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We report systematic numerical studies of the weak localization~WL! effect in ballistic quantum dots with
nominally square geometry similar to that studied in the recent experiments of Birdet al. @Phys. Rev. B52,
14 336~1995!#. Conductance through the dot is calculated within the Landauer formalism, where dot openings
are modeled as quantum point contacts connected to reservoirs. We find that at sufficiently low temperature
ballistic fluctuations due to coherent mode mixing inside the dot obscure any average features in magnetore-
sistance. As the temperature increases, conductance oscillations are smeared out and dot resistance is well
described within the Ohmic addition of resistances of two independent quantum point contacts. We demon-
strate, as the Ohmic behavior is established, that the shape of the WL peak of a square dot follows the unusual
linear dependence predicted by semiclassical theory for geometries for which the corresponding classical
dynamics is regular. With a greater number of propagating states in the leads, the agreement with the semi-
classical linear behavior is improved. The physical reason for this is given. Effect of the rounding of dot
corners and leads~which simulates the change of the potential with decreasing gate voltage in a real device! on
magnetoconductance through the dot is investigated. We find that the magnetoconductance is quite robust to
rounding of the leads, whereas a relatively small rounding of corners inside the dot is sufficient to destroy
regular motion of electrons. This may explain a transition from the linear to the Lorentzian dependence of the
WL peak ~the latter, according to the semiclassical theory, is characteristic for chaotic billiards! which was
detected in the experiment. We also discuss effects of the real potential inside the dot on the shape of the WL
peak.@S0163-1829~96!02431-9#

I. INTRODUCTION

In artificial semiconductor billiards electron motion is bal-
listic at low temperatures and the billiard shape can be con-
trolled by an applied gate voltage.1–6 This has brought new
attention to the problem of quantum chaos and its relation to
the corresponding classical dynamics~for the review of
quantum chaos see, for example, Ref. 7!. For closed struc-
tures a signature of quantum chaos can be found in statistics
of energy level spacings7–10 and the existence of scarred
eigenstates resembling the unstable periodic orbits of a clas-
sically chaotic system.10,11For open geometries, recent theo-
retical studies12–14predict a striking difference in statistics of
the conductance fluctuations for structures, the classical dy-
namics of which is either chaotic or regular. In particular, the
weak localization~WL! effect in ballistic cavities is shown to
be sensitive to the shape of the cavity~chaotic vs regular!
and can be used to probe quantum chaos in the regime of
ballistic transport. The above effect for ballistic structures is
an analog of the well-known weak localization effect for
disordered samples~see, for example, Ref. 15 and references
herein!, where the constructive electron interference for
time-reversed returning trajectories enhances the probability
of coherent backscattering, thereby increasing the resistivity
for zero magnetic field. Turning on the magnetic field lifts
the time-reversal invariance, which decreases the probability
for the electron to return to the point of departure and causes
the negative magnetoresistivity. In ballistic cavities, elec-
trons are scattered at the boundaries of the cavity rather than
at impurities as in the case of disordered systems. The semi-
classical theory of Barangeret al.13 predicts different line
shapes of the averaged magnetoresistance peak nearB50

for chaotic and regular geometries, the difference being at-
tributed to the different classical distribution of the effective
trajectories areas inside the cavities. In particular, for the
chaotic cavities the average reflection coefficient,^R(B)&,
has the Lorentzian dependence onB of the form

^R~B!&5R01DR/@11~2B/af0!
2#, ~1!

whereas for regular cavities theory predicts unusual linear
dependence,

R02^R~B!&}uBu. ~2!

In Eqs. ~1!, ~2!, R0 stands for the average reflection coeffi-
cient in the absence of the weak localization effects,DR is
the zero-field weak localization corrections to the reflection
coefficient,f05h/e is the flux quantum,a is the inverse of
the typical areaS ~times 2p) enclosed by the classical path.
For the ergodic motion, the parameterS5(2pa)21 can be
roughly considered as the area of a cavity.

While dependencies~1!, ~2! have been experimentally
confirmed for stadium-shaped and circular dots,3 the classi-
cal dynamics of which is chaotic and regular, respectively,
an interpretation of the experimental results for other geom-
etries remains controversial and far from complete under-
standing. In particular, for the square billiards, the classical
dynamics of which is regular, Chanet al.4 reported the
Lorentzian shape of the weak localization peak for the effec-
tive ensemble of the dots, whereas Birdet al.6 observed
striking transition from the Lorentzian to the linear peak for
the single dot, as the width of the quantum point contacts
~leads! connecting the dot to the reservoirs were narrowed. In
addition, Eqs.~1!, ~2! are obtained in the semiclassical re-
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gime of electron dynamics with many propagating states in
the leads when the distribution of incoming electrons is av-
eraged over the wide~infinite! energy interval. In contrast,
many experiments which are analyzed on the basis of Eqs.
~1!, ~2! are performed on asingle device in thequantum
regime of very low temperature~up to;25 mK! with only a
few modes~or even near a pinch-off regime!, when the semi-
classical approach is not well-justified and ballistic fluctua-
tions, due to coherent mode mixing inside the dot, could
obscure any average features in magnetoresistance.

Thus, existing ambiguity in explanation and interpretation
of the experimental data motivates us for a detailed numeri-
cal study of the weak localization effect in the ballistic quan-
tum dots with nominally square geometry. In the next sec-
tion, we will investigate the temperature evolution of the WL
peak, and we will find the condition when semiclassical pre-
dictions can be observed in the single dot. We will investi-
gate effects of geometry on the shape of the WL peak, as
well as discuss the role of the real smooth potential inside the
dot. A comparison to the experiment is made in Sec. III.
Section IV summarizes our main results.

II. RESULTS AND DISCUSSION

A schematic diagram of the structure under consideration
is depicted in the inset of Fig. 1. Geometry and parameters of
the dot are chosen to model the experimental setup of Birdet
al.6 To account for the effect of lead openings on electron
scattering in real structures, we model junctions as quantum
point contacts~QPC’s! of a finite width connected to wide
leads~reservoirs!. Conductance through the dot at zero tem-
perature is related to the transmission coefficientT5Tr(tt†)
via the two-terminal Landauer formulaG(e,0)52e2/hT,
whereta,b(e)5(t)a,b is the transmission amplitude from in-
coming statea to outgoing stateb at energye.15 Convolu-
tion of G(e,0) with the derivative of the Fermi-Dirac distri-
bution f (EF ,T) gives us a conductance for finite temperature
T,

G~EF ,T!52* deG~e,0!] f ~e2EF ,T!/]e.

We calculate matrixt on the basis of a hybrid recursive
Green’s-function technique,16 specially adapted for wide or/
and gradually changing geometries. This method is proved to
be both numerically efficient and stable for solution of scat-
tering problems with magnetic fields of arbitrary strength.
We shall limit ourselves to the coherent regime of electron
transport in the dot. Inelastic scattering~which destroys
phase coherence at relatively high temperature! as well as the
effects of soft impurity potential is beyond the scope of this
work.

Figure 1 shows the magnetoconductance of the square dot
for different temperaturesT for one representative value of
the QPC openingw550 nm ~this corresponds toN51–2
propagating states in the QPC!.17,18 For the low tempera-
tures,T&1 K, ballistic fluctuations~BF’s! due to coherent
mode mixing inside the dot obscure any average features in
magnetoresistance. Generally, the dependenceG5G(B)
does not show any regular behavior, being strongly sensitive
to the width of the QPC openings and temperature. Small
variations in bothw andT can cause significant changes in

the corresponding magnetoresistance curves. As the tempera-
ture is increased, BF’s are smeared out and the dependence
G5G(B) remains qualitatively the same when QPC open-
ings vary in the range for which the number of propagating
states is not changed. When the temperature is high enough
(T*2 K for the structure under consideration!, the WL peak
reasonably well follows the linear dependence~2!, which is
characteristic for classically nonchaotic billiards, see Fig. 2.

To find a condition when the semiclassical electron dy-
namics in the dot described by Eq.~1! takes over the quan-
tum regime with BF’s dominating the transport, we consider
the dependence of the magnetoconductance on the QPC
openings in more detail. Figure 3 shows dependencies
G5G(w) for some representative temperatures~magnetic
field is restricted to zero!. Dotted lines correspond to the
conductance of the cavity calculated as an Ohmic addition of
the resistances of the individual QPC’s, which define the dot,
GOhmic

21 52GQPC
21 . QPC’s are assumed to be identical; their

resistance,RQPC5GQPC
21 , is computed in the same strip ge-

ometry as that one depicted in the inset to Fig. 1. For low
temperatures,T&1 K, the total conductance deviates signifi-
cantly from its Ohmic value, due to the strong mode mixing
inside the dot. As the temperature is increased, conductance

FIG. 1. Temperature evolution of the WL peak; sheet electron
densityns52.531015m22, QPC openingw550 nm. Here, and in
the following figures, the conductanceG is in units of 2e2/h. At
magnetic field ofB510 mT, the flux enclosed by the dot is equal to
0.6 h/e. Inset: a scematic geometry of the square quantum dot in a
strip geometry. The potentialV is zero in the wide leads, junctions
and dot, infinite outside, andV510EF in stubs defining the dot. The
width of the stubs is 125 nm.
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fluctuations are averaged out and atT*2 K the dot conduc-
tance approaches its Ohmic value. The resistance of the two
QPC’s in a series defining a quantum dot has been studied in
experiments of Kouwenhovenet al.,19 where the Ohmic be-
havior had been found at temperatures as low as 0.6 K. We
attribute this difference in the temperature to the effect of the
smooth potential inside a real dot produced by the remote
gates. Smoothing of the potential is an additional factor to
the temperature smearing, which effectively makes the con-
ductance fluctuations weaker. Note that many cavities are
often designed in a way to avoid direct transmission from
one lead to another.1–4 We show by this example that cor-
rections to the Ohmic behavior, due to the effect of the direct
trajectories in the case of closed geometries, are negligible.
This is in contrast to theopengeometries in the four-terminal
configuration, where direct transmission causes the nonaddi-
tivity of the QPC resistances.20

Now, comparing the results of our numerical calculations
of the dependenciesG5G(B) for different parameters of
w to the data shown in Fig. 3, we find, thatas the Ohmic
behavior is established, the shape of the WL peak of a square
dot follows the unusual linear dependence predicted by the
semiclassical theory13 for billiards for which the correspond-

ing classical dynamics is regular. This has an obvious physi-
cal explanation. Classically, the Ohmic addition of resis-
tances implies that the electron velocity distribution in the
dot is effectively randomized by multiple boundary reflec-
tions and averaging over a wide energy interval, due to effect
of the finite temperature. Thus, the assumptions made in the
derivation of Eqs.~1! and ~2! ~uniform distribution of scat-
tering angles and averaging over the wide energy interval13!
hold and the dot magnetoconductance follows its semiclassi-
cal predictions. Note, however, that sometimes the computed
dependencies are not perfectly linear, and, therefore, an
agreement between calculated dependencies and Eq.~2!
should be taken as a tendency, rather than detailed quantita-
tive correspondence. The discrepancy is especially pro-
nounced for the case ofN&2 propagating states in the
QPC’s ~when the semiclassical approximation is not well
justified!, where an overall linear increase ofG can be modu-
lated by oscillations. On the contrary, experimental curves
exhibit well-defined linear behavior even when QPC’s are
close to the pinch-off regime.6 Thus, the effect of a realistic
smooth potential21 should be seriously taken into account
when comparing with experimental data. Simply modeling
the potential profile variations of a real structure by rounding
the QPC openings, we find that the above oscillations are
strongly suppressed forN51 and an almost perfect linear
increase of magnetoconductance is recovered for the case of

FIG. 2. Shape of the WL peak for the square dot for different
values of the QPC openingw ~solid lines!; T54 K. Dashed lines in
the top panel: WL peak in the dot with QPC’s of the same width
~125 nm!, but with slightly rounded openings,r'25 nm;
ns52.531015m22.

FIG. 3. Comparison between the magnetoconductance of the
square dot~solid line! and the valueGOhmic

21 52GQPC
21 calculated as

an Ohmic addition of the resistances of the individual QPC’s which
define the dot~dashed lines!. The curves have been offset for clar-
ity; ns52.531015m22; B50.
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N52 ~Fig. 2, upper left and right panels correspondingly!.
We attribute this to theanticollimationeffect in QPC’s with
slightly rounded corners, leading to the more uniform angle
distribution of electrons entering the dot. Indeed, with hard
wall confinement, the energy of the electron in thej th eigen-
state in the QPC’s is E5(\2/2m* )kF

2 , where

kF
25ki

j 21k'
j 2 , k'

j andki
j are the transverse and longitudinal

wave numbers, andk'
j 5p j /w, with w the width of the QPC.

The state with the transverse wave numberk'
j inside the

QPC is mostly coupled to outgoing modes in the dot with
transverse wave numbers close tok'

j .22 From energy conser-
vation, this implies that longitudinal wave numbers of out-
going states are close toki

j . Thus, at the exit of the QPC, the
angular distribution of the electrons is roughly confined to a
cone with an opening angleb;tan21@k'

j /ki
j #. The smaller

the subband indexj is, the smaller the ratiok'
j /ki

j is, and,
therefore, the more narrow the injection cone is. This implies
that for a square corner geometry, the wide angular distribu-
tion ~which is a necessary condition for the semiclassical
approach to be justified! can be achieved only in the case of
many occupied subbands. But if the QPC isnonadiabatically
widened from the widthw in the center to the widthW on
the exit ~due to rounding of QPC openings!, strong mode
mixing occurs while an electron passes this region. As a
result, the number of occupied subbands on the exit of the
QPC with rounded corners,; int@kFW/p#, can be signifi-
cantly higher than that for the case of abrupt square corners,
; int@kFw/p#. This leads to a wider and more uniform an-
gular distribution of injected electrons even for a low number
of modes in the QPC’s. Note that an opposite effect of elec-
tron collimation in a crossbar geometry withadiabatically
tapered junctions plays the central role in the explanation of
the observed quenching of the low-field Hall resistance.23

Now we shall find how the deformation of the shape of
the dot affects the dynamics of electrons and, consequently,
the shape of the WL peak. When the gate voltage is varied in
the wide range, a real potential profile defining the dot can
deviate quite significantly from the nominally square litho-

graphic geometry of the gates. In Fig. 4, the magnetoconduc-
tance of the nominally square dot is compared to the conduc-
tance of the dot where, respectively, corners inside the dot
and QPC openings are rounded, and the diameter of the
circle defining the QPC shape is equal to the QPC width. We
find that the dot conductance and consequently the shape of
the WL peak is quite robust to the rounding of the QPC
openings.~In fact, small rounding of the QPC’s opening, as
discussed above, improves the agreement with the semiclas-
sical theory.! At the same time, the similar rounding of the
corners inside the dot causes remarkable changes in magne-
toconductance and the shape of the WL peak is transformed
from the linear to the Lorentzian dependence. Fitting the WL
peak to the Lorentzian~1! gives us the effective area
S5(2pa)21'0.16mm2 which, in agreement with the
semiclassical theory, is close to the geometrical area of the
dot Sdot50.25mm2. According to the semiclassical theory,
this is a clear indication of a transition from regular to cha-
otic motion inside the dot. To explain the striking difference
in the effects of rounding of the dot corners and QPC open-
ings on the character of the electron motion, one may specu-
late that rounding of the leads affects mostly electrons which
bounce near the dot openings and which, therefore, are about
to leave the dot. At the same time, most of the electrons, the
trajectories of which are scrambled by rounding the inner
corners remain inside and destroy the regular motion in the
dot.

Note that the electrostatic confinement produced by the
gates, in addition to the rounding of dot corners, causes a
softening of the dot walls.21 The latter, in contrast to the
former, may induce theoppositeeffect of a transition from
chaotic to regular dynamics.24 Thus, the effect of a realistic
potential is twofold: the rounding of the dot causes a transi-
tion to chaos, whereas soft walls tend to restore regular mo-
tion. This may explain why the linear dependence, Eq.~2!,
which is a signature of regular dynamics, has been detected
in the experiment, despite the fact that even relatively small
deviations from square geometry~which are inevitable in the
real dots!, cause, as demonstrated above, the transition to
chaos in a model of infinite hard walls. Thus, to achieve a
quantitative agreement with experimental data, one has to
compute the magnetoconductance on the basis of self-
consistent calculations for the potential profile. The work
along this line is in progress and we plan to report these
calculations in the near future.

To conclude this section, we briefly discuss the magneto-
conductance of a dot of the same nominal geometry, but with
different arrangements of the leads. In particular, we con-
sider a cavity, which is formed by stubs connected to upper
and lower gates, respectively, rather than to lower gate as in
Fig. 1. The results~not displayed here! show that the WL
peak, in this case, can be described neither by Eq.~1! nor by
Eq. ~2!. Moreover, for some values of the QPC openingsw
the dependenceG5G(B) exhibitspositivedifferential mag-
netoresistance. This reflects the fact that Eqs.~1!, ~2! have
been derived neglecting the contribution from the ‘‘off-
diagonal’’ terms in the semiclassical estimations of quantum
corrections tô R(B)&. In ballistic structures, in contrast to
disordered samples, this term is not averaged out to zero, and
for some geometries its contribution can be even dominant.13

Thus, before applying Eqs.~1!, ~2! to the interpretation of

FIG. 4. Effects of the rounding of the dot corners and QPC
openings on the shape of the WL peak; radius of the curvature,
R'60 nm. Dashed line is the Lorentzian fit.ns52.531015m22;
w590 nm;T54 K.
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experimental data for cavities of a particular geometry and
arrangements of leads, detailed numerical simulations are re-
warding.

III. COMPARISON TO EXPERIMENT

The results of the previous section set the condition when
the semiclassical behavior, Eqs.~1!, ~2!, can be observed in a
single device. Namely, temperature has to be high enough
for the Ohmic addition to be established in the dot resistance.
However, the Ohmic addition is not necessary if magneto-
conductance is measured for an ensemble of dots;3,4 averag-
ing over configuration plays a role similar to the temperature
averaging.

Evolution of the WL peak of a single rectangular dot has
been studied by Birdet al.6 When the dot was near the
pinch-off regime, the linear dependence~2! has been ob-
served. As the gate voltage decreases~and the real potential
deviates from its lithographically designed square shape!, the
transition to the Lorentzian dependence~1! occurs. On the
basis of the numerical calculations of the Sec. II, this can be
explained as the transition to chaos, due to scrambling elec-
tron trajectoriesinside the dot, rather that due to effects of
the leads~as was initially suggested in Ref. 6!. However, an
alternative explanation, based on the fact that Ohmic behav-
ior in the dot might not be established when the dot is rela-
tively open, cannot be ruled out. Indeed, in the above experi-
ment, the linear dependence~2! has been observed down to
temperatures of 45 mK, when, according to our calculation,
BF’s obscure any average features in the conductance. In our
opinion, this might indicate that the real electron temperature
inside the dot is higher than that one of the base refrigerator,
due to effect of Joule heating in the QPC regions. In fact, the
observation made in Ref. 6 that both the shape and magni-
tude of the linear WL peak remain intact when the base
temperature varies in the interval;45 to ;500 mK, sup-
ports this view. The limit of;1002200 mK was also found
in experiments25,26on the temperature dependence of the dot
conductance near the pinch-off regime. As the dot becomes
more open, the resistance of the QPC’s decreases, resulting
in a decrease of the Joule heating.26 This may bring the elec-
tron temperature in the dot close to its base value. As a
result, the electron transport in a dot is no longer in the
Ohmic regime, but is dominated by the BF’s. This is illus-
trated in Fig. 1, where the shape of the WL peak at the
temperatures lower that one when the Ohmic law is estab-

lished can be reasonably well fit by the Lorentzian. But, in
contrast to Eq.~1!, this Lorentzian, being rather a fitting
curve, does not carry any information concerning the char-
acter of electron motion in the dot and, therefore, cannot be
taken as a signature of quantum chaos. Thus, additional ex-
perimental data on the temperature evolution of the WL peak
in the regime when the dot is open are needed to support~or
to rule out! this interpretation.

IV. CONCLUSION

In conclusion, the main findings of our work can be sum-
marized as follows.

~i! Ballistic fluctuations due to coherent mode mixing
dominate low-field transport in the dot at milli-Kelvin tem-
peratures. As the temperature is increased and Ohmic behav-
ior is established in the dot, the shape of the WL peak fol-
lows the linear dependence predicted by the semiclassical
theory for regular electron billiards. This temperature sets a
limit when the above predictions can be observed ata single
device.

~ii ! The shape of the WL peak is quite robust to the round-
ing of the QPC openings, whereas a relatively small round-
ing of the corners inside the dot is sufficient to destroy the
regular motion of the electrons. This may explain a transition
from the linear to the Lorentzian dependence of the WL peak
~the latter is characteristic for chaotic billiards in the semi-
classical picture!, which was detected in the experiment.
However, an alternative interpretation, based on the fact that
Ohmic behavior in the dot might not be established when the
dot is relatively open, cannot be ruled out.

~iii ! The effect of the real smooth potential defining the
dot has to be taken into account to achieve a quantitative
agreement of the calculated magnetoconductance with ex-
perimental data. In particular, a small rounding of the QPC
openings leads to an anticollimation effect~widening of the
angular distribution of electrons entering the dot! which, for
the low number of modes in the QPC, strongly improves the
agreement with the semiclassical predictions.
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