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Ballistic weak localization in regular and chaotic quantum-electron billiards
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We report systematic numerical studies of the weak localizdtidh) effect in ballistic quantum dots with
nominally square geometry similar to that studied in the recent experiments oeBaid[Phys. Rev. B52,
14 336(1995]. Conductance through the dot is calculated within the Landauer formalism, where dot openings
are modeled as quantum point contacts connected to reservoirs. We find that at sufficiently low temperature
ballistic fluctuations due to coherent mode mixing inside the dot obscure any average features in magnetore-
sistance. As the temperature increases, conductance oscillations are smeared out and dot resistance is well
described within the Ohmic addition of resistances of two independent quantum point contacts. We demon-
strate, as the Ohmic behavior is established, that the shape of the WL peak of a square dot follows the unusual
linear dependence predicted by semiclassical theory for geometries for which the corresponding classical
dynamics is regular. With a greater number of propagating states in the leads, the agreement with the semi-
classical linear behavior is improved. The physical reason for this is given. Effect of the rounding of dot
corners and leadsvhich simulates the change of the potential with decreasing gate voltage in a rea) device
magnetoconductance through the dot is investigated. We find that the magnetoconductance is quite robust to
rounding of the leads, whereas a relatively small rounding of corners inside the dot is sufficient to destroy
regular motion of electrons. This may explain a transition from the linear to the Lorentzian dependence of the
WL peak (the latter, according to the semiclassical theory, is characteristic for chaotic bjlliahish was
detected in the experiment. We also discuss effects of the real potential inside the dot on the shape of the WL
peak.[S0163-182(06)02431-9

I. INTRODUCTION for chaotic and regular geometries, the difference being at-
tributed to the different classical distribution of the effective
In artificial semiconductor billiards electron motion is bal- trajectories areas inside the cavities. In particular, for the
listic at low temperatures and the billiard shape can be conchaotic cavities the average reflection coeffici€i(B)),
trolled by an applied gate voltade® This has brought new has the Lorentzian dependence Brof the form
attention to the problem of quantum chaos and its relation to
the corresponding classical dynamit®r the review of (R(B))=Ro+AR/[1+(2B/a¢o)?], @
qguantum chaos see, for example, Ref. For closed struc-
tures a signature of quantum chaos can be found in statisti
of energy level spacingsl® and the existence of scarred
eigenstates resembling the unstable periodic orbits of a clas- Ro—(R(B))«|B. )
sically chaotic systen*1 For open geometries, recent theo-
retical studie¥~*predict a striking difference in statistics of In Egs. (1), (2), Ry stands for the average reflection coeffi-
the conductance fluctuations for structures, the classical dyient in the absence of the weak localization effeAR, is
namics of which is either chaotic or regular. In particular, thethe zero-field weak localization corrections to the reflection
weak localizatior{WL) effect in ballistic cavities is shown to coefficient,¢po=h/e is the flux quantume is the inverse of
be sensitive to the shape of the cavighaotic vs regular the typical are& (times 2r) enclosed by the classical path.
and can be used to probe quantum chaos in the regime &¥or the ergodic motion, the paramet®+ (27«) ! can be
ballistic transport. The above effect for ballistic structures isroughly considered as the area of a cavity.
an analog of the well-known weak localization effect for While dependenciegl), (2) have been experimentally
disordered samplesee, for example, Ref. 15 and referencesconfirmed for stadium-shaped and circular dotie classi-
herein, where the constructive electron interference forcal dynamics of which is chaotic and regular, respectively,
time-reversed returning trajectories enhances the probabilitgn interpretation of the experimental results for other geom-
of coherent backscattering, thereby increasing the resistivitgtries remains controversial and far from complete under-
for zero magnetic field. Turning on the magnetic field lifts standing. In particular, for the square billiards, the classical
the time-reversal invariance, which decreases the probabilitynamics of which is regular, Chaat al? reported the
for the electron to return to the point of departure and causekorentzian shape of the weak localization peak for the effec-
the negative magnetoresistivity. In ballistic cavities, elec-tive ensemble of the dots, whereas Bietlal® observed
trons are scattered at the boundaries of the cavity rather thatriking transition from the Lorentzian to the linear peak for
at impurities as in the case of disordered systems. The sentie single dot, as the width of the quantum point contacts
classical theory of Barangest al!® predicts different line (lead$ connecting the dot to the reservoirs were narrowed. In
shapes of the averaged magnetoresistance peakBwef@r addition, Egs.(1), (2) are obtained in the semiclassical re-

whereas for regular cavities theory predicts unusual linear
(ifependence,
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gime of electron dynamics with many propagating states in , r : ;
the leads when the distribution of incoming electrons is av-
eraged over the widénfinite) energy interval. In contrast,
many experiments which are analyzed on the basis of Egs.
(1), (2) are performed on &ingle device in thequantum
regime of very low temperatur@p to ~25 mK) with only a

few modegor even near a pinch-off regimevhen the semi-
classical approach is not well-justified and ballistic fluctua-
tions, due to coherent mode mixing inside the dot, could
obscure any average features in magnetoresistance.

Thus, existing ambiguity in explanation and interpretation
of the experimental data motivates us for a detailed numeri-
cal study of the weak localization effect in the ballistic quan-
tum dots with nominally square geometry. In the next sec-
tion, we will investigate the temperature evolution of the WL
peak, and we will find the condition when semiclassical pre-
dictions can be observed in the single dot. We will investi-
gate effects of geometry on the shape of the WL peak, as
well as discuss the role of the real smooth potential inside the
dot. A comparison to the experiment is made in Sec. lll.
Section IV summarizes our main results.

II. RESULTS AND DISCUSSION

A schematic diagram of the structure under consideration

is depicted in the inset of Fig. 1. Geometry and parameters of "_10 _5 o 5 T 10
the dot are chosen to model the experimental setup ofdird
al.® To account for the effect of lead openings on electron B (mT)

scattering in real structures, we model junctions as quantum
point contactsQPC's of a finite width connected to wide FIG. 1. Temperature evolution of the WL peak; sheet electron
leads(reservoirg. Conductance through the dot at zero tem-gensityn,=2.5x 10**m~2, QPC openingv=>50 nm. Here, and in
perature is related to the transmission coefficEatTr(tt")  the following figures, the conductane is in units of 2%/h. At
via the two-terminal Landauer formul&(e,0)=2e*h7,  magnetic field oB=10 mT, the flux enclosed by the dot is equal to
wheret,, s(€)=(1),,g is the transmission amplitude from in- 0.6 h/e. Inset: a scematic geometry of the square quantum dot in a
coming statex to outgoing statg8 at energye.® Convolu-  strip geometry. The potentiad is zero in the wide leads, junctions
tion of G(€,0) with the derivative of the Fermi-Dirac distri- and dot, infinite outside, and= 10E in stubs defining the dot. The
butionf(Eg,T) gives us a conductance for finite temperaturewidth of the stubs is 125 nm.
T,
the corresponding magnetoresistance curves. As the tempera-
G(Eg,T)=—[deG(€,000f(e—Eg,T)/de. ture is increased, BF’'s are smeared out and the dependence
G=G(B) remains qualitatively the same when QPC open-
We calculate matrix on the basis of a hybrid recursive ings vary in the range for which the number of propagating
Green's-function techniqu¥,specially adapted for wide or/ States is not changed. When the temperature is high enough
and gradually changing geometries. This method is proved t6T=2 K for the structure under consideratjpthe WL peak
be both numerically efficient and stable for solution of scat-reasonably well follows the linear dependeri2g which is
tering prob|ems with magne’[ic fields of arbitrary Strength_CharaCteriStiC for Classically nonchaotic billiards, see Fig. 2.
We shall limit ourselves to the coherent regime of electron To find a condition when the semiclassical electron dy-
transport in the dot. Inelastic scatterifghich destroys hamics in the dot described by E@) takes over the quan-
phase coherence at relatively high temperatasewell as the tum regime with BF’s dominating the transport, we consider
effects of soft impurity potential is beyond the scope of thisthe dependence of the magnetoconductance on the QPC
work. openings in more detail. Figure 3 shows dependencies
Figure 1 shows the magnetoconductance of the square d&6t=G(w) for some representative temperaturesagnetic

for different temperature¥ for one representative value of field is restricted to zejo Dotted lines correspond to the
the QPC openingv=50 nm (this corresponds ttN=1—2  conductance of the cavity calculated as an Ohmic addition of

propagating states in the QPE® For the low tempera- the resistances of the individual QPC'’s, which define the dot,
tures, T=1 K, ballistic fluctuations(BF’s) due to coherent Gonmic=2Ggpc. QPC’s are assumed to be identical; their
mode mixing inside the dot obscure any average features iresistanceRopc= Gééc, is computed in the same strip ge-
magnetoresistance. Generally, the dependeGeeG(B) ometry as that one depicted in the inset to Fig. 1. For low
does not show any regular behavior, being strongly sensitiveemperaturesT<1 K, the total conductance deviates signifi-
to the width of the QPC openings and temperature. Smaltantly from its Ohmic value, due to the strong mode mixing
variations in bothw and T can cause significant changes in inside the dot. As the temperature is increased, conductance
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an Ohmic addition of the resistances of the individual QPC’s which

FIG. 2. Shape of the WL peak for the square dot for different_deﬁne the do(dassh?g lines The curves have been offset for clar-
values of the QPC opening (solid lineg; T=4 K. Dashed lines in  1¥: Ns=2.5x10°m"2 B=0.
the top panel: WL peak in the dot with QPC’s of the same width
(125 nm, but with slightly rounded openingsy~25nm; ing classical dynamics is regulalhis has an obvious physi-
ne=2.5x10"m"2 cal explanation. Classically, the Ohmic addition of resis-

tances implies that the electron velocity distribution in the

fluctuations are averaged out andTat 2 K the dot conduc- dot is effectively randomized by multiple boundary reflec-
tance approaches its Ohmic value. The resistance of the twi@ns and averaging over a wide energy interval, due to effect
QPC's in a series defining a quantum dot has been studied wof the finite temperature. Thus, the assumptions made in the
experiments of Kouwenhoveet al,'® where the Ohmic be- derivation of Eqs(1) and(2) (uniform distribution of scat-
havior had been found at temperatures as low as 0.6 K. Weering angles and averaging over the wide energy intEval
attribute this difference in the temperature to the effect of thehold and the dot magnetoconductance follows its semiclassi-
smooth potential inside a real dot produced by the remoteal predictions. Note, however, that sometimes the computed
gates. Smoothing of the potential is an additional factor tadependencies are not perfectly linear, and, therefore, an
the temperature smearing, which effectively makes the comagreement between calculated dependencies and(Zq.
ductance fluctuations weaker. Note that many cavities arehould be taken as a tendency, rather than detailed quantita-
often designed in a way to avoid direct transmission fromtive correspondence. The discrepancy is especially pro-
one lead to anothér* We show by this example that cor- nounced for the case dil<2 propagating states in the
rections to the Ohmic behavior, due to the effect of the direcQPC’s (when the semiclassical approximation is not well
trajectories in the case of closed geometries, are negligiblgustified), where an overall linear increase®fcan be modu-
This is in contrast to thepengeometries in the four-terminal lated by oscillations. On the contrary, experimental curves
configuration, where direct transmission causes the nonaddéxhibit well-defined linear behavior even when QPC’s are
tivity of the QPC resistance?d. close to the pinch-off regim&Thus, the effect of a realistic

Now, comparing the results of our numerical calculationssmooth potentil should be seriously taken into account
of the dependencie&=G(B) for different parameters of when comparing with experimental data. Simply modeling
w to the data shown in Fig. 3, we find, thas the Ohmic the potential profile variations of a real structure by rounding
behavior is established, the shape of the WL peak of a squatbe QPC openings, we find that the above oscillations are
dot follows the unusual linear dependence predicted by thstrongly suppressed fdd=1 and an almost perfect linear
semiclassical theofy for billiards for which the correspond- increase of magnetoconductance is recovered for the case of
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— graphic geometry of the gates. In Fig. 4, the magnetoconduc-
tance of the nominally square dot is compared to the conduc-
- tance of the dot where, respectively, corners inside the dot
- and QPC openings are rounded, and the diameter of the
circle defining the QPC shape is equal to the QPC width. We
find that the dot conductance and consequently the shape of
_ the WL peak is quite robust to the rounding of the QPC
———- 1 ‘ openings(In fact, small rounding of the QPC'’s opening, as
discussed above, improves the agreement with the semiclas-
sical theory). At the same time, the similar rounding of the
corners inside the dot causes remarkable changes in magne-
toconductance and the shape of the WL peak is transformed
from the linear to the Lorentzian dependence. Fitting the WL
. . peak to the Lorentzianl) gives us the effective area
15-10 -5 0 5 10 15 S=(2ma) 1=~0.16 um? which, in agreement with the
B (mT) semiclassical theory, is close to the geometrical area of the
dot Sy,=0.25 um?. According to the semiclassical theory,
FIG. 4. Effects of the rounding of the dot corners and QPCthis is a clear indication of a transition from regular to cha-
openings on the shape of the WL peak; radius of the Curvatureotlc motion inside the dot. To explain the striking difference
R~60 nm. Dashed line is the Lorentzian fit,=2.5X10'>m™? in the effects of rounding of the dot corners and QPC open-
w=90 nm;T=4 K. ings on the character of the electron motion, one may specu-
late that rounding of the leads affects mostly electrons which
N=2 (Fig. 2, upper left and right panels correspondingly bounce near the dot openings and which, therefore, are about
We attribute this to thanticollimationeffect in QPC’s with  to leave the dot. At the same time, most of the electrons, the
slightly rounded corners, leading to the more uniform angldrajectories of which are scrambled by rounding the inner
distribution of electrons entering the dot. Indeed, with hardcorners remain inside and destroy the regular motion in the
wall confinement, the energy of the electron in jkieeigen-  dot.
state in the QPC's is E=(h%2m*)k?, where Note that the electrostatic confinement produced by the
gates, in addition to the rounding of dot corners, causes a
softening of the dot wallé The latter, in contrast to the

X

k§=kﬁ2+ K”, Kkl andk| are the transverse and longitudinal

wave numbers, ankl = j/w, with w the width of the QPC. former, may induce theppositeeffect of a transition from

The state with the transverse wave numberinside the  cpaniic to regular dynamidé.Thus, the effect of a realistic
QPC is mostly coupled to outgoing modes in the dot withystential is twofold: the rounding of the dot causes a transi-
transverse wave numbers closekio.** From energy conser- ton to chaos, whereas soft walls tend to restore regular mo-
vation, this implies that longitudinal wave numbers of out-tion. This may explain why the linear dependence, &,
going states are close kj. Thus, at the exit of the QPC, the which is a signature of regular dynamics, has been detected
angular distribution of the electrons is roughly confined to ain the experiment, despite the fact that even relatively small
cone with an opening ang|g~tan ‘[ k! /kf] The smaller  deviations from square geometyhich are inevitable in the
the subband indej is, the smaller the ratid! /kf‘ is, and, real dot3, cause, as demonstrated above, the transition to
therefore, the more narrow the injection cone is. This implieschaos in a model of infinite hard walls. Thus, to achieve a
that for a square corner geometry, the wide angular distribuguantitative agreement with experimental data, one has to
tion (which is a necessary condition for the semiclassicacompute the magnetoconductance on the basis of self-
approach to be justifigccan be achieved only in the case of consistent calculations for the potential profile. The work
many occupied subbands. But if the QPQiaadiabatically along this line is in progress and we plan to report these
widened from the widthw in the center to the widthV on  calculations in the near future.
the exit (due to rounding of QPC openingsstrong mode To conclude this section, we briefly discuss the magneto-
mixing occurs while an electron passes this region. As aonductance of a dot of the same nominal geometry, but with
result, the number of occupied subbands on the exit of thdifferent arrangements of the leads. In particular, we con-
QPC with rounded cornersy intfkeW/ 7], can be signifi- sider a cavity, which is formed by stubs connected to upper
cantly higher than that for the case of abrupt square cornergnd lower gates, respectively, rather than to lower gate as in
~int[kew/r]. This leads to a wider and more uniform an- Fig. 1. The resultgnot displayed hepeshow that the WL
gular distribution of injected electrons even for a low numberpeak, in this case, can be described neither by(Boor by
of modes in the QPC'’s. Note that an opposite effect of elecEq. (2). Moreover, for some values of the QPC openimgs
tron collimation in a crossbar geometry wittdiabatically  the dependenc&=G(B) exhibitspositivedifferential mag-
tapered junctions plays the central role in the explanation ofetoresistance. This reflects the fact that Hag. (2) have
the observed quenching of the low-field Hall resistafice. ~ been derived neglecting the contribution from the “off-
Now we shall find how the deformation of the shape ofdiagonal” terms in the semiclassical estimations of quantum
the dot affects the dynamics of electrons and, consequentlgorrections to(R(B)). In ballistic structures, in contrast to
the shape of the WL peak. When the gate voltage is varied idisordered samples, this term is not averaged out to zero, and
the wide range, a real potential profile defining the dot carfor some geometries its contribution can be even domitant.
deviate quite significantly from the nominally square litho- Thus, before applying Eqgl), (2) to the interpretation of
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experimental data for cavities of a particular geometry andished can be reasonably well fit by the Lorentzian. But, in
arrangements of leads, detailed numerical simulations are reontrast to Eq.(1), this Lorentzian, being rather a fitting
warding. curve, does not carry any information concerning the char-
acter of electron motion in the dot and, therefore, cannot be
IIl. COMPARISON TO EXPERIMENT taken as a signature of quantum chaos. Thus, additional ex-

perimental data on the temperature evolution of the WL peak

The results of the previous section set the condition whefy, the regime when the dot is open are needed to sugport
the semiclassical behavior, Ed$), (2), can be observedina o ryle ouj this interpretation.

single device. Namely, temperature has to be high enough
for the Ohmic addition to be established in the dot resistance.

However, the Ohmic addition is not necessary if magneto- V. CONCLUSION

conductance is measured for an ensemble of Hbtsierag- In conclusion, the main findings of our work can be sum-
ing over configuration plays a role similar to the temperaturemarized as follows.
averaging. (i) Ballistic fluctuations due to coherent mode mixing

Evolution of the WL peak of a single rectangular dot hasdominate low-field transport in the dot at milli-Kelvin tem-
been studied by Bircet al® When the dot was near the peratures. As the temperature is increased and Ohmic behav-
pinch-off regime, the linear dependent® has been ob- jor is established in the dot, the shape of the WL peak fol-
served. As the gate voltage decreaied the real potential lows the linear dependence predicted by the semiclassical
deviates from its lithographically designed square shahe  theory for regular electron billiards. This temperature sets a
transition to the Lorentzian dependen@@ occurs. On the limit when the above predictions can be observed single
basis of the numerical calculations of the Sec. Il, this can bejevice.
explained as the transition to chaos, due to scrambling elec- (ii) The shape of the WL peak is quite robust to the round-
tron trajectoriesnside the dot, rather that due to effects of ing of the QPC openings, whereas a relatively small round-
the leadgas was initially suggested in Ref).@However, an  ing of the corners inside the dot is sufficient to destroy the
alternative explanation, based on the fact that Ohmic behavegular motion of the electrons. This may explain a transition
ior in the dot might not be established when the dot is relafrom the linear to the Lorentzian dependence of the WL peak
tively open, cannot be ruled out. Indeed, in the above experitthe latter is characteristic for chaotic billiards in the semi-
ment, the linear dependen¢®) has been observed down to classical picturg which was detected in the experiment.
temperatures of 45 mK, when, according to our calculationHowever, an alternative interpretation, based on the fact that
BF’s obscure any average features in the conductance. In o@hmic behavior in the dot might not be established when the
opinion, this might indicate that the real electron temperaturejot is relatively open, cannot be ruled out.
inside the dot is higher than that one of the base refrigerator, (jii) The effect of the real smooth potential defining the
due to effect of Joule heating in the QPC regions. In fact, thejot has to be taken into account to achieve a quantitative
observation made in Ref. 6 that both the shape and magnagreement of the calculated magnetoconductance with ex-
tude of the linear WL peak remain intact when the baseperimental data. In particular, a small rounding of the QPC
temperature varies in the interval45 to ~500 mK, sup-  openings leads to an anticollimation efféatidening of the
ports this view. The limit o~ 100-200 mK was also found angular distribution of electrons entering the Jdahich, for
in experiment&°on the temperature dependence of the dothe low number of modes in the QPC, strongly improves the
conductance near the pinch-off regime. As the dot becomesgreement with the semiclassical predictions.
more open, the resistance of the QPC’s decreases, resulting
in a decrease of the Joule heatffighis may bring the elec- ACKNOWLEDGMENTS
tron temperature in the dot close to its base value. As a
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