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We present a microscopic theory of nonequilibrium current noise in quantum-well-confined, two-
dimensional, metallic conduction bands, systems that are central to the operation of high-performance III-V
heterojunction transistors. Using a Boltzmann-Green-function approach, we give a unified description of both
transport and dynamic fluctuations for these structures and provide a fully microscopic analysis of Fukui’s
noise constant for heterojunction devices.@S0163-1829~96!00732-1#

I. INTRODUCTION

High-electron-mobility transistors~HEMTs!, built on
III-V heterostructures, are crucial to millimeter-wave tech-
nology. In their low noise, as well as in their gain and power
handling, HEMTs significantly outperform earlier field-
effect designs.1

The influence of microscopic structure on gain is well
understood in HEMTs,2 but its effect on noise properties is
not. Much of the noise-modeling literature is based on adap-
tations of classical circuit theory or its hydrodynamic
extensions3,4 and cannot address current fluctuations in quan-
tum wells. For example, quantum-well confinement must af-
fect thescaleof intrinsic carrier noise just as it affects intrin-
sic gain,5 but this has not been analyzed before now.
Furthermore, most device models fail to treat transport and
noise in a mutually consistent way.

Here we propose a fully consistent, microscopic model of
noise in heterojunction devices. Carrier fluctuations are de-
scribed by Green-function solutions to the Boltzmann equa-
tion, an approach developed for classical electrons in GaAs
by Stanton and Wilkins6–8 ~SW!. In bulk, lightly doped III-V
materials, the SW model successfully captures the character
of high-field transport and noise.7

Our contribution is twofold. First, we reformulate the
Boltzmann-Green-function approach to describe nonequilib-
rium fluctuations in degenerate HEMT channels. Second, we
use this method to give an alternative explanation of noise
suppression in the source and drain access regions of the
HEMT channel, with direct implications for the practical de-
sign of low-noise heterostructures.

For noise in the high-field gate region, we offer a simpler
alternative to the more formal quantum-kinetic
treatments9–11and to stochastic simulations.12–15At the same
time, we use microscopic arguments beyond the scope of
semiempirical models.4,16,17

Commonly, the HEMT access regions are believed to
suppress overall noise through high mobility, reducing the
scale of the thermal fluctuations. By contrast, we demon-
strate that high mobility cannot account for noise reduction
in these low-field regions. Rather, the noise physics there is
dominated by two quantum effects: screening and degen-
eracy.

In Sec. II we describe our theory of fluctuations in degen-
erate, two-dimensional electron gases~2DEGs! and discuss
the role of quantum-confined screening, which distinguishes
HEMTs from bulk devices. In Sec. III we apply the theory to
a simple model 2DEG, illustrating core concepts. We then
give a microscopic interpretation of the device noise figure
and the empirical Fukui noise coefficient.17 In Sec. IV we
present numerical calculations of the noise figure, with the
focus on quantum-confinement physics. Finally, in Sec. V
we preview the extension of our method to multiband scat-
tering for more realistic device-noise modeling. We also
briefly survey our semiclassical approach in the context of
quantum-kinetic theory.

II. THEORY

In the theory of classical Boltzmann propagators,6 one
cannot distinguish between Maxwellian distribution func-
tions and their fluctuations; in Fermi systems, however, the
distinction is crucial. In this section we give a prescription
for evolving the nonequilibrium fluctuation structure in terms
of Boltzmann-Green functions.

A. Transport equation

We need the distribution functionf s(r ,k,t) over electron
spins, positionr , and wave vectork for time t. All the local
one-body properties are traces over spin and wave vector, for
example, the 2DEG densityns(r ,t) and the drift velocity
v̄(r ,t). Following SW,6 we make a simple relaxation-time
ansatz for the collision term of the Boltzmann equation
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The first part of the collision term models inelastic pro-
cesses, which will also dominate the noise spectrum. This
inelastic term is not manifestly particle conserving because

PHYSICAL REVIEW B 15 AUGUST 1996-IIVOLUME 54, NUMBER 8

540163-1829/96/54~8!/5791~10!/$10.00 5791 © 1996 The American Physical Society



the collision timet in(k) is momentum dependent. Conserva-
tion is restored via the scale factorA@ f (t)# multiplying the
equilibrium functionf eqand chosen to keepns invariant. The
second collision term represents elastic scattering, which
tends to restore angular isotropy; the distortion is measured
against the angle averagef (r ,k,t)f in k space. Elastic colli-
sions set up cross correlations betweenx- and y-directed
motions.

Here we specialize to intraband transport in the ground
state of a uniform 2DEG. The space-gradient term is absent
from Eq. ~1!, and we define the constant field asE52Ex̂.
The distributionf (k,t) then simulates a HEMT channel in
the long-gate limit.

Note that our methodology is not inherently restricted to
this special case. In complete form it admits the same de-
tailed effects of intervalley scattering7 and inhomogeneity18

as the classical description, but now making these effects
applicable to metallic electrons.

Apart from Coulomb screening, included inE through the
random-phase approximation,19 the other major effect for in-
clusion is degeneracy. This dominates the equilibrium free
energy in the density range of device physics (;1012

cm22) and will also govern the nonequilibrium 2DEG.

B. Steady-state fluctuations

Calculation of noise requires knowledge of steady-state
2DEG behavior. The steady-state solutionf (k)
[ f (k,t→`) is proportional to a particular solution of Eq.
~1! with A@ f #51; let this bef 1(k). Though not particle con-
serving in general,f 1 determines the physical solution

f ~k!5A@ f # f 1~k!5
^ f eq&

^ f 1&
f 1~k!, ~2!

where ^ f & is the sum over the wave vector and spin state
space;̂ f &5V21(k,s f s(k), whereV is the area of the ac-
tive 2DEG. The conservation constraint^ f &5^ f eq&5ns im-
plies the more general relationA@ f #5^ f /t in&/^ f

eq/t in&. This
shows the direct link between the choice of inelastic collision
time and conservation.

A density change in the underlying equilibrium state per-
turbs the Fermi-Dirac distribution. In turn, this will propa-
gate adiabatically to the nonequilibrium steady state. The
nonequilibrium perturbation obeys an equation of motion de-
rivable from the structure of Eq.~1!, which describes the
steady-state Boltzmann-Green function

Rss8~k,k8![
d f s~k!
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. ~3!

It is convenient to get the variation off with respect to an
arbitrary change inf eq, from Eq. ~2!:
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The fluctuation of the equilibrium state is determined by
the change inf eq(k8) in response to a change in the Fermi
level:20

D f s
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] f s
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. ~5!

Hence the contribution to the nonequilibrium fluctuation in
stateks, from the fluctuation in the underlying equilibrium
statek8s8, is

D f ss8
~2!

~k,k8![Rss8~k,k8!D f s8
eq

~k8!. ~6!

The Boltzmann-Green function builds up the steady-state
fluctuations in much the same way that, in many-body per-
turbation theory, the ground-state fluctuations are generated
by the particle-hole vertex.21

The fluctuation inf s(k) is the trace ofD f ss8
(2) (k,k8):

D f s~k![^D f ~2!~k,k8!&85
1

V (
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Just as] f eq(k)/]EF5D f eq(k)/kBT is the density-density
correlation function for a free-electron liquid in the static
long-wavelength limit,21 soD f (k)/kBT is its nonequilibrium
counterpart, calculated in our semiclassical approximation.
For a degenerate system with a constant relaxation time, the
structure associated with Eq.~6! recovers the Johnson-
Nyquist noise temperature formula in the low-field limit@see
Sec. III, Eqs.~32! and~37!#. As expected, the anticorrelation
generated by Pauli exclusion is manifested in the fluctuations
sinceD f eq5 f eq(12 f eq).

The steady-state description is completed by specifying
the equation for the auxiliary propagatord f 1(k)/d f

eq(k8).
This is generated by varying both sides of Eq.~1! while
A@ f 1# is forced to unity:
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C. Dynamical fluctuations

We have characterized the steady-state fluctuations as the
adiabatic mapping of the spontaneous thermal fluctuations of
the equilibrium system. These excursions off (k) out of the
background steady state will propagate in momentum space
according to the time-dependent Eq.~1!. Equivalently, a dy-
namic fluctuationD f (k,t) referred to an arbitrary starting
time t0 will be seen as having developed from the distribu-
tion of spontaneous nonequilibrium fluctuations att5t0 so
that initially D f (k8,t0)5D f (k8). This leads to the retarded
Boltzmann-Green function@whereu(t) is the unit step#

Rss8~k,k8;t2t0![u~ t2t0
1!

d f s~k,t !

d f s8~k8,t0!
. ~9!

5792 54F. GREEN AND M. J. CHIVERS



Its equation of motion is obtained by taking variations on
both sides of Eq.~1!:
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with initial valueRss8(k,k8;01)5Vdkk8dss8.
To determine the natural time evolution ofD f , define the

time-dependent density-density fluctuation

D f ss8
~2!

~k,k8;t ![Rss8~k,k8;t !D f s8~k8!. ~11!

Knowledge of D f (2)(k,k8;t) now provides every time-
dependent correlation of physical interest. In particular, the
mean-square velocity fluctuation per electron is defined by

Di j ~ t,E! 5
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where labelsi , j can be in either thex or they direction with
respect to the driving field and the drift velocity is

v̄ i~E![
1

ns
^v i f &5

1

ns
K 1\ ]E~k!

]ki
f L . ~13!

The dynamical noise temperature is obtained from Eq.
~12! by standard manipulations. In the frequency domain, the
velocity fluctuation is22

D̂ i j ~v,E!5E
0

`

dtcos~vt !Di j ~ t,E!. ~14!

Using parallel expressions of the current-current spectral
density22 — one microscopic, the other macroscopic — the
measurable noise temperatureTn is obtained in terms of
D̂xx and the differential mobilitym5] v̄x /]E, both calculable
within the formalism:

Tn@xx#~v,E!5
qD̂xx~v,E!
kBm~v,E! . ~15!

Since typical collision rates in the 2DEG channel will be of
the order of 10213 s, much shorter than millimeter-wave time
scales (;10211 s!, we will take the static limit of all dynami-
cal expressions.

D. Quantum confinement and screening

In addition to depending on the Fermi level, the 2DEG
equilibrium distributionf eq(k) also depends on the quantiza-
tion energy of its quantum-well subband. The specific func-
tional form of the subband energies varies with the nature of

the heterostructure and its quantum well. For our ground-
state-only model, let the energy beE0(ns). The equilibrium
distribution is

f eq~k!5
1

11exp$@E~k!1E0~ns!2EF#/kBT%
. ~16!

Assuming for simplicity thatE(k) is parabolic, the inte-
grated 2DEG density is

ns5ns* ln„11exp$@EF2E0~ns!#/kBT%…, ~17!

where ns*5m* kBT/p\2 and m* is the effective electron
mass. We now obtain the total response off eq andns to a
change in the Fermi level. The change inns with respect to
EF alone, keepingE0 fixed, determines the free-electron den-
sity fluctuation

Dns5kBT
]ns
]EF

5ns* ~12e2ns /ns* !. ~18!

The complete derivative ofns with respect toEF is then

dns
dEF

5S 12
dE0
dns

dns
dEF

D ]ns
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dE0
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D 21Dns
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.
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Similarly, for f eq(k),

d f eq~k!

dEF
5S 11

Dns
kBT

dE0
dns

D 21 ] f eq~k!

]EF
. ~20!

This is the density-density correlation in the ground-state
subband at equilibrium.23

Let gs denote the first factor on the right-hand side of Eq.
~20! and define the total density-density fluctuation

D̃f eq~k![kBT
d f eq~k!

dEF
5gsD f eq~k!. ~21!

Figure 1 plots the density and fluctuation profiles for a typi-
cal InxGa12xAs HEMT as a function of gate-bias voltage
and shows that the renormalization of the density-density
correlation can be large, up to a factor of 3 down on the
unscreened quantity. This comes from self-consistent screen-
ing of the potential confining the 2DEG and is the Thomas-
Fermi response of the strongly quantized electrons, along the
axis of confinement. A perturbation~systematic or random!
changes the value of the local density, displacing the local
Fermi level; self-screening provides negative feedback,
which reduces the observable fluctuations. This is analogous
to space-charge-induced suppression of shot noise, familiar
from the physics of vacuum tubes.8,24

For noise behavior in heterostructures, the most important
implication of Eq.~21! is a rescaling of all expressions linear
in the unscreened fluctuationD f eq. In particular, this alters
the quantitative content of Eqs.~6!, ~7!, ~11!, and~12! for the
nonequilibrium fluctuations.

The noise temperature is therefore suppressed below its
bare counterpart, by the factorgs @see Eq.~15!#:

T̃n~v,E!5gsTn~v,E!. ~22!
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Screening suppression is also reminiscent of the noise co-
efficient of metal-oxide-semiconductor transistors, which al-
ters the usual Nyquist expression for drift-diffusion noise in
the inversion layer.25

In addition to confinement-induced screening, a different
kind of screening arises from short-range interactions within
the 2DEG, namely, exchange corrections to the random-
phase approximation and multiparticle scattering. These set
up the exchange-correlation hole,26 a zone of electron deple-
tion around any given electron reducing the magnitude of the
free-electron fluctuations. This screening mechanism is
dominant in the zero-temperature limit, but for the finite-
temperature 2DEG its effect is minor~at most 5%) accord-
ing to estimates based on the static-local-field correction.26

The considerations we have set out here fit the physical
structure of a HEMT; the gate-control voltageVsg , coupling
to D̃f (k) by modulating the Fermi level, is equally effective
in the differential channel-to-gate capacitanceCsg and the
transconductancegm . This is seen from the unscreened
expressions27

Csg52VqK d f

dVsg
~v!L 52

Vq

kBT
^D f ~v!&

dEF

dVsg
~v!,

~23!

gm52
Vq

LgkBT
^vxD f ~v!&

dEF

dVsg
~v! ~24!

over lengthLg for the active gate region. The derivative
dEF /dVsg comes from solving the standard Poisson problem
in the AlxGa12xAs donor layer above the quantum well.5

The 2DEG fluctuations provide the fundamental basis for
gm , Csg , and Tn . Together with the action of screening-

induced suppression on all of these parameters, this under-
lines the importance of developing a seamless approach to
modeling the HEMT response. Both the stationary and tran-
sient aspects of device performance should be treated on an
equal footing rather than be modeled separately and recon-
ciled only after the fact.

III. APPLICATIONS

A. Constant mobility model

We now examine the simplest example of our relaxation-
time formalism. We assume parabolic dispersion and a con-
stant inelastic collision time, with no elastic scattering: let
t in5t andtel5`. The steady-state solution to Eq.~1! is8

f ~k!5lE
2`

kx
dkx8e

2l~kx2kx8! f eq~k8!, ~25!

wherel5\/(qEt) andky85ky . The drift velocity is calcu-
lated by integratingf over k:

v̄ x5
\

m*
^kxf &
ns

5mE. ~26!

Herem5\/(m* lE)5qt/m* .
The fluctuationD f (k) follows directly:

D f ~k!5lE
2`

kx
dkx8e

2l~kx2kx8!D f eq~k8!. ~27!

Figures 2 – 4 showf (k) andD f (k) for a range of situations.
In Fig. 2 the equilibrium and steady-state distributions are
plotted at densityns51010 cm22 and temperatureT5300
K, in the classical limit. Sincef eq(k) is Maxwellian, we have
D f eq(k)5 f eq(k). Therefore Eqs.~25! and~27! give identical
results, shown in Fig. 2~b! for a driving field
E55 kV cm21. A high-momentum exponential~not
Gaussian! tail develops inf (k) along the field direction.

Figures 3 and 4, forns51012 cm22, show strong degen-
eracy effects. There is a rich structure inD f eq around the 2D
Fermi ‘‘surface’’ @Fig. 3~b!#. Figure 4 displays the distortion
of the distributions subject to the same field as Fig. 2~b!.
Because the volumesns andDns under each plot are con-
served and much more weight goes into the high-momentum
tails, the peaks fall below their equilibrium values. For
D f (k) @Fig. 4~b!#, the highly distorted, remnant Fermi sur-
face is visible.

The dynamical expectation values needed for the noise
depend on a set of steady-state integrals, which give

^D f &5Dns , ~28!

^vxD f &5 v̄xDns , ~29!

FIG. 1. Density fluctuations of a 2DEG in a pseudomorphic
quantum well, 15 nm wide, atT5300 K ~alloy composition
Al0.23Ga0.77As/In0.15Ga0.85As/GaAs). Dot-dashed line, density in di-
mensionless units as a function of gate-bias potential; dashed line,
fractional density fluctuation without screening suppression,
equivalent to the degeneracy factorDns /ns @carriers, strongly de-
generate forVsg,0, behave classically in the low-density limit
~large positiveVsg)#; full line, fractional fluctuation including
screening suppression, equivalent to static electron susceptibility
times kBT; dots, classical fluctuations, with no degeneracy or
screening. Screening suppression actsonly in the presence of self-
consistent bound states.
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^vx
2D f &52S \

m* D
2E

2`

` dky8

2p E
2`

` dkx8

2p
D f eq~k8!

3E
kx8

`

dkxkx
2le2l~kx2kx8!

5v th
2ns12v̄x

2Dns , ~30!

with v th
2[kBT/m* . Note that the first term on the right-hand

side of Eq.~30! is proportional to the 2DEG density itself,
not to its fluctuation. This guarantees that the Johnson-
Nyquist result is valid in the equilibrium limit.

Equations ~28!–~30! lead to the mean-square velocity
fluctuation

^~vx2 v̄x!
2D f &5v th

2ns1 v̄x
2ns* ~12e2ns /ns* !. ~31!

The hot-electron temperature is6

Te~E![
m*

kBns
^~vx2 v̄x!

2D f &5T1S 12e2ns /ns*

ns /ns*
D m*m2

kB
E2.

~32!

This otherwise standard result6 now bears the factor
Dns /ns due to 2DEG degeneracy. At largens and/or small
T, the factor produces a substantial reduction inTe , since it
is thermodynamically costly to scatter carriers out of the
filled Fermi sea into the empty higher-energy states of the
band. This renders the 2DEG resistant to field-induced heat-
ing. In the low-density–high-temperature limit, the degen-
eracy factor goes to unity and the classical result holds.

Figure 5 shows the 2DEG hot-electron temperature calcu-
lated for ambient temperatureT5300 K. In addition to the
classical limit, we showTe for a pseudomorphic channel at
density 1012 cm22 without the screening-induced suppres-
siongs , andT̃e5gsTe for the same system. Degeneracy on
its own reduces the value ofTe at fields above
5 kV cm21. Screening, however, produces a surprising de-
crease in the hot-electron temperatureT̃e at all values of the
driving field, including equilibrium.

For a quantum-well-confined HEMT channel at room
temperature, the system fluctuates as if it were an unconfined
free-electron fluid cooled almost to liquid-nitrogen tempera-
tures. This has a corresponding effect on the device noise
figure as we show below.

The dynamical Boltzmann-Green functionR is computed
by defining its Laplace transform

R̂ss8~k,k8;s!5E
0

`

dte2stRss8~k,k8;t ! ~33!

and solving the transformed Eq.~10!. A set of dynamical
expectation values, analogous to but more complex than the
moments in Eqs.~28!–~30! follows after some algebra:28

^^D f̂ ~2!~s!&&85
^D f &
s

, ~34!

^^vxD f̂ ~2!~s!&&85^^vx8D f̂ ~2!~s!&&85 v̄x
^D f &
s

, ~35!

^^vxvx8D f̂ ~2!~s!&&85
t

11ts S ^vx
2D f &1 v̄x

^vxD f &
ts D .

~36!

These, with Eqs.~28!–~30! above, determine the diffusion
constantD̂xx5t(v th

21m2E2Dns /ns)/(11t2v2), where the
Laplace transform is continued into the frequency domain
s52 iv.

Finally, the noise temperature, on substituting forD̂xx and
m in Eq. ~15! and recalling Eq.~32!, is

Tn~v,E!5
Te~E!

11t2v2 . ~37!

The noise temperature clearly carries the pronounced effects
of screening and degeneracy.

FIG. 2. Classical 2DEG distributions.~a! Equilibrium distribu-
tion in momentum space, at a density 1010 cm22, is its own fluc-
tuation. The ambient temperature is 300 K, and mobility is 8000
cm2 V21s21. ~Momenta are in thermal units.! ~b! Classical non-
equilibrium distribution in a driving field of 5 kV cm21 along the
x direction.
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B. Microscopic structure of the device noise figure

Tke kinetic description of fluctuations in a quantum-
confined 2DEG correlates strongly with measured HEMT
noise, which we now examine. Our treatment here is suffi-
cient for a preliminary, semiquantitative demonstration of
core concepts. For more complete treatments of circuit-
theoretical aspects, we refer to the literature.4,16,17

The device noise figureF(v) is a measure of quality that
reflects the incremental loss of signal purity due to the mi-
croscopic fluctuation processes in the channel.4,16 It is de-
fined as the quotient of the input signal-to-noise ratio and its
corresponding output ratio. Since the 2DEG always adds to
the amplified input noise, the noise figure always exceeds
unity, but it can be minimized by tuning the external input
impedance, then taking the form28

Fmin~v!5112
vCsg

gm
Aga~Rs1Rg1R̃ch!. ~38!

HereRs is the nominal access resistance of the 2DEG chan-
nel on the source side,Rg is the resistance of the gate metal,
andga51/(Rs1Rd) is the net nominal access conductance
(Rd is the access resistance on the drain side of the channel!.
Most significantly, the minimum noise figure containsR̃ch ,
which is the apparent Nyquist-noise resistance of the active
2DEG under the gate, defined in terms of Eqs.~22! and~37!:

R̃ch[
T̃n
T
Rch , ~39!

whereRch is the conventional resistance of the active region.

R̃ch bears the explicit signature not only of the dynamic
high-field current fluctuations in the active region but also of
quantum-confined suppression. It is the nexus between our
formalism and observable noise behavior.

FIG. 3. ~a! Fermi-Dirac distribution and~b! its fluctuation, at a
density 1012 cm22; note the structure inD f eq around the Fermi
surface. Degeneracy impliesD f eq5 f eq(12 f eq).

FIG. 4. ~a! Degenerate nonequilibrium distribution and~b! its
fluctuation, as in Fig. 3 but with a driving field of 5 kV cm21 in
the x direction. A strongly asymmetric remnant Fermi-surface
structure is visible inD f . The relationD f5 f (12 f ) no longer
holds.
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The expression forFmin can be brought into conventional
form by rewriting it as

Fmin~v!511K
vCsg

gm
Agm~Rs1Rg1Rch!, ~40!

whereK is given by

K52Aga
gm

F11
Rch

Rs1Rg1Rch
S T̃nT 21D G . ~41!

The structures of Eqs.~40! and~41! lead to two fundamental
points.

The first point is thatK2 is essentially the noise parameter
P met in standard field-effect transistor~FET! modeling.16,17

The presence ofT̃n gives P its microscopic definition, in
accord with the original FET analysis of Pucelet al.,16 ex-
cept that, in our model, transport and fluctuations are closely
coupled by kinetic theory.

Equation~41! fixes the microscopic form of the empirical
Fukui noise coefficient.17 Its detailed numerical behavior de-
pends~a! on how scattering is represented and~b! on how
the channel’s local density profile is modeled. Within the
constant-mobility approximation, it is not surprising thatK
as a function of current does not follow Fukui’s empirical
law; this should emerge from a fuller description of the col-
lision processes. However, the structure of Eq.~41! already
demonstrates that hot-electron dynamics and confinement
must both appear in a unified, microscopic way.

The second point is that the low-field access regions,
which, in a FET, are sources of Nyquist noise, behave very
differently in a HEMT. We have established that the fluctua-
tions are strongly suppressed even at equilibrium; a more
detailed analysis of Eq.~38! ~Ref. 28! shows that suppression
markedly decreases the noise resistance in the access re-

gions, much asRch is changed in the active region@see Eq.
~39!#. Writing T̃n5gs

(0)T, where gs
(0) is evaluated for the

2DEG in the access areas, the apparent Nyquist resistances
becomeR̃s,d5gs

(0)Rs,d . Correspondingly, the net noise con-
ductance becomesg̃a5gs

(0)ga . These quantities replaceRs
andga in Eq. ~38!. In fact, suppression of the access noise,
an inherently quantum phenomenon, is numerically domi-
nant inFmin for some ranges of the HEMT operating point,
as we now show.

IV. RESULTS

In this section we analyze the microscopic effect on the
HEMT noise figure, of adopting different epitaxial
structures.28 To bring the model of Sec. III closer to real
devices, we add external terms toRs andRd in Eq. ~38!. This
changes both the steady-state current response and the
access-region noise. For example, an extrinsic resistance
Rex in series with the access region changes its electrical
conductance to ga51/(Rs1Rd1Rex), while its noise
conductance becomesg̃a5@gs

(0)(Rs1Rd)1Rex#/(Rs1Rd

1Rex)
2. In a quantum-well-confined HEMT channel,g̃a is

always smaller than its FET analog, sincegs
(0);0.3 ~see Fig.

1!.
We have calculatedFmin as a function of active-channel

densityns , for fixed drain-to-source voltageVds50.5 V, for
the following structures:~a! a classical 2DEG~in essence a
FET!, ~b! an Al0.23Ga0.77As/GaAs heterostructure, and~c! an
Al0.23Ga0.77As/In0.15Ga0.85As/GaAs pseudomorphic hetero-
structure.

Figure 6 showsFmin plotted in decibels for each device.
The donor depletion and heterojunction properties are those
of a triangular quantum well.5 For the pseudomorphic ex-
ample, the well is piecewise triangular with strain and

FIG. 5. Hot-electron temperatureTe for 2DEG in In0.15Ga0.85
quantum well, for ambient temperature 300 K and mobility
8000 cm2 V21 s21. The energy gain from the electric field domi-
nates beyond 5 kV cm22. Dots, low-density classical result; dashes,
Te at density 1012 cm22, without screening suppression~at high
driving fields, degeneracy reduces heating rate below classical!; full
line, T̃e5gsTe including screening suppression. Equilibrium fluc-
tuations are at 110 K, not 300 K. Thus quantum confinement at
room temperature reduces noise as effectively as cryogenic cooling.

FIG. 6. Effect of microstructure on HEMT noise performance:
minimum noise figure as a function of gate-modulated channel den-
sity. See the text for device specifications. Dots, classical 2DEG,
equivalent to a bulk FET with the same doping-thickness product;
full line, GaAs quantum-well HEMT; dot-dashed line, InxGa

12xAs quantum-well HEMT. The marked lowering of the noise
figure for heterostructures is caused by screening-induced suppres-
sion of fluctuations in the channels’ source and drain regions.
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effective-mass corrections. In every case the device param-
eters and electrical values are the same and typical of pro-
duction devices at room temperature:m53500
cm2 V21 s21, Rex520 V andRg55 V, source and drain
channel lengths each 1mm, gate length 0.5mm, and chan-
nel width 125 mm. The frequency is 15 GHz. The gate-
region densityns is bounded above by the access-region den-
sity, which is close to the maximum attainable in each
quantum-well structure.

There is a pronounced density dependence inFmin . The
most striking feature is the lowering of the optimalF min by
40% — from 0.50 dB to 0.30 dB — in going from the
classical FET-like structure with no quantization to the full
HEMT structures. Our estimate of 40% is in remarkably
good agreement with the ratio of actual noise figures mea-
sured for comparable HEMTs and GaAs FETs, at frequen-
cies;15 GHz.1

The comparison between standard and pseudomporphic
structures in Fig. 6 does not show a significant difference in
optimal Fmin , but the wider valley and the minimum at
ns50.1431012 cm22 ~rather than atns50.1031012 cm22

for GaAs! manifest the higher current-carrying capacity of
the InxGa12xAs well.

Our results for fluctuations in quantum-confined 2DEG’s
challenge the conventional view that low-noise figures in
HEMT’s are due to enhanced 2DEG mobility in the access
regions. High mobility is indeed dominant at cryogenic
temperatures, where the phonons are frozen out and the
Al xGa12xAs spacer layer reduces impurity scattering
greatly. But the dramatic drop in the noise figure, in moving
from FET to HEMTs in Fig. 6, is primary evidence that
enhanced mobility cannot account for low HEMT noise, cer-
tainly not at room temperature where phonon scattering lim-
its m to about 8000 cm2 V21 s21 in even the purest samples.

The key to HEMT noise performance must lie within the
microstructure, namely, quantum confinement and the atten-
dant suppression of current fluctuations. Figure 7 provides a
specific demonstration of this. We show the GaAs-well
HEMT model of Fig. 6 with the suppression factorgs

(0) in
the access regions set artificially to unity; the optimum
Fmin rises from 0.30 dB to 0.43 dB. This is compared with
the classical FET of Fig. 6, whose mobility is now set to the
unrealistically high room-temperature value of 8000 cm2

V21 s21; its optimumFmin goes down from 0.50 dB to 0.30
dB.

In other words, at room temperature a very ordinary GaAs
HEMT is as good as an extraordinary~and unmanufactur-
able! metal-semiconductor FET. The clear reason for this is
quantum-well confinement. This has strong implications for
low-noise device engineering, suggesting that design empha-
sis should be at least as much on enhancing confinement, as
on enhancing mobility.

We have also checked the effect of turning off suppres-
sion in the active region only;Fmin rises by just 0.05 dB,
rather than by 0.13 dB as for the GaAs HEMT in Fig. 7. The
marked sensitivity of the noise figure to fluctuations in the
access regions, compared with the influence of the high-field
region, fits the observation that HEMT noise is relatively less
governed by high-field effects than is the case for a FET.29

This reflects the low density of hot electrons in relation to the
carrier-rich, strongly screened, access regions.

In connection with the evidence of Figs. 6 and 7, it is
interesting to consider the recent paper of Fenget al.,30 in-
dicating that specially designed ion-implanted FETs can
reach noise levels as low as in a pseudomorphic HEMT. We
suggest that their results are not inconsistent with our own
HEMT noise theory and that their low-noise figures may be
explained by boundary-scattering-dominated behavior in the
ultrathin FET channel, as in the theory of Bulashenko and
Kochelap31 for Nyquist noise in a constricted 2DEG.

V. CONCLUSION

We have constructed a unified and calculable microscopic
theory of nonequilibrium transport and current noise in two-
dimensional metallic conduction bands. Using a basic form
of this theory we have detailed the microscopics of the
HEMT noise figure. Quantization, not high mobility, is the
inhibitor of fluctuations and the main reason for low noise.
This interpretation of HEMT behavior presents a quite dif-
ferent perspective on low-noise design, stressing the domi-
nance of quantum-well confinement.

Unlike the quasiempirical device models, our theory relies
on microphysical parameters rather than on circuit-based pa-
rameters, which change from case to case. Our approach has
predictive potential and is able to assess a wide range of
heterostructures for their impact on noise. The derivation of
dynamical noise properties and transport coefficients from a
single, microscopically conserving formalism is also a con-
ceptual advantage.

Our Boltzmann-Green-function method for metallic elec-
trons, developed in analogy with the classical theory of Stan-
ton and Wilkins, shares with that model the capacity to de-
scribe intervalley and real-space-transfer phenomena.7,8 In
future work, we plan to extend the present theory to
nonuniform-channel calculations for realistic structures. To
complete our program we must describe and evaluate inter-
valley carrier scattering, a dominant influence on high-field

FIG. 7. Direct numerical evidence that screening suppression,
not high mobility, determines low HEMT noise. Full line, GaAs
heterostructure of Fig. 6 with the screening in the access regions
artificially removed~the optimalFmin rises from 0.30 dB to 0.43
dB!. Dots, classical 2DEG of Fig. 6 with mobility artificially exag-
gerated~the optimalFmin drops from 0.50 dB to 0.30 dB!.
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transport and fluctuations.7 Strongly inhomogeneous metallic
channels are another topic for further investigation,18 while
the interaction between high electric and magnetic fields in
the 2DEG, and the effect on semiclassical noise, is now be-
ing explored.

Stanton and Wilkins’s work7 suggests that device-noise
data could be a sensitive diagnostic tool for nonequilibrium
2DEG dynamics. This reinforces our opinion that the
Boltzmann-Green-function approach provides a deeper, yet
practical, strategy for device physics. In addition, the theory
of SW exhibits a smooth crossover from diffusion-dominated
transport and noise at long length scales, to ballistic, shot-
noise behavior at short scales.8 This property is relevant to
the trend towards nanometer-scale gate lithography.

We end with a glance at the status of our model within
quantum-kinetic theory. The Boltzmann equation has been
analyzed many times10,19,32as the classical limit of the equa-
tion of motion for the one-electron density matrix, which is
nonlocal at short scales. Our picture of the nonequilibrium
electron gas takes full account of degeneracy while continu-
ing to view theindividual carriers as free classical electrons,

omitting quantum effects that do not affect the physics at
scales longer than the Fermi wavelength.32

The recent papers of Sˇpička and Lipavsky´33 show how the
Boltzmann equation can be reformulated to retain more
quantum-dynamical detail. Since at cryogenic temperatures
other collective quantum properties, besides degeneracy, can
manifest themselves,34 they should be assessed at nanometer
scales.
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