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An exact scattering theory formulation of the elastic transport problem is used in a 1s tight-binding imple-
mentation to calculate the zero-temperature elastic resistances of disordered three-dimensional quantum wires
with cross sections as large as 14314 atoms and lengths of up to hundreds of atoms. A real-space Green
function technique is used to construct the wires. The technique is flexible and simple to implement, making it
possible to study a range of different geometries, types of disorder, and combinations thereof. The possible use
of such calculations to evaluate the bulk residual resistivity of the respective materials is outlined. Attention is
given to the statistics and the configurational averaging of the calculated results. The transition from the Ohmic
to the localization regime in the wires is also studied. The shape of this transition, obtained from the numerical
results, is found to correspond well to a curious semiempirical analytic form. Model calculations with different
types of on-site disorder, and with interfacial roughness, combined with impurity scattering, are presented at
the end.@S0163-1829~96!02732-4#

I. INTRODUCTION

Over the past two or three decades, the problem of elec-
tronic transport in phase-coherent disordered conductors has
received intense attention, both theoretically and experimen-
tally. On the theoretical side, direct numerical calculations
have provided an important source of insight into the prop-
erties of such systems. Long thin conductors, sometimes re-
ferred to as quantum wires, have been a popular object of
computational study. The simplest case of truly one-
dimensional wires~e.g., a one-dimensional atomic chain! has
been investigated in depth.1 Two-dimensional wires~e.g., a
planar atomic strip! have also been studied extensively. Re-
cent numerical work includes studies of the density of states
and of the localization lengths in such wires,2,3 of the effect
of disorder directly on the conductance and on the conduc-
tance quantization effect,4 and of conductance fluctuations.5,6

The present paper is a report of calculations of the zero-
temperature elastic~phonon-free! resistance of fully three-
dimensional disordered quantum wires, with cross sections
as large as 14314 atoms and lengths of up to hundreds of
atoms. The calculations employ a 1s tight-binding model7

and are based on an exact single-particle scattering theory
formulation of the elastic transport problem, presented and
discussed elsewhere.8 The calculation of the resistance for an
individual wire involves a real-space Green function tech-
nique in which the Green function on a particular relevant
interface in the system is calculated exactly in the disorder
by a finite series of algebraic ‘‘growth’’ steps.9,10,4 The
method is applicable to one-, two-, and three-dimensional
wires, and can be implemented with equal ease for a wide
range of types of disorder.

The practical focus of this work is the possibility of using
such calculations to evaluate the residual resistivity of the
respective bulk material. The principle of the calculation is
the following. A piece of disordered wire of cross section
A and lengthL is connected to two perfect leads, and the
resistance of the whole configuration is calculated. Configu-
rational averaging is then performed in order to obtain a

well-defined resistanceR for that particular wire length, and
the calculation is repeated for a series of lengths. The resis-
tivity r for the respective bulk material is then found from
the formular5AsO , wheresO is the Ohmic slope of the
calculatedR versusL relation.

The two limitations of this procedure for obtaining the
bulk resistivity are the deviations from Ohmic behavior in
the wires due to localization effects, and the departures of the
electronic properties of the wires from those of the true bulk.
These limitations can, however, be overcome to some de-
gree.

Consider first the problem of localization. According to a
well-known argument,11,12 the transition from the Ohmic re-
gime, in which the resistance increases linearly with length,
to the localization regime occurs at around that length of the
wire for which the resistance reaches a value of one quantum
resistance unit,h/2e2. This length, the localization length
j, is given byj;(d/l)2l , whered;AA is the characteristic
transverse linear dimension of the wire,l is the wavelength
of the electrons, andl is the scattering mean free path. In a
typical metal,l is of the order of the interatomic spacing.
Therefore, in a wire with a transverse linear dimensiond of
only a few atoms,j can be one or two orders of magnitude
larger thanl . Thus, even in a wire of nanometer dimensions,
it may be possible to achieve a reasonable separation of the
two regimes, with a sufficiently well-defined initial linear
region to enable us to deduce the required Ohmic slope.

Consider next the problem of finite-size effects in the
Ohmic regime. There are three separate such effects. First,
the local density of states in the wire will not be the same as
in the bulk. Secondly, the scattering properties of individual
scatterers in the wire will not be the same as in the bulk.
Thirdly, if reflections at the surface of the wire are non-
specular, then the scattering at the surface will contribute to
the calculated resistance of the wire.13,14 In a typical calcu-
lation, the wire would have a transverse linear dimension of,
say, ten atoms. The Fermi wavelength of the electrons and
the scattering cross section of a typical scatterer, say, an
impurity atom, on the other hand, can be on the atomic scale.
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Also, often we will consider cases of very strong scattering,
with mean free paths considerably smaller than the trans-
verse wire dimension. It is then reasonable to hope that the
calculated transport properties of the wire will be represen-
tative of, if not identical to, those of the true bulk.

An important advantage of the finite wire size is the pos-
sibility of treating the scattering by the disorder exactly. This
type of calculation may be particularly valuable in the
strong-scattering limit, when the use of conventional meth-
ods, such as those based on the Boltzmann equation or on the
Kubo formula, can be difficult. Another useful feature of the
present calculations is the possibility of studyingcombina-
tions of different scattering mechanisms. One potential ap-
plication of this type of calculation is in the study of the
interplay between bulk and interfacial scattering in the giant
magnetoresistance effect15 in magnetic multilayers.

The idea of calculating the bulk resistivity ‘‘by brute
force,’’ from the slope of the resistance versus length rela-
tion, has in the past been used in calculations on liquid and
amorphous transition metals.16 In those calculations, the re-
sistance was obtained from the Landauer formula, after an
explicit evaluation of the individual elements of theSmatrix
in k space, with periodic boundary conditions in the trans-
verse directions.

In the present work we will use the real-space approach,
mentioned earlier. Particular attention will be given to the
problems of configurational averaging, the statistics of the
calculated results, and the form of the transition from the
Ohmic to the localization regime.

The rest of the paper is organized in the following way.
The next section contains preliminary analytical estimates.
Section III gives a description of the computational method.
Section IV contains test calculations, aimed at investigating
the general behavior of the results and at establishing a pro-
cedure for the configurational averaging. Section V is a study
of two model examples—on-site disorder, and interfacial

scattering without and with additional impurity scattering.
Finally, Sec. VI contains a summary of the results, and a
statement of several further lines of research.

II. PRELIMINARY ESTIMATES

The purpose of this section is to derive several relations,
including an interesting formula for the transition between
the Ohmic and the localization regime, which will be useful
for the interpretation of the numerical results to be presented
later on. To this end, we will carry out a classical kinetic
evaluation of the Landauer formula for the two regimes.

The general setup considered in the paper is shown in Fig.
1~a!. We have an infinite piece of wire of uniform cross
section. The wire is a perfect conductor everywhere except
for a single disordered segment of lengthL. This disordered
segment will be referred to as the sample, and the semi-
infinite pieces of perfect wire on both sides of it will be
referred to as the leads. We imagine that somewhere ‘‘at
infinity’’ each lead is connected through a smooth contact to
an infinitely wide, macroscopic conductor, acting as an equi-
librium particle reservoir. The zero-temperature conduc-
tance, with respect to a small electrochemical potential17 dif-
ferencebetween the reservoirs, of the whole configuration is
given by the Landauer formula18

G5g(
k
Tk , ~1!

whereg52e2/h is the quantum conductance unit, the index
k labels the open channels in a given lead, andTk is the total
transmission probability across the sample for an electron,
incident upon it in thekth channel of the lead, at the Fermi
energy.

Equation~1! can be written as

FIG. 1. ~a! The general setup
considered in the paper. The de-
tails are explained in the main
text. ~b! A typical (1,0,0) simple
cubic atomic layer in the system,
used for the numerical calcula-
tions. The lattice constant isa.
There areNy andNz atoms along
the y andz sides of the layer, re-
spectively.
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G5g(
k
Tk5gN

(
k
Tk

N
5gNT, ~2!

whereN is the total number of open channels. The quantity
T5((kTk)/N has the following meaning. Let, for definite-
ness, the left reservoir have the higher electrochemical po-
tential. Then, within factors,N is the currentj in , incident on
the sample from the left reservoir. Within the same factors,
(kTk is the current j out, transmitted across the sample.
ThereforeT5 j out/ j in . In the rest of this section, we will be
concerned with calculatingT, thus defined.

A. Ohmic regime

First, we consider the situation in which the motion of the
electrons in the disordered sample is purely diffusive, and
evaluate the quantityT5 j out/ j in for the case of classical dif-
fusion. A steady incident current of electronsj in is supplied
into the left end of the sample. Some electrons diffuse
through the sample into the right lead, giving rise to the
transmitted currentj out. The rest emerge back into the left
lead, giving rise to a reflected current of magnitudej ref .

Let x be the longitudinal coordinate, with the left end of
the sample atx50 and the right end of the sample at
x5L. In the steady state, the number of conducting electrons
per unit length in the sample is given byn(x)5A1Bx,
where the constantsA andB are found from the boundary
conditions as follows. At the right end of the sample there
are only right-traveling electrons, emerging into the right
lead. Thus we havej out5n(L)vx52Dn8(L), wherevx is
the average magnitude of thex component of velocity, and
for the second equation we have usedj (x)52Dn8(x),
where j (x) is the net current at positionx in the sample and
D is the diffusion coefficient. The densityn(0) at the left
end of the sample is made up of the incident and the reflected
electrons, emerging back into the left lead, giving
n(0)vx5 j in1 j ref52 j in2 j out.

Writing D5 lvx/2, where l , to within a factor of order
unity, is the mean free path, we easily find
T5 j out/ j in51/(11L/ l ). Substituting forT into Eq. ~2!, for
the resistanceR51/G between the reservoirswe obtain

R5R01R0L/ l , ~3!

where R05r /N, r51/g5h/2e2 being the quantum resis-
tance unit.

R increases linearly with the lengthL of the sample
through the second term,

R~L !5R0L/ l5rL /Nl. ~4!

This term gives the contribution of the disordered sample to
the resistance of the system from Fig. 1~a!. Equation~4! for
the Ohmic resistance of a piece of disordered wire is a
known and useful semiclassical relation.

To see the origin of the constant first termR0 in Eq. ~3!,
consider the case when there is no disordered region (L50
or l5`), with R5R0. Then the lead-sample-lead system
constitutes a single piece of perfect conductor and the whole
configuration represents a long ballistic contact between the
two reservoirs. The resistanceR0 is thus analogous to the

Sharvin resistance for a small aperture in an otherwise im-
penetrable barrier, and can be related conceptually to local
voltage drops in the region of the contacts that connect the
equilibrium reservoirs to the nonequilibrium leads.19 The
presence of the termR0 in Eq. ~3! reflects the fact that even
if the conductor connecting the reservoirs is perfect, so long
as this conductor has a finite cross section, it will carry a
finite current for any finite electrochemical potential differ-
ence between the reservoirs.

Thus the resistanceR between the reservoirs has an abso-
lute minimumR0 attained in the case of perfect transmission.
Any net scattering in the conductor connecting the reservoirs
manifests itself as a rise ofR aboveR0. In this paper we will
study this rise as a function of the length of the disordered
sample.

B. Localization regime

Fundamentally, localization in disordered media is a
quantum interference effect.20 According to a well-known
argument,11,12 in the presence of purely elastic scattering the
electronic states in a thin wire are localized even when the
bulk of the respective material is conducting. The corre-
sponding localization lengthj is that length for which the
classical resistance of the wire reaches a value of about
r5h/2e2.11,12 Equation~4! then givesj;Nl, or, generally,

sOj5rc, ~5!

wheresO is the slope of the resistance versus wire length in
the Ohmic regime andc is a constant of order unity, which
may depend on the cross section of the wire and on the
disorder. For lengths larger thanj, transmission across the
disordered wire becomes exponentially small, and deep into
the localization regime the resistanceR(L) of the wire in-
creases exponentially with length asR(L);exp(L/j).

Consider now the question of how the Ohmic regime,
with R(L)5sOL, evolves into the localization regime. Since
sO5rc/j, the Ohmic regime could be seen as the initial part
of the exponentialrcexp(L/j). Indeed, for a one-dimensional
system21 one hasR(L)5r @exp(L/j)21#. For a wire of finite
cross section,22,23 this relation could be extended to
R(L)5rc@exp(L/j)21#, or R5rc@exp(L/j)21#1R0 for the
resistance between the reservoirs. However, the relation
R(L)5rc@exp(L/j)21# predicts a faster departure from the
Ohmic lineR(L)5sOL5rcL/j than is seen in the calcula-
tions to be presented later on. The results of these calcula-
tions fit another relation, which will be obtained below in an
empirical way.

Consider the following physical argument. For a system
with one open channel the relationj;Nl reduces toj; l .
Thus, in one dimension, the localization length is similar to
the mean free path. The motion of the electron on the scale
of the localization length is essentiallyballistic. The electron
is trapped between two neighboring scatterers and bounces
between them like a particle in a box, not ‘‘forgetting’’ even
for a moment that it is localized. But in a wire with a large
number of open channels,j@ l and the electron motion over
lengths L,j is diffusive. Most of the time the electron
struggles along in its diffusive propagation, and only occa-
sionally, when it manages to cover a net distance ofj, does
it have occasion to realize that it is in fact localized. It is then
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tempting to think that Ohm’s law will hold over a greater
fraction of the localization length than in the caseN51. In
other words,R(L) may be expected to increase more slowly
with L than the functionrc@exp(L/j)21#, with a longer ini-
tial linear region.

Here, we will not seek a detailed treatment24 of the scal-
ing with length of the transmission probabilities$Tk% in the
Landauer formula. Instead, we consider a classical kinetic
model, based on the above considerations. We imagine that
in addition to the disorder, giving rise to the scattering of
mean free pathl , the sample from Fig. 1~a! contains a ran-
dom distribution of traps, which occasionally capture the dif-
fusing electrons. Let us recalculate the quantityT5 j out/ j in .

In the presence of the trapping, the steady-state diffusion
equation is modified by a sink term, and reads
n9(x)2h2n(x)50, whereh is an effective inverse trapping
length. We have assumed thath l!1, so that the relation
j (x)52Dn8(x), and hence the linear diffusion equation,
holds. The solution for the linear density is
n(x)5Aexp(hx)1Bexp(2hx), whereA andB are fitted to
the boundary conditions as before but with
j ref5 j in2 j out2 j trap, where j trap5Dh2*0

Ln(x)dx is the total
rate of capture of electrons in the sample. The trapping
length is set equal to the localization length,h51/j. With
D5 lvx/2, the resistanceR51/(gNT) between the reservoirs
becomes

R5r @csinh~L/j!1~1/N!cosh~L/j!#, ~6!

where, by definition,c5sOj/r and the effective Ohmic slope
sO is given bysO5R0@11( l /2j)2#/ l , with R05r /N. In the
limit L/j!1, Eq. ~6! gives the Ohmic lineR5sOL1R0.
Comparison with the case of pure diffusion, Eq.~3!, shows
that the slopesO has picked up an ‘‘echo’’ from the presence
of the trapping and differs from its old value by a fractional
amount of (l /2j)2. This fractional difference is of order
(1/N)2, and forN.10 it is less than 1%.

For c51, N51 Eq. ~6! reproduces the result
R5rexp(L/j) for the resistance between the reservoirs for a
one-dimensional wire. In the limitN@1, which is the case of
interest here, Eq.~6! can be approximated by replacing
cosh(L/j) by unity, giving the asymptotic form

R5R01rcsinh~L/j!. ~7!

The contributionR(L) of the disordered sample is given by
theL-dependent term,

R~L !5rcsinh~L/j!. ~8!

Equation ~8! and the possible relation R(L)
5rc@exp(L/j)21#, mentioned earlier, produce the same ini-
tial Ohmic slope and the same slope of ln@R(L)# versusL in
the region L/j@1. However, the relation
R(L)5rc@exp(L/j)21# gives a faster rise above the Ohmic
line R(L)5rcL/j than Eq.~8!. Also, in the regionL/j@1
the two expressions differ by a factor of 2.

Equations~7! and ~8! have been derived for the case of
classical diffusion through a disordered wide sample
(N@1) in the presence of an additional trapping mechanism.
There is noa priori reason to expect that these results should
be relevant to the true quantum-mechanical problem. None-

theless, the above equations fit the numerical results very
well, for a range of wire cross sections and types of disorder.
In particular, for a given initial slopesO and for a given
localization lengthj, obtained after appropriate averaging,
the above equations produce a good fit to the numerical data
both in the Ohmic and in the localization regime.

Here, we leave this observation without further comment,
on the understanding that even if the above results capture
something essential about the true problem, these results re-
quire further and independent justification. Instead, here we
treat these results as empirical relations, and use them to set
limits on what is to be regarded as the Ohmic region in the
calculations.

For L/j,1, we have sinh(L/j)'(L/j)@11(1/6)(L/j)2#.
Taking 1% as the level of tolerance for departures from lin-
earity setsL/j,1/4, which withR(L)5sOL5rcL/j gives
R(L),rc/4. Sincec is of order unity, within the 1% toler-
ance level the Ohmic region is to be treated as that region in
which the resistance of the sample is less than about 1/4 in
units ofr5h/2e2. This estimate applies also to the resistance
R between the reservoirs, since onceR(L) becomes compa-
rable tor , with N@1 the termR05r /N in Eq. ~3! becomes
negligible.

Sincej;Nl, the conditionL/j,1/4 givesL/ l,N/4. In a
typical calculation, we will haveN;60, so thatL/ l,15.
Thus the present bulk resistivity studies are limited to wire
lengths that exceed the mean free path by about one order of
magnitude. The limitl /L!1 can be approached by increas-
ing the wire cross section, and henceN. The limitations in
doing so are computational.

III. METHOD FOR THE CALCULATION
OF THE RESISTANCE

This section contains a statement of the method for the
calculation of the resistance for an individual wire. In the
present calculations, the sample and the two semi-infinite
perfect leads are given the same simple cubic lattice structure
of lattice parametera. The whole infinite wire is an array of
identical rectangular (1,0,0) atomic layers, stacked along the
longitudinal @100# direction, namely, thex axis. The trans-
versey andz axes, in the plane of these layers, are along the
@010# and @001# directions, respectively. Each atomic layer
hasNy atoms along they axis andNz atoms along thez axis
@Fig. 1~b!#. The number of (1,0,0) layers in the sample speci-
fies the lengthL of the sample, in units of the lattice param-
eter a. The electronic structure of the whole system is de-
scribed by an orthonormal nearest-neighbor 1s tight-binding
model with an ideal hopping integralg and an on-site energy
on the native atoms~e.g., the atoms in the perfect leads! of
zero. The calculation of the resistance for the whole lead-
sample-lead system is done by an extension of a method
used previously in work on two-dimensional wires.4 The cal-
culation consists of three steps which are described below.

A. The surface Green function
for the bare semi-infinite perfect lead

The first step is to find the matrix elements of the Green
function for the bare perfect semi-infinite lead between
atomic sites in the end, free layer of the lead. The method for
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calculating these matrix elements is an extension of a method
used previously in work on two-dimensional wires.4,10

Consider the left lead. The lead is an array of identical
rectangular (1,0,0) atomic layers, stacked along the longitu-
dinal @100# direction~thex axis!. Let us number these layers
from 1 to `, with layer 1 being the end, free layer. Each
atomic layer in isolation has a set of orthonormal eigenstates
$up&%, given by

up&5S 2

Ny11D
1/2S 2

Nz11D
1/2

3 (
ny51

Ny

(
nz51

Nz

sinS pynypNy11 D sinS pznzpNz11D un&. ~9!

Here,n designates the pair of integers (ny ,nz). The integers
ny andnz label an atom in the layer, in an obvious notation,
and un& is the 1s state on that atom. The symbolp, which
labels the eigenstates for the whole layer, designates the pair
of integers (py ,pz), with py51, . . . ,Ny andpz51, . . . ,Nz .
The layer states$up&% have energies$E(p)%, given by

E~p!522ugucosS pyp

Ny11D22ugucosS pzp

Nz11D . ~10!

Now let u l ,p& be the respective layer state on thel th
atomic layer in the semi-infinite perfect lead. LetH be the
Hamiltonian for the lead. The matrix element^ l ,puHum,p8&
is not identically equal to zero only ifp5p8. For the case
p5p8, we denote this matrix element byHlm(p) and note
that if l5m, then Hlm(p)5E(p), if l5m61, then
Hlm(p)5g, and finally, if lÞm and lÞm61, then
Hlm(p)50. LetG01(E) be the retarded Green function for
the lead. LikeH, G01(E) is diagonal in the labelp. Let
Glm
01(E,p) stand for the matrix element^ l ,puG01(E)um,p&.
Now imagine appending another layer to the end of the

semi-infinite lead. Let this layer have index 0. We imagine
that this new layer is bonded to the lead perfectly, so that the
new lead is geometrically identical to the old lead. The bond-
ing of the new layer to the lead is realized by a termV in the
Hamiltonian, whose only nonzero matrix elements in the ba-
sis of layer states$u l ,p&% areV01(p)5V10(p)5g. We also
have G00

01(E,p)51/@E2E(p)1 i e#, where e→01, and
G0l
01(E,p)5Gl0

01(E,p)50 for all lÞ0.
Let G1(E) be the Green function for the lead with the

new layer bonded to it. Solving the Dyson equation

G1~E!5G01~E!1G01~E!VG1~E! ~11!

we easily find

G00
1 ~E,p!5

1

ugu
E2E~p!6A@E2E~p!#224

2
, ~12!

whereE5E/ugu, E(p)5E(p)/ugu, and we choose the solu-
tion with the minus sign if the expression under the square
root is negative, while if this expression is positive, we
choose the solution with the minus sign if@E2E(p)#.0 and
the solution with the plus sign if@E2E(p)#,0. The rules for
choosing between the two solutions have been discussed
elsewhere.4,8,10

Consider now two atomic sitesm andn in the end layer
of the lead. We require the matrix element ofG1(E) be-
tween them. Call this matrix elementG1(E;m,n). We have

G1~E;m,n!5^muG1~E!un&

5 (
k,l ,p

^muk,p&Gkl
1~E,p!^ l ,pun&

5(
p

^mu0,p&G00
1 ~E,p!^0,pun& ~13!

or, using Eq.~9! for u0,p&,

G1~E;m,n!5S 2

Ny11D S 2

Nz11D
3(

p
sinS pymyp

Ny11 D sinS pzmzp

Nz11 D
3sinS pynypNy11 D sinS pznzpNz11DG00

1 ~E,p!. ~14!

The above expression for the matrix elementG1(E;m,n) of
the Green function between sitesm andn in the end atomic
layer of the semi-infinite lead can be evaluated by hand.

B. Growth of the sample

The next step in the calculation consists in growing the
sample, layer by layer, onto the left lead.9 The implementa-
tion is the same as in earlier work on two-dimensional
wires,4 and here the growth sequence will be described only
briefly. In the first step of the growth sequence, the first
atomic layer of the sample is bonded to the end layer of the
left lead. In the second growth step, the second layer of the
sample is bonded to the first layer, and so on. At every step
the Green function matrix elements between atomic sites in
the last added layer are calculated by solving numerically the
Dyson equation, Eq.~11!. For a typical growth step, the
quantitiesG01(E), V, and G1(E) are constructed in the
following way.G01(E) is the Green function for the situa-
tion just before the growth step. In this situation, the atoms
of the layer that is to be added are not yet bonded to each
other or to the atoms in the previous layer. The matrix ele-
ments ofG01(E) between atoms in the previous layer are
available from the previous growth step. The only other non-
zero matrix elements ofG01(E) are the on-site matrix ele-
ments on the atoms in the new layer. These matrix elements
are given by 1/(E2Eatom), whereEatom is the on-site energy
on the respective atom in the new layer. The termV de-
scribes the bonding of atoms in the new layer to each other
and to atoms in the previous layer. The bonding extends to
nearest neighbors only. Finally,G1(E) is the Green function
for the situation just after the growth step, with the new layer
fully bonded to the previous layer. The growth sequence is
continued up to and including the last atomic layer of the
sample. In this situation there still is no bonding between the
last layer of the sample and the right lead.
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C. Calculation of the resistance

In the situation at the end of the growth sequence, which
will now be referred to as the initial situation, the system
consists of two decoupled semi-infinite systems. One of
them, system 1, is the left lead with the sample fully grown
on to it, and the other, system 2, is the right lead.

Let G06(E) now be the retarded and advanced Green
functions for the initial situation with G02(E)
5@G01(E)#†. The matrix elements ofG01(E) between at-
oms in the last layer of the sample and between atoms in the
first layer of the right lead are available from the previous
stages of the calculation, while those between an atom in the
sample and an atom in the right lead are all zero.

Let G1
06(E) andG2

06(E) be the projections ofG06(E)
onto systems 1 and 2, respectively. Thus ifm andn are two
atomic sites then the matrix element^muG1

06(E)un& is equal
to ^muG06(E)un& if m and n are both in system 1, and is
zero otherwise, and analogously forG2

06(E). It will be con-
venient to writeG1

06(E) andG2
06(E) in the following way.

Let $u1&% be all 1s atomic basis states in system 1 and let
$u2&% be all 1s atomic basis states in system 2. Let us intro-
duce the projection operatorsP15(1u1&^1u and
P25(2u2&^2u. Then, G1

06(E)5P1G
06(E)5G06(E)P1

andG2
06(E)5P2G

06(E)5G06(E)P2.
Let d1

0(E) andd2
0(E) be the density of states operators for

systems 1 and 2, respectively, defined by

dj
0~E!5

1

2p i
@Gj

02~E!2Gj
01~E!#, j51,2. ~15!

In the geometry from Fig. 1~a!, which now will be re-
ferred to as the final situation, systems 1 and 2 are fully
bonded together. LetG6(E) be the retarded and advanced
Green functions for the final situation. The transition from
the initial to the final situation is realized by the addition to
the initial Hamiltonian of a termV, containing the hopping
integrals between systems 1 and 2.

As has been shown previously,8 the zero-temperature con-
ductanceG of the geometry in the final situation is given by

G5g 4p2Tr@d1
0~EF!t†~EF!d2

0~EF!t~EF!#, ~16!

with spin degeneracy included in the prefactor of the trace.
In the above equation,EF is the Fermi energy and the opera-
tor t(E) is given by

t~E!5V1VG1~E!V, ~17!

which, from Eq.~11!, can also be written as

t~E!5V1VG01~E!t~E!. ~18!

The conductance in Eq.~16! is the same8 as what was
defined in Sec. II as the conductancebetween the reservoirs.
Equation~16! is simply an explicit form for the Landauer
formula, Eq.~1!.

Equation~16! can be evaluated by taking the trace in the
positional 1s basis after solving Eq.~18! numerically to find
t(E). However, this method of evaluation turns out to be
highly expensive computationally. The reason is that the
trace in Eq.~16! involves four independent summations, over
four separate sets of atomic indices. Each set of indices con-

tains a number of elements equal to the number (NyNz) of
atoms in the cross section of the wire and the computer time
taken to sum all the terms in the trace grows as (NyNz)

4.
This last stage of the calculation rapidly overtakes the actual
growth sequence, the computer time for which grows as
(NyNz)

3, and soon makes the calculation impossible.
This problem can be solved by writing Eq.~16! in an-

other, equivalent form, the evaluation of which, however, is
much faster. Let us first write Eq.~16! in the following sym-
metric form:

G5g 2p2$Tr@d1
0~EF!t†~EF!d2

0~EF!t~EF!#

1Tr@d2
0~EF!t†~EF!d1

0~EF!t~EF!#%. ~19!

The two terms in the right hand side of the above equation
are equal to each other. In the case of the present 1s tight-
binding model, their equality follows from the fact that
G06(E) andV, and henceG6(E) and t(E), are symmetric
matrices in the atomic basis. However, they are also equal to
each other generally, as a consequence of an earlier result,8

based on the optical theorem from scattering theory.
Let d(E) be the density of states operator for the final

situation, given by

d~E!5
1

2p i
@G2~E!2G1~E!#. ~20!

Let I be the operator for the particle current between systems
1 and 2, given by8

I5
1

i\
~P2V2VP2!, ~21!

whereP1 and P2 are the two projection operators defined
earlier. Equation~19! is then equivalent to

G5g 2p2\2Tr@d~EF!Id~EF!I #. ~22!

The equivalence of Eqs.~19! and ~22! for G can be estab-
lished by tedious but simple algebra. This is done in the
Appendix. The structure of Eq.~22! is familiar from linear
response theory.9

Since P11P251, Eq. ~21! can also be written as
I5(1/i\)(P2VP12P1VP2). V bonds the last layer of the
sample to the first layer of the right lead. The only nonzero
matrix elements ofV in the atomic basis therefore are those
between an atom in the sample and the atomright opposite
it, in the right lead. Hence, ifI i j is a matrix element of the
current operator, then specifying the indexi ( j ) fixes j ( i ).
Therefore the evaluation of the trace in Eq.~22! involves
only two summations, over two separate sets of atomic indi-
ces, and the time required to sum the terms in this trace
scales only as (NyNz)

2.
Finally, the conductanceG between the reservoirs is cal-

culated from Eq.~22! after solving the Dyson equation to
find G6(EF) for the final situation fromG06(EF) for the
initial situation. The respective resistance between the reser-
voirs is then found fromR51/G.
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IV. TEST CALCULATIONS

This section contains calculations aimed at showing the
general behavior of the results, establishing a procedure for
the configurational averaging, studying the transition from
the Ohmic to the localization regime, and testing the conver-
gence of the estimated bulk resistivity as a function of wire
cross section, for a particular case.

A. Electronic structure of the perfect wire

First, consider the 1s band structure of the infinite perfect
wire. In the absence of disorder each layer state, Eq.~9!,
gives rise to a subband of freely propagating wire states. The
subband arising from layer stateup& is centered on the energy
E(p), Eq. ~10!, and extends from E(p)22ugu to
E(p)12ugu. The subbands that cross the Fermi energyEF
specify the open conduction channels. Figure 2 shows plots
of the number of open channelsN as a function ofEF /ugu
for wires with cross section of 434 atoms, 737 atoms, and
10310 atoms. As the cross section increases,N increases in
magnitude, while the shape of the plots follows the 1s bulk
density of states for the infinite perfect simple cubic
crystal.25 The 1s band for the infinite crystal with zero on-
site energy extends from26ugu to16ugu. The steps on each
plot are the same as the quantization steps in the ballistic
conductance.

B. Configurational averaging

Now we turn to disordered wires. In this subsection we
define a procedure for the configurational averaging of the
results. We consider on-site disorder. The hopping integrals
in the sample are the same as in the perfect leads (g). The
on-site energy on every sample atom is set randomly to
1Ea or 2Ea , producing a 50-50 random substitutional al-
loy. The wire cross section is 838 atoms.Ea is set to
1.1ugu. The Fermi energy is set toEF520.1ugu, close to the
middle of the band. The number of open channels in the
perfect wire isN543.

Before carrying out an actual calculation, let us estimate
the mean free pathl , the Ohmic slopesO , and the localiza-
tion lengthj in the disordered sample. Treating each sample
atom as an independent weak isotropic scatterer of scattering
potentialV56Ea , we have

1

l
;
2p

\v
V2ra~EF!, ~23!

where ra is the density of states per atom in the perfect
crystal andv is some average of the group velocity over the
Fermi surface. With a bandwidth of 12ugu, and in view of the
roughly triangular shape of the band, we put
ra(EF);1/(6ugu). In the perfect crystal, the band energy is
given by E(k)522ugu(coskxa1coskya1coskza), and the
group velocity isv5(2ugua/\)(sinkxa,sinkya,sinkza). To es-
timatev we take the pointkxa5kya5kza5p/2 on the sur-
face E(k)50, close to our EF520.1ugu. This gives
l;6A3g2a/(pEa

2);3a. With N543, the relation
sO;r /Nl gives sO;0.009r /a. The localization length can
be estimated asj;Nl;100a. Therefore, roughly, the calcu-
lated resistanceR between the reservoirs should start from
R05r /N5r /43, then rise linearly with the above slope,
reaching a value of about 1r for sample lengthL5100a,
when deviations from linearity should become apparent. Be-
yond that point, it is the quantity ln(R/r ) that may be ex-
pected to increase linearly withL.

Now an impure wire is grown up to a length of 350a, and
the resistance is calculated at every length on the way. Figure
3 shows plots ofR/r versusL ~lower panel! and ln(R/r )
versusL ~upper panel!. The curves correspond roughly to the
above estimates, but exhibit significant fluctuations, showing
the need for averaging over different realizations of the dis-
order.

Due to interference, quantum-mechanically individual
elastic~phase-coherent! resistors do not generally add in se-
ries, and the conductance and the resistance, as a function of
the length of a disordered conductor, are not self-averaging
quantities.26 In the Ohmic regime, disordered elastic conduc-

FIG. 2. The number of open channelsN versus the Fermi energy
EF in units of ugu for perfect wires with cross section of 434 atoms
~bottom plot!, 737 atoms~middle plot!, and 10310 atoms~top
plot!.

FIG. 3. R in units of r5h/2e2 ~lower panel! and ln(R/r ) ~upper
panel! versus sample lengthL in units ofa. The wire cross section
is 838 atoms andEF520.1ugu with N543. The sample has ran-
dom on-site energies of61.1ugu.
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tors are expected to show universal conductance fluctuations
of root mean square valueDG5AVarG, where Var stands
for variance, of the order ofg52e2/h.26 Thus the relative
fluctuation DG/^G& increases with length. Upon passage
into the localization regime,DG decreases, whileDG/^G&
diverges with length.26

Now the calculation on the 838 atom wire is repeated
with the same parameters as before. This time, however, for
each sample length,G is calculated for 150 different con-
figurations~realizations of the disorder!. The specific imple-
mentation of the calculation is the following. As an indi-
vidual sample is grown fromL51a to L5350a, G is
calculated at every length on the way, and the values are
stored. This is done for 150 different samples, producing sets
of 150 conductance values for each length.

Figure 4 shows plots ofDG/g ~lower panel! and
DG/^G& ~upper panel! versus L. The plot of DG for
Ea51.1ugu shows a sharp peak at aboutL53a, close to the
estimated mean free path. Peaks inDG aroundL5 l have
been seen in many test calculations, in which the mean free
path l is smaller than the transverse dimension of the wire
d. For l.d, on the other hand, the peaks are generally sup-
pressed. An example may be seen in Fig. 4~lower panel!,
which also shows data forEa50.4ugu with l;20a. Beyond
the peak,DG stays between 0.3g and 0.4g for a while, and,
beyondL'80a, it decreases smoothly into the localization
regime. At the same time, the relative fluctuationDG/^G&
increases steadily and rises above unity, at which stage^G&
is no longer a well-defined quantity.

Consider now the quantity ln(G/g). Figure 5 shows a plot
of D ln(G/g)/u^ ln(G/g)&u1/2 versusL. The origin of the di-
vergent peak at aroundL580a is instructive. AsL increases,
G decreases, and at some point it reaches a value of about

1g. At that point, ln(G/g) vanishes and
D ln(G/g)/u^ ln(G/g)&u1/2 becomes singular. But the point at
whichR;r andG;g is roughly the point of transition from
the Ohmic to the localization regime@at that point, for large
N, the termR0 in Eqs. ~3! and ~7! is negligible#. Thus the
divergence of D ln(G/g)/u^ ln(G/g)&u1/2, and hence of
D ln(G/g)/u^ ln(G/g)&u @the relative fluctuation of ln(G/g)],
gives a rough indication of the transition between the two
regimes. Figure 5 shows that beyond the peak
D ln(G/g)/u^ ln(G/g)&u1/2 stays approximately constant.
Therefore, in that region, the relative fluctuation of
ln(G/g), D ln(G/g)/u^ ln(G/g)&u, decreases as
1/u^ ln(G/g)&u1/2. Thus, in the localization regime, the quan-
tity ln(G/g), as a function of length, is a self-averaging
quantity in the usual sense.26 Estimates of the localization
length should be made from plots of̂ln(G/g)& or
^ ln(R/r )& versusL.

In the proposed calculations of the bulk resistivity, we
require the slope ofR versusL in the Ohmic regime. An
ambiguity now arises as to what quantity should be averaged
in order to obtain the respective plot. In particular, due to the
statistical spread of the calculated values, the quantities
^R&5^1/G& and 1/̂G& are generally different. However, in
the Ohmic regime the fractional difference between them is
typically very small. This may be seen visually in Fig. 6,
which shows plots of̂R&/r , g/^G&, and exp̂ln(R/r )&. Dif-
ferences become apparent forL.30a, with ^R&/r being the
highest,g/^G& the lowest, and exp̂ln(R/r )& in the middle.
However, there is no discernible difference in the region
R/r,1/4, which was taken earlier as the linear regime,
within a 1% tolerance level. In this region, the question of
what quantity should be averaged is academic.

In the resistivity calculations, theR versusL plots will be
prepared from the quantitŷR&, over that range of lengths for
which typicallyDR/^R&,0.1. The fractional difference be-
tween^R& and 1/̂G&, which is of order (DR/^R&)2, is then
less than 1%. This range typically corresponds toR values
less thanr /5. Both the slight ambiguity in the construction of

FIG. 4. DG in units of g52e2/h ~lower panel! andDG/^G&
~upper panel! versus sample lengthL in units ofa. The wire cross
section is 838 atoms andEF520.1ugu with N543. The sample
has random on-site energies of61.1ugu. The averaging is over 150
configurations for each sample length. The lower panel also shows
data for sample on-site energies of60.4ugu, with averaging over
100 configurations, for comparison.

FIG. 5. D ln(G/g)/u^ ln(G/g)&u1/2 versus sample lengthL in
units of a. The wire cross section is 838 atoms and
EF520.1ugu with N543. The sample has random on-site energies
of 61.1ugu. The averaging is over 150 configurations for each
sample length.
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the R versusL plots and the deviations from linearity are
systematic sources of uncertainty in the estimated Ohmic
slopes and corresponding resistivities. In view of the above
values, we take 1% as the level of accuracy in the estimate
of these quantities.

C. Transition from the Ohmic to the localization regime

Here we compare the results for the 838 atom wire with
relation~7!. Figure 7 shows a plot of̂R&/r together with the
line of best fit~lower panel!, and a plot of̂ ln(R/r )& ~upper
panel!, versusL. The y intercept on the resistance plot cor-

responds to the termR0 in Eqs. ~3! and ~7!. The resistance
plot givessO50.0101r /a. ThensO5r /Nl gives l;2.3a, in
rough agreement with the earlier estimate. From the slope of
the linear region of the logarithmic plot we obtain a localiza-
tion length of j561.7a. The constantc from Eq. ~5! be-
comes c5sOj/r'0.62. The functionR5rcsinh(L/j)1R0,
Eq. ~7!, is now compared with the actual results and with the
possible relationR5rc@exp(L/j)21#1R0, discussed in Sec.
II. The lower panel in Fig. 8 shows plots of̂R&/r ,
csinh(L/j)1R0 /r, andc@exp(L/j)21#1R0 /r versusL in the
Ohmic regime, and the upper panel shows plots of
exp̂ ln(R/r )&, csinh(L/j)1R0 /r, and c@exp(L/j)21#1R0 /r
versusL over a wider range of sample lengths, well into the
localization regime. The relationR5rcsinh(L/j)1R0 pro-
duces a good fit to the data over the entire range of sample
lengths. The formR5rc@exp(L/j)21#1R0, on the other
hand, has the right initial slope but quickly rises above the
calculated points.

Test calculations have been performed for a variety of
Fermi energies and wire cross sections, typically with
N.30, and with different amounts and types of disorder.
These include further cases of the present alloylike disorder,
the Anderson model with continuously distributed random
on-site energies, and intersite disorder. All calculations have
produced values ofc @Eq. ~5!# within several percent of
0.6. The relationR5rcsinh(L/j)1R0 consistently produces
good fits to the data.

D. Convergence of the estimated bulk resistivity

The ^R& versusL plot in Fig. 7 gave an Ohmic slope of
sO50.0101r /a. The cross section of the wire contains 64
atoms. With an area ofa2 per atom, the cross-sectional area
of the wire isA564a2, and the estimated bulk resistivity of
the alloy isr5AsO50.646ra. Now we vary the cross sec-

FIG. 6. Plots of̂ R&/r , g/^G&, and exp̂ln(R/r )& versus sample
lengthL in units of a. The wire cross section is 838 atoms and
EF520.1ugu with N543. The sample has random on-site energies
of 61.1ugu. The averaging is over 150 configurations for each
sample length.

FIG. 8. ^R&/r ~lower panel! and exp̂ln(R/r )& ~upper panel!,
together withcsinh(L/j)1R0 /r and c@exp(L/j)21#1R0 /r, versus
sample lengthL in units of a. From the data,j561.7a,
c50.0101361.7, R0 /r51/N51/43. The wire cross section is
838 atoms andEF520.1ugu. The sample has random on-site en-
ergies of61.1ugu. The averaging is over 150 configurations for
each sample length.

FIG. 7. Plots of^R&/r together with the line of best fit~lower
panel! and^ ln(R/r )& ~upper panel!, versus sample lengthL in units
of a. The wire cross section is 838 atoms andEF520.1ugu with
N543. The sample has random on-site energies of61.1ugu. The
averaging is over 150 configurations for each sample length.
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tion of the wire. Figure 9 shows plots of the calculated av-
erage resistance, multiplied by the number of atoms in the
wire cross section, for cross sections of 838, 939,
10310, 11311, 12312, 13313, and 14314 atoms. The
slopes give the respective estimates of the bulk resistivity, in
units of ra. The respective values are 0.646, 0.626, 0.634,
0.629, 0.630, 0.625, 0.625. As may be expected, the estimate
of r decreases as the wire cross section increases. It appears
to do so in an oscillatory fashion, even though the oscilla-
tions lie within the 1% level of accuracy assumed earlier. In
the present case, the convergence is very good. Due to the
finite-size effects, discussed in the Introduction, it should
generally become less so with increasingl /d. In principle,
one must studyr as a function ofA by some systematic
procedure, such as fitting the calculated values to some as-
ymptotic form, but such analysis will not be done here.

V. TWO EXAMPLES

This section gives two examples of the possible applica-
tions of the present calculations. The examples refer to the
cases of on-site disorder and interfacial roughness.

A. On-site disorder

This example is a comparison between two different
forms of on-site disorder—the alloylike disorder from the
preceding section and the Anderson model with continuously
distributed on-site energies. Equation~23! would suggest
that at least in the weak-scattering limit, for which it was
written, the mean free path and the conductivity are inversely
proportional to the mean square fluctuation of the on-site
energy. In the comparison, the on-site energies for the alloy
are set randomly to1Ea or 2Ea , while for the Anderson
model these energies are given a uniform continuous distri-
bution in the interval (2EaA3,1EaA3), with the same
mean square fluctuationEa

2 in each case. The hopping inte-
grals in the sample are the same as in the perfect leads.

The bulk resistivityr and the conductivitys51/r are
calculated for a range of values ofEa . The cross section of
the wire is 10310 atoms.EF is set to20.1ugu as before.
There areN564 open channels in the perfect wire. The av-
eraging is over 50 configurations for each sample length.

Figure 10 contains plots ofrasEa
2/g2 versusEa /ugu for

each type of on-site disorder. In the far left region, the two
curves converge, confirming the expectation that in the
weak-scattering limit the conductivity is determined by the
mean square fluctuation of the on-site energy, and is insen-
sitive to the precise form of the underlying distribution. For
the leftmost point on both plots, withEa /ugu50.5, the mean
free path estimate~from sO5r /Nl) is l;14a.

As Ea /ugu increases, the curve for the alloy descends be-
low that for the Anderson model. This observation can be
understood qualitatively as follows. The random alloy con-
sists of small globules of atoms of each kind. These globules
have sharp boundaries, giving rise to strong scattering. For
the Anderson model one can visualize analogous globules
but with softer boundaries, giving rise to weaker scattering.
The difference between the two plots shows that as the dis-
order increases, higher moments of the on-site energy distri-
bution become important.

The results show also that for the Anderson model the
relation sEa

25const is very robust. For this model,
rasEa

2/g2 stays constant to within about 2% over the entire
range ofEa /ugu. For the rightmost point, withEa /ugu51.9,
the mean free path estimate isl;a. Thus the above relation
remains valid to the point when the mean free path becomes
comparable to the lattice parameter and the usual picture of
metallic conduction begins to break down.

With a53310210 m, for the pointEa /ugu51.9 in the
Anderson model we finds'1640V21cm21. The rightmost
calculated point for the alloy hasEa /ugu51.5 with
l;1.1a. With a53310210m, at that point
s'1790 V21cm21. It would be very interesting to extend
both curves further to the right in order to look for the metal-
insulator transition,27 in which the electronic states in the

FIG. 9. Plots of ^R&/r , multiplied by the number of atoms
A/a2 in the wire cross section, for cross sections of 838, 939,
10310, 11311, 12312, 13313, and 14314 atoms, versus sample
lengthL in units of a. The sample has random on-site energies of
61.1ugu andEF520.1ugu. The averaging is over 150 configura-
tions for the 838 atom wire and over 50 configurations for the rest.

FIG. 10. Calculated values ofrasEa
2/g2 versusEa /ugu for a

random alloy with on-site energies of6Ea and for an Anderson
model with on-site energies continuously distributed in the interval
(231/2Ea ,131/2Ea). The wire cross section is 10310 atoms,
EF520.1ugu, andN564.
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bulk itself become localized and the bulk conductivity van-
ishes. Unfortunately, such extensions would be difficult at
present. The reason is that asl decreases, the localization
length in the wire shrinks accordingly, and it becomes nec-
essary to increase the wire cross section so as to obtain a
reasonable Ohmic regime. At present, this makes the calcu-
lations too slow.

B. Interfacial roughness

In recent years, the problem of transport in magnetic mul-
tilayers has received much attention in the context of the
giant magnetoresistance effect.15 One source of complexity
in this problem is the possible simultaneous presence of two
separate scattering mechanisms—one associated with the in-
terfaces between the layers, and one associated with bulk
defects in the layers. The present calculations make it pos-
sible to study such combinations of scattering mechanisms.
Here we consider the example of a metallic bilayer with
geometrical roughness at the interface between the two lay-
ers, without and with additional bulk impurities.

The geometry for the sample is shown in Fig. 11. The
sample hasNy510 atoms in the transversey direction and
Nz57 atoms in the transversez direction. The two layers of
the sample differ by their on-site energy, which is set to
21.5ugu in layer 1 and11.5ugu in layer 2. The on-site en-
ergy in the leads is zero, as before, and all hopping integrals
are equal tog. The interface between the layers has steps in
the longitudinalx direction. The height of each step is one
atom. The thickness of layer 1~layer 2! changes between
three atoms~four atoms! and four atoms~three atoms! from
step to step. The lengthLs5na, wheren is an integer, of the
steps is random. The probability distribution forn is given
by P(n)5q(12q)n21, 0,q,1, with an average step
length of ^Ls&5a/q.

In the present case, the electronic structure of the sample
is intrinsically different from that of the perfect leads, even
in the absence of any disorder. This difference gives rise to
scattering at the actual lead-sample boundaries and to a cor-
responding contribution to the resistance between the reser-
voirs. An example is shown in Fig. 12. The figure gives a
plot of ^R&/r versus sample length for the caseq50.4,
^Ls&52.5a. The Fermi energy isEF520.1ugu and the av-

eraging is over 100 configurations per length. The number of
open channels in the leads isN546. Extrapolation of the
plot toL50 gives ay intercept that exceeds considerably the
valueR0 /r51/4650.022 for the resistance between the res-
ervoirs in the absence of the sample. The extra resistance is
due to the scattering at the lead-sample boundaries. This ad-
ditive resistance is immaterial if one is interested in the slope
of the plot but could be very important if one were perform-
ing calculations for a fixed sample length.

The quality of the plot in Fig. 12 is poorer than before. In
the roughness calculations without bulk impurities, it was
found that for a given̂R& the calculated resistances have a
bigger scatter than in the earlier examples, with correspond-
ingly less accurate estimates of the Ohmic slopes. The addi-
tion of bulk impurities greatly improves the plots.

The calculation is now done for different values of^Ls&,
with and without bulk impurities. The impurity atoms have a
concentration of 5% and an on-site energy of13ugu, and are
randomly distributed throughout the sample. Figure 13
shows the calculatedR2L Ohmic slopes as a function

FIG. 11. The geometry of the
sample for the interfacial rough-
ness calculations. The details are
explained in the main text.

FIG. 12. ^R&/r versus sample lengthL in units ofa for the case
of interfacial roughness withq50.4, ^Ls&52.5a. The two layers of
the bilayer have on-site energies of21.5ugu and11.5ugu, respec-
tively, andEF520.1ugu. The averaging is over 100 configurations
for each sample length.
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^Ls&, with and without the impurities. The two plots have an
approximately constant relative shift, suggesting that the two
scattering mechanisms effectively add in series. In another
sense, the impurity scattering partially masks the interfacial
scattering and decreases its relative contribution to the total
resistivity of the structure.

VI. CONCLUSIONS

The purpose of this paper is to present the calculations
and their application to the study of conduction in various
disordered materials. The method, which is also applicable to
one- and two-dimensional structures, can be implemented for
a wide range of types and amounts of disorder, while the
scattering by the disorder is always treated exactly. One pos-
sible use of these calculations is the evaluation of the bulk
resistivity of disordered materials. In view of the finite-size
effects discussed earlier, such resistivity calculations require
small electron wavelengths and small mean free paths. The
method would generally not be suitable for Fermi energies
near the band edges or for cases of weak scattering. The
deviations from Ohmic behavior, due to localization, limit
the range of sample lengths from which the respective
Ohmic slopes are obtained. In this respect, the sinh function
in Eqs.~7! and ~8!, with its long initial linear part, has been
most helpful. The justification for using these equations is
their empirically established success in reproducing the
shapes of the calculated curves. However, these equations
require independent analysis. In addition to the bulk resistiv-
ity, the calculations can be used to study the statistical be-
havior of the elastic conductances and resistances of the dis-
ordered wires. For example, the peaks inDG aroundL5 l
~Sec. IV! and their apparent dependence on the value of
l /d, which needs further investigation, could potentially be
used for classifying short constrictions and for distinguishing
between the ballistic and Ohmic regimes in them. There are
two further applications of the present calculations that are
currently under investigation. The first is a comparison of the

resistivities calculated by the present method with results
based on the Kubo-Greenwood formalism. The second appli-
cation is in the modeling of the giant magnetoresistance ef-
fect in magnetic multilayers.
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APPENDIX: EQUIVALENCE OF THE TWO
EXPRESSIONS FOR THE CONDUCTANCE

We wish to establish the equality of the right hand sides
of Eqs.~19! and~22! from the main text. First, we note that
since P11P251, we can also write Eq. ~21! as
I52(1/i\)(P1V2VP1). Then, using Eqs.~15! and ~20!,
we can reduce the problem to that of establishing the equal-
ity of the expressions

A5Tr@~G1
022G1

01!t†~G2
022G2

01!t#

1Tr@~G2
022G2

01!t†~G1
022G1

01!t# ~A1!

and

B5Tr@~G22G1!~P2V2VP2!~G
22G1!~P1V2VP1!#,

~A2!

where the argument (EF) in the Green functions and in the
t operators has been omitted for simplicity.

Consider the quantityB. Consider the expression inside
the trace. First, we expand this expression. Since the terms in
the expansion appear inside a trace, we may cyclically per-
mute the operators in these terms. Expanding, and perform-
ing some such permutations, for the expression inside the
trace in Eq.~A2! we get

VG2P2VG
2P12VG1P2VG

2P12VG2VP2G
2P1

1VG1VP2G
2P12VG2P2VG

1P11VG1P2VG
1P1

1VG2VP2G
1P12VG1VP2G

1P1

2P1G
2P2VG

2V1P1G
1P2VG

2V

1P1G
2VP2G

2V2P1G
1VP2G

2V

1P1G
2P2VG

1V2P1G
1P2VG

1V

2P1G
2VP2G

1V1P1G
1VP2G

1V. ~A3!

Next, we require the following relations. First, the Dyson
equation for the Green functions can be written in the two
equivalent forms G65G061G06VG6 and
G65G061G6VG06. The two together yield the relations

G15G011G01tG01, ~A4!

G25G021G02t†G02. ~A5!

They also yield the relations

G1V5G01t, ~A6!

FIG. 13. The calculatedR2L Ohmic slopes versus the average
length ^Ls& of the roughness steps, in units ofa, for the cases of
interfacial roughness without and with additional impurity scatter-
ing. The two layers of the bilayer have on-site energies of
21.5ugu and11.5ugu, respectively, andEF520.1ugu. The concen-
tration of the impurities is 5% and their on-site energy is13ugu.
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VG15tG01, ~A7!

G2V5G02t†, ~A8!

VG25t†G02. ~A9!

Finally, we have the relationsGj
065PjG

065G06Pj for
j51,2, and P1G

06P25P2G
06P150. Using all of the

above, together with the definition oft in Eq. ~17!, expres-
sion ~A3! becomes, after cyclic permutations in some indi-
vidual terms,

2G1
02tG2

01t†1G1
02tG2

02t†2G1
01t†G2

02t1G1
01t†G2

01t

1G1
01tG2

01t†2G1
01tG2

02t†1G1
02t†G2

02t2G1
02t†G2

01t.
~A10!

It is easy to check that the trace of the above expression is
the same as expressionA, Eq.~A1!. This completes the proof
of the equivalence of Eqs.~19! and~22! from the main text.
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