponent depends
by qualitative arguments in Ref. 10. In Appendix this is o1y on cluster dynamics and therefore remains insensitive
proven analytically for two representative networks. until the crossover to the alternate dynamical regime takes

The dynamical state of WLN stems from the differencepace. |n the remaining part of the article we quantitatively
p(I,H) = pc. In the vicinity of I ; the linear expansion gives ia¢; the predictions of the model.

e _ I1l. QUANTITATIVE ANALYSIS OF |-V
P pc_(dl)I g(HI = Te(H)] AND |-dV/dl CHARACTERISTICS
A. Samples
=(cale)[pc/lIc(H)I[T = 1c(H)], 4

The properties we report on in this work concern the weak

link networks of HTS in general, i.e., the properties under
In order to make the model more tractable we introducedconsiderations are not related to some specific preparative
here the coefficient, of the line which joins the origin and conditions. Three samples chosen for presentation belong to
the pointf(l;) onf(l) curve such that(l.)=c;l. (see inset two families of HTS,RBa,Cu;0,_, (R is a rare earth ele-
to Fig. 8, or I (H)=pc/[c1(H)g(H)]. The slope off(I) at  meny and BLSr,CaCuw04,, . The rare earth was either ga-
I.(H) is designated in Eq4) asc.. If the functionf(l) were  dolinium (sampleS,;, also GBCQ or yttrium (sampleS,,
linear the factorc,/c,; of the current curvef(l), hereafter also YBCO. SampleS; was a lead-substituted compound
calleda shape factofsee inset to Fig.)8 would be equal to  (BiPb),Sr,CaCu;0,4,, (BPSCCQ. The preparations fol-
one. This factor is field and sample dependent and respoewed a conventional mixture-of-powders route and the de-
sible, together wittp /1 .,(H), for the field dependence of the tails are given in references mentioned in Table I. This table
experimental power-law prefactor. By virtue of transforma-also gives a summary of some of the transport properties of
tion R—dV/dl from Eg. (3) and using Eq(4) we get the samples.
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TABLE I. Some transport and microstructural properties of the 14 T T
samples.ort and Rgy are room-temperature resistivity and mea-
sured resistance of the sample, respectively.is resistivity just
above the transition andl., temperature of zero resistance) is
the average grain size of the samples dpdritical current density
measured at specified temperatures.

=y

2k T=87K

=
T
dvidl (104 Q)

%o
T

0.2 0.3 0.4 0.5

o

S, GBCO* S,, YBCO S, BPSCCO

(dvidi)1'2 (arb. units)
(-

current (A)

ort [1Q cm] 980 1700 4860 4t -
Rt [MQ] 45 57 185 GBCO
Teo [K] 93.5 90 104 ir S, 1
0. [ cm] 420 745 2830 oL v e AR |

N 1 1 1
<Rf>[f[“m] 6.9 4.5 15.8 200 300 400 500
a) [um 8 35 20
3, [Acm 2] 1788 K) 80 (80 K) 25 (80 K) current (mA)
3For preparative details see Ref. 9. FIG. 3. Typicall-dV/dl characteristics of polycrystalline HTS

sample. The measured pointsise) are transformed following
dvidl—(dv/d)*™ n=2, to demonstrate consistency with the

B. Data representation and power-law exponent power-law behavior.

®For preparative details see Ref. 10.

There may be different ways of representing compatibility
of experimental curves with the form of power law. One way
would be a straightforward fit to the power-law form of Egs.
(5)—(7). This fit would have three parameteils, n, and a

strongly favort~2. This result fort is in good agreement
with numerical resultson RIS)RN and the theoretical esti-
mates of its lowetand uppet bounds.

prefactoj, too much for a convincing determination of their Th? values oh determined by a proced_u_re I|k.e kT
values. It is also very common to plot the experimental | experimentally found to be almost insensitive either to tem-
points on the logarithmic axes so that the slope of the linegP€rature changes inside a broad inter#@6-90 K and

part, if any, gives the exponent value. In this work we Studyvariation of magnetic field§f H<20 Osg or to the choice of

the analytical properties of the experimental curves by éhe family of the sample and its microstructure. The absence

slightly different method. The voltagaé (or dV/dI) of the ~ Of Such dependences is in a full accordance with the prin-
measured -V (or I-dV/dl) curves were first transformed ciples of our model: Dynamics remains unchanged regard-
following V— V", wheren is a trial exponent value, and less of the level of th@- andH-dependent rate of creation of

subsequently plotted versus the measuring current. The a’gs._olating/dissipative bonds, taking place in increasing cur-
sumed power-law form of-V (or I-dV/dl) characteristic

corresponds to the linear behavior of the transformed data

and its slope to the power-law prefactor. There are no fitting C. Power-law prefactor and the consistency of the model
T e e o o s THe pEactor of he powe a n Eq8) and©) hre
. : . ; ' : after denoted a®;, is a product of three factors, viz., the
investigated so far, two linedi.e., power-law regimes, a

trivial nondissipative (<l.) one and a dissipative one,

crossing each other at the critical currépt see Fig. 3. It 10
turns out, however, that there is an interval of values of T=87K
Fig. 4, inside which any seems to lead, at first glance, to an
acceptable fit to the power law. Therefore the proper expo-
nent had to be determined therefore by quantitative tests of
the quality of fits for several values af in this interval, as
shown in Fig. 5. The mean-square deviation from the aver-
age straight line of the transformed and normalited (or
I-dV/dl) data has been calculated for all of the chosen val-
ues ofn. Figure 6 shows the general forms of these standard
deviations as functions of trial valuesfor samples in zero

-
T

(dvidiy!™ (arb. units)
LN
T

or very small applied magnetic fields. These functions are ol 99919&%

characterized generally by the presence of a minimum, both &%, ! ,

in the measurements ¢fV and|-dV/dl curves. The best 200 400 500
choice for exponen is, by definition, a value which mini- current (mA)

mizes the standard deviation. The high resolution measure-

ments ofdV/dl on sampleS,;, shown in Fig. 6 given~2.1. FIG. 4. TransformediV/d| data of the measurement from Fig.

Similarly, the measurements fV curves in the range of 3 for three trial values oh. The proper choice, obviously close to
initial dissipation in samples,, Fig. 6, given+1~3, i.e., n=2, would give a straight line. The other two give either concave-
n~2. Within our model the exponemt is interpreted as the downward(n=2.6) or concave-upwardn=1.4) shapes of trans-
dynamical exponent for conductivity so these experiments formed curves.
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FIG. 5. TransformediV/d| data, normalized by their values at  FIG. 7. Correlation of power-law prefactor values and final re-
480 mA, for three trial values ai (open symbolsand the best fits  sistance(see text for several samples of different batches and ori-
to straight line(solid lineg. Quantitative analysis is shown in Fig. 6. gins.

total resistancd;, the shape factorcg/c,)" of the current  range for its power (from concave-downward functions,
function f(I) at I;, and the critical current factor r<1, to concave-upward functions;1), it follows from the
(pc/1c(H,T))". While R; has a very weak dependence on definition ofc,/c, that it is simply equal ta. Therefore it is
magnetic field and temperature, the shape factor and espgsasonable to expect that the temperature and magnetic field
cially the critical current factor are strongly andT depen-  dependent values af,/c, fall into the interval not broader
dent. In this modet,/c, is in a simple geometrical relation- than[0,10] at most. It is also important to note thaf/c, is
ship (see inset to Fig. Bwith the a priori unknown function  the main representative of the effects of disorder so that
f(1). The spectrum of realistic values fep/c, can, how-  sample dependence of the shape factor can be also expected.
ever, be easily determined. If we assume for example thajve first demonstrate qualitativel§i.e., without taking ex-
f(1) is a power-law function of aroundl, allowing a large  plicitly into account the shape factor and the critical current
facton the correlation ofP; with R;. Figure 7 shows the
collective prefactor data at 80 K for several HTS samples of

12 ' T ' various families and microstructures, shown as a function of
T 0} i R;. The variation of R, in these samples is a
5 N GBCO well-understood consequence of different average grain
g 08r AN S i sizes{a). The latter quantity can be treated as an effective
S 6l \\Q i spatial coarseness of WLN network, playing therefore the
3 \ role of | in Egs.(2), (3), and(5) thus determinindR; and, in
: 04 \\ 7 turn, P;. However, a full quantitative determination &%
€ o2l b\o//o/*’ a) | depends also oncg/c,)" and (p./1¢)". In our model these
@ factors are solely responsible for temperature and magnetic
0.0 - ' : ' : field dependences &; . Before investigating these predicted
1 2 3 4 - .
0.25 , , . dependences d¥;, it is important to test the mutual consis-
] tency, within the proposed model, of experimental results for
- A\ N ’ y
rg 0.20 | \ . n and P;. In the system of data presentation used in this
2 \ s study, to each value of the trial power-law exponanive
s MIsF L ! may associate one experimental value Ryr. P; may be
5 N geometrically represented by the slopeof the line which
g oor a o il fits the transformed data. In terms of experimental observ-
e °\% S ables, the model predicts a simple relationship between the
0.05 - oo b) — X
S slopeS and the total resistandg;,
0.00 . . : . h
2 3 4 5 S=(c2/c1)(Pe/Vml )R, ®

trial exponent

whereV,, is the voltage(or differential resistangeused for

FIG. 6. Mean square deviation of transformed and normalizedlata normalization. It is onlg,/c, in this formula which is
data from the best fit to the straight line, for various trial exponentNOt known experimentallyRk; can be determined in an inde-

values.(a) illustrates the result fot-dV/dl and (b) for and |-V

pendent -V measurement, whilk, is known from thd -v"

measurements. The exponent value in the center of the pronounc@diesentation of the experimentidV (and I-dV/dl) data.
minima is in excellent quantitative agreement with literature datalhe numerical test we present has also to assume some

for the conductivity exponeritin 3D.

choice for the unknown percolation threshold concentration
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FIG. 9. Magnetic field dependence of power-law exporiple)
and power-law prefactofplp) determined from measurements of
I-V characteristics of sampl8;. Corresponding temperature de-
pendence is shown in the inset. Dashed lines are guides for the eye
only.

FIG. 8. Dependence of the calculated shape factbr, on trial
exponent values from Fig.(8. Inset: Graphical meaning of the
shape factorc, and c,; are coefficients of the two characteristic
lines associated with the point on the current functi¢h.

p.. Here we use, of the 3D cubic(bco bond problen?,®  tion of the quantity p./I)" (n=2). A dependence of the
i.e.,p.~0.18. The reap, of our problem can of course differ shape factoc,/c, is also displayed. The latter quantity de-
from 0.18 but this would introduce only a slight numerical creases almost linearly with increasing temperature but re-
difference into the results. Now, the necessary condition fomains strictly inside the predicted interval of its values,
the consistency of the model is that the shape faci¢e,  [0,10]. The magnetic field dependence of the same quantities
should acquire a reasonable value, i.e., a value inside tHer sampleS, is shown in Fig. 11. Againg,/c, displays a
interval [0,10]. In Fig. 8 we show the values far,/c,, for ~ remarkable decrease in increasing magnetic field, still inside
several exponents, calculated from Eq(8) and from the the same interval. We note that the specific functional depen-

values forS, I, V,,, andR; taken from the measurement at dences ofc,/c; vary from sample to sample, which allows

» Ico .
88 K. It is obvious that all of the calculateg/c, fall into the ~ Somewhat different,/c, values at the same temperature and
magnetic field for different samples. It is also interesting to

expected interval. The proper value of/c; (at the given . : :
P prop oficy ( g note that the approximate cancelationmf!. andc,/c; is

conditions of measuremeni{=0 Oe, T=88 K) is the one ; z
associated to propen. Figure 8 suggests therefore that quite common to occur at 80 K, so that the effective prefac-
tor values ofP; are numerically close t&; at that tempera-

C2/cy=1 (compatible withn=t=2.1). In other words, the ture. This is also a reason which justifiesposteriorj the
values ofc,/c,; smaller than 1, as well as those much h|gher%Ope of the straight line in Fig. 7.

than 1 are excluded due to the same quantitative argumen
which favor n=t=2.1. Furthermore, the value af,/c,
much higher than 1 already at 88 K is increasingly improb-
able due to the fact that by decreasing temperatyfe,
monotonically increases, starting from some vatyke; <1
(below but close tdr). A typical value ofc,/c, at 78 K is
c,/c;=5 (see the inset to Fig. 11It can be concluded there-

E. Crossover of dynamical exponents
in increasing magnetic fields

The voltage which sets in &t is primary determined, in
our model, by the characteristic dynamics represented by the

fore that there are no basic inconsistencies in our model. 0.05 . . . . u 10
T T T (o]
4 ) N /
D. Power-law prefactor and dependences ol and T . 004 o \o\ // 48
x)' Y o™~ —
The physical origin of dependences on magnetic fielyl ( < °2r °‘\o\ ] / g
and temperatureT() comes, to the first order, simply from 5 .03 | . ‘|° /—#—' 46 =
the H- and T-dependent critical current of disordered indi- & " s w / ﬁ
vidual Josephson junctions of WLN. This is then reflected 5 .1 temperature () /é/, 14 ;
into H- and T-dependent fraction of dissipative elements g / S, =
p(l) which introduces also the corresponding dependencesg’.._ 7 | Bscco s
of the global critical current, and the shape factar,/c; of 0.01 [ e PR 12
the current functiorf (1), thus of the prefactoP; as well. o 0(//
The sensitivity ofP; to the changes dfl andT contrasts the 0.00 o | , 0

experimental findings for scaling exponent According to 80 35 90 95
the model, the exponent is related solely to the cluster dy-

namics, exhibiting therefore basically d and T depen-
dence, in full agreement with experimental results on sample FIG. 10. Temperature dependence of power-law prefactor and

S;, shown in Fig. 9. Figure 10 illustrates the temperaturewwo of its factors predicted by this modepd/1.)", n=2, andc,/c,
variation of P; of the same sample, together with the varia-(insed, for sampleS;. Dashed lines are guides for the eye only.

temperature (K)
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FIG. 11. Magnetic field dependence of power-law prefactor and
two of its factors predicted by this modepd1.)", n=2, andc,/c, FIG. 12. Typicall-dV/dl characteristics in a broad range of
(inse), for sampleS,. Dashed lines are guides for the eye only. applied currents and in various magnetic fields, sanfpleSome-
what decreasing level of quasi-Ohmic saturation for high currents in

exponentt. The model also predicts a possible crossover tgncreasing magnetic field was referred tofal resistance Rin
another type of cluster dynamics, i.e., to the dynamics det€Xt

scribed by the dynamical exponesit In the latter case the

model predicts the rise of differential voltage still in the form conducting links is far away fronp. and the validity of

of Egs.(5) and(6), but withn equal ton=s=0.7 instead of percolation power-law expressions like H@) is, a priori,
n=t=2. In order to investigate the possibility of this cross- not justified. Nevertheless, the model was tested in that range
over we studied thel-dV/dI characteristics of sintered too by plotting the expected functional formg(l—1.)°’
YBCO in a broad range of applied currents, i.e., up to thewhere we pun=s=0.7; see Fig. 13P; is a fitting param-
currents which produce a voltage much above the range dfter andl. the same critical currents that had been used
initial dissipation. In the broad range of currents one carpreviously for small currents. There is obviously a good re-
expect, according to our model, the fingerprints of three conproduction of experimental curves, proving at least qualita-
secutive regimes. The first two should reflect a crossovetively the relevance og-like cluster dynamics in the inter-
from t-like [dV/dI~(p—pe)'] to s-like [dV/dI~(p—p,)°] mediate range. In the third range of very large currents,
cluster dynamics while the third regime, very far frdm  inside whichl-dV/dl is close to saturation t&;, it is rea-
(i.e., pe), has nothing to do with critical behavior and reflects sonable to assume the validity of Maxwell's classical theory
a linear conductance-concentration dependence in the effeof conductivity in electrically heterogeneous metfiarhe

tive medium theory of heterogeneous syst&¥nigV/dl~p). latter (effective mediumapproach applies when one fraction
[It is important to note that the exact formsfgl) andg(H) represents only a small perturbation to the other, dominant
are limited therefore by the boundary condition pni.e., fraction, and resistivit(g) scales linearly withp, oxp. In
p(l—,H)=1.] This makes a basis of our analysisleflvV/  our case of WLN the range of large currents corresponds
dl curves in a broad range of applied currents. The gerric therefore to linear dependenced¥/dl on p. In that region
shape is a well-known feature of these characteristics; setie plottedi-dV/dI curves are directly proportional {o(l).

Fig. 12. We have already reporta qualitative agreement It is interesting to note that the fraction functigy{l), al-
with the crossover prediction in the absence of applied fieldthough still analytically unknown, is basically reconstructed
Here we report on the sequence of measurements in varyirig two current ranges: for small currents it is represented by
magnetic fields. Figure 12 shows a sel edV/d| character- c,/c, and for large currents it is proportional simply dd//
istics which all saturate at some characteristic vdRge A dl. In order to investigate the crossover between the expo-
slight R;(H) dependence can be attributed to second-ordenents more closely, it is instructive to study the magnetic
effects (partial flux trapping inside the graifs. Each of field dependence of botR(1—1.)" and P4(l1—1.)® curves.
these curves was numerically analyzed in the two regions dPne way would be an independent study of these curves as
currents, just abovk, (hereafter the range sfmall currenty  functions of magnetic field. A shortcut to the results of these
to study initial dissipation, and a subsequent range of curstudies may be performed by investigating the crossing point
rents much higher than the critical otfeereafter the range of of the two curves. The crossing poifdee Fig. 13 shifts
intermediate currenysbut still much smaller than the current systematically to the left in the increasing field. It can be
in quasi-Ohmic saturatiodV/d|=R; . For small currents the immediately concluded that the prefactors have different de-
best power-law exponent was found for each magnetic fielgpendences oHi: If there were a common prefactor, s&y

in the investigated ranggd <20 Oe by looking for the stan-  then the crossing point would have the coordinate-(1,P).
dard deviation minimuni{Fig. 6). This procedure gives the This is in clear disagreement with the results, Fig. 13, which
dynamic exponent values af=t~2 for all applied fields, shows decreasinginstead of increasingordinate of the
with the usualH-dependent prefactor. The solid concave-crossing point in growingH. Our model predicts specific
upward curves in Fig. 13 are corresponding plots ofstructures of the prefactorsPs=R;(c,/ci)%(p/l)° and
P;(1—1.)%. For intermediate currents the fractiprof super-  P¢=R;(c,/c,)'(pc/1.)", respectively. The current that per-
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may correspond to various excitation levels, i.e., fractions of
dissipative linksp’ (1) abovep, in the two measurements at
differentT or H. For example at low temperature and in zero
applied field the 1QuV criterion may provide a window b
inside which the cluster dynamics is strictly governed by the
i dynamical exponerit[concerning both the experimental ex-
ponent and the prefactor dV (or dV/dl) curved. At
higher temperature and/or in higher field the same criterion
does not necessarily warrant the presence of a single cluster
dynamics. If there is some mixing of the two dynamics, then
the prefactor, as well as the exponent, will not be determined
by either of the derived expressions. This especially applies
to the prefactor, because the effect on the exponent could be
numerically too small to be effective. The latter scenario
seems to be the most important reason that limits quantita-
tively the applicability of the simple expressions derived in
the model. As far as the position of the crossing point is
concerned we may conclude that a full quantitative agree-
ment in a broad range of fields fails due to the “mixing” of
the two prefactors in redldV/dl characteristics. The posi-
tion of the crossing point gives, however, a measure for rela-
tive contributions of the two types of cluster dynamics in
different magnetic fields. Above 20 Oe thdike dynamics
is by far predominant, so that the detection of initidike
behavior, although always present, is a matter of voltage
resolution abovel.. Our interpretation of asymmetric
S-shaped -dV/dI curves stems therefore from the crossover
T between the two types of cluster dynamics. The earlier inter-
pretation(Ref. 39 of these curves was based on the notion of
£ the distribution function of critical current density?V/d|?,
0 ' and treated the role of disorder somewhat differently. While
s H (Oe) in the latter approach the disorderdssourceof features in
: I-dV/dI characteristicgin particular, their generic shapes
in this model disorder regulates maintlge width of non-
current (A) Ohmic behavior, not the features themselves. The generic
shapes of these characteristics are therefore related, in our
FIG. 13. Set of high-current-dV/d| characteristics in small Vview, to rather universal cluster dynamics and their cross-
magnetic fields and two relevant power laggolid curvey. The  OVer.
concave-upward curves were determined in the range of initial dis-
sipation (approximately inside symbol size on this s¢adend are
consistent with t-like behavior. The concave-downward solid IV. DISCUSSION AND CONCLUSION

curves are the single-parametd?,] power-law fits,P4(1—1.)°7, - . -
intended to test a crossover $dike dynamics,s~0.7. The inset The majority of equations pertaining to the present model

compares magnetic field dependence of the experiménfzn [e.g., Egs.(2), (3), and (5)] refer to the limit of infinite
symbol3 and calculated positiotblack symbols of the crossing Sample S'Zé'IFS validity questionable in principle and has to
point of these two power laws. be tested taking into account the circumstances of an actual
sample. As already mentioned in comments following Eq.
tains to crossing point*, can be easily calculated to obtain, (3) the sample size effects become important in close vicinity
as a prediction of our model, the exponent-independent resukp=|p* — p¢| of p., wherep* is a crossover concentration
I*=1,14(cs/c,)(1lpy)]. The inset to Fig. 13 compares below which the sample size is smaller than the diverging
these calculated values fof (using measuret, and earlier ~ correlation length. Insid& p the fractal nature of the cluster
c,,c; on the same sample; see inset to Fig) dith the  violates the predicted behavior. It remains therefore to esti-
experimentally determineti*. Although there is not a full mate the experimental circumstances compatible wittithe
numerical agreement, a reasonably good reproduction of défracta) regime. Being satisfied with an order of magnitude
pendence orH is obvious. This proves that the crossover precision we analyze the situation of a typical sample. The
range can be successfully described in both aspects of dgize of the samplé belongs to the millimeter scale and that
namical exponents and prefactors by the present model iof the network unit cell to the micrometeaverage grain
spite of its clear limitations. The quantitative disagreemensize scale, e.g., L=1 mm, [=5 um. Thus
with the prediction of the model deserves some additionalAp=(1/L)¥"=2.38<10"3, wherev is the correlation length
comments. Our measurements were taken until the chosexponent,»=0.88 in 3D. As the total number of resistive
low-level voltage(10 wV), the same for all investigatddV ~ sites is of the order of the total number of graiNg, i.e.,
characteristics from Fig. 4, has been reached. This voItagNg=8><106, the concentration intervalp abovep, corre-

dvidl (mQ)

dvidi (mQ)

dvidi (mQ)

dvidl (mQ)
* (A)
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sponds to 1.810 links turned into “off” state. The impor-
tant issue is the associated current interval. A typical current
compatible withp=1 (i.e., differential resistanci;) at 80 K V.
is 5 A. In linear approximatiom\ p corresponds therefore to
Al=12 mA. The latter is the current interval inside which
the proposed scaling should be violated. The current resolu- Vv
tion of the majority of our experiments was of the same order
so that the possible presence of fractal dimension effects was
averaged out inside a first few measuring points. It would be
interesting to see whether the increased current resolution
would be able to detect a real fractal regime.

In conclusion, we presented the model for dissipation in
WLN and applied it to the interpretation of a large number of n'
measurements on HTS samples in zero or small applied mag-
netic fields. The model treats the problem of dissipation as a
current-induced critical phenomenon which involves two v
types of specific dynamics on the relevant percolation clus-
ter. The application of the model leads to reasonable numeri-
cal agreement with the experiments. s k4)
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APPENDIX: CURRENT-VOLTAGE CHARACTERISTICS

:—
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v

OF OHMIC AND NON-OHMIC NETWORKS 1
A\
The purpose of this appendix is to relate the observable
“differential resistance”,dV/dl, of a non-Ohmic weak link FIG. 14. Schematic reconstruction bfVy, y curves of weak
network (WLN) to the observable “resistanceR=V/I, of link network from its linear counterpart, random resistor or random

the Ohmic counterpart of WLN. By the WLN’s Ohmic coun- supercopduct_or network-V characteristics of the Ia}tter_ networks
terpart we mean a hypothetical random resistor or randorare straight lines of the slopk, shown here by thin lines as a
superconductor networkRRN,RSN identical to the non- function of the reduced numben’=n-n. of the insulating/
Ohmic WLN in all details except that the fractignof the resistive sites. The scheme of this figure illustrates the case of RSN.
better-conducting component of this Ohmic network is inde-The voltage of non-Ohmic WLN network evolves in increasing
pendent on current. The variation Rfwith p in these Ohmic applied current as a steplike curve, while the voltage measured
networks obeys a well-established power & A|p—p,|" experimentally follows, in a real situation with a quasicontinuum of
(Nren=—1, Nmey=5). Provided that the appr(’)Ximatio?ls of States of differenn’, the curve obtained by joining all the half-
ouF:Rr?lmdeI’ argszllfilléd we show here quite generally that the.pOints (hatched ling (2) and (b) show the cases of two different
characteristic dependence of the Ohmic r]etworkjunction types(insetg, SIS and SNS. Thé-V curves in these two
R=A(p.—p)' WheFr)e the power can be now any real num ‘cases are both power laws with the common exponent, differing
—M\Fe FJ . . .~ """ only in their prefactors.
ber, implies the same functional form of the differential re- y P

sistance @V/dl) of its non-Ohmic counterpart WLN, i.e., . , ) ) )
d ) P states which differ in their respective numbrerof blocked

dV/dI=B(p,—p)'=B'(I—1,)", (A1) sites by one; see Fig. 14. The fraction of blocked sitep 1
is obviously related tan by 1—p=n/N, whereN is total
whereA, B andB’ are mutually related but here unimportant number of sites. In our model of current-induced percolation
constants. transition we infer the creation of blocked sites in WLN to
We first reconstruct the shape of the/ characteristic of the current itself. In other words, there is a distinct current
WLN from the assumed formR=A(p.—p)’, valid in an  incrementAl that is necessary to change the number of
Ohmic network. The-V diagrams of a network like that are blocked sites by oneAl induces a jump to the neighboring
represented by a family of lines with the slopescharacteristic, i.e., to the characteristic of the slkf® con-
k=A(p.—p)'. The slope progressively changes as a funcsistent with the increased numberThe corresponding volt-
tion of increasing concentration—Jp of blockedsites(i.e.,  ageVyy, y is determined by the characteriskitn) as long as
insulating or resistive There is a quasicontinuum of these the increasing current stays belaw. When the current in-
linear characteristics: The two adjacent ones represent therement reacheAl again a jump to characteristidn+1)
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takes place, and so on. The voltage of th& characteristics We are interested in the first derivative of this curve, the
of WLN represents therefore the curve obtained by movedifferential resistancedV/dl:

ment of the working point from one characteristic to another.

This curve depends however on the specific microscopic pro-

cess responsible for “jumps” between characteristics. In our 1 .o 1odk 1
model this microscopic process is based on the features of dvidl= Al k(n")+ Al dn’ Al°
individual Josephson junctions comprising the netw@vke

do not explicitly treat the other possible dissipative micro-

scopic processes such as vortex-antivortex creation anthe slopes ar&(p)=A(p.—p)'=A(1/N)"(n—ny)’, i.e., the
movement, phase slips, etc., although we do not exclude thi@opesk depend om’ as the power lavk~(n’)". Taking
possibility that even in these cases the same global behavi##o account that/Al>1/2 anddk/dn’ =r(1/N)'n’" "%, the
could be expectéd). To proceed we analyze the cases of thedifferential resistanceV/dI reads now

two representative networks composed of different junction

types, superconductor-insulator-superconductstS) and
superconductor—normal-metal—supercondudt®8Ng, tak-

ing into account only the first-orddr-V nonlinearities of
these junctions. The second-order effe@isch as superim-
posed flux-creep/phase slip which gives some dissipation L _ , . .
any current, hysteresis, rounding at critical current and Spj_{e_epmg in mind than’=1/Al, we finally get the relation-
cific non-Ohmic behavior in the dissipative branch of junc—shlp we wanted to prove

tion’s characteristigsare neglected in our model for global
dissipation. The characteristics of the two junctions are

therefore of the kind represented schematically in the insets gv/d|=
to Fig. 14. We calculate now,y,  anddV,, \/dl as func-

tions of current in these two cases.

(A5)

| rr—ll A6
H+er(n) IR (A6)

dvidi=— Kk
T Al

1+r r ! r
TA(pc—p) =B'(I-1y)".

(A7)

1+rk | _
Al VAT

1. 1-Vyn and I -dVy, n/dl for SIS network

The local SIS features lead to vertical switch of voltage
[jump from the characteristic of the slojpén) to the adja-
cent one of the slopk(n+1)] at all current values that are
multiples of Al. In Fig. 14 we show schematically the very
onset of dissipation which takes place whenvercomes its

We point out that this result relies upon a simple analytical
property of power law function§(x) =x", i.e., [x/f(x)](df/
dx)=r. This expression actually holds for any homogeneous
function. The corresponding expression is known as Euler’s
formula in mathematical literature. It is also interesting to
note that a steplike voltage curve, quite similar to the heavy

percolation threshold value., n.=p./N. By n’ we desig-
nate here the reduced valuerofn’ = —n,. Thereforen'=1

corresponds to the status of the system in which the numbé
of blocked sites exceeds, by one. If the system were linear

line in Fig. 14a), has been obtained in the measurements of
|-V characteristics of artificial Josephson netwotkghe
?Ievance of our analysis for these results is, however,
unclear at present.

its I -V characteristic in this state would be a line of the slope

k(1). For WLN and in the range of validity of the linep(l)

approximation,p=1-Dbl, the status of the system evolves

with increasing current as’ =1/Al, while the voltage fol-
lows a steplike curvéheavy line in Fig. 14 The voltage

2.1-Vyn and I-dVyy \/dl for SNS network

If the local process belongs to the SNS type there will be
no switches(voltages jumpsbetween adjacent characteris-

measured in experiments is the envelope curve which join8ics of differentn; see Fig. 14. It is instructive to follow the
all the half-way points. It is easy to show that the coordinategnovement of the working point starting from a current just

of these points are

2n'+1 KA 2n’+1AI
2 (n) 1 2 -

If we introduce the substitution=(n'+1/2)Al [i.e.,
n'=(i/Al)—1/2] the voltage at the points is

(A2)

. i o i

The continuous functio’(l) (actually there is a quasi-
continuum of states of differemt’) that joins all the half-way
points is therefore given by the transformation I :

V(I)=$ k(n’)=$ N

Al . (A4)

abovel .. This point initially follows, similarly as in previ-
ous SIS case, the characteristi®). However, when the cur-
rent overcomes the incremeft the slope changes from the
initial k(0)=0 to the slopek(1), exhibiting at the same time

no voltage jumps. The wholeV characteristic is therefore
composed of linear segments the slopes of which are deter-
mined by the slopes of the characteristid®’). The proof

of Eqg. (A1) in this case is thus a straightforward consequence
of the geometrical interpretation of the first derivative:

dV/idI=k(I/A)=A(p.—p)'=C(1—1,)".  (A8)

We note that the twd-V curves derived from elementary
characteristics in these two cases are both power-law func-
tions differing in their prefactors but sharing the same power
law exponent.
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