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Using a previously proposed diagrammatic approach for the calculation of the renormalized polarizability of
spherical inclusions in a homogeneous matrix we obtain an effective dielectric response of a composite of
nonpercolating inclusions taking into account a continuous distribution of sizes of the spheres. We apply this
theory to semiconductor-doped glasses~SDG! calculating both the electron and phonon responses in the
far-infrared and optical spectral regions, respectively, and also to a strongly inhomogeneous semiconductor
alloy. For SDG, we compare our calculated results with available experimental data on interband optical
absorption and obtain good agreement by choosing the appropriate distribution function of sizes of the spheres.
In the case of the CdxHg12xTe alloy, we find an interesting interplay of the composite effects and phonon-
plasmon coupling resulting in a rich structure for the reflectivity spectra. We compare these results to those
calculated using another approach, which is widely used for describing the dielectric properties of composites,
the self-consistent approximation, and discuss the relation between the two approaches.@S0163-
1829~96!01827-9#

I. INTRODUCTION

There are several important examples of isotropic inho-
mogeneous media containing some part of semiconductor
material while the rest is nonconducting or has significantly
different conductivity. First, inhomogeneities are always
present in semiconductor samples. For instance, in
dislocation-free silicon so-calledB clusters are known,1

which are irregularities in the distribution of point defects of
the size of a few hundred angstroms formed during growth.
Agglomerations;5 mm of electrically active impurities
were observed in single crystals of INP.2 In some semicon-
ductor alloys, for example CdxHg12xTe, components and
point defects move easily even at low temperature some-
times producing significant nonuniformity. Formation of
clusters of Hg atoms in CdxHg12xTe epilayers during post-
growth cooling or annealing was observed directly.3,4 Fur-
thermore, the existence ofp-type inclusions in ann-type
matrix was suggested in Refs. 5 and 6 to explain the sharp
feature in the temperature dependence of the mobility in bulk
samples of this material.

In the case of semiconductor-doped glasses~SDG!, the
inhomogeneities are introduced intentionally. Semiconductor
microcrystallites with sizes of the order of<100 Å ~quantum
dots! are grown usually in a borosilicate glass host to take
advantage of their nonlinear properties due to the quantum-
confined effects.7–9 Another example of this kind is porous
silicon, which has received much attention recently.10 How-
ever, this last system is anisotropic and will not be consid-
ered here.

High-frequency dielectric response of semiconductor
structures is of considerable theoretical and practical interest.
In the far-infrared~FIR! spectral region, it is governed by
free carriers and phonons. FIR spectroscopy is known to be a
powerful tool in characterizing bulk semiconductor and epi-
taxial samples, in particular, to study the free carrier
distributions.11 It readily provides also the TO and LO pho-
non frequencies.12 As far as SDG is concerned, interband

optical absorption experiments usually provide the necessary
information about the quantum dot system.8,9 In both cases,
the probing wave averages over a volume larger than the
scale of the inhomogeneities, so what is measured is in fact
an effective response of the inhomogeneous medium~com-
posite!.

There exists a broad literature regarding the optical prop-
erties of isotropic composite materials made of small metal-
lic particles embedded in an insulating matrix~see Refs.
13–18 and references therein!. The dielectric response of
such systems is usually described in terms of either the ef-
fective dielectric medium~DEM! approach or the self-
consistent approximation~SCA!.13 In the latter case, the ma-
trix is also thought to consist of small spheres, so the
components are topologically equivalent.14 This approach
was extended to describe the transport properties19 and the
phonon dielectric response20 of inhomogeneous semiconduc-
tors. However, SCA describes a medium in which both
phases percolate; i.e., the filling fraction of each of them is
between13 and

2
3.
13 On the contrary, the DEM approximation

based on the well-known Maxwell-Garnett~MG! theory21 is
valid in the low-concentration limit, when inclusions of one
material are completely surrounded by a uniform host of the
other component.16,18This is just the case of SDG where the
filling fraction of the quantum dots does not usually exceed
10%, and also of CdxHg12xTe alloy samples wherep-type
inclusions do not percolate.3,4

To the best of our knowledge, the DEM approach was not
applied to inhomogeneous semiconductor systems, although
it provides a natural way of taking account of the statistical
distribution of the spheres both in real space and in the space
of sizes of the spheres. The effect of the dipolar fluctuations
due to the random positions of the spheres was shown to lead
to some renormalization of the polarizability compared to the
original MG theory where the fluctuations are neglected, and
the theory relative to this renormalized polarizability was
developed in Ref. 16. However, the averaging problem gen-
erated by the dispersion of sizes has not been completely
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resolved, although there have been several attempts to treat it
together with the dipolar fluctuations. This is the case of
Refs. 15 and 18 where spherical inclusions of two different
radii were considered.

In the present paper, we use the diagrammatic formalism
proposed in Refs. 16 and 22 to calculate the effective dielec-
tric response, in the dipole approximation, of an isotropic
composite with a continuous distribution of sizes of the
spheres. In Sec. II, the averaging procedure is performed and
the effective renormalized polarizability is obtained. In Sec.
III, we apply this theory to the cases of Drude spheres em-
bedded in gelatine, SDG~both the phonon and electron re-
sponses in the FIR and optical regions of spectra, respec-
tively, are calculated!, and to the inhomogeneous
CdxHg12xTe alloy, containing inclusions of strongly differ-
ent conductivity. In Sec. IV, we discuss the calculated results
and also the relation between the DEM approach and SCA.
Section V is devoted to conclusions.

II. THEORY

In the DEM approach, the effective dielectric functione*
is related to the~renormalized! polarizability a* of the
spheres according to the MG equation:16–18

e*2eh
e*12eh

5
4

3
pna* , ~1!

whereeh is the host dielectric function andn is the concen-
tration of the spheres. Equation~1! was shown to be an ap-
proximation of the lowest order inna* . The renormalized
polarizability differs from the MG one given by

a~a!5
es2eh

es12eh
a0

3 ~2!

due to local field fluctuations. Puttinga*5a one gets the
Clausius-Mossotti formula~see, for example, Ref. 23!. There
is a general equation relatinga* to a, which was derived
elsewhere:16,22

a*5K a(
j
VJ i j

21L , ~3!

where

VI ik
21VIk j51Id i j ,

VI i j51Id i j2aDTI i j ,

DTI i j5TI i j2^TI i j & ~4!

and

TI i j5e2q~Ri2Rj !~12d i j !“ i•“ j

1

Ri j

is the dipole-dipole interaction tensor in the quasistatic limit
multiplied by the exponential factor, which disappears after

taking the long-wavelength limit. In~4! 1I is the unit tensor,
indicesi and j run over the spheres and the angular brackets
stand for the ensemble average. This average is facilitated by

the diagrammatic formalism borrowed from the impurity
band theory24 and first proposed for this problem in Ref. 16.

Expanding the inverse ofVI i j in series inDTI i j and using
the diagram rules defined in Ref. 22 Eq.~3! becomes

~5!

wheres51,d means summation over the spheres, and each
line gives the contribution ofa^DTI i j &. The diagram rules16,22

imply also taking the longitudinal projection of the contrac-
tion of the propagatorsDTI i j , which join the dotsi and j and
after that theq→0 limit. For example, in the case of the
spheres of one size,

~6!

whereeq is the unit vector alongq andr~R12! is the binary
distribution function of the spheres in real space. Each dia-
gram represents the contribution to the polarizability due to a
series of elementary processes in which the fluctuational po-
larization propagates from spherei to spherej . Note that
expansion~5! contains only irreducible diagrams.

A method of approximate summation of the series~5! was
proposed in Ref. 24. Introducing the partial sum of all pos-
sible graphs that depart from the open circle and come back
to this same circle exactly once, that is

~7!

~6! can be rewritten as

~8!

Each partial sumh represents the interaction inside a close
subset of scatterers. On the other hand,h itself can be ex-
pressed in terms ofj:

~9!

The second term on the right-hand side of~9! represents the
contribution of the ‘‘second-order remote’’ spheres, which
interact with the reference sphere only through the ‘‘first-
order remote’’ spheres. Thus for a finite system the reason-
able approximation of~9! is16

~10!

Equations~8! and ~10! enable us to obtain a closed rela-
tion for the renormalized polarizability.

Now we have to average~3! over the distribution of
sphere’s sizes. We do this in two steps. First, for a given
sphere of radiusa0, we average Eq.~8! over all possible
radii of all the spheres but the given one. Then, in approxi-
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mation ~10!, we have

~11!

This way we have introduced the same renormalization fac-
tor j~a0! depending on the reference sphere size for all the
spheres. From~8! and ~11! we get

j~a0!5
1

12j~a0!u
, ~12!

where

~13!

andF is the distribution function of sphere’s sizes.
Solving Eq. ~12! and performing the remaining average

over $a0% we obtain the renormalized polarizability:

a*5^j~a0!a~a0!&a05E da0a~a0!
12A124u

2u
.

~14!

Taking the ‘‘hole correction’’ spatial distribution function
of the spheres,~13! becomes

u5
8

3
pna~a0!E da

a~a!

~a01a!3
F~a!. ~15!

In the case of the spheres of one size, it follows from~14!
and ~15! that

a*5
2a3

a0f
~12A12 fa0

2!, ~16!

where f5 4
3pna3 is the filling fraction anda05a/a3. This

formula was first derived in Ref. 17.

III. APPLICATIONS

A. Drude particles

In this section we apply formula~14! to a system of Ag
particles embedded in a gelatine host~eh52.37!. This system
was studied experimentally25 and has been used as a touch-
stone for various theories.15–17,26We intend to illustrate the
size dispersion effect.

Ag particles are a described by a Drude dielectric function

es5e`2
e`vp

2

v21 ivg
, ~17!

with e`55.95 and\vp53.7 eV. In Fig. 1 we show Ime*
calculated assuming a uniform distribution of sizes within
the range~0;2ā! where ā is the mean size. The dispersion
leads to a decrease of the amplitude and broadening of the
peak. The position of the peak is not shifted as it occurs
when the filling fraction is changed in the case of the spheres
of one size~compare, for example, to Fig. 3 of Ref. 17!.

In Fig. 2 we plot the absorption coefficient calculated with
and without the dispersion and compare it with experimental
data of Ref. 25. Note that within the MG approximation, for
the dielectric function of the spheres in the form~17!, there is
no dependence of the composite properties on sphere’s size
at all. Within the renormalized MG theory, due to relatively
large inhomogeneous broadening, the size dispersion effect
is negligible for this system. However, it is satisfying to see
that qualitatively reasonable results can be obtained in the

FIG. 1. Imaginary part ofe* as a function of frequency for Ag
spheres in gelatinef50.21,\g50.1 eV: 1, spheres of one size; 2,
sizes are uniformly distributed between 0 and 100 Å. MG result is
also shown for comparison.

FIG. 2. Absorption coefficient of Ag particles in gelatine.
Curves correspond to those of Fig. 1, but here\g50.4 eV. Points
are experimental data of Ref. 25. The cases 1 and 2 of Fig. 1 are
almost not resolved here.
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framework of our approach, which are not worse than those
calculated using, for example, SCA.26

B. Semiconductor-doped glasses„optical region…

The effect of crystal-size-dependent inhomogeneous
broadening of the absorption line shapes of the optical tran-
sitions in SDG can be treated in the same way as for Drude
particles if we construct an appropriate dielectric function of
a small sphere made of a direct-band-gap semiconductor.

As pointed out in Ref. 27 and recently confirmed
experimentally,9 correlation effects in microcrystals are un-
important if they are smaller than the excitonic Bohr radius.
Here we consider spatially confined electrons and holes as
completely decoupled. Then the dielectric function in the
optical region can be written~see, e.g., Ref. 28! as follows:

es5e`F11
4pe2

e`\m0
2v2V (

r ,r 8
Uprr 8U2S 1

v rr 82v
1

1

v rr 81v D G ,
~18!

whereV is volume,m0 is the free electron mass,prr 8 is the
momentum matrix element between the statesr of the con-
duction band andr 8 of the valence band,

v rr 85~Er
C1Er 8

V
1Eg!/\,

Eg is the bulk band-gap energy andr stands for$n,l ,m%. The
energy levels of electrons and holes are given by

Er
C,V5

\2kl ,n
2

2me,h
, ~19!

where

kl ,n5
f l ,n

a
~20!

andfl ,n is the nth root of the spherical Bessel function of
order l . The matrix element can be evaluated if the envelope
function of the confined state varies slowly at the scale of the
crystal lattice constant. It is given by

uprr 8u
25

2

3

m0
2

\2 P2d rr 8 , ~21!

where P is known as Kane’s momentum matrix element.
Using ~20! formula ~18! can be rewritten as

es5e`S 11
4e2P2

e`\3v2a3 (
n,l

~2l11!vn,l

~vn,l2 id!22v2D , ~22!

where we took into account the degeneracy of the levels and
introduced the homogeneous broadening parameterd. For-
mula ~22! with the help of~18! describes the dielectric func-
tion of a single semiconductor sphere. We calculated the
effective dielectric response of a composite consisting of
CdTe spheres embedded in a borosilicate matrix~eh53!. The
following parameters were taken for CdTe:e`57.8,
P57.1028 eV cm for heavy holes, Eg51.49 eV,
mhh50.4m0, mlh5me50.1m0 , andD151.0 eV.\d55.1023

eV was used in numerical calculations. Figure 3 illustrates
the effect of the size dispersion on the imaginary part of the
effective dielectric function. We included five low-energy

transitions: 1Shh, 1Slh , 1Phh, 1Plh , and 1Sss, named ac-
cording to the corresponding valence-band states. If the stan-
dard deviation is;10% ~curve 1!, some maximuma can be
seen in the spectrum although the transitions with close val-
ues of the energies cannot be resolved. Ass increases fur-
ther, the spectrum becomes completely smooth~curve 2!.
We have also fitted linear absorption experimental data29

taken from a sample grown by a recrystallization technique
described in Ref. 8. The results and the data are shown in
Fig. 4. We tried both the Gaussian and the Lifshits-Slyozov
~LS! distribution. The latter describes the asymptotic size

FIG. 3. Calculated dependence of Ime* on frequency for CdTe
nanocrystals~mean size 35 Å! in glass without dispersion of sizes
~dashed curve! and for Gaussian distribution of sizes withs24 Å
~1! ands28 Å ~2!.

FIG. 4. Absorption coefficient of CdTe-doped glass vs fre-
quency: experimental data~Ref. 29! ~full curve! were fitted using a
Gaussian distribution ~dotted curve, ā531 Å, s53 Å,
ns53.831016 cm23! and LS distribution~dashed curve,ā230 Å,
ns26.4531016 cm23!.
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distribution of growing particles of a new phase.30 We are
going to publish more results of this kind elsewhere.29 Here
we would like to comment that, in general, the LS distribu-
tion gives a better fit and it seems more relevant for the
growth technique used.8,29 The discrepancy that exists in the
short-wavelength part of the spectrum may be due to some
extra absorption mechanism not included in the model, for
instance, the transitions occurring at theL point of the Bril-
louin zone.31 Alternatively, perhaps this can be explained by
penetration of the wave functions of electrons and holes into
the insulator,9 which affects the positions of the levels enter-
ing formula ~22!.

C. Semiconductor-doped glasses„FIR region…

Only the semiconductor component produces IR activity
due to polar optical phonons. In the vicinity of the phonon
reststrahlen band the dielectric function is given by

es5e`S 11
vT
2~e02e`!

S vT2 i
GT

2 D 22v2D , ~23!

wheree0 is the static dielectric constant,vT is the bulk pho-
non frequency, andGT is phonon damping. One may argue
about relevance of the bulk dielectric function~23! for small
crystals. Of course, CdTe phonons are confined. The modu-
lus of the LO phonon wave vector is quantized in the same
way ~20! as for electrons.32 However, due to the small dis-
persion of optical phonons~see, for example, Ref. 33! in
CdTe and otherA2B6 materials, the nonzero but small value
of qmin for the typical microcrystals leads to an insignificant
shift of the phonon frequencies. In any case, this quantization
of phonons cannot explain the experimentally observed shift
;10 cm of CdSe LO phonons in SDG downwards from the
bulk mode.32 As can be seen from Fig. 5, this is rather due to
a ‘‘composite effect,’’ when features in the spectra of com-
posites are redshifted compared to corresponding longitudi-

nal excitations of an individual sphere. As the filling fraction
increases, the shift decreases. The same is true of the TO
phonon modes seen in the reflectivity spectra of Fig. 6: the
higher the filling fraction, the lower~and closer to the bulk
TO frequency! the visible TO mode. Thus, the visible TO
and LO composite modes are approaching each other as the
filling fraction decreases. This effect can be described by a
generalized Lyddane-Sachs-Teller relation if the dielectric
function of the system is known.34 It was checked experi-
mentally for ZnSe—diamond composites and modeled
within the effective-mass approximation.20 Figure 7 illus-
trates the effect of the size dispersion. Here we have taken
into account quantization of phonons discussed above using
the calculated dispersion curves for CdTe from Ref. 33. This

FIG. 5. Imaginary part of the inverse ofe* vs frequency calcu-
lated for CdTe-doped glasses of different filling fraction.

FIG. 6. Calculated normal incidence reflectivity for CdTe-doped
glasses of different filling fraction.

FIG. 7. Same as in Fig. 5 forf50.2: MG, calculated using the
MG polarizability; 1, spheres of one size but with polarizability; 2,
uniform distribution of sizes 35620 Å.
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results in a small 2-cm21 shift of the peak compared to the
case of the spheres of one size.

D. Inhomogeneous alloy

Let us consider a FIR response from an inhomogeneous
semiconducting alloy containing regions of two types, which
we will call dielectric (D) and metallic (M ). For definite-
ness, we will bear in mind CdxHg12xTe ~CMT!. Then both
types of regions can be described by a FIR dielectric func-
tion of the form

e5e`1 (
n51

2 rnvTn
2

vTn
2 2v22 ivGn

2
e`vp

2

v21 ivg
, ~24!

where the sum is over phonon resonances at TO frequencies
vTn

since CMT is a two-mode material, with dipole strengths
rn and damping parametersGn . Explicitly, here we consider
both theD ~p-type! andM ~n-type! regions as CdxHg12xTe
of the same compositionx50.2, and they differ only by the
value ofvp . The phonon parameters were taken as in Ref.
11. For theD regions we putvp50. This is justified because
the effective mass of electrons is about two orders of mag-
nitude less than that of holes in CMT.

Calculated results for both possible cases are shown in
Figs. 8–10. The normal incidence reflectivity spectra are
quite different in the cases of theM inclusions in theD
matrix ~Fig. 8! and theD inclusions in theM matrix ~Fig. 9!.
For vp5250 cm21 the resonance frequency for a singleM
sphere embedded in theD matrix A1/3vp falls in the region
close to the TO frequencies. Consequently, this excitation
~let us call it the Maxwell-Garnett excitation! interacts
strongly with TO phonons in this case, which results in split-
ting of the TO reflectivity peaks, as can be seen from Fig. 8.
In the opposite case of Fig. 9, the MG excitation is posed at

A2/3vp which is rather far from the TO region. Accordingly,
we see all three transverse resonances~two TO and MG!
practically unchanged.

Since the plasmon frequency for heavily doped CMT falls
in the region near the phonon reststrahl band,35

P-polarization oblique incidence reflectivity and Raman
spectra should have dips and peaks, respectively, at the
plasma-shifted LO frequencies as well as at the unshifted
HgTe-like and CdTe-like LO phonon frequences. In theD
regions there is no phonon-plasmon coupling. For the com-
posite system, there are five peaks of2Ime*21 correspond-

FIG. 8. Normal incidence reflectivity from inhomogeneous
CMT for three values of the volume fraction of the metallic inclu-
sions in the dielectric matrix. Splitting of CdTe-like and HgTe-like
TO phonons into two modes is seen.

FIG. 9. Normal incidence reflectivity~full curves! for different
values of the volume fraction of the metallic component and Ime*
for f50.8.

FIG. 10. Imaginary part ofe* for the purelyD ~dotted curve!
and composite alloy containingf50.2 of the metallic inclusions
~full curve!. Marked features are as follows:a,c,e: mixed LO plas-
mon modes;b andd: unshifted LO modes.
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ing to both plasmon-phonon and purely LO phonon polari-
tons~Figs. 9 and 10! which are resolved to a different extent
for the parameters used in our calculations. However, in the
case of theM inclusions the coupled modes are less shifted
from the LO frequencies than if it were in the bulk~espe-
cially modee in Fig. 9!, and in the case of theD inclusions
purely LO phonon polaritons~modesb andd in Fig. 10! are
shifted from the bulk LO phonon frequencies. This is be-
cause the inclusions are separated from each other by a me-
dium where the corresponding excitations cannot propagate.
We have already noticed this ‘‘composite effect’’ in Sec. III.

IV. DISCUSSION

The examples considered in Sec. III show that the effect
of the dispersion of the sphere’s size is small within the
renormalized MG approach unless the usual polarizability
depends strongly on the sphere’s size. This is the case of the
electron-hole transitions in SDG, where formula~14! enables
one to take proper account of the size dispersion and the
dipolar fluctuations in the composite. It should be empha-
sized that averaging simply the absorption line shapes as is
commonly used,7,9,27 one considers the spheres as indepen-
dent of each other; that is the fluctuational interaction be-
tween them is neglected. Of course, if the filling fraction is
small, the difference is small too, but forf;0.1 it should be
appreciable.

Formula~14! has been applied with some success to de-
scribe the dependence on frequency of the absorption coef-
ficient of spheres embedded in gelatine forf50.21 near the
resonant frequency ofa. We believe that this approach is
applicable up tof;0.3, i.e., below the percolation threshold.

It is worth comparinge* given by formulas~1! and ~16!
to that obtained within SCA by applying the condition of the
absence of scattering. In the case of low scattering
[ f→0,(es2eh)→0] both approaches give the same result.23

However, if scattering is strong@i.e., (es2eh) is not small#,
the two approaches are not equivalent any more. SCA can be
applied ifna is not too small, i.e., if the number of scatterers
does not fluctuate too strongly. This is known concerning the
coherent potential approximation in the theory of alloys36 to
which SCA is analogous. Thus, DEM and SCA are comple-
mentary in the case of strong scattering, which includes all
the examples considered in this paper. This statement is il-
lustrated in Fig. 11. The absorption curve for CdxHg12xTe
with f50.5 of the metallic inclusions calculated using the
SCA approach seems to be quite a reasonable interpolation
between the cases off50.2 andf50.8 treated within DEM.
Naturally, all the features are smoothed out in the SCA
curve, as is characteristic of any mean-field theory.

The DEM approach, which improves the MG approxima-
tion ~analogous to the averageT-matrix approximation in the
theory of alloys36! by including some infinite subsequences
of the pertubation theory expansion~5! is not a mean-field
theory since it retains the structure of the effective medium:
after averaging it still consists of spheres~with renormalized
polarizability! embedded in a matrix. Accordingly, this ap-
proach gives a richer structure in the spectra. For instance,
splitting of the CdTe-like and HgTe-like TO phonon modes
in the metallic inclusions of CdxHg12xTe due to their inter-
action with the MG excitation is clearly seen~Figs. 8 and

11!. It is also worth mentioning that, within our model, the
reflectivity spectra of inhomogeneous CdxHg12xTe should
be similar inS andP polarizations. As can be seen from Fig.
9, each feature in the dependence ofr on frequency has a
corresponding peak of Ime*21 implying a dip in the
P-polarizaton reflectivity spectrum. Such a similarity of the
spectra taken in two polarizations from a Cd0.65Hg0.35Te het-
erostructure grown by low-temperature epitaxy was observed
in Ref. 11.

Finally, we would like to make a remark regarding the
composite effect pointed out in Sec. III. Due to spatial con-
finement within the spheres~which has nothing to do with
their quantization!, transverse and longitudinal excitations
are blueshifted and redshifted, respectively. This is analo-
gous to the situation with the phonon modes in pseudobinary
polar alloys such as CdxHg12xTe. The dependence of the TO
and LO CdTe-like and HgTe-like modes on composition is
similar to that of CdTe TO and LO phonons in SDG on the
filling fraction ~Figs. 5 and 6!. For alloys, this is known as
the two-mode behavior.12,36

V. CONCLUSION

In this paper, we have derived a formula for renormalized
MG polarizability of nonpercolating spherical inclusions in a
matrix that simultaneously takes account of dipolar fluctua-
tions due to random positions of the spheres and the effect of
the continuous distribution of the sphere’s size. Using this
formula we have calculated an effective dielectric response
for several composite systems. The dispersion of sizes is
most important in the case of electron-hole transitions in
SDG where inhomogeneous broadening of the optical ab-
sorption line shapes is such that just the principal peak can
be resolved ifDa/a;10% for the Gaussian distribution of
sizes. We have discussed the shifts of the transverse and
longitudinal excitation in the spheres due to their spatial con-

FIG. 11. Comparison of two models FIR absorption of inhomo-
geneous CMT vs frequency forf50.5 @calculated using formula
~23!, full curve#, f50.2 ~dotted curve!, and f50.8 ~dashed curve!.
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finement. This effect appears already in the original MG ap-
proximation, but the dipolar fluctuations lead to an appre-
ciable additional shift and broadening of the absorption lines.
For a CdxHg12xTe alloy with semimetallic inclusions, this
leads to an interaction of the~shifted! plasmon excitation
with phonons. It would be interesting to revise published
experimental reflectivity data taken from this often inhomo-
geneous material in the view of the presented calculated re-

sults. This may help to find evidence for the existence of
such inclusions evoked to explain some transport anomalies
in CdxHg12xTe.
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