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Exact critical properties of the multicomponent interacting fermion model with boundaries
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Exact critical properties of the one-dimensional 8L (nteracting fermion model with open boundaries are
studied by using the Bethe ansatz method. We derive the surface critical exponents of various correlation
functions using boundary conformal field theory. They are classified into two types, i.e., the exponents for the
chiral SUN) Tomonaga-Luttinger liquid and those related to the orthogonality catastrophe. We discuss a
possible application of the results to the photoemisgadnsorption in the edge state of the fractional quantum
Hall effect.[S0163-182@6)00232-9

I. INTRODUCTION II. MODEL AND BETHE ANSATZ SOLUTION

. : . We consider the interacting fermion model with $Y(
One-dimensional1D) quantum many-body systems with spin symmetry in open boundary conditions. The mutual

open boundaries have attracted much interest recently i\ 4 on interaction is of-function type, and boundary po-
connection with various problems in condensed matter phYSniials are introduced at both ends of the open chain. The
ics such as the Kondo problem, the tunneling in a quantumyamiitonian is thus given by

wire, and the edge state of the fractional quantum Hall effect
(FQHBE). A number of exactly solvable models with open
boundaries are known so far, e.g., theXZ Heisenberg

N Np 2
J
model? the interacting boson modéthe interacting fermion H=— E E
m=1i=1

P +2c > O(Xj m—Xj,n)

model? the Hubbard modéi,the 12 quantum model, etc. im i<pmn
Quantum impurity models such as the Kondo model and the @)
Anderson model also have a deep connection with the NN
boundary problerf’” All the above systems exhibit surface 3

L. . i — . + - >0),
critical behavior near the boundary. The corresponding sur- mzzl .21 [Y000im) + 18X m=L)] - (€>0)

face exponents, which should be different from the bulk
ones, can be obtained by using the finite-size scaling in _ _ o
boundary conformal field theofy. where N, is the number of electrons with spin indew

In this paper, we obtain the exact surface critical expo{=12,-...N) of SU(N) symmetry andL is the system
nents for the 1D SUY) interacting fermion model with open size. The last two terms represent boun_dary potentials with
boundaries by combining the Bethe ansatz solution an oupling constants, ) . We note that this type of S

: - ermion model withé-function interaction was first solved
boundary conformal field theory. By examining boundaryby Sutherland under the periodic boundary condition many

conditions qarefglly, we classify the surface gxponents intQ ears agd. We now wish to solve the above modd) for
t\No_categergs, i.e., the exponents for the chiral Tc_;monag he open (;,hain with boundary potentiats,, . This can be
Luttinger liquid an_d those related to the orthogonality catas- erformed by generalizing Gaudin’s megtriod developed for
fcrophe. 'I_'he latter is shown to be related to the x-ray proble he boson model with open boundary conditidrEne main

in 1D chiral systems. We apply our results to the edge stat&ge, js that one can treat the open boundary problem more
of the FQHE, and predict some expected behaviors for thgasily by introducing fictitiousnirror-image particleswith
photoemission(absorption singularity. Some of the results egpect to the boundary. We then diagonalize the Hamil-
obtained in this paper were previously conjectured in Ref. 7yqnjan (1) following standard Bethe ansatz techniques devel-

The plan of the paper is as follows. In Sec. Il, we intro- oped for periodic systenfsand end up with the basic alge-

duce the continuum fermion model with SV spin sym- braic equations for rapiditiels and A"
metry in open boundary conditions, and give the Bethe an- ! “

satz equations. In Sec. Ill, based on boundary conformal
field theory, we derive critical exponents for various corre- Y
lation functions from the finite-size spectrum computed by2|_k‘+¢0(k‘)+%(k_):2w|__ 2
the Bethe ansatz solution. In Sec. IV, we discuss a possible ) ! =]
application of the present results to the x-ray photoemission 1

(absorption problem in 1D chiral electron systems. A brief 2(kj+AgY)
summary is given in Sec. V.

_ A
Ztan_l M
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M)y 2(AP - AY~Y) with  My=0, M;==N_ N, (0<I<N-1), and
> | 2tan | ——F— AO=k., where ¢ (k)= —2tar 'k/y,, (p=0L) are the
B=1 c ] i p p i
phase shifts due to the boundary scattering. The quantum
J2AQ+ALTY) numbersl; andJ{ are positive integergor half-odd inte-
+2tan P gers which classify the elementary excitations. The total en-
ergy is simply given by
M ADO_AD
=270+ ¥ | 2tamy 2
B=1B+a N
My A D E=2> K. @)
+2tan71 M ) j:]' .
Mica J2A0 =A%) Note that the above equations contain terms with arguments
- 521 2tan P like A! +A' reflecting the introduction of image
partlcles2 |n contrast to the ordinary Bethe ansatz equa-
2(AY+AGY) tions for the periodic case. These equations for thé2pU
+2tant — | case were obtained first by WoynarovittDefining new
variablesA), = — A) we can rewrite the above equations
1<sIsN-1,a=12,... M|, 3 into more tractable form,
2(k; _A(l))
2LK; + o(K;) + @ (K;) =27l + 2tar ! ) 2 2ta [% , (5)
B=—My
M1 2AAD_AU-D) AD 2AM
> 2tant (Ao =Ap ) =2mJ,—2tan Y| ——|+2tan ! —a)
B=—M|_, c ¢
My W_AM] Mg 2AD AU+
+ > 2tan’! £ > otamy— 8 }
B=—M B==M+1 c
1<sIsN-2, (6)
MN-2 2(A(N—1)_A(N—2)) ANN-D
> 2tan’t < £ =277Ja—2tan‘1( = )
B=—My-_2 c c
MN-1 (N=1)_ A (N-1)
+ > 2tani—= £ . (7)
B=—Mn-1 c

After this transformation, the structure of the equations formally resembles that for the periodicT¢asdact makes the

following analysis much easier.

In the following, we will be concerned with the case of repulsive boundary potentigls:Q) for simplicity. All the
rapidities then turn out to be real in this case. Taking the thermodynamic limit, we now recast the algebraic e@@ations
into integral equations for the density functions of rapidities,

1 AD
2mp(k)=2++— [@o(k)+¢)u(k)] L_Z_E(C/Z) K f+d/\—2—z/2) kA2 YA, 8
1 2c 1 c Al 2c
MAD) = s () (T
2mot(AY)= L+ (A2 L (cl2)2+ (AM)? j“)d/\ 2 (A—A27 (A7)
0D c
’ (1-1) ’
+f o N ez am—anze A
+JA(*H1)dA’ > DAY, 1<I<N-2 ©)
AFD T (ef2)P+ (AD=A)? ’ '
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1 2c AN-1) 2¢c
N=1) A (N=1)y _ = B N-1)
27 MDAl ))_L—CZ+(A(I))2 JA(;’“ dA,c2+(A(N*1)—A’)20( (A7)
AP ¢ (N=2)( A1
+ fA(Nz) dA (0/2)2+(A(N72)_A1)20- (A ), (10)
where A= — A=k which is determined by the con- Ill. BOUNDARY CRITICAL PROPERTIES

dition In this section, we compute the energy spectrum for the

© oMt 1 finite system, and discuss low-energy critical properties us-

ko dkp(k)= —>——. (11)  ing boundary conformal field theory. We then obtain the sur-
_kgzc) L

face critical exponents of various correlation functions.

In the absence of magnetic fields, one can see that

A(l)= —~ AV +% (1<I<N-1), and the system recovers A. Finite-size spectrum and conformal properties
SU(N) spi.n symmetry. It is convenient to divide the density Applying a standard technique in the Bethe ansatz
functions into bulk and boundary parts, method!* we now obtain the finite-size energy spectrum

1 from the basic equations derived in the previous section. For
_ + this purpose, let us first express the total energy,(Ef, in
PUR)=pour(K) + (k) (12 terms of the dressed energies,

In zero magnetic field, the coupled integral equations for the

density functions can be reduced to simple onepfg and E K(©) 1 1
pp, from Egs.(8)—(10) by using Fourier transformation. The E:f o dK —+ m[%(k)ﬂof_(k)]
results are ke
1 c
_ (0)
K(© ze (K
2mpp(K)=2+ [ dK G(k—K )pyuK), (13 27L (el +k
] Niz AQ A 1 2c 1 c
c ® ” " =1 a0 27l 2+ A% 27l (c/2)?+A?
2 k=’k+’k——+f dxe "*f(x
mpp(K) = ¢o(K) + @ (k) (c/2)2+k2 . (x) , e 1 2e -
L _
Xe (A)"‘fA(N_l) dA27TL C2+A28 (A),

+fk(Fc()C)dk’G(k—k’)pb(k’), (14)
! (18)

where the integral kernel is
where the dressed energi€d are determined by the follow-

o . sinf (N—1)cx/2] ing integral equations:
— kxa—(c/2)|x|
G(k) fﬁwdxe' e SNF(NGX2) (15
WdA c
e Xl g (e Ncx (N—1)cx & @(k)=k?+ f“ — s M(A)
= h— @ 27 (c/2)+(k—A ’
F0 25ini‘(cx/2)sinf(ch/2)(cos  teosh— A® 2m (c/2)+(k=A)
e hC—X R sinh(cx/2) 16
costcx—cos 5 e SINF(NGX2) (16 D ADdA 2¢ e
& (A)__ A(l) 2 C2+(A(|)_AI)28 (A ) (19)
The total energy is given by N
E ke 2 a-1gdA’
—= c
L j_k(c)dkp(k)k . (17) + JA+ 5 I 28(Ifl)(A/)
F A-D 27 (cf2)?2+(AD—A")
Equations(13)—(17) determine the energy spectrum of the A0+DdA’ c
i i ie limi + I+ A7
model. It should be noticed that in the thermodynamic limit, JAuH) 2w (C/2)2+(A(|)—A’)28 (A1),

the bulk properties of the present model are the same as
those for the periodic modélwhich have already been stud-
ied in detail'’® To examine critical properties, we thus need
to study the finite-size spectrum, which will be done below. 1<sIsN-2, (20)
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_ =g (AD i — i
s(N‘”(A):—fA(*N DdA’ 2c UG componentsg_,J—_gu(A+) (0$|_,J$N 1) are determined
A(N-1) CZH(AN-T_77)2 by the following integral equations:

N fA(*N_Z)dA’ c A(j)dA c
AN-2) (c/2)2+(AMN-2—77)2 &oj(K) = 6;+ J'A<_1) o2 (c/2)?+(k—A) &(A), (26)
X eg(N"2(A"). (21)

. A(i)dA, 2c
The equivalence of the two expressidad) and(18) can be  &;(A") =6, —J o 27 G (AD_A")? &i(A")
easily checked by directly comparing them after formally A

solving the integral equations by the iteration scheme. The RET I c
i i . . + . . ‘ ,
2(:;;1;!3&18) is particularly useful to compute the excitation N 2 (c/2)2+(A<')—A’)2§'*11(A )

C

ergy. By directly applying the Euler-Maclaurin formula A0 27 (C12)2H (AD—AT)2 &iv1j(A7),

Let us start with the corrections to the ground state en- fA(lﬂ)d A

b
1 n (b+1/2)/IN 1 a—1/2 :
—> fl< ~J fO)dX+ 5o f’ ) 1sisN-2 (27)
ana (N) (a—1/2)IN (x) 24N N
[b+1/2 Nein . [N 2¢
- N }, (22 En—1j(A )= On-1 AN dA P+ (ANT_77)?
to Eq. (4), we easily find the finite-size corrections to the , AN
ground state energy, XEn-1j(AT)+ AN-2) dA
N—-1 c
_ TV | X g (A/)
AEy= DAY (23 (c12) %+ (AN-2— A 7)2EN-2] .

which is scaled by the velocitias (1=0,1, ... N—1) de- (28)

fined by In Eq. (25), the quantum numbers classifying elementary ex-

citations are defined as
1 aeM(A D)

270 0(AT) T GAD

V| (24)

AM“)sAMﬂ)—@(N—U, 1<I<N-1,
with o(@(A @)= p(k). By exploiting the finite-size scaling N
for open boundarie5’® we can see from Eq23) that the
Virasoro central charge for the charge secter Q) is given
by c=1. On the other hand, all the velocities of the spin . . . .
excitation take the same valub<(1,2, . .. N—1) in the ab- Hﬁ_rehn_b |s_the Eumber of particles localized at boundaries,
sence of magnetic fields, and thus the central charge for thahich IS given by
spin sector turns out to be=N—1, namely, the rank of
SU(N) Lie algebra. We shall study conformal properties in _}fk(;) dkon(K 30
more detail by examining the excitation spectrum below. nb—2 o Po(K), (30

Elementary excitations are classified into two types, i.e., F

those for primary fields and for descendant fields. Th ; ; Py P
former can be described by the excitations which change tr?%r:\(:(%){ih;feai?];g;?gr;ﬁiﬁlzgg&ha{?iiiﬁztzp2;?& vev)r:;feas
number of particles. They are computed by changing th?atiohns
cutoff parameters in(18) as AD—AD+AAD. On the We 'Can now read off conformal weights, from Eq.
other hand, the excitations for descendant fields are simplz,/zs), using finite-size scaling argumertfsSurface critical
given by the particle-hole type excitations with a fixed num- roperties near the boundary are determined by boundary
ber of particles. These manipulations are performed straigh scaling operatorg(t). The critical exponent for correlation

Iﬁg”:;g:%’étiirr‘]de‘;";;;d up with the finite-size spectrum forg,,tions of a boundary operatép(t) ¢(0))~ 1% is given

AM(O):ANh_nb. (29)

by
AE |1 - - Nt
—— = SAMT(EHTV(EHAM+ vn(l)} 25 "
L L|2 &V Z‘o T 9 x=2A,=AMTCAM+2 >, n), (31)
=0
with V= diago.vs, ... vn-1), where n{) are non-

negative integers denoting particle-hole excitations. Hase ~where theNx N matrix C;= (£ 1)T¢~ ! is given in the ab-
the NXN matrix of the so-called dressed challde/,vhose sence of magnetic fields,
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1 N-1 chiral Tomonaga-Luttinger liquid® which is quite strongly
NK + ~N 1 0 contrasted to ordinary periodic systems as will be seen in the
’ next section.
Ci= -1 2 - . (32 We wish to stress that the formul81) for conformal
. ‘ -1 dimensions possesses other important information for bound-

0 1 9 ary critical properties related to the orthogonality catastro-
phe. This is realized when one considers a problem in which

HereK ,= £5,(k{®))/N is the dimensionless coupling constant the boundary potentials are time dependérftor example,
for the charge sectdthe so-called Tomonaga-Luttinger pa- SUppose that the boundary potentials are suddenly turned on
ramete)—, Where the dressed Char@&(k) is determined by at to. Then the |0ng-tlme asymptOtIC behavior of correlation
the integral equation funCtiOhS(O(tz)O(tl)> fOI’ tl<t0<t2 Sh0u|d ShOW quite d|f'
ferent properties fronf34) and (35). In this case, the phase
K® , , shift caused by boundary potentials plays an essential role,
Eoolk) =1+ f_kmde(k—k )&ooK"). (33 and thenn, cannot be ignored by redefining the quantum
F numbers. Therefore, retaining, in (31), we get anomalous
Note that the system is now regardeddsral due to the exponents for various correlation functions. We show several
presence of open boundaries, and quantum numbers carryiegamples below.
currents do not appear in the conformal weig(8%). This (i) Single-particle Green’s functiod:cl(t)ca(0)>~1/t’7.
implies that an effective theory of the present model is giverpytting AN, =1, AM{P’=0 (1=<I<N-1), we have
by the holomorphic piece of conformal field theory. From
Egs.(31) and(32), we can see that critical properties of the
charge and spin sectors are respectively described by the
U(1) Gaussian model with the central charge 1 and the
level-1 SUN) Wess-Zumino-Witten model wito=N-—1. o . ; : ;

The expressio31) with (32) is one of the main results in 1(/';?% Denslté-detnsny C_?_”E.Iatlon A Lun_ct(;on(z(ar(])(g)g
this paper. We wish to emphasize that this formula is quite (N=2,C4Ca). axing h=™» h ™
general and is applicable to many other Sl(quantum (1=<I<N-1), we then obtain
models with boundaries, such as th& model, the Hubbard
model? etc.

N—1
(l—nb)2+ T (36)

=
NK,

ng
N (37

©

B. Surface critical exponents ) ] ) )
(iii) Spin-spin correlation function{S*(t)S?(0))~ 1/t*s

We are now ready to obtain the surface critical exponenthaZEMC:ryTiﬁCﬁ with T‘Z,g being a fundamental represen-

of various correlation functions. As is seen from Ezp), the . . N N
effects of boundary potentials are just to shift the quantunialthNgfl SUQ\J})]. Puting ~ ANy=0,  AM{)=0
number asAM® = AM® —(n /N)(N—1). One readily no- T ), we have
tices that such an effect of boundary potentials is equivalent

to that of twisting boundary conditions, which does not Qo= )
change the critical exponents in general. Thus when we de- ® NK,
termine the critical exponents fro31), we should discard

n, dependence idM by redefining the quantum number as  Thus the surface critical exponents depend not onl_y on the
AMD —(ng/N)(N—1)—AM®D. Therefore, for the long- Tomonaga-Luttinger parametsr, but also on the fractional
time behavior of the single-particle Green function, Numbem, of localized particles at the boundary. We will see
(c(t)c,(0))~1/t", we obtain its critical exponent by set- in the next section that these critical properties have a deep

(38

ting AN, =1, AMﬂ)zo (1=I=N-1), connection to the x-ray edge problem in 1D c.hin_al systems.
We can evaluate the above exponents easily in some lim-
1 N—1 iting cases. In the case of noninteracting electrozs @),
=Nkt N (349 we seeK,=1 from (33), and the critical exponenté34),
P

(35), (36), (37), and(38) are all reduced to those obtained
Furthermore, it is seen that the density-density correlatiompreviously for the single-impurity SU{) Anderson model
function and the spin-spin correlation function show the fol-with infinitely strong Coulomb interactioh.On the other
lowing asymptotic behavior, by takingN,=0, AM{’=0  hand, in the strong-coupling limit— + or low-density
(1<I<N-1), andn{’=1: limit k{®—0, it is easily seen from Eq33) thatK,=1/N,
and so the exponent of the single-particle Green’s function
Eqg. (34) is »=2—1/N. In general,K, may change in the
range[1,2— 1/N] according to the interaction strength and

. . . o _ the density of particles.
That is, this asymptotic behavior is determined by descen-

dants of the primary field witkA,=0, and hence the critical
exponent takes the canonic@htege) values. The anoma-
lous exponent appears only in the single-particle Green’'s To conclude this section, we compare the above results
function. These characteristic properties are inherent in theith bulk critical exponents under periodic boundary condi-

(O(1)O(0))~const+ t—lz (35

C. Comparison with the periodic model
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tions. The finite-size spectrum for the SW( model in peri-  1V. APPLICATION TO THE EDGE STATE OF THE FQHE

odic boundary conditions is given Hy In this section, we briefly discuss a possible application of

the results obtained in the previous section to the edge state

E 1 N N A a : : ;

S —AMT(EHTV(ETHAM+DTEVED of the FQHE as a typical example of 1D chiral fermion

L L4 systems-® We first note that if an appropriate value is chosen
N-1 for the Tomonaga-Luttinger parametdf,, the above

(39) SU(N) model with open boundaries can give an effective
theory for the edge state of a certain hierarchy in the FQHE.
Namely, the edge state of the fractional quantum Hall effect
with filling »=N/(Nm+1) (m ever can be modeled by the
above open system by choosikg asK ,= v/ N.” In fact, one

+ 2 o(nP+n)
1=0

where the newly introduced quantum numbers
D'=(Dg,D4,...,Dy_1), are given by

AMO L AM®D can easily check that by this choiceKf , the formulag34)
Dozf (' mod 1), (40) and(35) exactly reproduce the critical exponents for the chi-
ral liquids proposed for the edge statés.
AMO=D 4 AMI+D We shall focus on the x-ray photoemissitabsorption
D= > , (modl), I1=1,...N—1, problem in edge states. The Fermi-edge singularity problem

in 1D electron systems has attracted current intéfeét.In
(42) the edge state of the FQHE, electrons move only in one
with AM(N=0. These quantum numbers carry the large modirection and the backward scattering due to impurities is
mentum transfet? irrelevant, and hence the system can be treated as a chiral
Using finite-size scaling arguments for periodic systés, system. In experiments on the x-ray photoemission or ab-
we have the conformal dimensions of scaling operators, sorption, a core hole may be suddenly created, resulting in a
- problem with time-dependent boundary conditiéié That
1 T — M4 () is, for t<t, the boundary is free, and &tty the boundary
Ar+A_=7AMGAM+DC "D+ ;0 (N +n2). potential suddenly switches on. Then bulk electrons show
(42) critical low-energy behavior inherent in the orthogonality ca-

tastrophe.
From this formula, we obtain critical exponents. We list  In the x-ray absorption problem, one electron is excited in
several examples in the following. the final state. Thus putingAN,=1, AM{’=0
(i) The single-particle Green’s function: (1<I<N-1), we have the critical exponent for the x-ray
171 absorption in this system,
= | o +K, |+ —. (43
2NIK, 7 N 1 Ns\2 N-1
Inlghlg strong-coupling limit or low-density limit, this reduces aab:;< - —) + N (48)
to™

3 1 1 for the filling v=N/(Nm+ 1) with evenm, where§ is the
=57 N+ SN2 (44) phase shift caused by the localized electrons which screen
the core hole potential. On the other hand, the critical expo-
(i) The 2Nke-oscillating term kg is the Fermi momen- nent for the photoemission is obtained by takia§l,=0
tum) of the density-density correlation function: andAM{=0 in Eq.(31), because one hole carrying neither
charge nor spin is generated in the final state,

a;=2NK,. (45)
We havea.=2 in the strong-coupling limit or low-density N2/ 5)\2
limit. aph=7<;) (49
(i) The Zkg-oscillating term of the spin-spin correlation
function:
We expect that such anomalous exponents may be observed
K,+N-1 in x-ray photoemission or absorption experiments for the
as=2—— (460 edge state of the FQHE of filling=N/(Nm+ 1) with even

. m.
which reduces to

V. SUMMARY

1 1
a=2|1- =+

NRE (47)

We have studied exact boundary critical properties of the
in the strong-coupling limit or low-density limi SU(N) interacting fermion model with open boundaries by
Comparing these results with the previous ones, we cansing the Bethe ansatz solution and boundary conformal field
see that the bulk critical exponents are quite different frontheory. It has been shown that the surface exponents which
the boundary ones, though bulk thermodynamic propertiegovern the critical behavior near the boundary depend on
should exhibit the same behavior in both cases. two continuously varying quantities, i.e., the dimensionless
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