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Physics of noise in quantum-confined field-effect transistors
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We present a microscopic theory of nonequilibrium current noise in quantum-well-confined, two-
dimensional, metallic conduction bands, systems that are central to the operation of high-performance IlI-V
heterojunction transistors. Using a Boltzmann-Green-function approach, we give a unified description of both
transport and dynamic fluctuations for these structures and provide a fully microscopic analysis of Fukui’'s
noise constant for heterojunction devicES0163-182@6)00732-1

I. INTRODUCTION In Sec. Il we describe our theory of fluctuations in degen-
erate, two-dimensional electron gafs@®EGS and discuss
the role of quantum-confined screening, which distinguishes
HEMTSs from bulk devices. In Sec. Il we apply the theory to
a simple model 2DEG, illustrating core concepts. We then
give a microscopic interpretation of the device noise figure

High-electron-mobility transistors HEMTSs), built on
[lI-V heterostructures, are crucial to millimeter-wave tech-
nology. In their low noise, as well as in their gain and power
handling, HEMTs significantly outperform earlier field-

ffect designs. > L .
etiect design and the empirical Fukui noise coefficieritin Sec. IV we

The influence of microscopic structure on gain is well ) ; S '
understood in HEMTS,but its effect on noise properties is present numerical calculations of the noise figure, with the
’ focus on gquantum-confinement physics. Finally, in Sec. V

not. Much of the noise-modeling literature is based on adap , ) i
tations of classical circuit theory or its hydrodynamic W& Preview the extension of our method to multiband scat-

extensiond* and cannot address current fluctuations in quant€fing for more realistic device-noise modeling. We also

tum wells. For example, quantum-well confinement must afbriefly survey our semiclassical approach in the context of

fect thescaleof intrinsic carrier noise just as it affects intrin- duantum-kinetic theory.

sic gain® but this has not been analyzed before now.

Furthermore, most device models fail to treat transport and

noise in a mutually consistent way. In the theory of classical Boltzmann propagatbrsne
Here we propose a fully consistent, microscopic model ofcannot distinguish between Maxwellian distribution func-

noise in heterojunction devices. Carrier fluctuations are detions and their fluctuations; in Fermi systems, however, the

scribed by Green-function solutions to the Boltzmann equadistinction is crucial. In this section we give a prescription

tion, an approach developed for classical electrons in GaAfor evolving the nonequilibrium fluctuation structure in terms

by Stanton and Wilkirfs® (SW). In bulk, lightly doped 111V of Boltzmann-Green functions.

materials, the SW model successfully captures the character

of high-field transport and noise. A. Transport equation

Our contribution is twofold. First, we reformulate the \ye need the distribution functioh,(r,k,t) over electron
Boltzmann-Qreen—funct|on approach to describe nonequmb—spino, positionr, and wave vectok for timet. All the local
rium fluctuations in degenerate HEMT channels. Second, W‘Bne-body properties are traces over spin and wave vector, for

use this method to give an alternative explanation of nOiS%xample the 2DEG densitg (r,t) and the drift velocity
. . . . 3 s\!»
suppression in the source and drain access regions of tV r.1). Following SW® we make a simple relaxation-time

HEMT channel, with direct implications for the practical de- - .
. : ansatz for the collision term of the Boltzmann equation
sign of low-noise heterostructures.

For noise in the high-field gate region, we offer a simpler
alternative to the more formal quantum-kinetic
treatment$ ' and to stochastic simulatiod$:°At the same
time, we use microscopic arguments beyond the scope of f(r,k,t)—A[f(t)]fAr,k)

Il. THEORY

d d QqE 4

E_'—Vk.ﬁ— 7% f(l’,k,t)

semiempirical model$26:’ (K
Commonly, the HEMT access regions are believed to "
suppress overall noise through high mobility, reducing the f(r,k,t)—f(r k,t)¢
scale of the thermal fluctuations. By contrast, we demon- - oK) . (1)

strate that high mobility cannot account for noise reduction

in these low-field regions. Rather, the noise physics there is The first part of the collision term models inelastic pro-
dominated by two quantum effects: screening and degercesses, which will also dominate the noise spectrum. This
eracy. inelastic term is not manifestly particle conserving because
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the collision timer;,(k) is momentum dependent. Conserva-  The fluctuation of the equilibrium state is determined by
tion is restored via the scale factaf f(t)] multiplying the  the change irf®{k’) in response to a change in the Fermi
equilibrium functionf®¥and chosen to keem, invariant. The  level:
second collision term represents elastic scattering, which
tends to restore angular isotropy; the distortion is measured o ate{k)
against the angle averadér k,t)? in k space. Elastic colli- AfAk)=keT JoE

F
sions set up cross correlations betweenand y-directed
motions. Hence the contribution to the nonequilibrium fluctuation in

Here we specialize to intraband transport in the groundtateko, from the fluctuation in the underlying equilibrium
state of a uniform 2DEG. The space-gradient term is abseritatek’o’, is
from Eq. (1), and we define the constant field Bs- — £X.

The distributionf(k,t) then simulates a HEMT channel in AF2) (KK ) =Ryqr (kK )ATEN(K). (6)
the long-gate limit.

Note that our methodology is not inherently restricted toThe Boltzmann-Green function builds up the steady-state
this special case. In complete form it admits the same defluctuations in much the same way that, in many-body per-
tailed effects of intervalley scatterih@nd inhomogeneit§  turbation theory, the ground-state fluctuations are generated
as the classical description, but now making these effectBy the particle-hole verteX.
applicable to metallic electrons. The fluctuation inf (k) is the trace ofAfffg,(k,k’):

Apart from Coulomb screening, included §ithrough the

®

random-phase approximatidhthe other major effect for in- 1 )
clusion is degeneracy. This dominates the equilibrium freéifg(k)E@f(z)(k,k’)V=52 AF?, (kK. (7)
energy in the density range of device physics 10 K'\o!
cm~?) and will also govern the nonequilibrium 2DEG. Just asafeqk)/dE-=AfYK)/kgT is the density-density
correlation function for a free-electron liquid in the static
B. Steady-state fluctuations long-wavelength limit! so Af(k)/kgT is its nonequilibrium

counterpart, calculated in our semiclassical approximation.
Fora degenerate system with a constant relaxation time, the
structure associated with Ed6) recovers the Johnson-
Nyquist noise temperature formula in the low-field lifsee
Sec. lll, Eqs(32) and(37)]. As expected, the anticorrelation
generated by Pauli exclusion is manifested in the fluctuations
since Afe9=feq1—f°9).
-~ _ (%9 The steady-state description is completed by specifying
f(k)=A[f]f1(k)= 7==f1(Kk), 2 : i eq)’
(f1) the equation for the auxiliary propagatéf ,(k)/5f¢qk’).
This is generated by varying both sides of Ef) while
where(f) is the sum over the wave vector and spin stateA[f,] is forced to unity:
space(f)=Q"13, ,f (k), whereQ) is the area of the ac-

2DEG behavior. The steady-state solutiorf (k)
=f(k,t—o) is proportional to a particular solution of Eq.
(2) with A[ f]=1; let this bef (k). Though not particle con-
serving in generalf, determines the physical solution

tive 2DEG. The conservation constraifff) = (f*%=n im- g€ 9 6f1,(k) 1 5f1,(k)
plies the more general relatioh] f]={(f/7,)/(f*Y ;,). This T ok 5F9K) (K | BF(K) ~ Q01 g
shows the direct link between the choice of inelastic collision %o n -
time and conservation. EYRTAY )

A density change in the underlying equilibrium state per- - ! ( 5felq”(k,) - 5ftg(k), )
turbs the Fermi-Dirac distribution. In turn, this will propa- Tel(K) of (k') 6 (k')
gate adiabatically to the nonequilibrium steady state. The ®)

nonequilibrium perturbation obeys an equation of motion de-
rivable from the structure of Eql), which describes the ) )
steady-state Boltzmann-Green function C. Dynamical fluctuations
We have characterized the steady-state fluctuations as the

St (k) adiabatic mapping of the spontaneous thermal fluctuations of
Ryor(K,K")= SR (3  the equilibrium system. These excursionsf @) out of the

o’ background steady state will propagate in momentum space

according to the time-dependent Ef). Equivalently, a dy-
namic fluctuationAf(k,t) referred to an arbitrary starting
time ty will be seen as having developed from the distribu-
tion of spontaneous nonequilibrium fluctuationst att, so

It is convenient to get the variation d&fwith respect to an
arbitrary change if®% from Eq.(2):

Rk k,):flo(k)+<feq> 5t 1,(k) that initially Af(k’,t;)=Af(k'). This leads to the retarded
oot (f)  (fo) | 8f53(k") Boltzmann-Green functiofwhere 6(t) is the unit step
fiq(k) | of4 5 ,(k,t)
- : 4 KK =t = Ot —t ) )
) <5f39(k,)>) 4) Ryor (KK ;t—tg)=0(t t°)5f,,f(k’,to)' 9
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Its equation of motion is obtained by taking variations onthe heterostructure and its quantum well. For our ground-
both sides of Eq(1): state-only model, let the energy Bg(ns). The equilibrium
distribution is

aR+q5aR—5t ty)Ryor(k,k';07 ! R

A P e O g k) = = (16)
Rim T+ expl[E(K) T Eg(ng) — Er 7Kg T}

- _
~ gy 0| = 5 (R=R). Assuming for simplicity thatE(k) is parabolic, the inte-
(Y 7in) 7el(K) ssuming for simplicity thatE(k) is parabolic, the inte

(10 grated 2DEG density is

with initial value R,y (K,K";0") = Q8 Sy ns=ng In(1+exp[Er—Eo(ns) 17k T}), 17

To determine the natural time evolution &f, define the

. . . , where n* =m*kgT/7#2 and m* is the effective electron
time-dependent density-density fluctuation

mass. We now obtain the total responsef@fandng to a
change in the Fermi level. The changenipwith respect to
Er alone, keepindg,, fixed, determines the free-electron den-
sity fluctuation

AF2 (KK ) =R yqr (KK AT, (K. (11)
Knowledge of Af®®)(k,k’;t) now provides every time-

dependent correlation of physical interest. In particular, the an
S

mean-square velocity fluctuation per electron is defined by Ang= kBTaE = n;‘(l—e*”s’”z). (18
F
1 _ _ I . .
Dij(t,€) =n—(<(vi—vi)(v,-'—vj)Af(z)(t))Y The complete derivative afs with respect toEg is then
S
11 - - énsz( _dE 5n3> ansz( AnSdEo)lAns
=722 2 [W—villve—v)] JE¢ dns OE/ JE¢ keT dns/ kT
nSQ Q k,o k’,a"
XAf (kK (120 Similarly, for fk),
where labels,j can be in either th& or they direction with 5f%94k) Ang dE,) ~1afqk)
respect to the driving field and the drift velocity is =( = —) — (20
OEg kgT dng JEE

This is the density-density correlation in the ground-state
subband at equilibriurf’
Let v, denote the first factor on the right-hand side of Eq.
The dynamical noise temperature is obtained from Eq(20) and define the total density-density fluctuation
(12) by standard manipulations. In the frequency domain, the

1
vi(5)5n_<vif>:

1 <1 JE(K) f>. 3

ns \A  dk;

velocity fluctuation i ~eoqn_y, OFK) .
Aotk =keT— 52— = 7:A 1K), (21)
Dij(,&)= fo dtcog wt)Dj;(t,). (14)  Figure 1 plots the density and fluctuation profiles for a typi-

cal In,Ga;_,As HEMT as a function of gate-bias voltage

Using parallel expressions of the current-current spectraknd shows that the renormalization of the density-density
density’> — one microscopic, the other macroscopic — thecorrelation can be large, up to a factor of 3 down on the
measurable noise temperatufg is obtained in terms of unscreened quantity. This comes from self-consistent screen-

D,, and the differential mobilitys = du, /€, both calculable N9 of the potential confining the 2DEG and is the Thomas-
within the formalism: Fermi response of the strongly quantized electrons, along the

axis of confinement. A perturbatiafsystematic or random
changes the value of the local density, displacing the local
(15) Fermi level; self-screening provides negative feedback,
which reduces the observable fluctuations. This is analogous
to space-charge-induced suppression of shot noise, familiar
from the physics of vacuum tub&g?
For noise behavior in heterostructures, the most important
implication of Eq.(21) is a rescaling of all expressions linear
in the unscreened fluctuatiahf® In particular, this alters
the quantitative content of Eq&), (7), (11), and(12) for the
D. Quantum confinement and screening nonequilibrium fluctuations.
In addition to depending on the Fermi level, the 2DEG The noise temperature is therefore suppressed below its
equilibrium distributionf¥k) also depends on the quantiza- bare counterpart, by the factgg [see Eq(15)]:
tion energy of its quantum-well subband. The specific func- _
tional form of the subband energies varies with the nature of T(0,8)=vT(w,5). (22

qf)xx(wag)
Thpxg(@,8) = You(@.8)

Since typical collision rates in the 2DEG channel will be of
the order of 102 s, much shorter than millimeter-wave time
scales (10 '), we will take the static limit of all dynami-
cal expressions.
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2 : , , induced suppression on all of these parameters, this under-
T= 300K lines the importance of developing a seamless approach to
n¥=0.61 x10"%cr 2 modeling the HEMT response. Both the stationary and tran-

L . sient aspects of device performance should be treated on an
~2 equal footing rather than be modeled separately and recon-

ciled only after the fact.

Ill. APPLICATIONS

2DEG density fluctuations

A. Constant mobility model

. We now examine the simplest example of our relaxation-
o 0.5 ) time formalism. We assume parabolic dispersion and a con-
V, (V) stant inelastic collision time, with no elastic scattering: let

7n=7 and 7y=%. The steady-state solution to Eq) is®

FIG. 1. Density fluctuations of a 2DEG in a pseudomorphic
quantum well, 15 nm wide, af=300 K (alloy composition
AI0_23(_56\)_77Asllnq_15GaO_83As/Ge_aAs). Dot-da;hed line, _density in di-_ f(k)=A ka dk)l(e—)\(kx—k;)fea( k'), (25)
mensionless units as a function of gate-bias potential; dashed line, —
fractional density fluctuation without screening suppression,
equivalent to the degeneracy factng/ng [carriers, strongly de-
generate forV,,<0, behave classically in the low-density limit wherex=7#/(q€7) andk;=k,. The drift velocity is calcu-
(large positive Vsg)]; full line, fractional fluctuation including lated by integrating overk:
screening suppression, equivalent to static electron susceptibility
times kgT; dots, classical fluctuations, with no degeneracy or
screening. Screening suppression axtly in the presence of self- _ h (k)
consistent bound states. UxTmr ne = ué. (26)

Screening suppression is also reminiscent of the noise cddere u=%4/(m*\&)=qr/m*.
efficient of metal-oxide-semiconductor transistors, which al- The fluctuationA f (k) follows directly:
ters the usual Nyquist expression for drift-diffusion noise in
the inversion layef®

In addition to confinement-induced screening, a different
kind of screening arises from short-range interactions within
the 2DEG, namely, exchange corrections to the random-
phase approximation and multiparticle scattering. These set
up the exchange-correlation hdfea zone of electron deple- Figures 2 — 4 shovi(k) andAf(k) for a range of situations.
tion around any given electron reducing the magnitude of thén Fig. 2 the equilibrium and steady-state distributions are
free-electron fluctuations. This screening mechanism ilotted at densityng=10'" cm 2 and temperaturd =300
dominant in the zero-temperature limit, but for the finite- K, in the classical limit. Sincé€*{(k) is Maxwellian, we have
temperature 2DEG its effect is minéat most 5%) accord- Af®Y{(k) =*{(k). Therefore Eqs(25) and(27) give identical
ing to estimates based on the static-local-field correcion. results, shown in Fig. ®) for a driving field

The considerations we have set out here fit the physicaf=5 kV cm™*. A high-momentum exponential(not
structure of a HEMT; the gate-control voltaygy, coupling Gaussiajtail develops inf(k) along the field direction.
to Af(k) by modulating the Fermi level, is equally effective ~ Figures 3 and 4, fons=10" cm™?, show strong degen-
in the differential channel-to-gate capacitar€g, and the ~eracy effects. There is a rich structuredfi*taround the 2D

transconductance,,. This is seen from the unscreened Fermi “surface”[Fig. 3(b)]. Figure 4 displays the distortion
expression?g of the distributions subject to the same field as Fifh)2

Because the volumess and Ang under each plot are con-
of Qq f) =13 served and much more weight goes into the high-momentum
CSQ:_Qq<5V_S(w)>:_kB_T<Af(w)> E(“’)’ tails, the peaks fall below their equilibrium values. For
’ g (23)  Af(k) [Fig. 4b)], the highly distorted, remnant Fermi sur-
face is visible.
OEg The dynamical expectation values needed for the noise
5\/39(“’) (24) depend on a set of steady-state integrals, which give

kx !
Af(k)=)\j dkle Mk kKIA feq k). (27)

= 9 Af
gm="— w(vx (w))

over lengthL, for the active gate region. The derivative
OEg/6Vsq comes from solving the standard Poisson problem (Afy=Ang, (29
in the Al,Ga,_,As donor layer above the quantum well.
The 2DEG fluctuations provide the fundamental basis for
Om, Csg, andT,. Together with the action of screening- (v Af)y=v,Ang, (29
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The hot-electron temperature is

(a)
\ m* 1—eNs/ng m*MZ
=— —0,)2Af) =T+ 2,
Te(6)= o n (v AN =T+ | = | = =€
0.015 A (32
\
m\‘\\ This otherwise standard refulnow bears the factor
£< 001k "“\\\\ Ang/ng due to 2DEG degeneracy. At large and/or small
‘ ’"'m\\\\ T, the factor produces a substantial reductiofTjn since it
/ ”""““\\\\\ is thermodynamically costly to scatter carriers out of the
0.005L ;‘f”’""m“\\\\\\ filled Fermi sea into the empty higher-energy states of the
' - ”,’m"m“\“\\\ band. This renders the 2DEG resistant to field-induced heat-
,;,,’:: :',,'.0.0.‘&\\\}‘\\\\\ 5 ing. In the low-density—high-temperature limit, the degen-
m,,l."o“\‘é‘\\\“:

Figure 5 shows the 2DEG hot-electron temperature calcu-
lated for ambient temperatufie=300 K. In addition to the
classical limit, we showl, for a pseudomorphic channel at
h density 162 cm™2 without the screening-induced suppres-

sion g, andT.= vy,T, for the same system. Degeneracy on
® its own reduces the value off, at fields above
\ 5 kV cm l. Screening, however, produces a surprising de-
crease in the hot-electron temperattigeat all values of the
driving field, including equilibrium.

For a quantum-well-confined HEMT channel at room
temperature, the system fluctuates as if it were an unconfined
free-electron fluid cooled almost to liquid-nitrogen tempera-
tures. This has a corresponding effect on the device noise
figure as we show below.

The dynamical Boltzmann-Green functiéhis computed
by defining its Laplace transform

y/ eracy factor goes to unity and the classical result holds.

0.015

ﬁoo,(k,k’;s)=J dte S'R,,/(k,k’;t) (33
0

and solving the transformed EL0). A set of dynamical
expectation values, analogous to but more complex than the
moments in Eqs(28)—(30) follows after some algebr®:

FIG. 2. Classical 2DEG distributionga) Equilibrium distribu- . (Af)
tion in momentum space, at a density*d@m~2, is its own fluc- ((AfP)(s))) =
tuation. The ambient temperature is 300 K, and mobility is 8000
cm? V~1s71 (Momenta are in thermal unis(b) Classical non-
equilibrium distribution in a driving field of 5 kv cm! along the

s (34

(Af)

x direction. <<Ufo(2)(S)>>'=<<U>’<Af(2)(5)>>,=U_xT, (35

f\2 (= dk{ (= dk| . T _ (v AT

y X ' ' ’
win=2{ ] [ 3] Frarw) e (U |
(36)
X fk,dkxkihe_wx_kx) These, with Egs(28)—(30) above, determine the diffusion
x constantD,,= 7(v3+ u2E2Ang/ng)/(1+ ?w?), where the
=vt2hns+ 2v,2Ang, (30 Laplace transform is continued into the frequency domain

sS=—iw.
H 2 _ : : ~
Wlth V= kBT/mf. Note thgt the first term on the rllght.-hand Finally, the noise temperature, on substitutinglgg, and
side of Eq.(30) is proportional to the 2DEG density itself, ; ;
. " ) w« in Eq. (15) and recalling Eq(32), is
not to its fluctuation. This guarantees that the Johnson-

Nyquist result is valid in the equilibrium limit. T(E)
Equations (28)—(30) lead to the mean-square velocity Tn(w,g)zﬁ, (37)
fluctuation trw

— ’ — s — The noise temperature clearly carries the pronounced effects
((vx=v)"Af)=vgnsto,ng(1—e ™). (31)  of screening and degeneracy.
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FIG. 4. (a) Degenerate nonequilibrium distribution afig) its
fluctuation, as in Fig. 3 but with a driving field of 5 kV ¢min
the x direction. A strongly asymmetric remnant Fermi-surface
structure is visible inAf. The relationAf=f(1—f) no longer
holds.

FIG. 3. (a) Fermi-Dirac distribution andb) its fluctuation, at a
density 18 cm™2; note the structure iM\f®¥ around the Fermi
surface. Degeneracy impligsf = f*{1— {9,

B. Microscopic structure of the device noise figure

Tke kinetic description of fluctuations in a quantum-
confined 2DEG correlates strongly with measured HEMTHereRg is the nominal access resistance of the 2DEG chan-
noise, which we now examine. Our treatment here is suffinel on the source sid&; is the resistance of the gate metal,
cient for a preliminary, semiquantitative demonstration ofandg,=1/(Rs+Ry) is the net nominal access conductance
core concepts. For more complete treatments of circuit{Ry is the access resistance on the drain side of the channel
theoretical aspects, we refer to the literathté?’ Most significantly, the minimum noise figure contaiRsy,

The device noise figure(w) is a measure of quality that which is the apparent Nyquist-noise resistance of the active

reflects the incremental loss of signal purity due to the mi-2DEG under the gate, defined in terms of E@2) and(37):
croscopic fluctuation processes in the chafti@lit is de-

fined as the quotient of the input signal-to-noise ratio and its _
corresponding output ratio. Since the 2DEG always adds to Ren=
the amplified input noise, the noise figure always exceeds

unity, but it can be minimized by tuning the external input
impedance, then taking the foffn

Sl

Ren, (39

whereR,, is the conventional resistance of the active region.
R.,, bears the explicit signature not only of the dynamic

C high-field current fluctuations in the active region but also of
Foin(@)=1+29/g.(R+R,+R.y). (39  duantum-confined suppression. It is the nexus between our
Om ¢ formalism and observable noise behavior.
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FIG. 5. Hot-electron temperatufg, for 2DEG in In15Ga .65 FIG. 6. Effect of microstructure on HEMT noise performance:
quantum well, for ambient temperature 300 K and mobility yinimum noise figure as a function of gate-modulated channel den-

AR . L .
8000 cnf Vv tsh Tﬁh; energy gain from the electric f|e!d domi- ity See the text for device specifications. Dots, classical 2DEG,
nates beyond 5 kV cnt. Dots, low-density classical result; dashes, gquivalent to a bulk FET with the same doping-thickness product;

Te_ ?‘t d(_ensity 18 cm 2, without screer_ling suppressidat high g, line, GaAs quantum-well HEMT; dot-dashed line, ,[Ba
driving fields, degeneracy reduces heating rate below clagsicthl 1_As quantum-well HEMT. The marked lowering of the noise

line, Te=vsTe including screening suppression. Equilibrium fluc- figyre for heterostructures is caused by screening-induced suppres-
tuations are at 110 K, not 300 K. Thus quantum confinement ajon, of fluctuations in the channels’ source and drain regions.

room temperature reduces noise as effectively as cryogenic cooling.

The expression foF ,,;, can be brought into conventional

=100 gions, much af.;, is changed in the active regidsee Eq.
form by rewriting it as T

(39)]. Writing T,= T, where %) is evaluated for the
wC 2DEG in the access areas, the apparent Nyquist resistances
Frin(@)=1+K—/g(R+Ry+Rep), (400  becomeRg 4=7y{"R 4. Correspondingly, the net noise con-
Gm ductance becomeg,= y\¥g,. These quantities replade,
whereK is given by andg, in Eg. (38). In fact, suppression of the access noise,
an inherently quantum phenomenon, is numerically domi-

\/ga Rech T, nant inF, for some ranges of the HEMT operating point,
K=2 . 1 RO Ry R\ T 1 (41)  as we now show.
The structures of Eq$40) and(41) lead to two fundamental IV. RESULTS

points.

The first point is thak ? is essentially the noise parameter _In this section we analyze the microscopic effect on the
P met in standard field-effect transistdtET) modeling*®'’  HEMT noise figure, of adopting different epitaxial
The presence Oi:n gives P its microscopic definition, in stru_ctures’. To bring the model of Sec._ Il closer to _real
accord with the original FET analysis of Pucetal,'® ex- devices, we add external termsRgandR, in Eq. (38). This
cept that, in our model, transport and fluctuations are closelghanges both the steady-state current response and the
coupled by kinetic theory. access-region noise. For examplg, an extrinsic resistance

Equation(41) fixes the microscopic form of the empirical Rex IN Series with the access region changes its electrical
Fukui noise coefficient! Its detailed numerical behavior de- conductance tog,=1/(Rs+ Rdo+ Red, while its noise
pends(a) on how scattering is represented afml on how  conductance becomed,=[¥{”(Rs+Rg) + R/ (Rs+Ry
the channel's local density profile is modeled. Within the +Red”. In @ quantum-well-confined HEMT channg, is
constant-mobility approximation, it is not surprising théat always smaller than its FET analog, sing€~ 0.3 (see Fig.
as a function of current does not follow Fukui’'s empirical 1).
law; this should emerge from a fuller description of the col- We have calculateé ,;, as a function of active-channel
lision processes. However, the structure of E4) already  densityng, for fixed drain-to-source voltagéys=0.5 V, for
demonstrates that hot-electron dynamics and confinemeiite following structures(a) a classical 2DEGin essence a
must both appear in a unified, microscopic way. FET), (b) an Aly,Ga 77As/GaAs heterostructure, arid an

The second point is that the low-field access regionsAlg.dGay 7As/Ing 1:Gay gsAS/GaAs pseudomorphic hetero-
which, in a FET, are sources of Nyquist noise, behave vergtructure.
differently in a HEMT. We have established that the fluctua- Figure 6 showd- ., plotted in decibels for each device.
tions are strongly suppressed even at equilibrium; a mord&he donor depletion and heterojunction properties are those
detailed analysis of E438) (Ref. 28 shows that suppression of a triangular quantum wefl.For the pseudomorphic ex-
markedly decreases the noise resistance in the access mmple, the well is piecewise triangular with strain and
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effective-mass corrections. In every case the device param-
eters and electrical values are the same and typical of pro-
duction devices at room temperature:u=3500

cn? V™1 s™h R,=20 O andRy=5 (), source and drain
channel lengths each Lum, gate length 0.5um, and chan-

nel width 125 um. The frequency is 15 GHz. The gate-
region densityn, is bounded above by the access-region den-
sity, which is close to the maximum attainable in each
quantum-well structure. b

There is a pronounced density dependenc€ jp,. The
most striking feature is the lowering of the optintal,,, by 02 F -
40% — from 0.50 dB to 0.30 dB — in going from the
classical FET-like structure with no quantization to the full N T
HEMT structures. Our estimate of 40% is in remarkably 0 01 02 03 04 05
good agreement with the ratio of actual noise figures mea-
sured for comparable HEMTs and GaAs FETSs, at frequen-
cies~15 GHz!

The comparison between standard and pseudomporphic FIG. 7. Direct numerical evidence that screening suppression,
structures in Fig. 6 does not show a significant difference irhot high mobility, determines low HEMT noise. Full line, GaAs
optimal F,, but the wider valley and the minimum at heterostructure of Fig. 6 with the screening in the access regions
ng=0.14x 10'2 cm~2 (rather than an=0.10x 102 cm2 artificially remoyed(the optimaI.Fmin rises from O.SQ dB to 0.43
for GaAs manifest the higher current-carrying capacity of dB). Dots, clasglcal 2DEG of Fig. 6 with mobility artificially exag-
the In,Ga, _As well. gerated(the optimalF ,;, drops from 0.50 dB to 0.30 dB

Our results for fluctuations in quantum-confined 2DEG'’s
challenge the conventional view that low-noise figures in In connection with the evidence of Figs. 6 and 7, it is
HEMT,S are due to .e.”h?“C.Ed 2DEG mpbility in the aCCe.ssinteresting to consider the recent paper of i:engl.,3° |n
(emporatureb, where the. phonons. are frozen out and dfIcAINg that specially designed ion-mplanted FETS can
Al,Ga, As spacer layer reduces impurity scattering réach noise levels as low as in a pseudomorphic HEMT. We

greatly. But the dramatic drop in the noise figure, in movmgsuggest that their results are not inconsistent with our own
from FET to HEMTs in Fig. 6, is primary evidence that HEMT noise theory and that their low-noise figures may be

enhanced mobility cannot account for low HEMT noise, Cer_explalned by boundary-scattering-dominated behavior in the

. . = ultrathin FET channel, as in the theory of Bulashenko and
tainly not at room temperature where phonon scattering lim;

. . N t in a constricted 2DEG.
its u to about 8000 chV ! s~ in even the purest samples. Kochelap" for Nyquist noise

The key to HEMT noise performance must lie within the V. CONCLUSION
microstructure, namely, quantum confinement and the atten- '

dant suppression of current fluctuations. Figure 7 provides a \we have constructed a unified and calculable microscopic
specific demonstration of this. We show the GaAs-welltheory of nonequilibrium transport and current noise in two-
HEMT model of Fig. 6 with the suppression factef” i dimensional metallic conduction bands. Using a basic form
the access regions set artificially to unity; the optimumof this theory we have detailed the microscopics of the
Fmin rises from 0.30 dB to 0.43 dB. This is compared with HEMT noise figure. Quantization, not high mobility, is the
the classical FET of Fig. 6, whose mobility is now set to theinhibitor of fluctuations and the main reason for low noise.
unrealistically high room-temperature value of 80002cm This interpretation of HEMT behavior presents a quite dif-
V~1s 1 its optimumF;, goes down from 0.50 dB to 0.30 ferent perspective on low-noise design, stressing the domi-
dB. nance of quantum-well confinement.

In other words, at room temperature a very ordinary GaAs Unlike the quasiempirical device models, our theory relies
HEMT is as good as an extraordinagnd unmanufactur- on microphysical parameters rather than on circuit-based pa-
able metal-semiconductor FET. The clear reason for this isameters, which change from case to case. Our approach has
guantum-well confinement. This has strong implications forpredictive potential and is able to assess a wide range of
low-noise device engineering, suggesting that design emphéeterostructures for their impact on noise. The derivation of
sis should be at least as much on enhancing confinement, egnamical noise properties and transport coefficients from a

[dB]

min

ng [10"% em™?]

on enhancing mobility. single, microscopically conserving formalism is also a con-
We have also checked the effect of turning off suppresceptual advantage.
sion in the active region onlyf ., rises by just 0.05 dB, Our Boltzmann-Green-function method for metallic elec-

rather than by 0.13 dB as for the GaAs HEMT in Fig. 7. Thetrons, developed in analogy with the classical theory of Stan-
marked sensitivity of the noise figure to fluctuations in theton and Wilkins, shares with that model the capacity to de-
access regions, compared with the influence of the high-fieldcribe intervalley and real-space-transfer phenoménia.
region, fits the observation that HEMT noise is relatively lessfuture work, we plan to extend the present theory to
governed by high-field effects than is the case for a EET. nonuniform-channel calculations for realistic structures. To
This reflects the low density of hot electrons in relation to thecomplete our program we must describe and evaluate inter-
carrier-rich, strongly screened, access regions. valley carrier scattering, a dominant influence on high-field
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transport and fluctuatior/sStrongly inhomogeneous metallic omitting quantum effects that do not affect the physics at

channels are another topic for further investigafiomhile  scales longer than the Fermi wavelentfth.

the interaction between high electric and magnetic fields in  The recent papers ofpka and Lipavsky® show how the

the 2DEG, and the effect on semiclassical noise, is now beBoltzmann equation can be reformulated to retain more

ing explored. guantum-dynamical detail. Since at cryogenic temperatures
Stanton and Wilkins’s work suggests that device-noise other collective quantum properties, besides degeneracy, can

data could be a sensitive diagnostic tool for nonequilibriummanifest themselve¥,they should be assessed at nanometer

2DEG dynamics. This reinforces our opinion that thescales.

Boltzmann-Green-function approach provides a deeper, yet

practical, strategy for device physics. In addition, the theory ACKNOWLEDGMENTS
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