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Exact critical properties of the one-dimensional SU(N) interacting fermion model with open boundaries are
studied by using the Bethe ansatz method. We derive the surface critical exponents of various correlation
functions using boundary conformal field theory. They are classified into two types, i.e., the exponents for the
chiral SU(N) Tomonaga-Luttinger liquid and those related to the orthogonality catastrophe. We discuss a
possible application of the results to the photoemission~absorption! in the edge state of the fractional quantum
Hall effect. @S0163-1829~96!00232-9#

I. INTRODUCTION

One-dimensional~1D! quantum many-body systems with
open boundaries have attracted much interest recently in
connection with various problems in condensed matter phys-
ics such as the Kondo problem, the tunneling in a quantum
wire, and the edge state of the fractional quantum Hall effect
~FQHE!. A number of exactly solvable models with open
boundaries are known so far, e.g., theXXZ Heisenberg
model,1 the interacting boson model,2 the interacting fermion
model,3 the Hubbard model,4 the 1/r 2 quantum model,5 etc.
Quantum impurity models such as the Kondo model and the
Anderson model also have a deep connection with the
boundary problem.6,7 All the above systems exhibit surface
critical behavior near the boundary. The corresponding sur-
face exponents, which should be different from the bulk
ones, can be obtained by using the finite-size scaling in
boundary conformal field theory.8

In this paper, we obtain the exact surface critical expo-
nents for the 1D SU(N) interacting fermion model with open
boundaries by combining the Bethe ansatz solution and
boundary conformal field theory. By examining boundary
conditions carefully, we classify the surface exponents into
two categories, i.e., the exponents for the chiral Tomonaga-
Luttinger liquid and those related to the orthogonality catas-
trophe. The latter is shown to be related to the x-ray problem
in 1D chiral systems. We apply our results to the edge states
of the FQHE, and predict some expected behaviors for the
photoemission~absorption! singularity. Some of the results
obtained in this paper were previously conjectured in Ref. 7.

The plan of the paper is as follows. In Sec. II, we intro-
duce the continuum fermion model with SU(N) spin sym-
metry in open boundary conditions, and give the Bethe an-
satz equations. In Sec. III, based on boundary conformal
field theory, we derive critical exponents for various corre-
lation functions from the finite-size spectrum computed by
the Bethe ansatz solution. In Sec. IV, we discuss a possible
application of the present results to the x-ray photoemission
~absorption! problem in 1D chiral electron systems. A brief
summary is given in Sec. V.

II. MODEL AND BETHE ANSATZ SOLUTION

We consider the interacting fermion model with SU(N)
spin symmetry in open boundary conditions. The mutual
electron interaction is ofd-function type, and boundary po-
tentials are introduced at both ends of the open chain. The
Hamiltonian is thus given by

H52 (
m51

N

(
i51

Nm ]2

]xi ,m
2 12c (

i, j ,m,n
d~xi ,m2xj ,n!

~1!

2 (
m51

N

(
i51

Nm

@g0d~xi ,m!1gLd~xi ,m2L !# ~c.0!,

where Nm is the number of electrons with spin indexm
(51,2, . . . ,N) of SU(N) symmetry andL is the system
size. The last two terms represent boundary potentials with
coupling constantsg0(L) . We note that this type of SU(N)
fermion model withd-function interaction was first solved
by Sutherland under the periodic boundary condition many
years ago.9 We now wish to solve the above model~1! for
the open chain with boundary potentialsg0(L) . This can be
performed by generalizing Gaudin’s method developed for
the boson model with open boundary conditions.2 The main
idea is that one can treat the open boundary problem more
easily by introducing fictitiousmirror-image particleswith
respect to the boundary. We then diagonalize the Hamil-
tonian~1! following standard Bethe ansatz techniques devel-
oped for periodic systems,9 and end up with the basic alge-
braic equations for rapiditieskj andLa

( l )

2Lkj1w0~kj !1wL~kj !52pI j2 (
b51
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with MN[0, Ml5(a5 l11
N Na (0< l<N21), and

L j
(0)[kj , wherewp(k)522tan21k/gp , (p50,L) are the

phase shifts due to the boundary scattering. The quantum
numbersI j and Ja

( l ) are positive integers~or half-odd inte-
gers! which classify the elementary excitations. The total en-
ergy is simply given by

E5(
j51

N

kj
2 . ~4!

Note that the above equations contain terms with arguments
like La

l 1Lb
l , reflecting the introduction of image

particles,2–4 in contrast to the ordinary Bethe ansatz equa-
tions for the periodic case. These equations for the SU~2!
case were obtained first by Woynarovich.3 Defining new
variablesL2a

( l ) 52La
( l ) , we can rewrite the above equations

into more tractable form,
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After this transformation, the structure of the equations formally resembles that for the periodic case.9 This fact makes the
following analysis much easier.

In the following, we will be concerned with the case of repulsive boundary potentials (gp,0) for simplicity. All the
rapidities then turn out to be real in this case. Taking the thermodynamic limit, we now recast the algebraic equations~5!–~7!
into integral equations for the density functions of rapidities,
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(c) which is determined by the con-

dition

E
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~c!
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2M011

L
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In the absence of magnetic fields, one can see that
L1
( l )52L2

( l )→1` (1< l<N21), and the system recovers
SU(N) spin symmetry. It is convenient to divide the density
functions into bulk and boundary parts,

r~k![rbulk~k!1
1

L
rb~k!. ~12!

In zero magnetic field, the coupled integral equations for the
density functions can be reduced to simple ones forrbulk and
rb from Eqs.~8!–~10! by using Fourier transformation. The
results are
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where the integral kernel is

G~k!5E
2`

`

dxeikxe2~c/2!uxu sinh@~N21!cx/2#

sinh~Ncx/2!
, ~15!

f ~x!5
e2cuxu2e2~c/2!uxu

2sinh~cx/2!sinh~Ncx/2! S coshNcx2 1cosh
~N21!cx

2

2coshcx2cosh
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The total energy is given by

E

L
5E

2kF
~c!

kF
~c!

dkr~k!k2. ~17!

Equations~13!–~17! determine the energy spectrum of the
model. It should be noticed that in the thermodynamic limit,
the bulk properties of the present model are the same as
those for the periodic model,9 which have already been stud-
ied in detail.10 To examine critical properties, we thus need
to study the finite-size spectrum, which will be done below.

III. BOUNDARY CRITICAL PROPERTIES

In this section, we compute the energy spectrum for the
finite system, and discuss low-energy critical properties us-
ing boundary conformal field theory. We then obtain the sur-
face critical exponents of various correlation functions.

A. Finite-size spectrum and conformal properties

Applying a standard technique in the Bethe ansatz
method,11 we now obtain the finite-size energy spectrum
from the basic equations derived in the previous section. For
this purpose, let us first express the total energy, Eq.~17!, in
terms of the dressed energies,
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2c
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~18!

where the dressed energies« ( l ) are determined by the follow-
ing integral equations:
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1< l<N22, ~20!

5786 54SATOSHI FUJIMOTO AND NORIO KAWAKAMI



«~N21!~L!52E
L2

~N21!

L1
~N21!

dL8
2c

c21~L~N21!2L8!2
«~N21!~L8!

1E
L2

~N22!

L1
~N22!

dL8
c

~c/2!21~L~N22!2L8!2

3«~N22!~L8!. ~21!

The equivalence of the two expressions~17! and~18! can be
easily checked by directly comparing them after formally
solving the integral equations by the iteration scheme. The
formula ~18! is particularly useful to compute the excitation
spectrum.

Let us start with the corrections to the ground state en-
ergy. By directly applying the Euler-Maclaurin formula

1

N(
n5a

b

f S nND;E
~a21/2!/N

~b11/2!/N
f ~x!dx1

1

24N2 F f 8S a21/2

N D
2 f 8S b11/2

N D G , ~22!

to Eq. ~4!, we easily find the finite-size corrections to the
ground state energy,12

DEg52 (
l50

N21
pv l
24L

, ~23!

which is scaled by the velocitiesv l ( l50,1, . . . ,N21) de-
fined by

v l5
1

2ps~ l !~L1
~ l !!

]«~ l !~L1
~ l !!

]L~ l ! , ~24!

with s (0)(L (0))[r(k). By exploiting the finite-size scaling
for open boundaries,13,8 we can see from Eq.~23! that the
Virasoro central charge for the charge sector (l50) is given
by c51. On the other hand, all the velocities of the spin
excitation take the same value (l51,2, . . . ,N21) in the ab-
sence of magnetic fields, and thus the central charge for the
spin sector turns out to bec5N21, namely, the rank of
SU(N) Lie algebra. We shall study conformal properties in
more detail by examining the excitation spectrum below.

Elementary excitations are classified into two types, i.e.,
those for primary fields and for descendant fields. The
former can be described by the excitations which change the
number of particles. They are computed by changing the
cutoff parameters in~18! as L6

( l )→L6
( l )1DL6

( l ) . On the
other hand, the excitations for descendant fields are simply
given by the particle-hole type excitations with a fixed num-
ber of particles. These manipulations are performed straight-
forwardly, and we end up with the finite-size spectrum for
the excitation energy,

DE

L
5

p

L F12DMT~ ĵ21!TV~ ĵ21!DM1 (
l50

N21

v ln1
~ l !G , ~25!

with V5 diag(v0 ,v1 , . . . ,vN21), where n1
( l ) are non-

negative integers denoting particle-hole excitations. Hereĵ is
the N3N matrix of the so-called dressed charge,14 whose

componentsj i j[j i j (L1
( i )) (0< i , j<N21) are determined

by the following integral equations:
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In Eq. ~25!, the quantum numbers classifying elementary ex-
citations are defined as

DM ~ l ![DMh
~ l !2

nb
N

~N2 l !, 1< l<N21,

DM ~0!5DNh2nb . ~29!

Here nb is the number of particles localized at boundaries,
which is given by

nb5
1

2E2kF
~c!

kF
~c!

dkrb~k!, ~30!

andDNh is an integer specifying charge excitations, whereas
DMh

( l )’s are integers which label (N21) kinds of spin exci-
tations.

We can now read off conformal weightsDb from Eq.
~25!, using finite-size scaling arguments.15 Surface critical
properties near the boundary are determined by boundary
scaling operatorsf(t). The critical exponent for correlation
functions of a boundary operator^f(t)f(0)&;1/tx is given
by

x52Db5DMTCfDM12(
l50

N21

n1
~ l ! , ~31!

where theN3N matrix Cf5( ĵ21)Tĵ21 is given in the ab-
sence of magnetic fields,
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Cf5S 1

NKr
1
N21

N
21 0

21 2 �

� � 21

0 21 2

D . ~32!

HereKr[j00
2 (kF

(c))/N is the dimensionless coupling constant
for the charge sector~the so-called Tomonaga-Luttinger pa-
rameter!, where the dressed chargej00(k) is determined by
the integral equation

j00~k!511E
2kF

~c!

kF
~c!

dkG~k2k8!j00~k8!. ~33!

Note that the system is now regarded aschiral due to the
presence of open boundaries, and quantum numbers carrying
currents do not appear in the conformal weights~31!. This
implies that an effective theory of the present model is given
by the holomorphic piece of conformal field theory. From
Eqs.~31! and ~32!, we can see that critical properties of the
charge and spin sectors are respectively described by the
U~1! Gaussian model with the central chargec51 and the
level-1 SU(N) Wess-Zumino-Witten model withc5N21.

The expression~31! with ~32! is one of the main results in
this paper. We wish to emphasize that this formula is quite
general and is applicable to many other SU(N) quantum
models with boundaries, such as thet-J model, the Hubbard
model,4 etc.

B. Surface critical exponents

We are now ready to obtain the surface critical exponents
of various correlation functions. As is seen from Eq.~29!, the
effects of boundary potentials are just to shift the quantum
number asDM ( l )→DM ( l )2(nb /N)(N2 l ). One readily no-
tices that such an effect of boundary potentials is equivalent
to that of twisting boundary conditions, which does not
change the critical exponents in general. Thus when we de-
termine the critical exponents from~31!, we should discard
nb dependence inDM by redefining the quantum number as
DM ( l )2(nb /N)(N2 l )→DM ( l ). Therefore, for the long-
time behavior of the single-particle Green function,
^ca

†(t)ca(0)&;1/th, we obtain its critical exponent by set-
ting DNh51, DMh

( l )50 (1< l<N21),

h5
1

NKr
1
N21

N
. ~34!

Furthermore, it is seen that the density-density correlation
function and the spin-spin correlation function show the fol-
lowing asymptotic behavior, by takingDNh50, DMh

( l )50
(1< l<N21), andn1

( l )51:

^O~ t !O~0!&;const1
1

t2
. ~35!

That is, this asymptotic behavior is determined by descen-
dants of the primary field withDb50, and hence the critical
exponent takes the canonical~integer! values. The anoma-
lous exponent appears only in the single-particle Green’s
function. These characteristic properties are inherent in the

chiral Tomonaga-Luttinger liquid,16 which is quite strongly
contrasted to ordinary periodic systems as will be seen in the
next section.

We wish to stress that the formula~31! for conformal
dimensions possesses other important information for bound-
ary critical properties related to the orthogonality catastro-
phe. This is realized when one considers a problem in which
the boundary potentials are time dependent.17 For example,
suppose that the boundary potentials are suddenly turned on
at t0. Then the long-time asymptotic behavior of correlation
functions^O(t2)O(t1)& for t1!t0!t2 should show quite dif-
ferent properties from~34! and ~35!. In this case, the phase
shift caused by boundary potentials plays an essential role,
and thennb cannot be ignored by redefining the quantum
numbers. Therefore, retainingnb in ~31!, we get anomalous
exponents for various correlation functions. We show several
examples below.

~i! Single-particle Green’s function:̂ca
†(t)ca(0)&;1/th.

PuttingDNh51, DMh
( l )50 (1< l<N21), we have

h5
1

NKr
~12nb!

21
N21

N
. ~36!

~ii ! Density-density correlation function:̂ n(t)n(0)&
;1/tac (n5(aca

†ca). Taking DNh50, DMh
( l )50

(1< l<N21), we then obtain

ac5
nb
2

NKr
. ~37!

~iii ! Spin-spin correlation function:̂Sa(t)Sa(0)&;1/tas

@Sa5(a,bca
†tab

a cb with tab
a being a fundamental represen-

tation of SU(N)#. Putting DNh50, DMh
( l )50

(1< l<N21), we have

as5
nb
2

NKr
. ~38!

Thus the surface critical exponents depend not only on the
Tomonaga-Luttinger parameterKr but also on the fractional
numbernb of localized particles at the boundary. We will see
in the next section that these critical properties have a deep
connection to the x-ray edge problem in 1D chiral systems.

We can evaluate the above exponents easily in some lim-
iting cases. In the case of noninteracting electrons (c50),
we seeKr51 from ~33!, and the critical exponents~34!,
~35!, ~36!, ~37!, and ~38! are all reduced to those obtained
previously for the single-impurity SU(N) Anderson model
with infinitely strong Coulomb interaction.7 On the other
hand, in the strong-coupling limitc→1` or low-density
limit kF

(c)→0, it is easily seen from Eq.~33! that Kr51/N,
and so the exponent of the single-particle Green’s function
Eq. ~34! is h5221/N. In general,Kr may change in the
range@1,221/N# according to the interaction strength and
the density of particles.

C. Comparison with the periodic model

To conclude this section, we compare the above results
with bulk critical exponents under periodic boundary condi-
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tions. The finite-size spectrum for the SU(N) model in peri-
odic boundary conditions is given by14

E

L
5
2p

L S 14DMT~ ĵ21!TV~ ĵ21!DM1DTĵVĵTD

1 (
l50

N21

v l~n1
~ l !1n2

~ l !!D , ~39!

where the newly introduced quantum numbers
DT5(D0 ,D1 , . . . ,DN21), are given by

D05
DM ~0!1DM ~1!

2
~ mod 1!, ~40!

Dl5
DM ~ l21!1DM ~ l11!

2
, ~ mod 1!, l51, . . . ,N21,

~41!

with DM (N)[0. These quantum numbers carry the large mo-
mentum transfer.14

Using finite-size scaling arguments for periodic systems,15

we have the conformal dimensions of scaling operators,

D11D25
1

4
DMTCfDM1DTCf21D1 (

l50

N21

~n1
~ l !1n2

~ l !!.

~42!

From this formula, we obtain critical exponents. We list
several examples in the following.

~i! The single-particle Green’s function:

h5
1

2N S 1Kr
1KrD1

N21

N
. ~43!

In the strong-coupling limit or low-density limit, this reduces
to18,19

h5
3

2
2
1

N
1

1

2N2 . ~44!

~ii ! The 2NkF-oscillating term (kF is the Fermi momen-
tum! of the density-density correlation function:

ac52NKr . ~45!

We haveac52 in the strong-coupling limit or low-density
limit.

~iii ! The 2kF-oscillating term of the spin-spin correlation
function:

as52
Kr1N21

N
, ~46!

which reduces to

as52S 12
1

N
1

1

N2D , ~47!

in the strong-coupling limit or low-density limit.18

Comparing these results with the previous ones, we can
see that the bulk critical exponents are quite different from
the boundary ones, though bulk thermodynamic properties
should exhibit the same behavior in both cases.

IV. APPLICATION TO THE EDGE STATE OF THE FQHE

In this section, we briefly discuss a possible application of
the results obtained in the previous section to the edge state
of the FQHE as a typical example of 1D chiral fermion
systems.16We first note that if an appropriate value is chosen
for the Tomonaga-Luttinger parameterKr , the above
SU(N) model with open boundaries can give an effective
theory for the edge state of a certain hierarchy in the FQHE.
Namely, the edge state of the fractional quantum Hall effect
with filling n5N/(Nm11) (m even! can be modeled by the
above open system by choosingKr asKr5n/N.7 In fact, one
can easily check that by this choice ofKr , the formulas~34!
and~35! exactly reproduce the critical exponents for the chi-
ral liquids proposed for the edge states.16

We shall focus on the x-ray photoemission~absorption!
problem in edge states. The Fermi-edge singularity problem
in 1D electron systems has attracted current interest.20–23 In
the edge state of the FQHE, electrons move only in one
direction and the backward scattering due to impurities is
irrelevant, and hence the system can be treated as a chiral
system. In experiments on the x-ray photoemission or ab-
sorption, a core hole may be suddenly created, resulting in a
problem with time-dependent boundary conditions.7,17 That
is, for t,t0 the boundary is free, and att5t0 the boundary
potential suddenly switches on. Then bulk electrons show
critical low-energy behavior inherent in the orthogonality ca-
tastrophe.

In the x-ray absorption problem, one electron is excited in
the final state. Thus puttingDNh51, DMh

( l )50
(1< l<N21), we have the critical exponent for the x-ray
absorption in this system,

aab5
1

n S 12
Nd

p D 21 N21

N
, ~48!

for the filling n5N/(Nm11) with evenm, whered is the
phase shift caused by the localized electrons which screen
the core hole potential. On the other hand, the critical expo-
nent for the photoemission is obtained by takingDNh50
andDMh

( l )50 in Eq.~31!, because one hole carrying neither
charge nor spin is generated in the final state,

aph5
N2

n S d

p D 2. ~49!

We expect that such anomalous exponents may be observed
in x-ray photoemission or absorption experiments for the
edge state of the FQHE of fillingn5N/(Nm11) with even
m.

V. SUMMARY

We have studied exact boundary critical properties of the
SU(N) interacting fermion model with open boundaries by
using the Bethe ansatz solution and boundary conformal field
theory. It has been shown that the surface exponents which
govern the critical behavior near the boundary depend on
two continuously varying quantities, i.e., the dimensionless

54 5789EXACT CRITICAL PROPERTIES OF THE . . .



Tomonaga-Luttinger parameterKr and the fractional number
of localized electrons at the boundary. We have also dis-
cussed a possible application of the results to the Fermi-edge
singularity problem in the edge state of the FQHE as a typi-
cal example of 1D chiral systems. The exact exponents for
x-ray absorption and photoemission have been derived.
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