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We have formulated a Green’s function method for the radiation field in an arbitrary three-dimensional
photonic lattice to deal with the source term of an extrinsic polarization fieldPex(r ,t). It is shown that the
induced field is expressed as a superposition ofPex(r ,t) itself and the photonic-band eigenmodes of a nonzero
frequency. The longitudinal eigenmodes of zero frequency, which are important for the closure relation of
photonic bands, is shown to contribute nothing to the propagating electric field. We have applied this method
to the treatments of sum frequency generation, dipole radiation, and free induction decay.
@S0163-1829~96!01532-9#

I. INTRODUCTION

In recent years, materials that have a spatially periodic
dielectric constant, which are called photonic crystals or pho-
tonic lattices, have attracted much interest.1–22The main rea-
son of the intense investigations is the possibility of the re-
alization of photonic-band gaps, that is, the frequency ranges
where no electromagnetic mode exists.1–3The photonic-band
gaps, especially those in the optical region, are expected to
bring about quite peculiar physical phenomena, such as the
inhibition of spontaneous emission4 and energy transfer,5 lo-
calized donor and acceptor modes,6,7 stable solitary
waves,8,9 and nonexponential decay of spontaneous emission
near a band edge,10,11etc. Several technological applications
such as single-mode light emitting diodes with improved co-
herence, low noise, and high efficiency are also expected.2

However, most of the experimental investigations reported
so far are concerned with the microwave region because of
the difficulty of sample preparation.

Quite recently, one of the authors and his co-workers have
reported the fabrication of two-dimensional triangular lat-
tices with lattice constants of about 1mm and the observa-
tion of near-infrared band gaps.12,13 In addition, the numeri-
cal analysis of the optical transmittance of them and similar
two-dimensional lattices revealed the presence of two kinds
of opaque frequency ranges, one due to the band gaps and
the other due to uncoupled modes.14–16 The presence of the
modes inactive to external plane-wave lights was first
pointed out by Robertsonet al.17,18 A group theoretical
analysis based on the symmetry of the two-dimensional lat-
tices showed that those uncoupled modes found by the nu-
merical calculation of the optical transmittance exactly be-
long to this category.19 As is clearly shown in this example,
the nature of the wave function of the eigenmodes substan-
tially affects the optical properties of the photonic lattices.

The same holds for the optical response occurring in pho-
tonic lattices. For example, the intensity of the radiation from
an oscillating point dipole embedded in a photonic lattice
may change according to where it is located, because the

amplitude of the electric field of the eigenmodes, and hence,
the coupling strength between the dipole and the radiation
field is different from site to site. Therefore, a theory for the
optical response that incorporates not only the photonic den-
sity of states but also the whole information on the eigen-
functions is quite necessary for photonic lattices.

In a previous paper,20 we formulated a Green’s function
method to calculate the nonlinear optical response of an ar-
bitrary two-dimensional photonic lattice and applied it to the
sum frequency generation in a square lattice composed of
circular air-rods formed in a LiNbO3. We could obtain the
intensity of the induced nonlinear field based on the numeri-
cal calculation of the dispersion relation and the wave func-
tions. We also derived a generalized phase matching condi-
tion and selection rules, and showed the enhancement of the
nonlinear optical processes due to the extraordinarily low
group velocity at the band edges. Because the Green’s func-
tion includes the complete information concerned with the
eigenfrequencies and the eigenfunctions, the extension of
this method to the three-dimensional case provides us with
the desired method mentioned above.

The present paper is organized as follows. In Sec. II, we
will formulate the Green’s function method and solve the
general inhomogeneous Maxwell’s equation with an extrin-
sic polarization field as an inhomogeneous term. This
method will then be applied in subsequent sections to three
subjects; sum frequency generation in a cubic lattice~Sec.
III !, radiation from an oscillating dipole moment~Sec. IV!,
and free induction decay from two-level atoms~Sec. V!.
Several properties of the eigenmodes of the photonic lattice
will be discussed in Appendix A. Their representation in the
k space in several gauges will be examined in Appendix B.

II. GENERAL FORMULA

Now, we start from the following Maxwell’s equations:

¹•$e~r !E~r ,t !14pPex~r ,t !%50, ~1!
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¹•H~r ,t !50, ~2!

¹3E~r ,t !52
1

c

]

]t
H~r ,t !, ~3!

¹3H~r ,t !5
1

c

]

]t
$e~r !E~r ,t !14pPex~r ,t !%. ~4!

Here,e(r ), which is assumed to be positive and independent
of frequency, andc are the position-dependent dielectric
constant of the photonic lattice and the light velocity in
vacuum, respectively.Pex(r ,t) is an extrinsic polarization
field that is not described bye(r ). The nonlinear polarization
of the lattice and the dipole moments of impurity atoms in-
duced by external fields are the examples of such a polariza-
tion field. The magnetic permeability was put to unity.

When we eliminate the magnetic fieldH(r ,t) in Eqs.~3!
and~4!, we obtain the inhomogeneous wave equation for the
electric fieldE(r ,t):

2S 1c2 ]2

]t2
1HDQ~r ,t !5

4p

c2Ae~r !

]2

]t2
Pex~r ,t !, ~5!

where the differential operatorH and the wave function
Q(r ,t) are defined as follows:

HQ~r ,t !5
1

Ae~r !
¹3H ¹3

1

Ae~r !
Q~r ,t !J , ~6!

Q~r ,t !5Ae~r !E~r ,t !. ~7!

We can easily verify thatH is a Hermitian operator. There-
fore, its eigenfunctions form an orthogonal complete set. In
Appendix A, we will show that these eigenfunctions are clas-
sified into transverse-wave solutionsQkn

(T)(r ) and
longitudinal-wave solutionsQkn

(L)(r ) with the following prop-
erties.~Here,k is a wave vector in the first Brillouin zone of
the photonic lattice andn is a band index.! For the transverse
mode,

HQkn
~T!~r !5

vkn
~T!2

c2
Qkn

~T!~r ! ~8!

and

¹•$Ae~r !Qkn
~T!~r !%50, ~9!

wherevkn
(T) is the eigenangular frequency of the transverse

mode. On the other hand, the eigenangular frequency of the
longitudinal modevkn

(L) is zero and its wave function is char-
acterized by the following relation:

¹3H 1

Ae~r !
Qkn

~L !~r !J 50. ~10!

Note thatQkn
(T) or Qkn

(L) alone isnot purely transverse nor
longitudinal, because of the spatial variation ofe(r ), but the
terms ‘‘transverse’’ and ‘‘longitudinal’’ are adopted here to
emphasize that Eqs.~9! and ~10! reduce, whene(r ) is a
constant, to the usual relations defining transverse and longi-
tudinal waves, respectively.

Now, we normalize these wave functions as follows:

E
V
drQkn

~a!* ~r !•Qk8n8
~b!

~r !5Vdabdkk8dnn8, ~11!

with a, b5T or L, andV the volume of the photonic lattice
on which the periodic boundary condition is imposed. Note
that Qkn

(a)(r ) andEkn
(a)(r ) @[Ae(r )Qkn

(a)(r )# are dimension-
less by definition. The completeness of the eigenfunctions
leads to

(
kn

Qkn
~T!~r ! ^Qkn

~T!* ~r 8!1(
kn

Qkn
~L !~r ! ^Qkn

~L !* ~r 8!

5VEJd~r2r 8!, ~12!

where^ denotes a tensor, the elements of which are given
by the product of the elements of two vectors, i.e.,
(A^B) i j5AiBj andEJ is the unit tensor.

Because of these orthonormality and completeness rela-
tions, the eigenvectorsQkn

(T) andQkn
(L) may be used as the

convenient basis vectors to express various quantities of a
photonic crystal. For example, an analysis may be carried out
to find out the normal modes of the vector and scalar poten-
tials in various gauges, which will be helpful in considering
the response of a photonic crystal to an external transverse or
longitudinal probe, to an incoming charged particle, for ex-
ample. For fear of interrupting the mainstream of the present
paper, we give it in Appendix B. What we are persuing in
what follows also belongs in its essence to the same cat-
egory.

We now return to Eq.~5!. We define a retarded Green’s
~tensor! functionGJ (r ,r 8,t), such that

2S 1c2 ]2

]t2
1HDGJ ~r ,r 8,t2t8!5EJd~r2r 8!d~ t2t8!, ~13!

GJ ~r ,r 8,t2t8!50 for t,t8. ~14!

Then, we can obtain the solution of Eq.~5! by the convolu-
tion integral of the Green’s function and the inhomogeneous
term:

E~r ,t ![
1

Ae~r !
Q~r ,t !

5
1

Ae~r !
E dr 8E

2`

`

dt8GJ ~r ,r 8,t2t8!

3
4p

c2Ae~r 8!

]2

]t82
Pex~r 8,t8!. ~15!

Now, the Fourier transform ofGJ (r ,r 8,t), which will be
denoted byGJ(r ,r 8,v), is given by
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GJ~r ,r 8,v![E
2`

`

dtGJ ~r ,r 8,t !eivt

5
c2

V(
kn

Qkn
~T!~r ! ^Qkn

~T!* ~r 8!

~v2vkn
~T!1 id!~v1vkn

~T!1 id!

1
c2

V(
kn

Qkn
~L !~r ! ^Qkn

~L !* ~r 8!

~v1 id!2
. ~16!

Here,d is a positive infinitesimal that assures the causality of
the solution of Eq.~5!. That Eq.~16! indeed satisfies Eq.~13!
or its Fourier transform,

S v2

c2
2HDGJ~r ,r 8,v!5EJd~r2r 8! ~17!

is seen from Eq.~12!. The inverse transform of Eq.~16! then
leads to

GJ ~r ,r 8,t !5
c2

2pV(
kn

Qkn
~T!~r ! ^Qkn

~T!* ~r 8!

2vkn
~T! E

C
S 1

v2vkn
~T!1 id

2
1

v1vkn
~T!1 id D e2 ivtdv

1
c2

2pV(
kn

Qkn
~L !~r ! ^Qkn

~L !* ~r 8!E
C

e2 ivt

~v1 id!2
dv

5H 2
c2

V(
kn

H sinvkn
~T!t

vkn
~T! Qkn

~T!~r ! ^Qkn
~T!* ~r 8!1tQkn

~L !~r ! ^Qkn
~L !* ~r 8!J ~ t>0!

0 ~ t,0!,

~18!

where the contourC is depicted in Fig. 1. For the expression
for t>0, we closed the path of integration in the lower half
of the complexv plane, while that fort,0 is obtained by
the contour enclosing the analytic upper plane.

Finally, from Eqs.~15!, ~18!, and~12!, we obtain

E~r ,t !1
4pPex~r ,t !

e~r !
5
4p

V (
kn

Qkn
~T!~r !

Ae~r !
E dr 8E

2`

t

dt8

3
Qkn

~T!* ~r 8!•Pex~r 8,t8!

Ae~r 8!

3vkn
~T!sinvkn

~T!~ t2t8!. ~19!

In deriving Eq.~19!, we assumed that the extrinsic polariza-
tion Pex(r ,t) was introduced adiabatically, i.e.,
Pex(r ,2`)50, and carried out the integration by parts twice
for t8. What matters in the above derivation is that~a! the
role of the longitudinal modes is only to reconstruct the ex-
trinsic dipolar field and they do not contribute to the propa-
gating radiation field, i.e., to the right-hand side of Eq.~19!,
and that~b! Eq. ~1! holds, as it should, because of Eq.~9!.

III. SUM FREQUENCY GENERATION

In this section, we assume that the photonic lattice is com-
posed of a material with the second order nonlinearity. So,
we introduce a position-dependent second order susceptibil-
ity tensorxJ (2)(r ) that is periodic under the translation by an
elementary lattice vector. We also assume for simplicity the
lattice to be simple cubic with a lattice constanta. So,
V5NxNyNza

3, whereNx , Ny , Nz are positive integers that
denote the number of unit cells in each direction. In order to
clarify the phase matching condition, we further assume that
xJ (2)(r ) is nonzero only at 0<z<anz , wherenz is a positive
integer. The nonlinear polarizationPNL(r ,t) induced by two

electric fields,Ek1n1
(T) (r ) andEk2n2

(T) (r ), which are both trans-

verse eigenmodes and assumed to be excited by appropriate
incident waves from outside the photonic lattice, yields the
nonlinear radiation field.

A comment is in order for the excitation of Bloch waves,
because the excitation involves the local field correction. In
general, an incident light of frequencyv excites within a
photonic crystal a linear combination of Bloch waves of that
frequency. The excited amplitude of a particular Bloch wave,
the coefficient of the linear combination, is determined by
the boundary condition at the entrance surface of the photo-
nic crystal.23 In the paper by one of the authors,24 it is quan-
titatively shown that for av matching well with a peak of

FIG. 1. The contour of the integration in Eq.~18! for t>0. For
t,0, the contour should enclose the upper half plane.
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the density of states of an optically active photonic band, the
field intensity is highly enhanced near the surface of arrayed
dielectrics, even by a factor of 102 in a good situation of a
large dielectric constant causing an appreciable electromag-
netic confinement effect. Let us denote the amplitude of the
excited Bloch waves simply asA, which involves already
this enhancement correction. Then, the nonlinear polariza-
tion is given by

PNL~r ,t !5
1

2
A2xJ ~2!~r !:Ek1n1

~T! ~r !Ek2n2
~T! ~r !

3exp$2 i ~vk1n1
~T! 1vk2n2

~T! !t%, ~20!

with the symbol ‘‘:’’ denoting the product ofxJ (2)(r ) with
Ek1n1
(T) (r ) andEk2n2

(T) (r ) as a tensor. Note that we wrote down

the positive frequency part of the polarization field. The ac-
tual real field is given by the sum of the above field and its
complex conjugate. The same holds for the electric field de-
rived below.

SubstitutingPNL(r ,t) for Pex(r ,t) in the general solution
Eq. ~19!, we get the sum frequency component of the electric
field ENL(r ,t).

ENL~r ,t !1
4pPNL~r ,t !

e~r !
5
2pA2

V
exp$2 i ~vk1n1

~T! 1vk2n2
~T! !t%

3(
kn

vkn
~T!Ekn

~T!~r !E
0

`

dt8sinvkn
~T!t8

3exp$2 i ~vk1n1
~T! 1vk2n2

~T! 2 id!t8%

3E
V
dr 8Ekn

~T!* ~r 8!•xJ ~2!~r !:Ek1n1
~T! ~r 8!Ek2n2

~T! ~r 8!. ~21!

We have introduced2 id in the exponent of the integrand of
Eq. ~21! in order to assure the adiabatic switching of the
nonlinear polarization field. From the Bloch’s theorem, the
eigenfunctionEkn

(T)(r ) can be expressed as follows:

Ekn
~T!~r !5eik•rukn

~T!~r !, ~22!

whereukn
(T)(r ) is a periodic~vector! function, invariant by the

lattice translation. Then, the spatial integral in Eq.~21! is
calculated as

E
V
dr 8Ekn

~T!* ~r 8!•xJ ~2!~r !:Ek1n1
~T! ~r 8!Ek2n2

~T! ~r 8!

5 (
l150

Nx21

(
l250

Ny21

(
l350

nz21 E
V0

dr 8ukn
~T!* ~r 8!•xJ ~2!~r 8!:uk1n1

~T! ~r 8!uk2n2
~T! ~r 8!exp$ i ~k11k22k!•~r 81al!%

5V0NxNydkx ,k1x1k2x2~2pp/a!dky ,k1y1k2y2~2qp/a!

sin~anzDkz/2!

sin~aDkz/2!
eia~nz21!Dkz/2F~kn,k1n1 ,k2n2!, ~23!

wherel5( l 1 ,l 2 ,l 3), V0 the volume of the unit cell and

Dkz5k1z1k2z2kz . ~24!

The quantityF is given by

F~kn,k1n1 ,k2n2!

5
1

V0
E
V0

dr 8ukn
~T!* ~r 8!•xJ ~2!~r 8!:uk1n1

~T! ~r 8!uk2n2
~T! ~r 8!

3expH 2p i ~px81qy8!

a J exp~ iDkzz8!, ~25!

which may be regarded as an effective nonlinear susceptibil-
ity with respect to the initial and the final states. The two
integersp andq were introduced to make allowance for the

umklapp processes. Namely, because of the periodicity of
ukn
(T)* (r 8)•xJ (2)(r 8):uk1n1

(T) (r 8)uk2n2
(T) (r 8) and the periodic

boundary condition, the integration overx8 and y8 in Eq.
~23! is nonzero only whenk1x1k2x2kx and k1y1k2y2ky
are multiples of 2p/a. Actually, p andq are equal to21, 0,
or 1, becausek1, k2, andk are the vectors within the first
Brillouin zone. On the other hand, the temporal integral in
Eq. ~21! is obtained as

E
0

`

dt8exp$2 i ~vk1n1
~T! 1vk2n2

~T! 2 id!t8%sinvkn
~T!t8

.2
1

2~vk1n1
~T! 1vk2n2

~T! 2vkn
~T!1 id!

. ~26!

When we convert the summation onkz into integration in Eq.
~21!, we get
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ENL~r ,t !1
4pPNL~r ,t !

e~r !
.2

A2

2
exp$2 i ~vk1n1

~T! 1vk2n2
~T! !t%(

n
E dkz

v
k̄n
~T!
E
k̄n
~T!

~r !F~ k̄n,k1n1 ,k2n2!

vk1n1
~T! 1vk2n2

~T! 2v
k̄n
~T!

1 id

3
sin~anzDkz/2!

sin~aDkz/2!
exp$ ia~nz21!Dkz/2%. ~27!

In Eq. ~27!,

k̄5S k1x1k2x2
2pp

a
,k1y1k2y2

2qp

a
,kzD . ~28!

Now, we denote the ‘‘group velocity’’ of thenth band in
the z direction byvg(v,n):

vg~v,n!5S ]v
k̄n
~T!

]kz
D

kx5 k̄x ,ky5 k̄y ,v k̄n

~T!
5v

. ~29!

Then, converting the integration onkz into the integration on

v
k̄n
(T)

and using the following approximation,20

1

vk1n1
~T! 1vk2n2

~T! 2v
k̄n
~T!

1 id
.2p id~vk1n1

~T! 1vk2n2
~T! 2v

k̄n
~T!

!,

~30!

we finally obtain

ENL~r ,t !1
4pPNL~r ,t !

e~r !
.
aA2ip~vk1n1

~T! 1vk2n2
~T! !

2
exp$2 i ~vk1n1

~T! 1vk2n2
~T! !t%(

$n%8

E
K̄nn

~T!
~r !F~K̄nn,k1n1 ,k2n2!

vg~vk1n1
~T! 1vk2n2

~T! ,n!

3
sin~anzDkz/2!

sin~aDkz/2!
exp$ ia~nz21!D̄kz/2%, ~31!

where

K̄nx5 k̄x , K̄ny5 k̄y , ~32!

v
K̄nn

~T!
5vk1n1

1vk2n2
, ~33!

andDkz5k1z1k2z2K̄nz . The summation onn in Eq. ~31! is
over bands which includevk1n1

1vk2n2
as an eigenfre-

quency. If there is only one such band that is denoted by
n, the field intensity atz>anz is

uENL~r ,t !u2.
a2A2p2~vk1n1

~T! 1vk2n2
~T! !2uEK̄nn

~T!
~r !u2

4vg
2~vk1n1

~T! 1vk2n2
~T! ,n!

3
sin2~anzDkz/2!

sin2~aDkz/2!
uF~K̄ nn,k1n1 ,k2n2!u2.

~34!

Here, we should note that~1! the field intensity is propor-
tional to vg

22 and we can expect its enhancement at the
photonic-band edge wherevg tends to zero;~2! the phase
matching condition is fulfilled whenDkz50, i.e., when the

crystalline momentum is conserved; and~3! the effective
nonlinear susceptibilityF(K̄ nn,k1n1 ,k2n2) may vanish for
particular combinations ofk1n1 and k2n2 in a highly sym-
metric photonic lattice, because of the symmetry of the rel-
evant wave functions, and this fact gives an additional selec-
tion rule besides that due to the crystallographic symmetry of
the host crystal. These three features were pointed out for
two-dimensional photonic lattices in the previous paper.20

The results of this section is their natural extension to the
three-dimensional lattice. We should also note that these
three features are common to other nonlinear optical pro-
cesses in the photonic lattice for which the phase matching
condition is imposed by the momentum conservation law.

IV. RADIATION FROM AN OSCILLATING
DIPOLE MOMENT

In this section, we treat the field irradiated from an oscil-
lating dipole moment. Suppose that there is an oscillating
dipole moment of frequencyv at the positionr0 in the pho-
tonic lattice and letPd(r ,t) be the external polarization
Pex(r ,t) of this problem:

Pd~r ,t !5md~r2r0!e
2 ivt. ~35!
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Here,m is the dipole moment with a fixed magnitude. By
substitutingPd(r ,t) for Pex(r ,t) in Eq. ~15!, we obtain

Ed~r ,t !1
4pPd~r ,t !

e~r !
5
2p

V
e2 ivt(

kn
vkn

~T!Ekn
~T!~r !

3$Ekn
~T!* ~r0!•m%

3S 1

v1vkn
~T!1 id

2
1

v2vkn
~T!1 id D .

~36!

Now, the time-averaged Poynting’s vector^S(r ,t)& is
given by

^S~r ,t !&5
c

8p
Re@Ed~r ,t !3Hd* ~r ,t !#, ~37!

where the magnetic fieldHd(r ,t) is given by

Hd~r ,t !5
c

iv
¹3Ed~r ,t !. ~38!

From Eqs.~4!, ~38!, and~36!, we get

¹•^S~r ,t !&5
iv

4
$Ed* ~r ,t !•Pd~r ,t !2Ed~r ,t !•Pd* ~r ,t !%

5
p2v2

V
d~r2r0!(

kn
um•Ekn

~T!~r0!u2d~v2vkn
~T!!.

~39!

When we denote a small volume which includesr0 by V1
and its surface byS1, the radiation energyU emitted per unit
time by the oscillating dipole is given by the surface integral
of the normal component of the Poynting’s vector, which can
be transformed to a volume integral by means of the Gauss’s
theorem:

U5E
S1

dŜ Sn~r ,t !&

5E
V1

dr¹•^S~r ,t !&

5
p2v2

V (
kn

um•Ekn
~T!~r0!u2d~v2vkn

~T!!. ~40!

This expression coincides with the result by quantum me-
chanical calculation under the dipole approximation for an
excited atom with a transition dipole momentm. The quan-
tization of the radiation field in the photonic lattice and the
quantum mechanical treatment will be presented elsewhere.

V. FREE INDUCTION DECAY

In this section, we will treat free induction decay~FID! as
an example of the coherent optical processes in the photonic
lattice. We assume that impurity atoms with two electronic
levels, which will be denoted bye ~excited state! and g
~ground state!, are uniformly distributed in the lattice with
the densityn. Their transition dipole moment is denoted by

m. Now, we introduce their position- and time-dependent
density matrixr(r ,t). Then, the polarization due to these
impurity atoms, which is denoted byPFID , is proportional to
the trace of the dipole operator times the density matrix:

PFID~r ,t !5nm$rge~r ,t !1reg~r ,t !%. ~41!

Here, we assume that the system was driven by an exter-
nal field Eex(r ,t) for t<t0, which is an excited photonic-
band mode:

Eex~r ,t !5
A

2
$Ekn

~T!~r !exp~2 ivkn
~T!t !1Ekn

~T!* ~r !exp~ ivkn
~T!t !%.

~42!

The factorA has the same meaning as discussed in Eq.~20!.
Then, the equation of motion for the density matrix leads to

]

]t
ree~r ,t !5

i

\
m•Eex~r ,t !$reg* ~r ,t !2reg~r ,t !%2

ree~r ,t !

T1
,

~43!

]

]t
reg~r ,t !52 iVegreg~r ,t !2

reg~r ,t !

T2

2m•Eex~r ,t !$2ree~r ,t !21%,
~44!

where we have introduced the longitudinal relaxation time
T1 and the transverse relaxation timeT2 in order to describe
the population and phase relaxation processes, respectively.
In Eq. ~44!,

Veg5
1

\
~Ee2Eg!, ~45!

whereEe (Eg) is the energy of the excited~ground! state.
Under the assumption of a weak excitation and rotating wave
approximation, we obtain

reg~r ,t0!.
A

2S 1

T2
2 iDv Dm•Ekn

~T!~r !exp~2 ivkn
~T!t0!. ~46!

For t.t0, the external field is switched off, and so,

]

]t
reg~r ,t !52 iVegreg~r ,t !2

reg~r ,t !

T2
. ~47!

Then, we get

reg~r ,t !5expH 2S iVeg1
1

T2
D ~ t2t0!J reg~r ,t0!

.
Am•Ekn

~T!~r !

2S 1

T2
2 iDv D expH 2S iVeg1

1

T2
D tJ

3expH 2S iDv2
1

T2
D t0J , ~48!

whereDv5vkn
(T)2Veg . Therefore, from Eq.~41!,
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PFID~r ,t !5
Anm$m•Ekn

~T!~r !%

2S 1

T2
2 iDv D expH 2S iVeg1

1

T2
D tJ

3expH 2S iDv2
1

T2
D t0J 1c.c. ~49!

Substituting Eq.~49! for Pex(r ,t) in Eq. ~15!, we obtain the
electric field for FID,EFID(r ,t), which oscillates with the
atomic angular frequencyVeg :

EFID~r ,t !1
4pPFID~r ,t !

e~r !
.

Anpvkn
~T!Ekn

~T!~r !

iVS 1

T2
2 iDv D 2

3^um•Ekn
~T!~r 8!u2&

3expH 2S iVeg1
1

T2
D ~ t2t0!J

3exp~2 ivkn
~T!t0!, ~50!

where

^um•Ekn
~T!~r 8!u2&5

1

VEVdr 8um•Ekn
~T!~r 8!u2. ~51!

VI. CONCLUSION

In this paper, we have derived the general solution of the
inhomogeneous wave equation in an arbitrary photonic lat-
tice by means of the Green’s function method. We have
shown that the electric field induced by the external polar-
ization field is expressed by the superposition of the trans-
verse eigenmodes of the photonic lattice and the polarization
field itself, and therefore, the longitudinal eigenmodes do not
contribute to the propagating electromagnetic field.

The present method is applicable to various kinds of op-
tical processes in the photonic lattice. We have presented
three examples:~1! sum frequency generation in a cubic lat-
tice, ~2! radiation from an oscillating dipole moment, and~3!
free induction decay. For the first example, we have derived
the generalized phase matching condition, and have shown
that the field intensity of the sum frequency component is
proportional to its~group velocity)22, and therefore, an en-
hancement is expected at photonic-band edges where the
group velocity tends to zero. We have also pointed out the
presence of the selection rule due to the spatial symmetry of
the photonic lattice. For the second example, we have calcu-
lated the Poynting’s vector of the radiated electromagnetic
field and we have obtained a formula that represents the
emitted energy per unit time. The last example is one of
typical coherent optical processes. We have shown that we
can treat this case within the present formulation by describ-
ing the coherent polarization field with the density matrix.

We would like to conclude this paper by pointing out an
important aspect of the present formulation. Namely, the
present method is quite suitable to numerical evaluation of
various optical processes in the photonic lattice, because the
Green’s function of the lattice is composed of the eigenfre-
quencies and eigenfunctions of the lattice that can be accu-

rately calculated by the plane-wave expansion method,21,22

the vector KKR method,25 or others.
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APPENDIX A

We will show below that the operatorH in Eq. ~6! is
Hermitian, and we will derive several properties ofQkn

(T)(r )
andQkn

(L)(r ). Now, the inner product of two periodic complex
~vector! functionsQ1(r ) andQ2(r ) is defined by

^Q1 ,Q2&[E
V
drQ1* ~r !•Q2~r !, ~A1!

whereV is the volume on which the periodic boundary con-
dition is imposed. As a vector identity, the next equation
holds.

¹•~A3B!5~¹3A!•B2A•~¹3B!. ~A2!

Using this identity, we obtain

^HQ1 ,Q2&[E
V
drF¹3H ¹3

Q1* ~r !

Ae~r !
J G• Q2~r !

Ae~r !

5E
S
dSF H ¹3

Q1* ~r !

Ae~r !
J 3

Q2~r !

Ae~r !
G
n

1E
V
dr H ¹3

Q1* ~r !

Ae~r !
J •H ¹3

Q2~r !

Ae~r !
J ,

~A3!

whereS denotes the surface ofV and the first integral on the
right-hand side is the surface integral of the normal compo-
nent of the integrand. This surface integral is equal to zero
because of the periodic boundary condition. Then, applying
the identity Eq.~A2! again,

^HQ1 ,Q2&5E
S
dSFQ1* ~r !

Ae~r !
3H ¹3

Q2~r !

Ae~r !
J G

n

1E
V
dr
Q1* ~r !

Ae~r !
•F¹3H ¹3

Q2~r !

Ae~r !
J G

5^Q1 ,HQ2&, ~A4!

where we have again used the fact that the surface integral is
equal to zero. Therefore,H is a Hermitian operator.

Next, we can easily show thatQkn
(L)(r ) given by
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Qkn
~L !~r !5CAe~r !

k1Gn

uk1Gnu
exp$ i ~k1Gn!•r%, ~A5!

whereGn is a reciprocal lattice vector andC is a normaliza-
tion constant, satisfies Eq.~10!. Then,

HQkn
~L !~r !50. ~A6!

Therefore, the eigenangular frequency of this solution is
zero. There exists one such solution for eachk and n. In
general,

¹•$e~r !Ekn
~L !~r !%[¹•$Ae~r !Qkn

~L !~r !%Þ0. ~A7!

Therefore, we callQkn
(L)(r ) a longitudinal-wave solution.

Strictly speaking,Qkn
(L)(r )’s defined by Eq.~A5! are not or-

thogonal to each other. But their orthogonalization can be
readily accomplished by Schmidt’s method. We denote the
orthogonalized longitudinal-wave solutions by the same
symbols.

On the other hand, there exist transverse-wave solutions
that correspond to the transverse plane waves in a uniform
lattice. The eigenangular frequency defined in Eq.~8! is gen-
erally nonzero. From Eq.~8!,

¹•$Ae~r !Qkn
~T!~r !%5

c2

vkn
~T!2¹•F¹3H ¹3

Qkn
~T!~r !

Ae~r !
J G[0,

~A8!

i.e., Eq.~9! holds.

APPENDIX B

In the treatment of the electromagnetic normal modes of a
photonic crystal, it is more familiar to work in the Fourier
space than in ther space. So that we begin by relating the
eigenvectorsQkn

(T)(r ) andQkn
(L)(r ) in the text to the familiar

eigenvectors of thek-space treatment.
The periodic dielectric functione(r ) of a photonic crystal

is Fourier expanded as

e~r !5(
G

e~G!exp~ iG•r !, ~B1!

with

e~G!5
1

V0
E dre~r !exp~2 iG•r !, ~B2!

G being a reciprocal lattice vector andV0 the volume of the
unit cell. Here, we have denoted the Fourier component of
e(r ) by the same character, because it does not seem confus-
ing. In the same way ase(G), we may define the Fourier
componentse21(G), e1/2(G) and e21/2(G) by the Fourier
components of the periodic functions 1/e(r ), Ae(r ) and
1/Ae(r ), respectively. Note thate21(G), for example, is not
the inverse ofe(G). Let e be the matrix, theGG8 matrix
element of which is defined by

e~GG8!5e~G2G8!. ~B3!

For the inverse matrixe21, it holds that

e21~GG8!5e21~G2G8!, ~B4!

and for the square-root matrixe1/2, which is defined by

e~GG8!5(
G1

e1/2~GG1!e
1/2~G1G8!, ~B5!

it holds that

e1/2~GG8!5e1/2~G2G8!. ~B6!

Equations~B4! and ~B6! assert that the Fourier components
of the periodic functione(r )21 and e(r )1/2 definee21 and
e1/2, respectively. In the same way it holds that the matrix
e21/2, the inverse ofe1/2, is given by the Fourier transform of
e21/2(r ). The proof of these relations is based upon the uni-
tarity of the Fourier transform, i.e.,

(
G

^r uG&^Gur 8&5d~r2r 8!, ~B7!

for r and r 8 within a unit cell and

E
cell
dr ^Gur &^r uG8&5dGG8 ~B8!

for the integral over the unit cell with

^r uG&5
1

AV0

exp~ iG•r !. ~B9!

In view of Eqs.~B4! and ~B6!, there will be no confusion if
we write the matrix elements simply ase21(GG8),
e1/2(GG8), ande21/2(GG8), without using the underbar.

For the plane-wave expansion of the Bloch electric field
of wave vectork ~dropping the suffixk everywhere for brev-
ity!

E~r !5
1

AV0
(
G

e~G!exp~ ikG•r !, ~B10!

with

kG5k1G, ~B11!

the amplitudee(G) is determined by

(
G

(
j

H @ ukGu2d i j2~kG! i~kG! j #dGG8

2
v2

c2
e~GG8!d i j J e~G8! j50, ~B12!

with i and j denoting the three Cartesian components. The
eigenvectore(G) of the nth photonic band with frequency
vkn is denoted asen

(T)(G) and that of the longitudinal modes
with zero frequency aseG

(L)(G), the latter being taken to be a
unit vector parallel tokG :

eG
~L !~G8!5dGG8

kG
ukGu

. ~B13!

Note that the suffixG labels the longitudinal modes. The
notationsen

(T) and eG
(L) will be used for the column vectors

constructed by aligningen
(T)(G) j andeG

(L)(G) j , respectively,
in order ofG and j .
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The matrixe1/2(GG8) induces a linear transformation of
en
(T) andeG

(L) :

ẽn
~T!~G! j5(

G8
e1/2~GG8!en

~T!~G8! j ,

ẽG8
~L !

~G! j5e1/2~GG8!eG8
~L !

~G8! j . ~B14!

Equation~B6! used on the right-hand side then shows that
the Fourier amplitudesQkn

(T)(G) andQkG
(L)(G) of Qkn

(T)(r ) and
QkG
(L)(r ), defined by Eq.~7!, are nothing but these trans-

formed vectors apart from the normalization constant:

Qkn
~T!~G! j5ẽn

~T!~G! j ,

QkG
~L !~G8! j5ẽG

~L !~G8! j . ~B15!

Strictly speaking, before arriving atQkG
(L) which forms by

definition an orthonormal set, an additional transformation is
necessary within the space spanned by the vectorsẽG

(L) which
are not necessarily mutually orthogonal.

For real and positivee(r ), the matrixe1/2(GG8) is posi-
tive definite, meaning that the closure relation Eq.~12! setup
amongQkn

(T)(r ) andQkG
(L)(r ) is transferred directly to the lin-

ear independence of the eigenvectorsen
(T) and eG

(L) of the
secular equation of Eq.~B12!. The conclusion is thus that
any vectors in thek space may be expressed as a superposi-
tion of $en

(T)% ~overn) and$eG
(L)% ~overG).

With these preparations, we now proceed to determining
the eigenmodes for the vector and scalar potentials,A„r ) and
V(r ), which are connected withE(r ) through

E~r !52¹V~r !1 i
v

c
A~r !. ~B16!

Let v(G) anda(G) be their Fourier components.
~I! In the gauge ofV(r )50.
This is a trivial case since Eq.~B16! shows the eigenvec-

tors for a(G) to be2 ic/v times that of the electric field.
Specifying the normal mode of the vector potential by the
indexn, we find

an
~T!~G!52

ic

vkn
en

~T!~G! ~B17!

for the photonic-band statekn. Note that for the longitudinal
eigenmodeseG

(L) a finite aG
(L) is not determined, because of

the divergent prefactor (2 ic/v) with v50.
~II ! In the Coulomb gauge of¹•A(r )50.
In terms ofv(G) anda(G), Maxwell’s equations reduce

to

(
G

(
j

H @ ukGu2d i j2~kG! i~kG! j #dGG8

2
v2

c2
e~GG8!d i j J a~G8! j

52
v

c(G8
e~GG8!~kG8! iv~G8!. ~B18!

In solving this eigenvalue equation, it is important to note
that the electric field constructed bya(G) andv(G), satisfy-
ing Eq. ~B18! and the gauge condition, automatically satis-
fies the full set of Maxwell’s equations. To obtain the eigen-
value v and the eigenvector fora(G… and v(G), let us
expand the vector potential as follows:

a~G!5(
n

anen
~T!~G!1bGeG

~L !~G!, ~B19!

with an andbG as expansion coefficients. The gauge condi-
tion @kG•a(G)#50, or @eG

(L)(G)•a(G)#50 from Eq.~B13!,
eliminates the coefficientbG , leading to

a~G!5(
n

anH en~T!~G!2
1

ukGu @kG•en
~T!~G!#eG

~L !~G!J .
~B20!

Inserting this into Eq.~B18! and remembering thaten
(T) is a

solution of Eq.~B18! for the eigenvaluev5vkn andeG
(L) for

v50, we obtain

(
n

~vkn
2 2v2!anen

~T!~G!2v2bGeG
~L !~G!52cvkGv~G!.

~B21!

Equating the coefficients of the vectoren
(T) andeG

(L) on both
sides, with kG5ukGueG

(L)(G) on the right-hand side, then
leads to

v5vkn , ~B22!

with

anÞ0, v~G!52
vkn

cukGu2 @kG•en
~T!~G!#an . ~B23!

This is a nth photonic-band solution. For the solution of
v50, we find thatan50 for all n andv(G) is arbitrary. The
electric field obtained from Eq.~B16! is confirmed to repro-
duce properly the transverse and longitudinal eigenmodes
given by the eigenvectoren

(T) and eG
(L), respectively. From

Eq. ~B20!, we conclude that only the photonic bands that are
not genuinely transverse carry the nonzero scalar potential.
These bands will then couple strongly with a longitudinal
external probe, an impinging charged particle, for example.

~III ! In the Lorentz gauge of¹•A(r )2 i (v/c)V(r )50.
Expanding the vector potential as in Eq.~B19!, the gauge

condition now reads

(
n

an@kG•en
~T!~G!#1bG@kG•eG

~L !~G!#2
v

c
v~G!50.

~B24!

Eliminating the scalar potential in Eq.~B18! leads to

(
n

~vkn
2 2v2!anen

~T!~G!2v2bGeG
~L !~G!

52c2kGH(
n

an@kG•en
~T!~G!#1bG@kG•eG

~L !~G!#J .
~B25!
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As in the Coulomb gauge, it then follows that

~vkn
2 2v2!an50,

~v22c2ukGu2!bG5(
n

anc
2ukGu@kG•en

~T!~G!#. ~B26!

We have two cases from the first equation:
~a! v5vkn with anÞ0,
~b! an50 for all n.
In the case~a! the second of Eq.~B26! leads to

bG5
c2ukGu

vkn
2 2c2ukGu2

@kG•en
~T!~G!#an . ~B27!

From Eq.~B24!, the scalar potential is obtained as

v~G!5
cvkn

vkn
2 2c2ukGu2

@kG•en
~T!~G!#an . ~B28!

Again, the electric field is then seen from Eq.~B16! to be
proportional toen

(T) as it should be.
In the case~b!, we obtain from the second of Eq.~B26!

~v22c2ukGu2!bG50, ~B29!

from which we have an interesting solution,

v5cukGu, ~B30!

with bGÞ0, v(G)5bG , anda(G)5bGeG
(L)(G). This is an

eigenmode of a purely longitudinal vector potential, with a
different eigenvalue. However, Eq.~B16! leads then to
e(G)50, implying that the solution is a kind of ghost solu-
tion. The eigenmode withv50, excluded from the cases~a!
and ~b!, is identical to that of the Coulomb gauge, because
the gauge condition reduces in this case to¹•A(r )50.
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