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The diffraction intensities of He atoms scattered from vicinal Cu~211! and Cu~511! surfaces have been
measured with a high angular resolution over a wide range of incident energies from 8 to 82 meV. Close-
coupling scattering calculations with a corrugated Morse potential were performed to obtain the corrugation
parameters for the first three complex Fourier coefficients. The energy-dependent corrugation profiles deter-
mined from the best fit indicate that the corrugation predicted by a simple hard-sphere model is considerably
smeared out at the small electron densities far from the surface probed by the He atoms. A comparison with
Eikonal calculations demonstrates that hard corrugated wall Eikonal models are not adequate for the structural
analysis of stepped surfaces.@S0163-1829~96!00831-4#

I. INTRODUCTION

Structural defects at surfaces have long been of great in-
terest because of their crucial role in many important physi-
cal and chemical processes that occur only at the solid-
vacuum interface: chemical reactions, catalysis, crystal
growth, electronic emission, and surface structural
transitions.1 Periodically stepped~vicinal! surfaces are ideal
model systems for isolating one type of defect, a step edge,
which becomes accessible to study by diffraction techniques.
For example, on metal surfaces, diffraction experiments with
either He atoms or electrons@low-energy electron diffraction
~LEED!# have been recently used to study the structures of
stepped surfaces,2–5 their roughening,6–8 faceting,9,10 and the
nucleation of growth at step edges.1,11,12Helium-atom scat-
tering ~HAS! and LEED are largely complimentary diffrac-
tion techniques. Whereas LEED is sensitive to the positions
of the surface atoms, HAS is uniquely sensitive to the very
low density of electrons@102321025 e/(a.u.)3# protruding
far out (;3–4 Å! from the surface of a metal.13

Step atoms on metal surfaces are known to show a sig-
nificant inward relaxation,14,15which has been confirmed in a
number of LEED and ion-scattering studies.16,17 It has also
been established that the work function decreases with the
number of steps from which dipole moments of 0.2–0.6 D
per step atom are derived.18 Furthermore, for step edges an
asymmetry in the mobility of adatoms for diffusion across
step edges~‘‘Schwoebel effect’’! has been found.11,19,20This
demonstrates clearly a significant charge transfer away from
the steps, which is explained by the Smoluchowski effect21

and is supported by calculations of Tersoff and Falicov22 and
Nelson and Feibelmann.23 These predicted significant struc-
tural and electronic modifications at step sites15,22–24could so
far not be confirmed by the available HAS experiments de-
spite the fact that HAS is predicted to be sensitive to elec-
tronic modifications at the step edges.25

The first careful HAS study of the corrugation of a
stepped surface was carried out by Lapujoulade and

co-workers2,26 for the Cu~711! stepped surface. These and
related studies for the~110!, ~311!, ~511!, and~711! surfaces
of copper were carefully analyzed using the corrugated
Morse potential.3 The results for all except the~711! surface
could be fitted by using only two Fourier components with
the second-order components being smaller by more than an
order of magnitude. This limited amount of information
could be shown to be in reasonable agreement with a simple
model in which the electronic density at the surface is esti-
mated from a superposition of the charge distribution of in-
dividual surface atoms neglecting relaxation. The repulsive
part of the potential is then obtained by simple assuming it to
be proportional to the charge density.27,28 This analysis was
later confirmed by Cortona, Dondi, and Tommasini.29 A sub-
sequent He scattering study of Ni~511! by Kaufmanet al.4

came to essentially the same conclusions. Despite the large
differences in the reactivity of Ni and Cu and in the electron
density at the Fermi level for these metals, Kaufmanet al.
found a very similar shape and amplitude of the surface elec-
tron density contours for both metals.

Recently, in the search for more detailed microscopic in-
formation on special dynamical features that might result
from electronic modifications at step edges, Sibener and
co-workers30,31 and Witteet al.32 have investigated the step-
localized phonons on the Ni~997! and the Cu~211! and the
Cu~511! surfaces, respectively. In the latter study the step
phonon modes could be clearly identified and their disper-
sion in k space along the two main symmetry directions
could be traced out. Detailed comparisons with lattice dy-
namical calculations, however, were not able to identify any
significant modifications in the force field at the step edges.

The present experimental and theoretical study is a re-
newed attempt at finding and isolating modifications in the
electronic structure at the step edges based on a HAS diffrac-
tion study of the same Cu~211! and ~511! surfaces. In the
present work the angular resolution is aboutDQ50.2°,
which is considerable better thanDQ50.6° used in the ear-
lier experiments3,4 of Gorseet al. and Kaufmanet al.

PHYSICAL REVIEW B 15 AUGUST 1996-IIVOLUME 54, NUMBER 8

540163-1829/96/54~8!/5881~12!/$10.00 5881 © 1996 The American Physical Society



Moreover, in our previous studies of surface phonons we
were able to achieve a very high degree of perfection in the
structural uniformity of these copper vicinal surfaces. This
we shall see is important for obtaining a large number of
sharp diffraction peaks. The determination of the He-surface
potential from the diffraction data~the so-called inverse
problem! is even for an ideal surface by no means an easy
task. In order to account for a realistic interaction potential
that has both a soft repulsive part as well as the predicted
long-range attractive potential the experimental results have
been interpreted using close-coupling~CC! quantum-
mechanical calculations.33–35As in previous theoretical stud-
ies of the vicinal copper surfaces,3 we have used the corru-
gated Morse potential~CMP! model.36

CC calculations can be considered as being essentially
nearly exact. These calculations are often very time consum-
ing because of the large number of diffraction channels
(N) necessary to obtain numerical convergence~computing
time scales withN3). The number of channels increases with
the corrugation of the surface, the size of the unit cell length,
the mass, and the incident energy and decreases with the
angle of incidence of the incoming particles. Furthermore,
for very asymmetric surface corrugation profiles, the number
of Fourier coefficients is greater and they are complex. Thus,
in order to reproduce the data, a double set of corrugation
parameters~real and imaginary parts! have to be fitted, mak-
ing the problem nearly intractable. To circumvent these
problems we have developed a method in which an analyti-
cal solution for the energy-dependent Fourier coefficients of
the coupling matrix elements is derived. With this procedure
it has been possible to fit the diffraction data over a wide
range of incident energies, fromEi 5 8 up to 82 meV, stud-
ied.

Fortunately, for the CC calculations in the case of the
stepped surfaces considered here, Cu~211! and Cu~511!, it
can be assumed to a very good approximation that the cor-
rugation is one dimensional and along the direction perpen-
dicular to the step edges. The ideal atomic structures of the
Cu~511! and Cu~211! surfaces are shown in Fig. 1. They
consist of ~100! and ~111! terraces, each containing three
atom rows separated by monoatomic steps with~111! and
~100! faces, respectively. The anglesa formed between the
terrace plane and the macroscopic surface~i.e., the nominal
Miller indexed surface plane! are 15.8° and 19.5° for the
Cu~511! and Cu~211! surfaces, respectively. Thus, while
both surfaces have nearly the same step separationd, they
have complementary terrace and step face orientations. In the
calculations we use a coordinate system with thez axis per-
pendicular to the macroscopic surface. They axis is chosen
to be along the step edge and thex axis perpendicular to the
step edge@Fig. 1~c!#.

This paper is organized as follows. In Sec. II we describe
the apparatus and sample preparation. The diffraction pat-
terns are presented in Sec. III. Section IV describes the ap-
proximations used to facilitate the numerical calculations.
The comparison of the best fit calculations with the experi-
ments is discussed in Sec. V. The corrugation profiles deter-
mined from the best fit show that for these two Cu vicinal
surfaces the corrugation is dominated by a few low-order
Fourier components. The reasons for no large anomalies due

to enhanced electron spillout at the step edges is discussed in
Sec. VI.

II. EXPERIMENTAL SETUP
AND SAMPLE PREPARATION

In the He scattering apparatus, which is described in detail
elsewhere,9 a well-collimated nearly monoenergetic helium
atom beam is directed at the surface. The scattered atoms are
detected at a fixed total scattering angle of 90.5° with respect
to the incident beam, while the angle of incidence and the
final scattering angle are varied by rotating the crystal. The
overall angular resolution of the apparatus is 0.18°. The en-
ergy of the He-atom beam can be varied between 8 and 120
meV (ki 5 4.0–15.2 Å21) with an overall velocity distribu-
tion of aboutDv/v 5 0.75% by changing the source tem-
perature from 35 to 500 K, respectively. Because of the fixed
total angle geometry the parallel momentum transfer for
elastic scattering is given byDK i5ki(sinui2sinuf), where
u i is the incident angle andu f590.5°2u i @see Fig. 1~c!#:
The energy and angular resolution limit the transfer width to
about 250 Å .

FIG. 1. Geometry of the stepped copper surfaces. The Cu~511!
surface ~a! consists of ~100! terraces with a step separation
d56.63 Å . The Cu~211! surface~b! has~111! oriented terraces and
a comparable step distance.~c! illustrates the scattering geometry
for the scattering uphill perpendicular to the step edges. The sum of
the angle of incidence and of the final scattering direction is con-
stant~90.5°).
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The copper single crystals with~511! and ~211! surfaces,
which had been first polished within60.1° of the desired
5orientation, were prepared in UHV~base pressure
1310210 mba by repeated cycles of Ar1-ion bombardment
~800 eV, 30 min! and subsequent annealing to 800 K. Thisin
situ sample preparation procedure was concluded as soon as
the helium atom diffraction peaks measured by rotating the
crystal show no further narrowing and no traces of sulphur,
carbon, and oxygen were found in the recorded x-ray photo-
emission spectroscopy spectra within the detection limit of
0.5% of a monolayer.

All the HAS measurements were performed at low crystal
temperatures of 100–150 K, at which no thermal activated
defect formation occurs11 and the multiphonon excitation is
minimized.37 In a previous investigation32 the surface pho-
non dispersion curves were determined over the entire Bril-
louin zone from a high-resolution time-of-flight analysis of
the scattered atoms. This investigation indicated that below
150 K the elastically scattered intensity perpendicular to the
steps is about 80% of the total scattering intensity.

III. EXPERIMENTAL RESULTS

Figure 2 shows a series of HAS angular distributions
taken over a wide range of initial He-atom wave vectorski

and incident energies (Ei) between 4.0~8.4 meV! and 12.5
Å21 ~81.6 meV! along the azimuth direction uphill and per-
pendicular to the step edges. Many intense and sharp diffrac-
tion peaks up to the6 6th order are observed. From the
measured angular positions of the diffraction peaks the aver-
age step separationsd were determined to be 6.65 (60.08!
Å and 6.28 (60.08! Å for the Cu~511! and Cu~211! surfaces,
respectively. The separation is in agreement within the errors
with the ideal separations of 6.62 Å and 6.25 Å . As dis-
cussed previously, HAS exhibits very strongly enhanced
form factors for step edge atoms in comparison to the dif-
fraction of low energy electrons.9 Consequently, the ob-
served step edge scattering is relatively intense and this en-
ables a very accurate determination of step separation
distributions.38 For a stepped surface three-dimensional
Bragg conditions exist for which the scattering from all steps
of the crystal within the coherence length of the incident
beam is in phase. For an anti-Bragg~AB! condition the an-
gular full width at half maximum~FWHM! of the diffraction
peaks from the macroscopic lattice is determined by the dis-
tribution of step separations. After deconvolution with the
beam energy width and the angular resolution the surface
coherence length perpendicular to the steps is estimated from
the FWHM of the step diffraction in the AB condition to be
72 Å and 63 Å corresponding to about ten terraces for the
Cu~511! and Cu~211! surfaces, respectively.

For scattering along a direction parallel to the step edges
no diffraction peaks within the noise limit of
I /Imax5531025 could be observed for the~511! surface.
For the Cu~211! surface a weak first-order diffraction peak
was observed with an intensity of 331023 relative to the
specular peak@see Fig. 3~a!#. Since the measured integrated
diffraction intensity along the step edges is less then
531024 of the integrated diffraction intensity perpendicular
to the steps, the surface can be very well approximated by a
one-dimensional corrugation function perpendicular to the
step edges (x direction!. For both surfaces no significant
broadening of the width of the specular peak could be ob-
served for angular distributions along the step edge direction.
From the peak width an average kink distance of more than
120 Å is estimated. Therefore, we conclude that defects on
these surfaces, if at all present, consist mainly of long sec-
tions of the step edges that are uniformly shifted perpendicu-
lar to the nominal step edges resulting in a distribution of
terrace widths.

Figure 3~b! shows the diffraction intensity at the terrace
specular condition during a controlled linear variation of the
beam source temperature~‘‘drift’’ spectrum! that leads to a
scan over the incident wave vector.9 The equidistant intensity
maxima as a function of the~elastic! momentum exchange
perpendicular to the terracesDk' correspond to conditions
where atoms are constructively scattered in phase from
neighboring terraces. Using the relationship for these
maxima,h5n2p/Dk', step heightsh of 1.84 (60.05! Å
and 2.03 (60.05! Å are determined in very good agreement
with the expected values of 1.81 Å and 2.08 Å for the ideal
Cu~511! and Cu~211! surfaces, respectively. The absence of
intermediate maxima and the low diffraction intensity at the
out-of-phase conditions~minima! indicate the absence of
larger step heights and appreciable faceting. It should be

FIG. 2. Series of HAS angular distributions taken~uphill! per-
pendicular to the step edge direction for the Cu~511! and Cu~211!
surfaces. The measurements were performed over a wide range of
initial He-atom wave vectorski between 4.0 and 12.5 Å

21 at crystal
temperatures between 100 and 130 K. The dashed vertical lines
mark the terrace specular positions.
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noted, however, that the good agreement of heights with the
ideal spacing of bulk planes does not exclude relaxation of
step atoms. Since the He-atom form factors are largely de-
termined by the atoms at the step edges, any relaxation with
respect to the terraces will be difficult to observe since a
relaxation induced shift will be the same for all step edges.

Finally, we mention that angular distributions measured
for surface temperatures of 100 and 200 K revealed no sig-
nificant differences. This result confirms that in this tempera-
ture range there is no indication of roughening or faceting,
which was also found in a recent energy-resolved He-atom
scattering study by Ernstet al.11

IV. THEORY

A. Model interaction potential

To model the atom-surface interaction potential we have
adopted the corrugated Morse potential, originally proposed
by Armand and Manson,36

V~R,z!5DF 1V0e22x@z2j~R!#22e2xzG , ~1!

whereD is the well depth,x the stiffness parameter,j(R)
the corrugation or shape function, andV0 the surface average
of the exponential of the corrugation function. Sincej(R) is
assumed to be periodic, and therefore the term
exp@2xj(R)#, the complete interaction potentialV(R,z) is
also periodic. Equation~ 1! is conveniently expanded in a
Fourier series

V~R,z!5V0~z!1 (
GÞ0

VG~z!eiG•R. ~2!

The potential Fourier coefficientsVG(z) can then be ex-
pressed by analytical functions in terms of the corrugation
Fourier coefficientsVG of the periodic exponential term of
Eq. ~1!, which are given by

VG5
1

SEUdRe2 iG•Re2xj~R!, ~3!

where the integration is performed over the unit cell~U! of
areaS andG is a reciprocal lattice vector. From Eq.~2!, the
first Fourier coefficient is given by

V0~z!5D@e22xz22e2xz#. ~4!

The higher-order terms in the diffraction process are all
simply related to the Fourier components of the periodic ex-
ponential term by

VG~z!5
DVG
V0

e22xz for GÞ0. ~5!

Without loss of generality, we can expand the corrugation
function of the stepped surfaces as

j~x!>(
j51

jmax

uhj ucosS a j1
j2p

d
xD , ~6!

whered is the step separation~equal to the unit cell length in
this direction!. This real function can describe asymmetric
profiles for stepped surfaces whena jÞ0. Thus the corre-
sponding corrugation amplitudes can conveniently be ex-
pressed in terms of complex parameters given by their real
and imaginary parts Re(hj )5uhj ucosaj and Im(hj )
5uhj usinaj , respectively. The number of such terms in the
expansion of Eq.~6! given by jmax will depend on the
strength of the corrugation of the crystal surface and its de-
gree of asymmetry. A great simplification is achieved by
treating the first term (j51) in Eq. ~6! as the leading term
and the remainingj terms as a perturbation. Now, by insert-
ing Eq. ~6! into Eq. ~3! and performing the corresponding
integration over the unit cell, we obtain@see the Appendix,
Eq. ~A5!# the following analytical solutions for theVG Fou-
rier coefficients@G5(2p/d)(n,0)# :

FIG. 3. ~a! HAS angular distributions along
the step edge direction.~b! Intensity of the~elas-
tic! terrace specular peak~compare Fig. 2! for a
controlled variation of the incident He beam en-
ergy as a function of the perpendicular momen-
tum transfer. The observed maxima correspond to
in-phase conditions for constructive interference
between neighboring terraces separated by the
step heighth ~as shown in the inset!.
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Vn05 (
k52`

1`

i n1kI k~b11!I n2k~b21!

1x (
k52`

1`

i n1kI k~b11!(
j52

jmax

uhj u@ i2 jeia j I n2k2 j~b21!

1 i je2 ia j I n2k1 j~b21!#1O~ uhu2!, ~7!

where theI k functions are the modified Bessel functions of
integer order40 with their argumentsb11522xRe(h1) and
b2152xIm(h1). The first sum in this equation accounts for
the leading term in the corrugation and the second sum ac-
counts for the pertubation coming from the higher-order
terms.

B. Close-coupling equations

Elastic diffraction probabilities for the scattering of a gas
atom of massm and wave vectork from a rigid corrugated
periodic surface were calculated by solving the well-known
set of CC equations33,35

F \2

2m

d2

dz2
1EGz2V0~z!GcG~z!5 (

G8ÞG
VG82G~z!cG8~z!,

~8!

wherecG(z) is the diffracted wave function in theG diffrac-
tion channel,V0(z) is the bare potential@Eq. ~4!#, and
VG82G(z) are the coupling terms for the diffraction process
@Eq. ~5!#. EGz is the z component of the kinetic energy of
each diffraction channel and is given by

EGz5Ei2
\2

2m
UA2mEi

\2 sinu i~cosf i ,sinf i !1GU2, ~9!

whereEi is the total incident beam energy andu i andf i are
polar and azimuthal angles, respectively. Each diffraction
channel is represented by an effective potential of the form
@V0(z)1(\2/2m)(K i1G)2#, where (\2/2m)(K i1G)2 can
be seen as the asymptotic energy of theG channel. As has
been discussed elsewhere,33 in contrast to other types of scat-
tering processes~e.g., atom-diatom scattering!, surface dif-
fraction is characterized bymoving thresholds, that is, the
asymptotic energies of the diffraction channels are functions
depending on the set (Ei ,u i ,f i) through thek i vector. For
the one-dimensional corrugationf i will be considered zero.
Equation~8! is solved with the usual boundary conditions.33

The amplitudeSG0 or the transition probability from the
specular channel (G50) to theG diffraction channel is re-
lated to the diffraction intensity byIG5uSG0u2.

In general, for stepped surfaces, the scattering is not par-
ity reversal invariant41 with respect to the scattering direc-
tion. The effect of the direction of approach of the atomic
beam towards the surface, downhill or uphill scattering,
should dramatically change the diffraction patterns only if
the corrugation is asymmetric. For stepped surfaces it is ob-
served that in downhill scattering positive momentum trans-
fer values predominate, while for uphill scattering the nega-
tive values predominate.42

C. Effective corrugation function

Equipotential surfaces or contour plots can be obtained
from the classical turning points of the potential Eq.~2!,
which are defined by the locus of all points such that3

V(R,z)5Ei . The implicit functionz5jEi(R) is called the
effective corrugation function and depends on the total en-
ergyEi of the collision43

jEi~R!5
1

x
lnF2

D

Ei
1AD2

Ei
2 1

D

Ei
S 11 (

GÞ0

VG
V0

eiG•RD G .
~10!

Unfortunately, this effective corrugation has the drawback
that it does not increase monotonically with energy in the
range of relevant energies~say, for example, 5–100 meV!,
but rather passes through a maximum and then decreases at
higher collision energies, which is not expected from a good
description of the effective corrugation.3 This is one of the
main drawbacks of the model potential Eq.~1!. It can be
overcome if the Fourier coefficients defined in Eq.~2! are
modified at different incident energies of the atomic beam in
order to obtain the correct behavior, that is, an increase in the
corrugation withEi .

For a one-dimensional corrugation, the sum overG under
the square root in Eq.~10! can be expressed as

(
GÞ0

VG
V0

eiG•R5 (
n51

jmax

u
Vn0
V0

ucosS un01
2p

d
nxD , ~11!

with tanun05Im(Vn0 /V0)/Re(Vn0 /V0). UsuallyD,Ei and
therefore Eq.~10! can be linearized by expanding the square
root and the natural logarithm in a Taylor-series expansion
up to the first power of their arguments. With this lineariza-
tion of the effective corrugation, analytical expressions of the
diffraction intensities within the Eikonal approximation can
be easily obtained as discussed in the next subsection.

D. Eikonal approximation for diffracted intensities

In the preceding subsection we have shown how it is pos-
sible to transform the model potential into an effective
energy-dependent corrugation. In the next step we then use
the Eikonal approximation to calculate the diffraction inten-
sities to provide zeroth-order values of the corrugation pa-
rameters as inputs in the CC calculations at high energies.
Following Garibaldiet al.,44 the diffracted intensities can be
expressed in the Eikonal approximation as

IG5U 1SEUdRe2 iG•ReiqGzj~R!U2, ~12!

where qGz is the z component of the momentum transfer
qG (5k i2k f). Moreover, it is most accurate for small wave-
lengths of the incident atoms, relatively small corrugations,
and small angles of incidence with respect to the normal. The
main drawbacks of this approximation are that multiple scat-
tering is not taken into account and that the calculated inten-
sities are therefore independent of the azimuthal angle.
Moreover, it is not possible to distinguish betweenj(R) or
2j(R) as the profile for the electronic density. Also, the
attractive potential is only approximately accounted for by
the Beeby correction45 in calculatingqGz

. To account for the
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softness of the repulsive potential,j(R) is replaced by
jEi(R) from Eq. ~10!, which has been found to be a good
starting point for a fitting procedure of the Fourier coeffi-
cients of the corrugation function. For one-dimensional cor-
rugations, if the linearization ofjEi(R) is substituted into Eq.
~12! and the corresponding integral is performed, the dif-
fracted intensities are given by@see the Appendix, Eq.~A6!#

I n0'U (
k52`

1`

i kJk~z11!Jn2k~z21!

1
iqnz
2 (

k52`

1`

i kJk~z11!(
j52

jmax U Vj0V0 u@eiu j0Jn2k2 j~z21!

1e2 iu j0Jn2k1 j~z21!#u2, ~13!

where, again, it has been assumed that the first coefficient
uV10/V0u ~the leading term! gives the most important contri-
bution to I n0 and the rest is taken as a perturbation. TheJk
functions are the Bessel functions of integer order40 and their
arguments are defined byz115qnzRe(V10/V0) and
z215qnzIm(V10/V0).

E. Corrections

In order to compare the theoretical diffraction intensities
with the experimental ones several corrections must be ac-
counted for. First of all, the calculations were performed for
a perfect surface, while the real sample has defects. As
pointed out in Sec. II, these defects result in a broadening
and intensity decrease of some diffraction peaks. In order to
compensate for this effect the integrated peak intensity was
used instead of the peak maximum.46

Next we note that since the width of the diffraction peaks
is comparable with the angular resolution~see Sec. III! small
geometrical misalignments lead to a noticeable reduction of
the peak intensity, which show up in the experiments when
the intensity of individual peaks is optimized. From the av-
erage variation of the integrated intensity with the expected
largest misalignments we estimate an error of615%.

In the present experiment the angle between the incident
and final beams is kept fixed and different parallel momen-
tum transfers are scanned by rotating the target. This has the
disadvantage that the intensities of all in-plane diffraction
peaks for a given incident angle are not measured and the
in-plane unitarity is not readily accessible. In this case, only
one diffraction peak intensity can be obtained for a given
incident angle by solving the CC equations. The relative dif-
fraction intensities for different angles of incidence can be
calculated for our geometry. Because of the unitarity of the
CC peak intensities, there is a definite relationship between
the intensities of a given diffraction peak calculated for dif-
ferent angles of incidence. This can be calculated and thus
allows a comparison with the measured angular distribution
for each incident energy.

Another correction is needed to account for the effective
target area seen by the detector. Because of the fixed angle
geometry the measured intensities depend on the visible and
illuminated area of the sample, which is given byAi / cosu i
whereAi is the area of the incident beam~its cross-sectional
area! and the angle of incidenceu i is measured with respect

to the surface normal.47 Analogously, the area of the surface
that is seen by the detector is also given byAf /cosu f , where
Af has the same meaning asAi but for the diffracted beam
and thefinal angleu f is also measured with respect to the
same surface normal. Depending on the ratio of the areas, the
effective area seen by the detector can be less or greater than
the illuminated area. Thus a geometrical factorL has to be
introduced. Its explicit expression is47

L5
min~Ai /cosu i ,Af /cosu f !

Ai /cosu i
. ~14!

Finally, as the experiment is carried out at a finite crystal
surface temperatureTS and the calculation corresponds to
TS50 K, the calculated diffracted intensities must be cor-
rected using the Debye-Waller factor 2W,

2W5
3\2TS~kiz1kfz!

2

MkBQD
2 , ~15!

with QD the Debye temperature,M the mass of a surface
atom, andkB the Boltzmann constant. The acceleration from
the attractive well depthD near the surface can be taken into
account through the Beeby correction in which thez compo-
nents of the initial and final wave vectors are replaced by

kiorf ,z→Akiorf ,z
2 1

2mD

\2 . ~16!

For comparison with the experimental diffraction intensities,
IG
expt is then calculated using the expression

IG
expt5Le22WuSG0u2, ~17!

whereuSG0u2 is the theoretical diffraction intensity atTS 5 0
K.

F. Fitting procedure

In a previous analysis4 of the usual in-plane experimental
configuration, in which all the in-plane diffraction peak in-
tensities for a given incident energy and angle are collected,
each diffraction pattern was fitted at each value of
Eiz5Eicos

2ui , resulting in as many sets of fitting corrugation
parameters as pairs of values (Ei ,u i). On the contrary, our
effective corrugation functions only depend onEi @see Eq.
~10!#, leading to a reduction in the number of fitting param-
eters for each diffraction pattern. As mentioned before, our
fitting procedure for the corrugation parameters is based on
analytical formulas for the potential Fourier coefficients and
does not require any assumption about electron density
profiles.28 The only assumption made here has been to con-
sider that a leading parameter is mainly responsible for the
observed diffraction patterns, the rest being treated as a per-
tubation. Due to the asymmetry of the corrugation profiles
the potential Fourier coefficients are complex and thus twice
as many corrugation parameters~real and imaginary parts!
have to be fitted. In addition, the well depthD and stiffness
parameterx of the Morse potential need to be determined. In
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previous studies3 for vicinal copper surfaces only the ratios
of two potential Fourier coefficientsV10/V0 andV20/V0 were
considered for two incident energies~usuallyV0 is not cal-
culated explicitly!. Here, as our goal is to determine the cor-
rugation for a wider range of collision energies, we have
extended the Fourier series for the potential up to third order,
which requires altogether six corrugation parameters. To
avoid additional parameters, the values ofD and x of the
Morse potential were fixed at 6.35 meV and 1.05 Å21, re-
spectively, as determined experimentally for a CMP for vici-
nal Cu surfaces.3 In connection with theD andx values, it
has been previously argued3,4 that the diffraction intensities
are much more affected by the stiffness parameter (x) than
by the well depth of the potential. Obviously, in any fitting
procedure, it is sometimes difficult to know quantitatively
the role played by one of the parameters because only the
global effect of all potential parameters actually enters. To

investigate the sensitivity of our CC calculations to the po-
tential parameters we list in Table I the~00!, ~10!, and~20!
diffraction intensities for the Cu~511! surface atki56.14
Å 21 for various values of these two Morse parameters using
the Fourier coefficients in Table II. As can be seen, with the
variations shown in this table, the changes in the intensities
are quite significant compared to the fitted intensities corre-
sponding toD56.35 meV andx51.05 Å21. Thus, in fact,
even though our fit is a good one we cannot claim that it is a
unique one. Obviously, because of the large number of fit
parameters even with the extensive experimental data base
available here a unique fit involving all parameters is not
feasible.

Thus the fitting procedure has been the following. First, to
fit the experimental results for an incident energy of around
21 meV for the Cu~511! system we have taken the potential
Fourier coefficients reported by Gorseet al.3 as zeroth-order
values. From our analytical formulas Eq.~7!, we then deduce
the corresponding corrugation parameters. These have been
modified accordingly to fit our experimental diffraction in-
tensities using CC calculations. At higher energies the initial
departure has been to use the Eikonal formula Eq.~13! to
obtain the zeroth-order values from the data. Next, we have
assumed a linear variation48 with the incident energy for all
the corrugation parameters~real and imaginary parts! and
take these values as zeroth-order values in subsequent CC
calculations at intermediate collision energies. Again, at each
incident energy, a series of CC calculations, in which mainly
the three lowest-order corrugation coefficients were varied,
were carried out to obtain better agreement with the experi-
mental diffraction patterns. Thus we have covered the whole
range of incident energies used in the experiment. For the
Cu~211! system we have taken as trial values the ones cor-
responding to the Cu~511! system for two similar incident
energies. In all our CC calculations a maximum of 17 dif-
fraction channels have been used. Tests showed that with
this basis set theS-matrix elements are calculated with three
significant figures and the CC intensities are accurate to
within 60.2%.

The quality of the fits can be seen in Fig. 4, where a
comparison between the CC and experimental results at zero

TABLE I. Effect of different sets of Morse potential parameters
D, well depth, andx, stiffness on the CC calculated intensities.
These intensities correspond to the specular channel~00! and the
first- ~10! and second-order~20! diffraction channels for the system
Cu~511! with ki56.14 Å21.

D ~meV! x(Å21) I 00
CC I 10

CC I 20
CC

5.35 1.05 0.2215 0.1513 0.3581
1.50 0.2168 0.2727 0.2713
2.00 0.0565 0.3382 0.0623

6.35 1.05 0.2652 0.0209 0.3975
1.50 0.1301 0.3840 0.3093
2.00 0.0242 0.3625 0.1394

7.35 1.05 0.0185 0.0012 0.2625
1.50 0.1363 0.1399 0.2397
2.00 0.0339 0.3955 0.1987

TABLE II. Best fit ratios of the corrugation Fourier coefficients for the corrugated Morse potential at four different incident wave vectors
of He atoms. The numbers in parentheses are the real and imaginary parts of the complex ratios in that order and the square brackets indicate
powers of 10. Values ofs, defined in Eq.~18!, are given in the last column.

System ki ~Å 21) V0 V10/V0 V20/V0 V30/V0 s

Cu~511! 4.60 1.028 ~0.163,2.29@-2#! ~1.93@-2#,5.37@-3#! ~1.79@-3#, 8.44@-4#! 0.0167
6.14 1.030 ~0.170,2.33@-2#! ~2.09@-2#,5.65@-3#! ~2.09@-3#, 9.44@-4#! 0.0108
8.76 1.041 ~0.197,2.41@-2#! ~2.72@-2#,6.60@-3#! ~3.17@-3#, 1.27@-3#! 0.0064
12.51 1.058 ~0.233,2.57@-2#! ~3.75@-2#,8.17@-3#! ~5.26@-3#, 1.88@-3#! 0.0092

Cu~211! 3.98 1.027 ~0.160,2.14@-2#! ~1.96@-2#,4.37@-3#! ~1.96@-3#, 6.58@-4#! 0.0493
5.00 1.029 ~0.169,2.13@-2#! ~2.05@-2#,4.48@-3#! ~2.11@-3#, 6.90@-4#! 0.0262
8.90 1.033 ~0.180,2.15@-2#! ~2.59@-2#,5.10@-3#! ~3.00@-3#, 8.73@-4#! 0.0077
12.10 1.053 ~0.222,2.16@-2#! ~3.27@-2#,5.87@-3#! ~4.10@-3#, 1.10@-3#! 0.0095
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surface temperature is displayed at four incident wave vec-
tors. In this figure we have plotted the diffraction order ver-
sus the relative intensity. The incident wave vectors chosen
cover the entire range of the experiments. In the fit, our main
concern has been to try to reproduce the whole diffraction
pattern better than any particular diffraction intensity. The
diffraction patterns are quite closely reproduced. As a mea-
sure of the goodness of the fits we have introduced the quan-
tity s defined by

s5
1

N
A(

n51

N

uI n
CC2I n

exptu2, ~18!

for each diffraction pattern, whereN is the total number of
experimentally observed diffraction channels. Clearly, the
quality of a fit increases for smaller values ofs. s is a
function of the incident energy of the atoms and is listed in
the last column of Table II.

V. DISCUSSION

In Table II, we present both for systems and for four
different incident wave vectors of He atoms the corrugation
Fourier coefficients obtained in our fitting procedure. As can
be seen, for both surfaces the real coefficientV0 increases
very smoothly withki . The remaining three columns give
the relative magnitude of the higher Fourier coefficients ap-

pearing in Eq.~5!. These values are complex and the real and
imaginary parts are presented in parenthesis in that order.
From an inspection of Table II, we observe that the strength
of the couplings that can be determined from the modulus of
the corresponding complex numbers also increases withki .
For the Cu~211! case, the couplings are always slightly
smaller than for the Cu~511! case. It should also be noted
that the third potential Fourier coefficient becomes important
with increasing collision energies, leading, together with the
second Fourier coefficient, to a slight increase in the asym-
metry of the effective corrugation profiles.

To examine the validity of the Eikonal approximation for
scattering from stepped surfaces we compare the CC diffrac-
tion intensities with Eikonal results in Table III. For both
systems, and for the smaller and higherki used in each case,
two types of Eikonal results have been used. One is based on
analytical results using the Eikonal approximation in its
original formulation~Eik1! and the other includes the Beeby
correction as well as the effective corrugation function Eq.
~10! ~Eik2!. The large differences of both Eikonal approxi-

FIG. 5. Calculated effective corrugation functions for different
incident beam energies~a! for the Cu~511! and~b! for the Cu~211!
surface. Compared to the hard corrugated wall~HCW! the corru-
gated Morse potential has a higher corrugation and the loci of turn-
ing points come closer at the surface with increasing energy.~c!
shows a schematic side view of the Cu~211! surface.zG denotes the
geometrical corrugation of the vicinal surface.

FIG. 4. Comparison of the experimental~white! and calculated
close-coupling~black! diffraction intensities for different incident
wave vectors. The experimental values shown here are determined
by a one-dimensional integration over the diffraction peaks and
have been corrected for the Debye-Waller factor. The CC intensities
have been corrected by the geometrical factorL, defined in Eq.
~14!.
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mations to the CC results reflect the effect of multiple scat-
tering and the softness of the more realistic soft potentials
fully accounted for in the CC calculation. Only at the highest
energy do the Eik2 results come close to the CC intensities
and then only for peaks with large intensities. But even then,
in some cases, errors of nearly a factor 2 can occur.

The peak-to-peak amplitudes of the corrugation in the
range of ki values covered by the experiment are listed
in Table IV. They extend from 0.51 Å to 0.58 Å for the
Cu~511! surface and from 0.50 Å to 0.56 Å for the Cu~211!
surface. In Ref. 3 only two peak-to-peak amplitudes were
reported for the first surface: 0.52 Å atki56.3 Å21 and 0.56
Å at ki511 Å21, which are clearly in the range of the am-
plitudes obtained in this work. Our amplitude values come a
bit closer to the predicted values of about 0.4 Å reported in
Ref. 48. The corrugation amplitudes for a hard-sphere model
of the surfaces also listed in Table IV are about a factor of
2.5 larger than measured.

VI. CONCLUSIONS

Diffraction intensities of He atoms scattered from vicinal
Cu~211! and Cu~511! surfaces were measured and CC scat-
tering calculations with a corrugated Morse potential were
performed to fit a corrugation function with three complex

Fourier coefficients. From a comparison with Eikonal calcu-
lations we conclude that hard corrugated wall Eikonal mod-
els are not adequate for the structural analysis of stepped
surfaces as has sometimes been claimed in the literature.4

The present CC calculations reveal that details of the inter-
action potential influence dramatically the effective corruga-
tion leading to different shapes and peak-to-peak amplitudes
of the effective corrugation function. In particular, our results
show similar values for theV10/V0 ratio, but larger values for

TABLE III. Comparison of theoretical diffraction intensities obtained from two Eikonal approximations
@in its original form~Eik1! or when the Beeby correction and the effective corrugation function are taken into
account~Eik2!# and from CC calculations for twoki ~the lowest and higher ones used in the experiments!
without any corrections. The pair of integer numbers (n0) stand for the diffraction channel@G5(2p/
d)(n,0)]. Numbers in square brackets indicate powers of10.

System n0 I eik1 I eik2 ICC I eik1 I eik2 ICC

Cu~511! ki54.60 Å 21 ki512.51 Å 21

-50 1.53@-2# 8.72@-2#

-40 7.25@-2# 0.142 0.182
-30 2.72@-4# 7.06@-3# 0.172 0.181 0.125 7.58@-2#

-20 1.17@-2# 5.72@-2# 0.286 0.137 1.25@-2# 1.80@-2#

-10 0.197 0.353 0.157 6.88@-3# 0.223 0.129
00 0.578 0.228 0.220 0.176 3.77@-2# 7.05@-4#

10 0.193 0.317 0.158 7.90@-3# 0.211 0.122
20 1.19@-2# 5.75@-2# 0.288 0.128 2.80@-3# 2.86@-2#

30 3.86@-4# 1.05@-2# 0.171 0.176 6.78@-2# 4.49@-2#

40 7.94@-2# 0.137 0.157
50 1.86@-2# 0.110 0.122

Cu~211! ki53.98 Å 21 ki512.10 Å 21

-50 2.21@-2# 5.88@-2# 8.12@-2#

-40 7.07@-2# 0.126 0.163
-30 0.158 0.164 0.136
-20 8.19@-3# 3.04@-2# 0.392 0.177 3.10@-2# 1.92@-3#

-10 0.171 0.289 0.250 1.79@-2# 0.141 0.128
00 0.645 0.399 0.251 0.259 0.108 2.52@-2#

10 0.162 0.263 0.259 1.11@-2# 0.135 0.128
20 9.01@-3# 3.25@-2# 0.396 0.150 1.74@-2# 2.19@-3#

30 6.13@-4# 5.33@-3# 0.140 0.154 0.120 0.137
40 9.07@-2# 0.141 0.174
50 2.73@-2# 7.37@-2# 8.14@-2#

TABLE IV. Peak-to-peak corrugation amplitudes in angstroms
for the corrugated Morse potentialzCMP and for a hard corrugated
wall potentialzHCW derived from the fitting procedure. For com-
parison, the geometrical corrugationzG of a simple hard-sphere
model of the surface is also listed.

System zG ki ~Å 21) zCMP zHCW

Cu~211! 1.47 3.98 0.50 0.33
12.10 0.56 0.44

Cu~511! 1.39 4.60 0.51 0.33
12.51 0.58 0.46
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theV20/V0 ratio than those reported in Ref. 3 also based on a
soft wall repulsive potential, at similar incident wave vec-
tors. Therefore, our effective corrugation profiles are some-
what more asymmetric, but overall the asymmetry is still
small. At this point, we would like to stress that the Fourier
coefficients of the corrugation and not of the potential should
be taken as independent adjustable parameters, as can be
seen in Eq.~7!. The effective corrugation function is given in
terms of these coefficients through Eq.~10!. In Figs. 5~a! and
5~b! we have displayed the best fit effective corrugation pro-
files jEi(x) for both systems. For comparison, in Fig. 5~c! we

show also a schematic side view of the geometrical profile of
the Cu~211! surface. With increasingki from 4.0 to 12.5
Å21, corresponding to an order of magnitude increase in the
beam energy, we find only a slight increase of the asymmetry
in the corrugation profile. From this we conclude that in
order to probe the geometrical profile of the step atoms much
higher beam energies (.300 meV! are required. Such a
study would, however, have serious disadvantages. For one
the more closely spaced peaks would be much more difficult
to resolve and the much larger Debye-Waller factor would
reduce the intensity and at the same time the multiphonon
background would be greatly increased.

The present analysis of the electron density contours at
large distances from the surface indicates that at the energies
covered by the experiment their shapes are mainly deter-
mined by charge redistribution due to the Smoluchowski
effect21 rather than the geometrical positions of the atoms.
Although scanning tunneling microscopy~STM! probes that
surface at similar electron densities49 as HAS, the lateral
resolution of the STM at an atomic step is limited by the tip
size, which hampers a high-resolution charge contour
measurement.50

Finally, we note that very similar results for both the
Cu~211! and Cu~511! surfaces were obtained, although they
are known to have different electronic surface states. For the
Cu~211! surface a terrace surface state similar to that of the
Cu~111! surface has been found,51 whereas for stepped sur-
faces with~100! terraces surface as the Cu~511! surface, a
step localized state is observed.52 Moreover, it has been
shown that hybridization effects, which can lead to anticor-
rugation effects on smooth surfaces, are quite small com-
pared to the corrugation since this is largely determined by
the step geometry.48
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APPENDIX

In this appendix our goal is to solve analytically integrals
of the form

Tn5
1

aE2a/2

a/2

dxe2 i ~2p/a!nx

3exptF ia(
j51

jmax

ug j ucosS h j1
2p

a
jx D G , ~A1!

which are found in Sec. IV A@Eq. ~3! for a52 i2x] and in
Sec. IV D@Eq. ~12! for a5qGz# and where nowa stands for
the unit cell length. The exponentials appearing in this inte-
gral can be expanded in Bessel functions of integer order
Jn as

40

ei b̃1 jcos~2p/a! jx5 (
k52`

1`

i kJk~ b̃1 j !e
ik j ~2p/a!x,

ei b̃2 jsin~2p/a! jx5 (
l52`

1`

Jl~ b̃2 j !e
il j ~2p/a!x, ~A2!

with b̃1 j5ag j
r5aug j ucoshj and b̃2 j52ag j

i5
2aug j usinhj . With Eq. ~A2!, the integral in Eq.~A1! is re-
duced to a product of simple exponential functions of the
type exp@(2p/a)mx#, wherem is an integer number. In gen-
eral, the parametersg j are small for higherj values and,
frequently, we can take the exact contribution of the leading
term ~usually, j51) and consider the rest of the terms as a
perturbation. Doing this, Eq.~A1! can be rewritten as

Tn'
1

aE2a/2

a/2

dxe2 i ~2p/a!nxeiaug1ucos@h11~2p/a!x#

3F11 ia(
j52

jmax

ug j ucosS h j1
2p

a
jx D G . ~A3!

Again, making use of Eq.~A2!, Eq. ~A3! is solved, yielding
the result

Tn' (
k52`

1`

i kJk~ b̃11!Jn2k~ b̃21!

1
ia

2 (
k,l52`

1`

i kJk~ b̃11!Jl~ b̃21!

3(
j52

jmax

ug j u@eih jdk1 l ,n2 j1e2 ih jdk1 l ,n1 j #. ~A4!

Now, if a52 i2x then b̃115 ib11 and b̃215 ib21, with
b11522xRe(h1) and b2152xIm(h1) @see Eq.~7!# and
from Ref. 40, Jk(b̃11)5 i kI k(b11) and Jn2k(b̃21)
5 i n2kI n2k(b21), with I k being the modified Bessel function.
Thus Eq.~A4! can be recast as
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Tn' (
k52`

1`

i n1kI k~b11!I n2k~b21!

1x (
k52`

1`

i n1kI k~b11!

3(
j52

jmax

ug j u@ i2 jeih j I n2k2 j~b21!1 i je2 ih j I n2k1 j~b21!#.

~A5!

Finally, if a5qGz with G5(2p/a)(n,0), then Eq.~A4!
gives the result of the Eikonal approximation withj51 as
the leading term:

Tn' (
k52`

1`

i kJk~z11!Jn2k~z21!

1
iqnz
2 (

k52`

1`

i kJk~z11!

3(
j52

jmax

ug j u@eih jJn2k2 j~z21!1e2 ih jJn2k1 j~z21!#,

~A6!

with z115qnzg1
r 5qnzRe(V10/V0) and z215qnzg1

i

5qnzIm(V10/V0) @see Eq.~13!#.
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