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Calculation of the residual resistivity of three-dimensional quantum wires
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An exact scattering theory formulation of the elastic transport problem is usedsrtight-binding imple-
mentation to calculate the zero-temperature elastic resistances of disordered three-dimensional quantum wires
with cross sections as large asX44 atoms and lengths of up to hundreds of atoms. A real-space Green
function technique is used to construct the wires. The technique is flexible and simple to implement, making it
possible to study a range of different geometries, types of disorder, and combinations thereof. The possible use
of such calculations to evaluate the bulk residual resistivity of the respective materials is outlined. Attention is
given to the statistics and the configurational averaging of the calculated results. The transition from the Ohmic
to the localization regime in the wires is also studied. The shape of this transition, obtained from the numerical
results, is found to correspond well to a curious semiempirical analytic form. Model calculations with different
types of on-site disorder, and with interfacial roughness, combined with impurity scattering, are presented at
the end[S0163-182606)02732-4

[. INTRODUCTION well-defined resistancR for that particular wire length, and
the calculation is repeated for a series of lengths. The resis-
Over the past two or three decades, the problem of eledivity p for the respective bulk material is then found from
tronic transport in phase-coherent disordered conductors hdise formulap=Asy, wheresg is the Ohmic slope of the
received intense attention, both theoretically and experimerralculatedR versusL relation.
tally. On the theoretical side, direct numerical calculations The two limitations of this procedure for obtaining the
have provided an important source of insight into the propbulk resistivity are the deviations from Ohmic behavior in
erties of such systems. Long thin conductors, sometimes ré¢he wires due to localization effects, and the departures of the
ferred to as quantum wires, have been a popular object dflectronic properties of the wires from those of the true bulk.
computational study. The simplest case of truly one-These limitations can, however, be overcome to some de-
dimensional wirege.g., a one-dimensional atomic cheiras  gree.
been investigated in depthTwo-dimensional wirege.g., a Consider first the problem of localization. According to a
planar atomic striphave also been studied extensively. Re-well-known argument;-*?the transition from the Ohmic re-
cent numerical work includes studies of the density of stategime, in which the resistance increases linearly with length,
and of the localization lengths in such wire$of the effect  to the localization regime occurs at around that length of the
of disorder directly on the conductance and on the conducwire for which the resistance reaches a value of one quantum
tance quantization effeétand of conductance fluctuation§. resistance unith/2e?. This length, the localization length
The present paper is a report of calculations of the zeroé, is given byé~ (d/\)?l, whered~ JA is the characteristic
temperature elasti¢phonon-fre¢ resistance of fully three- transverse linear dimension of the wirejs the wavelength
dimensional disordered quantum wires, with cross sectionef the electrons, antlis the scattering mean free path. In a
as large as 1414 atoms and lengths of up to hundreds oftypical metal,\ is of the order of the interatomic spacing.
atoms. The calculations employ @ tight-binding model ~ Therefore, in a wire with a transverse linear dimensioof
and are based on an exact single-particle scattering theognly a few atoms¢ can be one or two orders of magnitude
formulation of the elastic transport problem, presented andhrger thanl. Thus, even in a wire of nanometer dimensions,
discussed elsewhefelhe calculation of the resistance for an it may be possible to achieve a reasonable separation of the
individual wire involves a real-space Green function tech-two regimes, with a sufficiently well-defined initial linear
nigue in which the Green function on a particular relevantregion to enable us to deduce the required Ohmic slope.
interface in the system is calculated exactly in the disorder Consider next the problem of finite-size effects in the
by a finite series of algebraic “growth” stefs?* The  Ohmic regime. There are three separate such effects. First,
method is applicable to one-, two-, and three-dimensionaihe local density of states in the wire will not be the same as
wires, and can be implemented with equal ease for a widén the bulk. Secondly, the scattering properties of individual
range of types of disorder. scatterers in the wire will not be the same as in the bulk.
The practical focus of this work is the possibility of using Thirdly, if reflections at the surface of the wire are non-
such calculations to evaluate the residual resistivity of thespecular, then the scattering at the surface will contribute to
respective bulk material. The principle of the calculation isthe calculated resistance of the wife“ In a typical calcu-
the following. A piece of disordered wire of cross sectionlation, the wire would have a transverse linear dimension of,
A and lengthL is connected to two perfect leads, and thesay, ten atoms. The Fermi wavelength of the electrons and
resistance of the whole configuration is calculated. Configuthe scattering cross section of a typical scatterer, say, an
rational averaging is then performed in order to obtain ampurity atom, on the other hand, can be on the atomic scale.
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Also, often we will consider cases of very strong scatteringscattering without and with additional impurity scattering.
with mean free paths considerably smaller than the trans~inally, Sec. VI contains a summary of the results, and a
verse wire dimension. It is then reasonable to hope that thstatement of several further lines of research.
calculated transport properties of the wire will be represen-
tative of, if not identical to, those of the true bulk.

An important advantage of the finite wire size is the pos- Il. PRELIMINARY ESTIMATES

sibility of treating the scattering by the disorder exactly. This  The purpose of this section is to derive several relations,
type of calculation may be particularly valuable in the including an interesting formula for the transition between
strong-scattering limit, when the use of conventional meththe Ohmic and the localization regime, which will be useful
ods, such as those based on the Boltzmann equation or on ths the interpretation of the numerical results to be presented
Kubo formula, can be difficult. Another useful feature of the |ater on. To this end, we will carry out a classical kinetic
present calculations is the possibility of studyiogmbina-  evaluation of the Landauer formula for the two regimes.
tions of different scattering mechanisms. One potential ap- The general setup considered in the paper is shown in Fig.
plication of this type of calculation is in the study of the 1(3). We have an infinite piece of wire of uniform cross
interplay between bulk and interfacial scattering in the giankection. The wire is a perfect conductor everywhere except
magnetoresistance effetin magnetic multilayers. for a single disordered segment of lengthThis disordered

The idea of calculating the bulk resistivity “by brute segment will be referred to as the sample, and the semi-
force,” from the slope of the resistance versus length relainfinite pieces of perfect wire on both sides of it will be
tion, has in the past been used in calculations on liquid angeferred to as the leads. We imagine that somewhere “at
amorphous transition metai8In those calculations, the re- infinity” each lead is connected through a smooth contact to
sistance was obtained from the Landauer formula, after agn infinite|y wide, macroscopic conductor, acting as an equi_
explicit evaluation of the individual elements of tBematrix  |iprium particle reservoir. The zero-temperature conduc-
in k space, with periodic boundary conditions in the transtance, with respect to a small electrochemical poterititi-
verse directions. ferencebetween the reservoirsf the whole configuration is

In the present work we will use the real-space approachgiven by the Landauer formuia
mentioned earlier. Particular attention will be given to the
problems of configurational averaging, the statistics of the
calculated results, and the form of the transition from the G:gz Tk, (1)
Ohmic to the localization regime. k

The rest of the paper is organized in the following way.
The next section contains preliminary analytical estimateswhereg=2e% h is the quantum conductance unit, the index
Section Il gives a description of the computational methodk labels the open channels in a given lead, @pds the total
Section IV contains test calculations, aimed at investigatingransmission probability across the sample for an electron,
the general behavior of the results and at establishing a praacident upon it in thekth channel of the lead, at the Fermi
cedure for the configurational averaging. Section V is a studgnergy.
of two model examples—on-site disorder, and interfacial Equation(1) can be written as
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Sharvin resistance for a small aperture in an otherwise im-

; Tk penetrable barrier, and can be related conceptually to local
(3292 Te=gN =gNT, (2)  voltage drops in the region of the contacts that connect the
k N equilibrium reservoirs to the nonequilibrium leddsThe

whereN is the total number of open channels. The quantity.?rtiseeggﬁ dOfCttr;? :;%r:?](é(l;?‘fqﬁ(]g) rf;lfrcf.rtshesfagtrfggt gt\alelgn
T=(ZT)/N has the following meaning. Let, for definite- : u N9 voIrs 1S p ' 9

nes, i e esevor ave the iher lecochemica s 12 2T e e moss secton, ey o
tential. Then, within factord\ is the currenf;,, incident on y P

the sample from the left reservoir. Within the same faCtorS’en(':l%Sg?ggigsﬂr;tea;edsaess\l/\r/ien the reservoirs has an abso-
?ﬁl‘r‘e]!iré?_i _cur/r_e_ntjlo;téhér?ggtm ()I;t(tar?isascergtSiSnﬂ\]se Sﬁ?gf' lute minimumR,, attained in the case of perfect transmission.
concerned wth?]mcglnc.ulatin@ thus defined ' Any net scattering in the conductor connecting the reservoirs
' ' manifests itself as a rise & aboveR,. In this paper we will
] ) study this rise as a function of the length of the disordered
A. Ohmic regime sample.
First, we consider the situation in which the motion of the
electrons in the disordered sample is purely diffusive, and B. Localization regime

evaluate the quantity = j o/ jin for the case of classical dif- Fundamentally, localization in disordered media is a

{r'}'ts(;o?r;;‘lsetf?agz d'ng'fdfr?é c;;;:nlteof Se:)eniterogf;gt;unzplgsfusequantum interference effe®. According to a well-known
ple. {112

through the sample into the right lead, giving rise to the2 gumen n th_e presence of purely el_astlc scattering the
transmitted current The rest emerae back into the left electronic states in a thin wire are localized even when the

o . out: 9 . bulk of the respective material is conducting. The corre-
lead, giving rise to a reflected current of magnitygg.

L . : sponding localization lengtl§ is that length for which the
Let x be the longitudinal coqrdlnate, with the left end of classical resistance of the wire reaches a value of about
the sample ax=0 and the right end of the sample at

- 211,12 ; : -
x=L. In the steady state, the number of conducting electron$ hize*. Equation(4) then gives¢~NI, or, generally,

per unit length in the sample is given byx)=A+Bx, soé=rc, (5)
where the constantd andB are found from the boundary
conditions as follows. At the right end of the sample therewheresg is the slope of the resistance versus wire length in
are only right-traveling electrons, emerging into the rightthe Ohmic regime and is a constant of order unity, which
lead. Thus we haveg,,=n(L)v,=—Dn’(L), wherev, is may depend on the cross section of the wire and on the
the average magnitude of thkecomponent of velocity, and disorder. For lengths larger tha transmission across the
for the second equation we have uspk)=—Dn’(x), disordered wire becomes exponentially small, and deep into
wherej(x) is the net current at positionin the sample and the localization regime the resistanB¢L) of the wire in-
D is the diffusion coefficient. The density(0) at the left creases exponentially with length R¢L) ~exp(/é).
end of the sample is made up of the incident and the reflected Consider now the question of how the Ohmic regime,
electrons, emerging back into the left lead, givingwith R(L)=scL, evolves into the localization regime. Since
N(0)vy=jintiref=2iin—lout- So=rc/&, the Ohmic regime could be seen as the initial part
Writing D=1v,/2, wherel, to within a factor of order of the exponentiatcexp(L/¢). Indeed, for a one-dimensional
unity, is the mean free path, we easily find systemd’ one hasR(L)=r[exp(L/&)—1]. For a wire of finite
T=jouljin=21/(1+L/1). Substituting forT into Eq. (2), for ~ cross sectioRi>?? this relation could be extended to

the resistanc®=1/G between the reservoirge obtain R(L)=rc[expl/&)—1], or R=rc[expl/&)—1]+R, for the
resistance between the reservoirs. However, the relation
R=Ry+ RyL/I, (3)  R(L)=rc[expl/&)—1] predicts a faster departure from the

Ohmic lineR(L)=spgL=rcL/¢ than is seen in the calcula-
tions to be presented later on. The results of these calcula-
tions fit another relation, which will be obtained below in an
empirical way.
Consider the following physical argument. For a system
R(L)=RoL/I =rL/NI. (4) with one open_chanr_1e| the relatic_&avl_\ll reduces_ to§_~_l.
Thus, in one dimension, the localization length is similar to
This term gives the contribution of the disordered sample tdhe mean free path. The motion of the electron on the scale
the resistance of the system from Figa)l Equation(4) for  of the localization length is essentialballistic. The electron
the Ohmic resistance of a piece of disordered wire is as trapped between two neighboring scatterers and bounces
known and useful semiclassical relation. between them like a particle in a box, not “forgetting” even
To see the origin of the constant first teRg in Eq.(3),  for a moment that it is localized. But in a wire with a large
consider the case when there is no disordered redienQ(  number of open channel§s| and the electron motion over
or |=»), with R=R,. Then the lead-sample-lead systemlengths L<<¢ is diffusive Most of the time the electron
constitutes a single piece of perfect conductor and the wholsetruggles along in its diffusive propagation, and only occa-
configuration represents a long ballistic contact between thsionally, when it manages to cover a net distancé,afoes
two reservoirs. The resistand®, is thus analogous to the it have occasion to realize that it is in fact localized. It is then

where Ry=r/N, r=1/g=h/2e? being the quantum resis-
tance unit.

R increases linearly with the length of the sample
through the second term,
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tempting to think that Ohm’s law will hold over a greater theless, the above equations fit the numerical results very
fraction of the localization length than in the cabe=1. In  well, for a range of wire cross sections and types of disorder.
other wordsR(L) may be expected to increase more slowly In particular, for a given initial slopsgy and for a given

with L than the functiorrc[exp/é)—1], with a longer ini- localization length¢, obtained after appropriate averaging,

tial linear region. the above equations produce a good fit to the numerical data
Here, we will not seek a detailed treatn®@raf the scal-  both in the Ohmic and in the localization regime.

ing with length of the transmission probabiliti€$,} in the Here, we leave this observation without further comment,

Landauer formula. Instead, we consider a classical kinetion the understanding that even if the above results capture
model, based on the above considerations. We imagine thabmething essential about the true problem, these results re-
in addition to the disorder, giving rise to the scattering ofquire further and independent justification. Instead, here we
mean free path, the sample from Fig. (&) contains a ran- treat these results as empirical relations, and use them to set
dom distribution of traps, which occasionally capture the dif-limits on what is to be regarded as the Ohmic region in the
fusing electrons. Let us recalculate the quantityj o/ - calculations.

In the presence of the trapping, the steady-state diffusion For L/¢<1, we have sinh{&)~(L/&[1+(1/6)(L/&)?].
equation is modified by a sink term, and readsTaking 1% as the level of tolerance for departures from lin-
n”(x) — 7°n(x) =0, wherey is an effective inverse trapping earity setsL/£<1/4, which withR(L)=scL=rcL/¢ gives
length. We have assumed that<1, so that the relation R(L)<rc/4. Sincec is of order unity, within the 1% toler-
j(x)=—-Dn’(x), and hence the linear diffusion equation, ance level the Ohmic region is to be treated as that region in
holds. The solution for the linear density is which the resistance of the sample is less than about 1/4 in
n(x) = Aexp(7x)+Bexp(= 7x), where A and B are fitted to  units ofr =h/2e?. This estimate applies also to the resistance
the boundary conditions as before but with R between the reservoirs, since oriRfL) becomes compa-
Jrer=Jin= Jout I trap wherejtrapanzf(L,n(x)dx is the total  rable tor, with N>1 the termRy=r/N in Eqg. (3) becomes
rate of capture of electrons in the sample. The trappingiegligible.

length is set equal to the localization length= 1/¢. With Sinceé~ NI, the conditionL/§<1/4 givesL/| <N/4. In a
D=lv,/2, the resistancBR=1/(gNT) between the reservoirs typical calculation, we will haveN~60, so thatL/I<15.
becomes Thus the present bulk resistivity studies are limited to wire
lengths that exceed the mean free path by about one order of
R=r[csinh(L/&)+(1/N)coshL/¢)], (6) magnitude. The limit/L<1 can be approached by increas-

ing the wire cross section, and henlde The limitations in

where, by definitionc = sp&/r and the effective Ohmic slope doing so are computational.

So is given bysg=Rg[1+ (1/2£)?]/1, with Ry=r/N. In the
limit L/{<1, Eq. (6) gives the Ohmic lineR=syL +R,.
Comparison with the case of pure diffusion, Eg), shows . METHOD FOR THE CALCULATION
that the slopesg has picked up an “echo” from the presence OF THE RESISTANCE

of the trapping and differs from its old value by a fractional
amount of (/2£)?. This fractional difference is of order

(1/N)?, and forN>10 it is less than 1%.

For c=1, N=1 Eqg. (6) reproduces the result
R=rexp(/&) for the resistance between the reservoirs for
one-dimensional wire. In the limKi> 1, which is the case of
interest here, Eq(6) can be approximated by replacing
cosh(/¢) by unity, giving the asymptotic form

This section contains a statement of the method for the
calculation of the resistance for an individual wire. In the
present calculations, the sample and the two semi-infinite

erfect leads are given the same simple cubic lattice structure
f lattice parametea. The whole infinite wire is an array of
identical rectangular (1,0,0) atomic layers, stacked along the
longitudinal [ 100Q] direction, namely, thex axis. The trans-
versey andz axes, in the plane of these layers, are along the
_ ; [010] and[001] directions, respectively. Each atomic layer
R=Rotresin(L/¢). @ hasN, atoms along thg axis andN, atoms along the axis
The contributionR(L) of the disordered sample is given by [Fig. 1(b)]. The number of (1,0,0) layers in the sample speci-

the L-dependent term, fies the lengthL of the sample, in units of the lattice param-
_ etera. The electronic structure of the whole system is de-
R(L)=rcsinh(L/§). (8)  scribed by an orthonormal nearest-neighbstight-binding

model with an ideal hopping integrgdand an on-site energy

Equation (8) and the possible relationR(L)  on the native atomée.g., the atoms in the perfect leads
=rc[expl/¢)—1], mentioned earlier, produce the same ini- zero. The calculation of the resistance for the whole lead-
tial Ohmic slope and the same slope dffRfL) ] versusL in  sample-lead system is done by an extension of a method
the region L/¢é>1. However, the relation used previously in work on two-dimensional wiftShe cal-
R(L)=rc[exp(/§)—1] gives a faster rise above the Ohmic culation consists of three steps which are described below.
line R(L)=rcL/¢ than Eq.(8). Also, in the regionL/é>1
the two expressions differ by a factor of 2.

Equations(7) and (8) have been derived for the case of
classical diffusion through a disordered wide sample
(N>1) in the presence of an additional trapping mechanism. The first step is to find the matrix elements of the Green
There is naa priori reason to expect that these results shouldunction for the bare perfect semi-infinite lead between
be relevant to the true quantum-mechanical problem. Noneatomic sites in the end, free layer of the lead. The method for

A. The surface Green function
for the bare semi-infinite perfect lead
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calculating these matrix elements is an extension of a method Consider now two atomic site® andn in the end layer
used previously in work on two-dimensional wire¥. of the lead. We require the matrix element @f (E) be-
Consider the left lead. The lead is an array of identicaltween them. Call this matrix eleme@t" (E;m,n). We have
rectangular (1,0,0) atomic layers, stacked along the longitu-
dinal[ 10Q] direction(the x axis). Let us number these layers
from 1 to o, with layer 1 being the end, free layer. Each
atomic layer in isolation has a set of orthonormal eigenstates

G*(E;m,n)={(m|G*(E)|n)

{Ip)}, given by =k§llp (mlk,p)Gi(E,p)(I,pIn)
2 1/2 2 1/2
IP)= Ny+1/ \|N+1 =% (mOp)Ggo(E.p)(OpIN) (13
<3 S py"yw) in 2277 ) ©
sin s n. i
i1 T\ Ny+1 N,+1 or, using Eq.(9) for |0p),
Here,n designates the pair of integens,(,n,). The integers 2
ny, andn, label an atom in the layer, in an obvious notation,G*(E;m,n)=| —— || ——
and|n) is the Is state on that atom. The symbp] which Ny+1/iN,+1
Iab_els the eigenstate_s for the whole layer, designates the pair (pymym\  (pamym
of integers p,,p,), with p,=1,... N, andp,=1,... N,. X D sin N1 N1
The layer state§|p)} have energie$E(p)}, given by P y z
[ PynyT | pznzﬂ') +
pym p.m X sin Goo(E.p). (14
=— — N,+1 N,+1
E(p)= - 2yiood {75 ~2lvicod (5 |- 10 y :

Now let |I,p) be the respective layer state on thta ~ The above expression for the matrix elem&it(E;m,n) of
atomic layer in the semi-infinite perfect lead. Lgtbe the the Green function between sitesandn in the end atomic
Hamiltonian for the lead. The matrix elemefitp|H|m,p’) layer of the semi-infinite lead can be evaluated by hand.
is not identically equal to zero only ff=p’. For the case
p=p’, we denote this matrix element By,,(p) and note
that if I=m, then H,,(p)=E(p), if I=mx1, then
Hm(p)=7v, and finally, if I#m and I#m=1, then The next step in the calculation consists in growing the
Him(p) =0. Let G°* (E) be the retarded Green function for Sample, layer by layer, onto the left leadhe implementa-
the lead. LikeH, G°*(E) is diagonal in the labep. Let  tion is the same as in earlier work on two-dimensional
G2 (E,p) stand for the matrix elemert,p|G°* (E)|m,p). Wi_res,4 and here the growth sequence will be described only

Now imagine appending another layer to the end of the?refly. In the first step of the growth sequence, the first
semi-infinite lead. Let this layer have index 0. We imagine@tomic layer of the sample is bonded to the end layer of the
that this new layer is bonded to the lead perfectly, so that théeft Iéad. In the second growth step, the second layer of the
new lead is geometrically identical to the old lead. The bondS@mPple is bonded to the first layer, and so on. At every step
ing of the new layer to the lead is realized by a tarrin the ~ the Green function matrix elements between atomic sites in
Hamiltonian, whose only nonzero matrix elements in the bath€ last added layer are calculated by solving numerically the
is o ayer tate ) are V() =Vudp) . We also ~ 0V2on ectn, EG(L1 For 2 ypcl growh step e

+ _ . + , 'V,
g%\szGS;)z(%gz(Ellg)E: OEf(gr) ;LHI :Ii,owhere €07, and following way. G°* (E) is the Green function for the situa-
Oll_et ,G*(E)l%e the Green function for the lead with the o just before the growth step. In this situation, the atoms
new layer bonded to it. Solving the Dyson equation of the layer that is to be added are not yet bonded to each
' other or to the atoms in the previous layer. The matrix ele-

B. Growth of the sample

+Ey— 0+ 0+ + ments of G°*(E) between atoms in the previous layer are
G (B)=CT(E)+GT(ENVGC(B) (D available from the previous growth step. The only other non-
we easily find zero matrix elements o&°*(E) are the on-site matrix ele-
ments on the atoms in the new layer. These matrix elements
. 1 E-&p)=V[E-Ep)]°—4 are given by 1/E—E ), WhereEonm is the on-site energy
GooE.P)= Tl > .+ (12 on the respective atom in the new layer. The tevide-

scribes the bonding of atoms in the new layer to each other
where E=E/|y|, &(p)=E(p)/|y|, and we choose the solu- and to atoms in the previous layer. The bonding extends to
tion with the minus sign if the expression under the squaraearest neighbors only. Finall@* (E) is the Green function
root is negative, while if this expression is positive, we for the situation just after the growth step, with the new layer
choose the solution with the minus sigrf #—&(p)]>0 and  fully bonded to the previous layer. The growth sequence is
the solution with the plus sign [fE—&(p)]<0. The rules for  continued up to and including the last atomic layer of the
choosing between the two solutions have been discussesmple. In this situation there still is no bonding between the
elsewherd:®10 last layer of the sample and the right lead.
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C. Calculation of the resistance tains a number of elements equal to the numibgyN,) of

In the situation at the end of the growth sequence whicttoms in the cross section of the wire and the computer time
) . 4
will now be referred to as the initial situation, the system{@ken to sum all the terms in the trace grows b§N;)".
consists of two decoupled semi-infinite systems. One off his last stage of the calculation rapidly overtakes the actual
them, system 1, is the left lead with the sample fully growngrowthssequence, the computer time for which grows as
on to it, and the other, system 2, is the right lead. (NyN,)®, and soon makes the calculation impossible.

Let GO*(E) now be the retarded and advanced Green |hiS problem can be solved by writing E(L6) in an-
functions for the initial situation with GO (E) other, equivalent form, the evaluation of which, however, is

=[G°*(E)]". The matrix elements o&°* (E) between at- much faster. Let us first write E16) in the following sym-

oms in the last layer of the sample and between atoms in th@€tric form:

first layer of the right lead are available from the previous

stages of the calculation, while those between an atom in the G=g 27r2{Tr[d‘1)(EF)tT(EF)dg(EF)t(EF)]
sample and an atom in the right lead are all zero. 0 ‘ 0
Let G9*(E) and G™(E) be the projections 06°* (E) + T da(Ep)t (Ep)di(ER)t(ER) 1} (19

onto systems 1 and 2, respectively. Thumiindn are two . ) ] ]
atomic sites then the matrix elemeimy| G0 (E)|n) is equal ~ 1he two terms in the right hand side of the above equation
to (m|G°*(E)|n) if m andn are both in system 1, and is &€ gqual to each qther. In _the case of the presesrtight-
zero otherwise, and analogously @gi(E). It will be con- blgglng model, their equal+|ty follows from the fact t_hat
venient to writeG{* (E) andG3~(E) in the following way. G™(E) andV, and hencé5™(E) andt(E), are symmetric
Let {|1)} be all 1s atomic basis states in system 1 and Ietmatrlces in the atomic basis. However, they are alsc_) eqﬁual to
{|2)} be all 1s atomic basis states in system 2. Let us intro_each other gener_ally, as a consequence o_f an earlier fesult,
duce e “projecion_ operaorsm,—S 11| ana i o0 IER eoer Tom st o
P,=3,/2)(2|]. Then, G{*(E)=P,G°*(E)=G°*(E)P,

REs 0+ 0 situation, given by
andG,~ (E)=P,G"~(E)=G"~(E)P,.
Letd9(E) andd3(E) be the density of states operators for .
systems 1 and 2, respectively, defined by d(E)= T[G‘(E)—GWE)]. (20)
i

1
0 _ T~ R0 A0+ i
dj(E)= 2 i [G] (B)-Gi (Bl j=12. (19 Let| be the operator for the particle current between systems

1 and 2, given by
In the geometry from Fig. (B), which now will be re-
ferred to as the final situation, systems 1 and 2 are fully 1
bonded together. LeG~(E) be the retarded and advanced |=—(P,V—VP,), (21)
Green functions for the final situation. The transition from i
the initial to the final situation is realized by the addition to
the initial Hamiltonian of a ternV, containing the hopping WhereP; and P, are the two projection operators defined

integrals between systems 1 and 2. earlier. Equatior(19) is then equivalent to
As has been shown previoudlyhe zero-temperature con-
ductanceG of the geometry in the final situation is given by G=g 2m?h>Tr{ d(Ep)Id(Ep)I]. (22

_ 277 ({0 t 0

G=g 4m"Tr dy(Ep)t (Er)dz(ER)U(ER)], (16) The equivalence of Eq$19) and (22) for G can be estab-
with spin degeneracy included in the prefactor of the tracelished by tedious but simple algebra. This is done in the
In the above equatiotEr is the Fermi energy and the opera- Appendix. The structure of Eq22) is familiar from linear

tor t(E) is given by response theory.
Since P;+P,=1, Eq. (21) can also be written as
t(E)=V+VG'(E)V, (170 1=(1/i%)(P,VP,—P,VP,). V bonds the last layer of the

sample to the first layer of the right lead. The only nonzero
matrix elements oV in the atomic basis therefore are those
t(E)=V+VG > (E)(E). (18)  between an atom in the sample and the ataght opposite
it, in the right lead. Hence, if;; is a matrix element of the
The conductance in Eq16) is the sam&as what was current operator, then specifying the indegj) fixesj (i).
defined in Sec. Il as the conductartmetween the reservoirs Therefore the evaluation of the trace in EG2) involves
Equation(16) is simply an explicit form for the Landauer only two summations, over two separate sets of atomic indi-

which, from Eq.(11), can also be written as

formula, Eq.(1). ces, and the time required to sum the terms in this trace
Equation(16) can be evaluated by taking the trace in thescales only asMyNZ)Z.
positional & basis after solving Eq18) numerically to find Finally, the conductanc& between the reservoirs is cal-

t(E). However, this method of evaluation turns out to beculated from Eq.(22) after solving the Dyson equation to
highly expensive computationally. The reason is that thdind G*(Eg) for the final situation fromG®*(Eg) for the
trace in Eq(16) involves four independent summations, over initial situation. The respective resistance between the reser-
four separate sets of atomic indices. Each set of indices comnoirs is then found fronR=1/G.
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Er in units of|y| for perfect wires with cross section of44 atoms

(bottom plo}, 7Xx7 atoms(middle ploy, and 10<10 atoms(top FIG. 3. R in units ofr =h/2e? (lower panel and In(R/r) (upper

plot). pane) versus sample length in units ofa. The wire cross section

is 8X 8 atoms andEg=—0.1] y| with N=43. The sample has ran-
IV. TEST CALCULATIONS dom on-site energies of 1.1 y|.

This section contains calculations aimed at showing the Before carrying out an actual calculation, let us estimate
general behavior of the results, establishing a procedure fahe mean free path the Ohmic slopes,, and the localiza-
the configurational averaging, studying the transition fromtion length¢ in the disordered sample. Treating each sample
the Ohmic to the localization regime, and testing the converatom as an independent weak isotropic scatterer of scattering
gence of the estimated bulk resistivity as a function of wirepotentialvV=+E,, we have

cross section, for a particular case. 1 2
a

T~ %Vzpa(EF)- (23

First, consider the 4 band structure of the infinite perfect Where pa is the density of states per atom in the perfect
wire. In the absence of disorder each layer state, (Bg. cryste_ll and is Some average of the group \(elo_c:lty over the
gives rise to a subband of freely propagating wire states, ThEE'M surface. With a bandwidth of 12, and in view of the

subband arising from layer st is centered on the ener roughly triangular shape of the band, ~we put
E(p), Eq. (1%) andy extgr?zs from E(p)— 2|1/ togy pa(Eg)~1/(6|y|). In the perfect crystal, the band energy is

. given by E(k)=—2|y|(cokatcokatcoka), and the
E(p)+2|y|. The subbands that cross the Fermi enegy ST, ; . : i
specify the open conduction channels. Figure 2 shows plo roup velocity isv=(2| y|a/f)(sirka,sirkzasirka). To es

. matev we take the poink,a=k,a=k,a=w/2 on the sur-
of the number of open channelé as a function ofEe/[y] 50 E(k)=0, close to our E);= —6-ﬂ7|- This gives
for wires with cross section of 44 atoms, 7 atoms, and ; _ ;

|~6\3y%al(mE3~3a. With N=43, the relation

10X 10 atoms. As the cross section increadémcreases in so~T/NI gives so~0.009/a. The localization length can

magnitude, while the shape of the plots follows thelulk  pe estimated as~ NI~ 100a. Therefore, roughly, the calcu-
density of states for the infinite perfect simple cubic|ateq resistanc® between the reservoirs should start from
crystal?® The 1s band for the infinite crystal with zero on- Ro=r/N=r/43, then rise linearly with the above slope,
site energy extends from 6| to + 6| y|. The steps on each reaching a value of aboutrlfor sample lengthL=100a,
plot are the same as the quantization steps in the ballistigzhen deviations from linearity should become apparent. Be-
conductance. yond that point, it is the quantity IIR/r) that may be ex-
pected to increase linearly with.
B. Configurational averaging Now an impure wire is grown up to a length of 25Gand
. . i i the resistance is calculated at every length on the way. Figure

Now we turn to disordered wires. In this subsection wez ghows plots ofR/r versusL (lower panel and In@R/r)
define a prOCEdUre for the Configurational averaging of thQ/erSUQ_ (upper pane[ The curves Correspond rough|y to the
results. We consider on-site disorder. The hopping integralghove estimates, but exhibit significant fluctuations, showing
in the sample are the same as in the perfect lead)sThe  the need for averaging over different realizations of the dis-
on-site energy on every sample atom is set randomly terder.
+E, or —E,, producing a 50-50 random substitutional al- Due to interference, quantum-mechanically individual
loy. The wire cross section is>88 atoms.E, is set to elastic(phase-cohereptesistors do not generally add in se-
1.1]y|. The Fermi energy is set = —0.1y/|, close to the ries, and the conductance and the resistance, as a function of
middle of the band. The number of open channels in thehe length of a disordered conductor, are not self-averaging
perfect wire isSN=43. quantities?® In the Ohmic regime, disordered elastic conduc-

A. Electronic structure of the perfect wire
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La units of a. The wire cross section is >88 atoms and
Er=—0.1y| with N=43. The sample has random on-site energies
FIG. 4. AG in units of g=2e?/h (lower panel and AG/(G) of £1.1y|. The averaging is over 150 configurations for each
(upper panglversus sample length in units ofa. The wire cross sample length.
section is 88 atoms ande=—0. with N=43. The sample . .
has random on-site energieriDﬂ.]JJiﬁ/'The averaging is over 250 1g. At that point, In(G/g) vanishes f'md
configurations for each sample length. The lower panel also showdN(G/g)/[(In(G/g))|** becomes singular. But the point at
data for sample on-site energies n0.4/y|, with averaging over ~Which R~r andG~g is roughly the point of transition from
100 configurations, for comparison. the Ohmic to the localization reginjat that point, for large
N, the termR, in Egs. (3) and (7) is negligiblgd. Thus the
tors are expected to show universal conductance fluctuationivergence of Aln(G/g)/|(In(G/g)}|*?, and hence of
of root mean square valutG= \VarG, where Var stands AIn(G/g)/|{In(G/g))| [the relative fluctuation of IrG/g)],
for variance, of the order of=2e?/h.?® Thus the relative gives a rough indication of the transition between the two
fluctuation AG/{G) increases with length. Upon passageregimes. Figure 5 shows that beyond the peak
into the localization regimeAG decreases, whildG/(G) AIn(G/g)/|{In(G/g))|¥? stays approximately constant.
diverges with lengti%® Therefore, in that region, the relative fluctuation of
Now the calculation on the 88 atom wire is repeated In(G/g), AIn(G/g)/[{In(G/g))|, decreases as
with the same parameters as before. This time, however, foI/|(In(G/g)>|1/2. Thus, in the localization regime, the quan-
each sample lengtlG is calculated for 150 different con- tity In(G/g), as a function of length, is a self-averaging
figurations(realizations of the disorderThe specific imple- quantity in the usual sengé Estimates of the localization
mentation of the calculation is the following. As an indi- length should be made from plots ofln(G/g)) or
vidual sample is grown fromL=1a to L=350a, G is  (In(R/r)) versusL.
calculated at every length on the way, and the values are In the proposed calculations of the bulk resistivity, we
stored. This is done for 150 different samples, producing seteequire the slope oR versusL in the Ohmic regime. An
of 150 conductance values for each length. ambiguity now arises as to what quantity should be averaged
Figure 4 shows plots ofAG/g (lower panel and in order to obtain the respective plot. In particular, due to the
AG/{G) (upper pangl versusL. The plot of AG for statistical spread of the calculated values, the quantities
E.=1.1y| shows a sharp peak at abdut3a, close to the (R)=(1/G) and 1(G) are generally different. However, in
estimated mean free path. PeaksAiG aroundL=I| have the Ohmic regime the fractional difference between them is
been seen in many test calculations, in which the mean frewypically very small. This may be seen visually in Fig. 6,
path| is smaller than the transverse dimension of the wirewhich shows plots ofR)/r, g/{G), and exgln(R/r)). Dif-
d. Forl>d, on the other hand, the peaks are generally supferences become apparent for30a, with (R)/r being the
pressed. An example may be seen in Figlotver panel,  highest,g/(G) the lowest, and exdgn(R/r)) in the middle.
which also shows data fdg,=0.4|y| with | ~20a. Beyond  However, there is no discernible difference in the region
the peakAG stays between Og8and 0.4 for a while, and, R/r<1/4, which was taken earlier as the linear regime,
beyondL~80a, it decreases smoothly into the localization within a 1% tolerance level. In this region, the question of
regime. At the same time, the relative fluctuatids/(G) what quantity should be averaged is academic.
increases steadily and rises above unity, at which st@ge In the resistivity calculations, thie versusL plots will be
is no longer a well-defined quantity. prepared from the quantiiR), over that range of lengths for
Consider now the quantity I&/g). Figure 5 shows a plot which typically AR/(R)<0.1. The fractional difference be-
of AIn(G/g)/|{In(G/g))|¥? versusL. The origin of the di- tween(R) and 1(G), which is of order AR/(R))?, is then
vergent peak at arourld= 80a is instructive. Ad_ increases, less than 1%. This range typically correspondsktwalues
G decreases, and at some point it reaches a value of abolaiss tharr /5. Both the slight ambiguity in the construction of
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Er=—0.1y| with N=43. The sample has random on-site energies

of +1.1y|. The averaging is over 150 configurations for each

sample length.

the R versusL plots and the deviations from linearity are

systematic sources of uncertainty in the estimated Ohmig*8 atoms andEg= —

FIG. 8. (R)/r (lower panel and exgin(R/r)) (upper pane|
together withcsinh(L/&)+Ry/r and c[expl/§)—1]+Ry/r, versus
sample lengthL in units of a. From the data,(=61.7,
c=0.0101x61.7, Ry/r=1/N=1/43. The wire cross section is
0.1y|. The sample has random on-site en-

slopes and corresponding resistivities. In view of the abovérgies of =1.1]y|. The averaging is over 150 configurations for
values, we take 1% as the level of accuracy in the estimat@ach sample length.

of these quantities.

C. Transition from the Ohmic to the localization regime

Here we compare the results for th&x8 atom wire with
relation(7). Figure 7 shows a plot dfR)/r together with the
line of best fit(lower panel, and a plot ofIn(R/r)) (upper
pane), versusL. They intercept on the resistance plot cor-
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FIG. 7. Plots of(R)/r together with the line of best fifower
pane) and(In(R/r)) (upper pane| versus sample lengthin units
of a. The wire cross section is>88 atoms andE= —0.1]y| with
N=43. The sample has random on-site energiesaf1y|. The
averaging is over 150 configurations for each sample length.

responds to the terR, in Egs.(3) and (7). The resistance
plot givessg=0.010%X/a. Thensg=r/NI gives|~2.3a, in
rough agreement with the earlier estimate. From the slope of
the linear region of the logarithmic plot we obtain a localiza-
tion length of ¢&=61.7a. The constant from Eg. (5) be-
comesc=5spé/r~0.62. The functionR=rcsinh/&)+R,,

Eq. (7), is now compared with the actual results and with the
possible relatiorR=rc[exp/£—1]+R,, discussed in Sec.

Il. The lower panel in Fig. 8 shows plots ofR)/r,
csinh(L/&+Ry/r, andc[expL/&)—1]+Ry/r versusL in the
Ohmic regime, and the upper panel shows plots of
expIn(R/r)), csinhQ/&)+Ry/r, and c[expL/§—1]+Ry/r
versusL over a wider range of sample lengths, well into the
localization regime. The relatioR=rcsinh{/&€)+R, pro-
duces a good fit to the data over the entire range of sample
lengths. The formR=rc[expl/{)—1]+R, on the other
hand, has the right initial slope but quickly rises above the
calculated points.

Test calculations have been performed for a variety of
Fermi energies and wire cross sections, typically with
N>30, and with different amounts and types of disorder.
These include further cases of the present alloylike disorder,
the Anderson model with continuously distributed random
on-site energies, and intersite disorder. All calculations have
produced values ot [Eg. (5)] within several percent of
0.6. The relationR=rcsinh(L/¢)+R, consistently produces
good fits to the data.

D. Convergence of the estimated bulk resistivity

The (R) versusL plot in Fig. 7 gave an Ohmic slope of
So=0.010%/a. The cross section of the wire contains 64
atoms. With an area af? per atom, the cross-sectional area
of the wire isA=64a?, and the estimated bulk resistivity of
the alloy isp=Asy=0.646a. Now we vary the cross sec-
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F2|(_5- 9. Plots of(R)/r, multiplied by the number of atoms FIG. 10. Calculated values afioE%/y? versusE,/|y| for a
Ala® in the wire cross section, for cross sections of 8 9x9,  random alloy with on-site energies afE, and for an Anderson

10x10, 11x11, 12<12, 1313, and 1414 atoms, versus sample model with on-site energies continuously distributed in the interval
lengthL in units ofa. The sample has random on-site energies of(_31/2|5a,+31/2|5a)_ The wire cross section is 30L0 atoms,

*1.1y| andEg=—-0.1y|. The averaging is over 150 configura- E.=—0.1]y|, andN=64.
tions for the 8< 8 atom wire and over 50 configurations for the rest.

The bulk resistivityp and the conductivityo=1/p are
tion of the wire. Figure 9 shows plots of the calculated av-calculated for a range of values Bf,. The cross section of
erage resistance, multiplied by the number of atoms in théne wire is 10<10 atoms.Ef is set to—0.1]y| as before.
wire cross section, for cross sections ofx8, 9X9,  There areN=64 open channels in the perfect wire. The av-
10x10, 11x11, 12<12, 1313, and 14«14 atoms. The eraging is over 50 configurations for each sample length.
slopes give the respective estimates of the bulk resistivity, in - Figure 10 contains plots afacE2/y? versusE,/|y| for
units of ra. The respective values are 0.646, 0.626, 0.634each type of on-site disorder. In the far left region, the two
0.629, 0.630, 0.625, 0.625. As may be expected, the estimaigrves converge, confirming the expectation that in the
of p decreases as the wire cross section increases. It appegfgak-scattering limit the conductivity is determined by the
to do so in an oscillatory fashion, even though the oscillamean square fluctuation of the on-site energy, and is insen-
tions lie within the 1% level of accuracy assumed earlier. Insitive to the precise form of the underlying distribution. For
the present case, the convergence is very good. Due to thRe |eftmost point on both plots, with, /| y|=0.5, the mean
finite-size effects, discussed in the Introduction, it shouldfree path estimatéfrom so=r/NI) is | ~14a.
generally become less so with increasirtd. In principle, As E,/|v| increases, the curve for the alloy descends be-
one must study as a function ofA by some systematic |ow that for the Anderson model. This observation can be
procedure, such as fitting the calculated values to some agnderstood qualitatively as follows. The random alloy con-
ymptotic form, but such analysis will not be done here.  sijsts of small globules of atoms of each kind. These globules
have sharp boundaries, giving rise to strong scattering. For
the Anderson model one can visualize analogous globules

. . . . . ith sof i iving ri weaker ring.
This section gives two examples of the possible appllca-bUt with softer boundaries, giving rise to weaker scattering

tions of the present calculations. The examples refer to thThe difference between the two plots shows that as the dis-

cases of on-site disorder and interfacial rouahness Brder increases, higher moments of the on-site energy distri-
l | I ! ug ) bution become important.

The results show also that for the Anderson model the
relation oE2=const is very robust. For this model,

This example is a comparison between two differentraaEgly2 stays constant to within about 2% over the entire
forms of on-site disorder—the alloylike disorder from the range ofE,/|y|. For the rightmost point, with,/|y|=1.9,
preceding section and the Anderson model with continuouslyhe mean free path estimatelis a. Thus the above relation
distributed on-site energies. Equati¢®3) would suggest remains valid to the point when the mean free path becomes

that at least in the weak-scattering limit, for which it was comparable to the lattice parameter and the usual picture of
written, the mean free path and the conductivity are inverselynetallic conduction begins to break down.

proportional to the mean square fluctuation of the on-site  With a=3x10"1° m, for the pointE,/|y|=1.9 in the
energy. In the comparison, the on-site energies for the alloypnderson model we find~1640Q ~*cm™ . The rightmost
are set randomly totE, or —E,, while for the Anderson calculated point for the alloy hasE,/|y|=1.5 with
model these energies are given a uniform continuous distrir~1.1a.  With a=3x10"m, at that point
bution in the interval ¢ E,y3,+E,y/3), with the same ¢~1790 O lcm . It would be very interesting to extend
mean square fluctuatiolﬁg1 in each case. The hopping inte- both curves further to the right in order to look for the metal-
grals in the sample are the same as in the perfect leads. insulator transitiorf! in which the electronic states in the

V. TWO EXAMPLES

A. On-site disorder
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Nz=7
4 atoms 3 atoms layer 2 Ls FIG. 11. The geometry of the
| | | | L] B sample for the interfacial rough-
ness calculations. The details are
Ny=10 3 atoms |4 atoms layer 1 explained in the main text.
Z
y

bulk itself become localized and the bulk conductivity van-eraging is over 100 configurations per length. The number of
ishes. Unfortunately, such extensions would be difficult atopen channels in the leads l&=46. Extrapolation of the
present. The reason is that hslecreases, the localization plottoL =0 gives ay intercept that exceeds considerably the
length in the wire shrinks accordingly, and it becomes necvalueR,/r =1/46=0.022 for the resistance between the res-
essary to increase the wire cross section so as to obtaineavoirs in the absence of the sample. The extra resistance is
reasonable Ohmic regime. At present, this makes the calculue to the scattering at the lead-sample boundaries. This ad-
lations too slow. ditive resistance is immaterial if one is interested in the slope
of the plot but could be very important if one were perform-
. . The quality of the plot in Fig. 12 is poorer than before. In
In recent years, the problem of transport in magnetic mu"the roughness calculations without bulk impurities, it was

tilayers has received muc?f é%ttgntmn in the fcontexlt of thegund that for a give(R) the calculated resistances have a
glant magnetoresistance effectone source of complexity e scatter than in the earlier examples, with correspond-

in this problem is the possible simultaneous presence of tW%gly less accurate estimates of the Ohmic slopes. The addi-

separate scattering mechanisms—one associated with the lﬁlén of bulk impurities greatly improves the plots.

terfaces between the layers, and one associated Wlt_h bu The calculation is now done for different values(af.),

) . ) _POSgith and without bulk impurities. The impurity atoms have a
sible to study §uch combinations of scatterlr!g meChan's.m%oncentration of 5% and an on-site energy+d| |, and are
Here we consider the examp.Ie of a metallic bilayer Wlthrandomly distributed throughout the sample. Figure 13
geometrical roughness at the interface between the two la)é'hows the calculate®R—L Ohmic slopes as a function
ers, without and with additional bulk impurities.

The geometry for the sample is shown in Fig. 11. The
sample has\,=10 atoms in the transversedirection and 0.20
N,=7 atoms in the transversedirection. The two layers of k
the sample differ by their on-site energy, which is set to o
—1.5y| in layer 1 and+1.5y] in layer 2. The on-site en- 045 - ﬂ,pﬁ
ergy in the leads is zero, as before, and all hopping integrals s
are equal toy. The interface between the layers has steps in ,‘.&““
the longitudinalx direction. The height of each step is one &
atom. The thickness of layer dayer 2 changes between
three atomgfour atomg and four atomgthree atomgfrom “.M“A
step to step. The length,=na, wheren is an integer, of the ™
steps is random. The probability distribution foris given 0.05 [mok”
by P(n)=q(1—q)" !, 0<qg<1, with an average step
length of(L¢)=alq.

In the present case, the electronic structure of the sample .00
is intrinsically different from that of the perfect leads, even
in the absence of any disorder. This difference gives rise to
scattering at the actual lead-sample boundaries and to a cor- g, 12, (R)/r versus sample length in units ofa for the case
responding contribution to the resistance between the resegt interfacial roughness with=0.4,(L)=2.5a. The two layers of
voirs. An example is shown in Fig. 12. The figure gives athe bilayer have on-site energies of1.5y| and + 1.5y, respec-
plot of (R)/r versus sample length for the cage=0.4, tively, andEr=—0.1|. The averaging is over 100 configurations
(Lgy=2.5a. The Fermi energy i€=—0.1y| and the av- for each sample length.
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0.0030 . ‘ ‘ , ‘ resistivities calculated by the present method with results
* ¥ roughness and impurities ba;ed pn.the Kubo-Gr_eenwood fo.rmalism. The se_cond appli-
0.0025 | X roughness only | cation is in the modeling of the giant magnetoresistance ef-
= % fect in magnetic multilayers.
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0.0000 : . , . ‘ APPENDIX: EQUIVALENCE OF THE TWO
0.0 2.0 4.0 L6.O/ 8.0 10.0 12.0 EXPRESSIONS FOR THE CONDUCTANCE
< s>a

We wish to establish the equality of the right hand sides
FIG. 13. The calculate®—L Ohmic slopes versus the average of Egs.(19) and(22) from the main text. First, we note that
length (Ls) of the roughness steps, in units @f for the cases of since P;+P,=1, we can also write Eq.(21) as
interfacial roughness without and with additional impurity scatter-| = — (1/in)(P,V—VP,). Then, using Eqgs(15) and (20),
ing. The two layers of the bilayer have on-site energies ofwe can reduce the problem to that of establishing the equal-
—1.5y| and+1.5y/, respectively, anér= —0.1]y|. The concen- ity of the expressions
tration of the impurities is 5% and their on-site energy+8|y|.
A=Ti{(G] — GG —GI)t]

(L), with and without the impurities. The two plots have an 0 04t ~O- 0%
approximately constant relative shift, suggesting that the two +T(G; —G (G —G1)t] (A1)
scattering mechanisms effectively add in series. In anotheig
sense, the impurity scattering partially masks the interfacial
scattering and decreases its relative contribution to the totalg=T1{ (G~ ~G*)(P,V—VP,)(G - G*)(P,V-VP,)],
resistivity of the structure. (A2)

where the argumentsg) in the Green functions and in the
V1. CONCLUSIONS t operators has been omitted for simplicity.

The purpose of this paper is to present the calculations Consider the quantitys. Consider the expression inside
and their application to the study of conduction in variousthe trace. First, we expand this expression. Since the terms in
disordered materials. The method, which is also applicable t§€ expansion appear inside a trace, we may cyclically per-
one- and two-dimensional structures, can be implemented fdpute the operators in these terms. Expanding, and perform-
a wide range of types and amounts of disorder, while thd"d Some such permutations, for the expression inside the
scattering by the disorder is always treated exactly. One podtace in Eq.(A2) we get
sible use of these calculations is the evaluation of the bulk, _ " _ _ _
resistivity of disordered materials. In view of the finite-size YC P2YG P1=VG PVG P =VG VPG Py
effects discussed earlier, such resistivity calculations require v G*vp,G"P,~VG P,VG*P;+VG*'P,VG*'P,
small electron wavelengths and small mean free paths. The
method would generally not be suitable for Fermi energies +VG VP,G"P;—VG'VP,G"P;
near the band edges or for cases of weak scattering. The _ _ n _
deviations from Ohmic behavior, due to localization, limit P1G PVG VPG PVGTV
the range of sample .Iengths from which the _ respecti_ve +P,G VP,GV-P,G*VP,GV
Ohmic slopes are obtained. In this respect, the sinh function
in Egs.(7) and(8), with its long initial linear part, has been +P1G PVG'V-P;GTP,VG'V
most helpful. The justification for using these equations is _ + n +
their empirically established success in reproducing the P:G VPZG_ VPG V_PZG V'_ ) (A3)
shapes of the calculated curves. However, these equations N€Xt, we require the following relations. First, the Dyson
require independent analysis. In addition to the bulk resistiveduation for the Green functions can be written in the two
ity, the calculations can be used to study the statistical beeq+“'V6‘|§[‘t . for(')njs G™=G"+G VG and
havior of the elastic conductances and resistances of the di§& =G~ +G~VG™~. The two together yield the relations
ordered wires. For example, the peaksAit aroundL =1 b 04 | ~OdemOt
(Sec. IV) and their apparent dependence on the value of G =G +GTGT, (A4)
I/d, which needs further investigation, could potentially be 0= 4 ~O—sFO—
used for classifying short constrictions and for distinguishing G =G +GT TG (A5)
between the ballistic and Ohmic regimes in them. There arghey also yield the relations
two further applications of the present calculations that are
currently under investigation. The first is a comparison of the G'v=G"t, (AB)
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VG =tGO", (A7)
G V=Gt (A8)
VG =t'GO". (A9)

Finally, we have the relation§Y*=P;G°*=G%*P; for
j=1,2, and P;G°*P,=P,G°*P;=0. Using all of the
above, together with the definition ofin Eq. (17), expres-
sion (A3) becomes, after cyclic permutations in some indi-
vidual terms,

CALCULATION OF THE RESIDUAL RESISTIVITY OF ...

5813
Gy te T+ GGyt -GG T t+ GGt

+GI Gt -GV ey tT+ GVt G T t— Gt GY .
(A10)

It is easy to check that the trace of the above expression is
the same as expressién Eqg. (Al). This completes the proof
of the equivalence of Eq$19) and(22) from the main text.

1p. Erds and R. C. Herndon, Adv. Phy31, 65 (1982.

2J. P. G. Taylor, K. J. Hugill, D. D. Vvedensky, and A. MacKin-
non, Phys. Rev. Let7, 2359(199J).

3K. Nikolic and A. MacKinnon, Phys. Rev. B7, 6555(1993.

4T. N. Todorov and G. A. D. Briggs, J. Phys. Condens. Mafiter
2559(19949).

5H. Higurashi, S. lwabuchi, and Y. Nagaoka, Surf. 83 382
(1992.

K. Nikolic and A. MacKinnon, Phys. Rev. B0, 11008(1994.

7A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, J. Phys.
C 21, 35(1988.

8T. N. Todorov, G. A. D. Briggs, and A. P. Sutton, J. Phys. Con-
dens. Mattei5, 2389(1993.

9p. A. Lee and D. S. Fisher, Phys. Rev. Léf, 882 (1981).

103, B. Pendry, A. B. Pitee, P. J. Rous, and L. Martin-Moreno,
Surf. Sci.244, 160(199).

11D, J. Thouless, Phys. Rev. Le89, 1167(1977).

12N, E. Cusack,The Physics of Structurally Disordered Matter

(Hilger in association with the University of Sussex Press, Bris-

tol, 1987, Chap. 9, Sec. 9.

13E. H. Sondheimer, Adv. Phy4, 1 (1952.

143, M. Ziman,The Physics of MetaldCambridge University Press,
Cambridge, England, 1969Chap. 4, Sec. 3.

1SA. Fert and P. Bruno, itltrathin Magnetic Structure |l edited

by B. Heinrich and J. A. C. BlandSpringer, Berlin, 1994
Chap. 2, Sec. 2.

18R, Kahnt, J. Phys. Condens. Matf&r1543(1995.

7M. C. Payne, J. Phys. Condens. Matter4931(1989.

18y Imry, in Directions in Condensed Matter Physjeslited by G.
Grinstein and G. F. Mazenk¢World Scientific, Singapore,
1986, p. 101.

19\. Biittiker, in Electronic Properties of Multilayers and Low-
Dimensional Structureedited by J. M. Chamberlait al. (Ple-
num Press, New York, 1990p. 51.

20B, L. Al'tshuler and P. A. Lee, Phys. Todal (12), 36 (1988.

21p_ W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,
Phys. Rev. B22, 3519(1980.

22p_W. Anderson, Phys. Rev. B3, 4828(1981).

23y, B. Band, H. U. Barranger, and Y. Aviashi, Phys. Rev4g
1488(1992.

24p. V. Tartakovsky, Phys. Rev. B2, 2704(1995.

25, P. Sutton Electronic Structure of Material§Clarendon Press,
Oxford, 1993, Chap. 4.

26p_A. Lee, A. D. Stone, and H. Fukuyama, Phys. Re®531039
(1987.

27p. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phyg, 287
(1985.



