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Optical response of three-dimensional photonic lattices:
Solutions of inhomogeneous Maxwell's equations and their applications
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We have formulated a Green’s function method for the radiation field in an arbitrary three-dimensional
photonic lattice to deal with the source term of an extrinsic polarization fgl¢r,t). It is shown that the
induced field is expressed as a superpositioRQfr,t) itself and the photonic-band eigenmodes of a honzero
frequency. The longitudinal eigenmodes of zero frequency, which are important for the closure relation of
photonic bands, is shown to contribute nothing to the propagating electric field. We have applied this method
to the treatments of sum frequency generation, dipole radiation, and free induction decay.
[S0163-182696)01532-9

[. INTRODUCTION amplitude of the electric field of the eigenmodes, and hence,
the coupling strength between the dipole and the radiation
In recent years, materials that have a spatially periodidield is different from site to site. Therefore, a theory for the
dielectric constant, which are called photonic crystals or phoeptical response that incorporates not only the photonic den-
tonic lattices, have attracted much intere€t The main rea-  sity of states but also the whole information on the eigen-
son of the intense investigations is the possibility of the refunctions is quite necessary for photonic lattices.
alization of photonic-band gaps, that is, the frequency ranges In a previous papet, we formulated a Green’s function
where no electromagnetic mode existdThe photonic-band method to calculate the nonlinear optical response of an ar-
gaps, especially those in the optical region, are expected toitrary two-dimensional photonic lattice and applied it to the
bring about quite peculiar physical phenomena, such as theum frequency generation in a square lattice composed of
inhibition of spontaneous emissiband energy transférlo-  circular air-rods formed in a LiNbQ We could obtain the
calized donor and acceptor modes>’ stable solitary intensity of the induced nonlinear field based on the numeri-
waves®® and nonexponential decay of spontaneous emissional calculation of the dispersion relation and the wave func-
near a band eddgé@;* etc. Several technological applications tions. We also derived a generalized phase matching condi-
such as single-mode light emitting diodes with improved co-tion and selection rules, and showed the enhancement of the
herence, low noise, and high efficiency are also expéectednonlinear optical processes due to the extraordinarily low
However, most of the experimental investigations reportedyroup velocity at the band edges. Because the Green'’s func-
so far are concerned with the microwave region because dfon includes the complete information concerned with the
the difficulty of sample preparation. eigenfrequencies and the eigenfunctions, the extension of
Quite recently, one of the authors and his co-workers havéhis method to the three-dimensional case provides us with
reported the fabrication of two-dimensional triangular lat-the desired method mentioned above.
tices with lattice constants of aboutum and the observa- The present paper is organized as follows. In Sec. Il, we
tion of near-infrared band gap%!®In addition, the numeri-  will formulate the Green’s function method and solve the
cal analysis of the optical transmittance of them and similageneral inhomogeneous Maxwell's equation with an extrin-
two-dimensional lattices revealed the presence of two kindsic polarization field as an inhomogeneous term. This
of opaque frequency ranges, one due to the band gaps antkethod will then be applied in subsequent sections to three
the other due to uncoupled modés!® The presence of the subjects; sum frequency generation in a cubic latt®ec.
modes inactive to external plane-wave lights was firstlll), radiation from an oscillating dipole mome(gec. IV),
pointed out by Robertsoret all”*® A group theoretical and free induction decay from two-level atorfSec. V).
analysis based on the symmetry of the two-dimensional latSeveral properties of the eigenmodes of the photonic lattice
tices showed that those uncoupled modes found by the nwwill be discussed in Appendix A. Their representation in the
merical calculation of the optical transmittance exactly bek space in several gauges will be examined in Appendix B.
long to this category® As is clearly shown in this example,
the nature of the wave function of the eigenmodes substan-
tially affects the optical properties of the photonic lattices. Il. GENERAL FORMULA
'_Fhe same holds for the optigal response occurring in pho- Now, we start from the following Maxwell’'s equations:
tonic lattices. For example, the intensity of the radiation from
an oscillating point dipole embedded in a photonic lattice
may change according to where it is located, because the V-{e(r)E(r,t)+4mPg(r,t)}=0, (D)

0163-1829/96/5)/573210)/$10.00 54 5732 © 1996 The American Physical Society



54 OPTICAL RESPONSE OF THREE-DIMENSIONA. . . 5733

V-H(r,t)=0, 2) Now, we normalize these wave functions as follows:
__ 10 (
VXE(r)=—¢ HIY, ) Jver&ﬁ)*m-Qk’fn,(m:vaaﬁakkr&nnu (1D)

VXH(r,t)= 19 e(NE(r,t)+4mPg(r,t)}. (4  witha, =T orL, andV the volume of the photonic lattice
c ot on which the periodic boundary condition is imposed. Note
Here, e(r), which is assumed to be positive and independenthat Q(r) and E(2)(r) [=e(r)Q{(r)] are dimension-
of frequency, andc are the position-dependent dielectric less by definition. The completeness of the eigenfunctions
constant of the photonic lattice and the light velocity in leads to
vacuum, respectivelyP,(r,t) is an extrinsic polarization
field that is not described bs(r). The nonlinear polarization
of the lattice and the dipole moments of impurity atoms in- > Q(NeQW*(r)+ >, QL(rNeQL)* ()
duced by external fields are the examples of such a polariza- kn kn
tion field. The magnetic permeability was put to unity.
When we elir_ninate. the magnetic fieldl(r,t) in Eqs.(3) =VEs(r—r"), (12

and(4), we obtain the inhomogeneous wave equation for the

electric field&(r, t): where® denotes a tensor, the elements of which are given

dr 52 by the product of the elements of two vectors, i.e.,
Q)= == —5Pert), (5) (A®B);=AB andE is the unit tensor.
c®\e(r) 9t Because of these orthonormality and completeness rela-
where the differential operata and the wave function tions, the eigenvector®(y) and Q{7 may be used as the
Q(r,t) are defined as follows: convenient basis vectors to express various quantities of a
photonic crystal. For example, an analysis may be carried out
1 { 1 ] to find out the normal modes of the vector and scalar poten-
HOQ(r,t)= —=VX{ VX—=Q(r,t) {, (6) tials in various gauges, which will be helpful in considering
Ve(r) Ve(r) the response of a photonic crystal to an external transverse or
longitudinal probe, to an incoming charged particle, for ex-
Q(r,t)= Ve(r)E(r,t). () ample. For fear of interrupting the mainstream of the present

We can easily verify that{ is a Hermitian operator. There- P2Per, we give it in Appendix B. What we are persuing in

fore, its eigenfunctions form an orthogonal complete set. Ifvhat follows also belongs in its essence to the same cat-

Appendix A, we will show that these eigenfunctions are C|as_eg<\)/\r/y. Ea(E). We defi ded Green’
sified into transverse-wave solutionsQ{"(r) and € now return to Eq(5). We define a retarded Green’s

longitudinal-wave solution®{X(r) with the following prop- ~ (tenso¥ function G(r,r",t), such that
erties.(Here,k is a wave vector in the first Brillouin zone of

1 42
2ttt

the photonic lattice and is a band inde).For the transverse 1 4 <, e ) ,
mode, — ?WJrH G(r,r' t—t")=Ed&(r—r")s(t—t"), (13
(kT)Z
Miry= <1 _~(M PR

HQn (1) = 7= Qkn (1) (8) E(r,r' t—t")=0 for t<t’. (14)

and Then, we can obtain the solution of E@) by the convolu-
tion integral of the Green’s function and the inhomogeneous
V-{Ve(NQ(n}=0, © o0 J
where w<an> is the eigenangular frequency of the transverse
mode. On the other hand, the eigenangular frequency of the 1
longitudinal modew(kh) is zero and its wave function is char- E(r,t)= Q(r,t)
acterized by the following relation: Ve(r)
1 1Jd’det’§( t—t)
= r r,r't—
v><| VRG] {(ﬁﬁ(r)] =0. (10 e(r) ,w
2
Note thatQ{) or Q{-) alone isnot purely transverse nor 4m 9 '
L KD n : N X 72 Pex(r’, ). (15

longitudinal, because of the spatial variationegf), but the c2\e(r") dt

terms “transverse” and “longitudinal” are adopted here to

emphasize that Eq49) and (10) reduce, whene(r) is a ) - _ )
constant, to the usual relations defining transverse and longi- Now, the Fourier transform o&(r,r’,t), which will be
tudinal waves, respectively. denoted byg(r,r’,w), is given by
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- ® Here,§ is a positive infinitesimal that assures the causality of
g(r w)—J_ dtG(r,r',t)e'” the solution of Eq(5). That Eq.(16) indeed satisfies E¢13)
or its Fourier transform,
Oe QRmeQR () .2
Vi (0— ol +id)(o+ o) +id) <?—H)Q(r,r’,w)=Eﬁ(r—r’) (17)
2 (L) (L)*
_2 Qin (N®Qun ~ (') (16) is seen from Eq(12). The inverse transform of E¢L6) then
V< (w+id)? ' leads to
|
(T) (T)* (et
o c? R (N®Qry ™ (r )f 1 1 .
G ’ ,,t = — — . —thd
(r.r',0) 2 V% Zw(kP c w—w(kp-i-lé w+w(kp+|5 © @
C2 *Ia)t
(L)*
vy WSO ) | i
c? sinw{ 't
— =2 — QI (NeQI* (r")+tQE(NeQE* (r');  (t=0)
_ vV L i (N®QLY* (1) +tQiH (N @ QR* (') 18
0 (t<0),

where the contou€ is depicted in Fig. 1. For the expression glectric fields, E(T) (r) and E(kTZ1 (r), which are both trans-
for t=0, we closed the path of integration in the lower half 2 2
of the complexw plane, while that fot<<0 is obtained by
the contour enclosing the analytic upper plane.

Finally, from Egs.(15), (18), and(12), we obtain

verse elgenmodes and assumed to be excited by appropriate
incident waves from outside the photonic lattice, yields the
nonlinear radiation field.

A comment is in order for the excitation of Bloch waves,

ArP(rt) 4 ((y because the excitation involves the local field correction. In
E(r,t)+ M_ 77 f J dt’ general, an incident light of frequenay excites within a
e(r) \% kn Je(r) photonic crystal a linear combination of Bloch waves of that
frequency. The excited amplitude of a particular Bloch wave,
Q™ (1) - Pey(r',t") the coefficient of the linear combination, is determined by
Je(r') the boundary condition at the entrance surface of the photo-
nic crystal® In the paper by one of the authdtsit is quan-
X w)sinol)(t—t"). (19) titatively shown that for aw matching well with a peak of

In deriving Eq.(19), we assumed that the extrinsic polariza-
tion Pg(r,t) was introduced adiabatically, i.e.,
P.,(r,—)=0, and carried out the integration by parts twice A
for t’. What matters in the above derivation is that the
role of the longitudinal modes is only to reconstruct the ex-
trinsic dipolar field and they do not contribute to the propa-
gating radiation field, i.e., to the right-hand side of ELP),
and that(b) Eq. (1) holds, as it should, because of Ef).

Ill. SUM FREQUENCY GENERATION - >

. [ ]

In this section, we assume that the photonic lattice is com- -i
posed of a material with the second order nonlinearity. So,
we introduce a position-dependent second order susceptibil-
ity tensor y?)(r) that is periodic under the translation by an
elementary lattice vector. We also assume for simplicity the
lattice to be simple cubic with a lattice constamt So,
V=N,NyN,a® whereN,, N,, N, are positive integers that
denote the number of unit cells in each direction. In order to
clarify the phase matching condition, we further assume that
$3)(r) is nonzero only at &z=<an,, wheren, is a positive FIG. 1. The contour of the integration in E.8) for t=0. For
integer. The nonlinear polarizatid?y, (r,t) induced by two t<O0, the contour should enclose the upper half plane.
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the density of states of an optically active photonic band, the 47Py (1,t) 2 A2

field intensity is highly enhanced near the surface of arrayed En(r,t) + e(r) Y] eXp[—l(wk Ny wkznz)t}
dielectrics, even by a factor of 40n a good situation of a

large dielectric constant causing an appreciable electromag-

netic confinement effect. Let us denote the amplitude of the X 2 ol Efr) f)J dt’sinwi)'t’

excited Bloch waves simply a&, which involves already
this enhancement correction. Then, the nonlinear polariza-
tion is given by

xexp{—i(wjh + ol it}

1 xfvdr'E&P*u')WKr):E&TLl(r JEin, (). (2D
Pau(r ) == AZ¢2(r):E[") (NEL) (1)

NL 2 kqiny kon,
We have introduced-i é in the exponent of the integrand of
Eqg. (21) in order to assure the adiabatic switching of the
nonlinear polarization field. From the Bloch’s theorem, the
with the symbol “:” denoting the product of'”(r) with  eigenfunctionE{")(r) can be expressed as follows:

(T) ), (1) and E(T (1) as a tensor. Note that we wrote down
the posmve frequency part of the polarization field. The ac-
tual real field. is given by the sum of the above field end its E<kp(r):eik<rul<$>(r), (22)
complex conjugate. The same holds for the electric field de-
rived below.

SubstitutingPy, (r,t) for Pg(r,t) in the general solution whereu(T)(r) is a periodic(vectop function, invariant by the
Eqg. (19), we get the sum frequency component of the electridattice translation. Then, the spatial integral in ER1) is
field Eyy (r,t). calculated as

xexp{—i (il + o)t (20)

fdf’EﬁP*u P ED, (FEGQ()
\

kzz

-1 Ny—1n,—

—IEO IZO lEO ,ar Ui * (1) - Y2 (r):uily (r)uily (r)expli(ky+kp—K) - (r' +al)}
1 2= 3 0

sin(an,Ak,/2) B
—VON N 6k Ky Koy = ( 2p7r/a)5k k1y+k2y (2qw/am Ia(nz l)AkZIZF(kn,klnl,kznz), (23)

wherel=(l4,l,,l3), Vo the volume of the unit cell and umklapp processes. Namely, because of the periodicity of
U * (") - XA )ull) (r)ull) (r') and  the  periodic
boundary condition, the integration ovef andy’ in Eq.

(23) is nonzero only wherk,+ Ky, — Ky and kyy+ Ky, —ky

are multiples of Zr/a. Actually, p andq are equal to-1, O,

or 1, becausd;, k,, andk are the vectors within the first
Brillouin zone. On the other hand, the temporal integral in
Eq. (21 is obtained as

AkZ: k12+ kZZ_ kz . (24)

The quantityF is given by

F(kn,kqnq,kony)

1
— dr U * (1) - X2 (r")uily (1)Ul (1)

“Volv f dt'exp(— (o}, + i) —i8)t'}sinwigt’
0

2mi(px +qy’
Xexp[ mi(px' +qy’)

3 ]exp(iAkzz’), (25) _ 1

T
2((1)k1 .t cokzg1 —wl+i8)’

(26)

which may be regarded as an effective nonlinear susceptibil-
ity with respect to the initial and the final states. The twoWhen we convert the summation kpinto integration in Eq.
integersp andq were introduced to make allowance for the (21), we get
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4Py (1,1) A?
Enc(r,t)+ e
sin(an,Ak,/2)
sin(aAk,/2)
In Eq. (27),
— 2pm 2qm
k=|Kiyxtkox— —— Kyt koy— —k,|. (28

Now, we denote the “group velocity” of thath band in
the z direction byv4(w,n):

M
_ ow Pkn
vg(w,n)= ok, -

(29

T T
i 77(0)( ) 1-I— a)(kzz]z)

4’7TPN|_(r,t) ~ aA
e(r) N 2

Enc(r,t)+

sm(anZAk /2)
sin(aAk,/2)

where

(32

(33

andAk,= klz+k2Z
over bands which 'nC|Udevkln1+wk2n2

K,z The summation on in Eq.(31) is
as an eigenfre-

Wyn
eXp{_'(wk 1 wkza )t}z f dk ) (T) 4 (T)

explia(n,—1)Ak,/2}.
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DED(r)F(kn,kyny kony)

[
@i,n, t Okon, ., Tié

(27)

exp{ (o) + ol It

explia(n,— 1)&2/2},

Then, converting the integration ¢q into the integration on
( ) and using the following approximaticfl,

1

O+ ol —o +i6

we finally obtain

Ex’ (NF(Kan,kiny kon,)

FI

{n}’ g(wk n1+‘"k2n2 n)

(31)

crystalline momentum is_conserved; af8) the effective
nonlinear susceptibility~ (K , v,k nq,kon,) may vanish for
particular combinations ok,n; andk,n, in a highly sym-
metric photonic lattice, because of the symmetry of the rel-
evant wave functions, and this fact gives an additional selec-
tion rule besides that due to the crystallographic symmetry of
the host crystal. These three features were pointed out for
two-dimensional photonic lattices in the previous pafer.
The results of this section is their natural extension to the
three-dimensional lattice. We should also note that these

quency. If there is only one such band that is denoted byhree features are common to other nonlinear optical pro-

v, the field intensity az=an, is

VE (r)|2

2722/ (T)
a*Am(wy n, k22

|En(r,t)[2= (T T
4vg(w( 1?11+ wf(ZLZ , v)

><sinz(anZA_kZ/Z)“:(K— ko)
—_— LV, KiN1,Kon .
sir(ahk,/2) IR

(34)

Here, we should note thdl) the field intensity is propor-
tional to v 2
photonic-band edge wherng, tends to zerof2) the phase
matching condition is fulfilled wherk,=0, i.e., when the

and we can expect its enhancement at the

cesses in the photonic lattice for which the phase matching
condition is imposed by the momentum conservation law.

IV. RADIATION FROM AN OSCILLATING
DIPOLE MOMENT

In this section, we treat the field irradiated from an oscil-
lating dipole moment. Suppose that there is an oscillating
dipole moment of frequency at the positiorr in the pho-
tonic lattice and letPy(r,t) be the external polarization
P, (r,t) of this problem:

Py(r,t)=md(r—rg)e ' (35)
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Here, p is the dipole moment with a fixed magnitude. By y. Now, we introduce their position- and time-dependent

substitutingPy(r,t) for P (r,t) in Eq. (15), we obtain density matrixp(r,t). Then, the polarization due to these
impurity atoms, which is denoted B¢, is proportional to
E(rt)+ 477:’(dr()r,t) _ Zvﬂ-e—iwtz ol VED(D) the trace of the dipole operator times the density matrix:
kn
(T)% PFID(r-t):nﬂ{Pge(rvt)+peg(rvt)}- (41)
X{Ein ™ (ro) - m} )
Here, we assume that the system was driven by an exter-
1 _ 1 nal field Eg(r,t) for t<ty, which is an excited photonic-
woto)+id w—w)+is)"  band mode:
. . (3.6) Ear.1)= S {EDN)exXE ~ 100+ ED* (Nextiofl0).
Now, the time-averaged Poynting’'s vecto®(r,t)) is 2
given by (42
c The factorA has the same meaning as discussed in(#g).
(S(r,b))= gRe[Ed(r,t)X H (r,t)], (37)  Then, the equation of motion for the density matrix leads to
here th tic fielthq(r,t) is given b J _ | . pedr 1)
where the magnetic fielthy(r,t) is given by —Ped T D= Eo T D{pE(r.) — peg(r )} — ——,
1
c (43
Hd(r,t):mVXEd(r,t). (38)
d . Pe (r,t)
— t)=—iQ t)— —==
From Egs.(4), (38), and(36), we get atpeg(r’ )=~ Qegpeg(r,1) T,
i
V-(S(r,0)= 7 {E& (1,1)- Pa(r,t) ~Eg(r,0)- P (1,0} T EANOZed T
2?2 e 12 - where we have introduced the longitudinal relaxation time
Y 5(r—ro)% |- Bk (ro) [ “8(0 — o). T, and the transverse relaxation tiffig in order to describe

the population and phase relaxation processes, respectively.
(39  InEq.(449),

When we denote a small volume which includgsby V, 1

and its surface b$,, the radiation energy emitted per unit Q== (Ee—Ey) (45)
. . . . . . . eg h e g/

time by the oscillating dipole is given by the surface integral

of the normal component of the Poynting’s vector, which ca
be transformed to a volume integral by means of the Gaus
theorem:

r}Nhere Ec. (Ey) is the energy of the exciteground state.
SOnder the assumption of a weak excitation and rotating wave
approximation, we obtain

V- J sfjs(s””’”) pE(nexp—iogty).  (46)

— —iAw

A
ped o) =~
2( T

=f drv-{(S(r,t))
Vi

Fort>t,, the external field is switched off, and so,

2 2
m W
X EQ(ro)28(w—o). (40 p) pec(rst)
Voia Epeg(r!t):_lﬂegpeg(rit)_ e?l-z . (47

This expression coincides with the result by quantum me-

chanical calculation under the dipole approximation for an!hen, we get

excited atom with a transition dipole momemt The quan-

tization of the radiation field in the photonic lattice and the PodT t)=exp{ —(iQ + i
guantum mechanical treatment will be presented elsewhere. ea T,

(t_to)]Peg(rato)

Ap-ED(r
V. FREE INDUCTION DECAY = Ml—kn()exp[ - ( iQegt Ti t]
. 2
In this section, we will treat free induction decéyiD) as 2(7 —'Aw)
an example of the coherent optical processes in the photonic 2
lattice. We assume that impurity atoms with two electronic . 1
levels, which will be denoted by (excited statg and g X exp — |Aw—_|_—2 tof (48)

(ground statg are uniformly distributed in the lattice with
the densityn. Their transition dipole moment is denoted by whereAw:w(kP—Qeg. Therefore, from Eq(41),
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A Ef
Pep(r,t)= Mexp{ —(iQngr i
|

. T,
TZ—IA(U)

rately calculated by the plane-wave expansion methdd,

t the vector KKR method® or others.
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to

AmPrp(r,t)  AnmoldEi)(r)
E;:|D(I‘,t) + €(r) = - 1 - 2 APPENDIX A
iVl ——-iAw
Tz We will show below that the operatdt in Eq. (6) is

B2 Hermitian, and we will derive several properties@"(r)
X<|M kn(r )| > (L) . L
andQy;/(r). Now, the inner product of two periodic complex
i 1
xexp{ —(IQeg+ T_z

(vectop functionsQ(r) andQ,(r) is defined by
X expl —i wig'to), (50 (Q1.Qx)= fvdeI(r)'Qz(r), (A1)

(t—to)}

where
whereV is the volume on which the periodic boundary con-

, 1 , , dition is imposed. As a vector identity, the next equation
(Bl (r >|2>=vadr [ EQ (I BD polgs.

V.(AXB)=(VXA)-B—A-(VXB). A2
VI. CONCLUSION ( )=( ) ( ) (A2)

In this paper, we have derived the general solution of thé!Sing this identity, we obtain
inhomogeneous wave equation in an arbitrary photonic lat-
T (r r
V><|VXQl< )H_Q2< )

tice by means of the Green’s function method. We have

shown that the electric field induced by the external polar- <HQ1,Q2>EJ dr 70

ization field is expressed by the superposition of the trans- v () (1)

verse eigenmodes of the photonic lattice and the polarization Q* (1) Q,(1)

field itself, and therefore, the longitudinal eigenmodes do not - f ds{ [ Vx <2 ] x 22 1
s Ve(r) Ve(r) N

The present method is applicable to various kinds of op-

contribute to the propagating electromagnetic field.
tical processes in the photonic lattice. We have presented T(r r
p p p +fdr[V><Ql()]-[ XQZU],
\%

three exampleq1) sum frequency generation in a cubic lat- Iy [y
tice, (2) radiation from an oscillating dipole moment, a8} «(n €(r)
free induction decay. For the first example, we have derived (A3)

the generalized phase matching condition, and have shown o

that the field intensity of the sum frequency component igvhereS denotes the surface df and the first integral on the
proportional to its(group velocity) 2, and therefore, an en- fight-hand side is the surface integral of the normal compo-
hancement is expected at photonic-band edges where tf€nt of the |ntegrar_1d._Th|s surface mte_g_ral is equal to zero
group velocity tends to zero. We have also pointed out théecause of the periodic boundary condition. Then, applying
presence of the selection rule due to the spatial symmetry dhe identity Eq.(A2) again,

the photonic lattice. For the second example, we have calcu-
lated the Poynting’s vector of the radiated electromagnetic S{Q’I(r) [ Q,(r) H
field and we have obtained a formula that represents the (HQl,Q2>=f d X141 VX

emitted energy per unit time. The last example is one of S Ve(r) Ve(r)
typical coherent optical processes. We have shown that we

can treat this case within the present formulation by describ- +f er’{(r) Lvx V><Qz(f)
ing the coherent polarization field with the density matrix. v Je(r) Je(r)
We would like to conclude this paper by pointing out an
important aspect of the present formulation. Namely, the =(Q1,HQy), (A4)

present method is quite suitable to numerical evaluation of

various optical processes in the photonic lattice, because thehere we have again used the fact that the surface integral is
Green’s function of the lattice is composed of the eigenfreequal to zero. Thereforé{ is a Hermitian operator.

quencies and eigenfunctions of the lattice that can be accu- Next, we can easily show thQ%‘)(r) given by
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. k+G, _ and for the square-root matrid’?, which is defined by
fm)(r)=C\/e(r)Wexp[|(k+ Gn)-r},  (A5)
n
ry — 1/ 1/2 i
whereG,, is a reciprocal lattice vector ar@ is a normaliza- €(GG)= é €4GGe"(G,G), (B)
tion constant, satisfies E¢L0). Then, .
it holds that
(L) — A
Han (r) 0. ( 6) E1/2((3‘(3/): Gl/Z(G—GI). (BG)

Therefore, the eigenangular frequency of this solution i . .
zero. There exists one such solution for e&cland n. In SEquatlons(_B4_) and (8.6) ass§r1t that the 1I/:20uru_ar co[nlponents
general of the periodic functione(r) ~* and e(r) < definee™ * and
' €2 respectively. In the same way it holds that the matrix
VA{e(NER M=V {Ve(HQLE(1#0. (A7) fjﬁ the inverse ok, is given by the Fourier transform of
e ~'Ar). The proof of these relations is based upon the uni-
Therefore, we callQ{;(r) a longitudinal-wave solution. tarity of the Fourier transform, i.e.,
Strictly speakingQ{-)(r)’s defined by Eq(A5) are not or-
thogonal to each other. But their orthogonalization can be N S(r—r B7
readily accomplished by Schmidt's method. We denote the % (rlGXGIr)=a(r=r"), &7

orthogonalized longitudinal-wave solutions by the same L .
9 9 y for r andr’ within a unit cell and

symbols.

On the other hand, there exist transverse-wave solutions
that correspond to the transverse plane waves in a uniform f dr(G|r){(r|G’)= g (B8)
lattice. The eigenangular frequency defined in @8jis gen- cell
erally nonzero. From Ed8), for the integral over the unit cell with

c? Q1) 1
V-{Ve(nN QW (N}=—72V-| VX1 VX =0, . exniG-
{Ve(r)Qyn'(r)} o2 Je (r|G) Voexp(|G r. (B9)

A8
(A8 In view of Eqs(B4) and (B6), there will be no confusion if
we write the matrix elements simply as (GG'),
eY(GG'), ande Y(GG'), without using the underbar.
APPENDIX B For the plane-wave expansion of the Bloch electric field
In the treatment of the electromagnetic normal modes of f Wave vectoik (dropping the suffix everywhere for brev-
photonic crystal, it is more familiar to work in the Fourier ItY)
space than in the space. So that we begin by relating the
e?genvectorsg(kp(r) and Q{-)(r) in the text to the familiar E(r)= iz o(G)exp(ik: 1), (B10)
eigenvectors of th&-space treatment. \/V_O G
The periodic dielectric functiome(r) of a photonic crystal

i.e., Eq.(9) holds.

is Fourier expanded as with
kg=k+G, (B11)
e(r)=% €(G)expiG-r), BL  the amplitudex(G) is determined by
with
%: 2 [[|ke|25ij—(ke)i(ke)j]5eef
1
e(G)=V—J dre(r)exp(—iG-r), (B2) 2
0

w
— —€(GG")g;1e(G');=0, (B12
. . . C i i
G being a reciprocal lattice vector amy the volume of the
unit cell. Here, we have denoted the Fourier component ofyith i andj denoting the three Cartesian components. The
g(r) by the same character, because it doe; not seem QO”fL{rﬁgenvectore(G) of the nth photonic band with frequency
ing. In the same way ag(G), we may define the Fourier , is denoted as{"(G) and that of the longitudinal modes

-1 1/2 —1/2, 5
componentse” *(G), €7(G) and e *{G) by the Fourier up ;org frequency agl-)(G), the latter being taken to be a
components of the periodic functionselr), ve(r) and | i\ ector parallel tkg
1/\/e(r), respectively. Note that *(G), for example, is not ¢

the inverse ofe(G). Let € be the matrix, theGG’ matrix L kg
element of which is defined by & (G')= 5@@/@- (B13)
€(GG')=¢€(G—-G). (B3)  Note that the suffixG labels the longitudinal modes. The

notationse” and e’ will be used for the column vectors
constructed by aligning{"(G); ande{’(G);, respectively,
e {GG)=e {G-G"), (B4)  in order of G and].

For the inverse matrix 1, it holds that
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The matrixe((GG’) induces a linear transformation of In solving this eigenvalue equation, it is important to note
e andel): that the electric field constructed lbyG) andv(G), satisfy-
ing Eq. (B18) and the gauge condition, automatically satis-
fies the full set of Maxwell’'s equations. To obtain the eigen-
value w and the eigenvector foa(G) and v(G), let us
expand the vector potential as follows:

8(G);=2 "(GG")e (G,
G!

BL(G);=€"(GG el (G'); . (B14) - N
a(G)= G)+ G), B19
Equation(B6) used on the right-hand side then shows that (©) ; nfn (G)+Bots (G) (819
the Fourier amplitude®{?(G) andQ{(G) of Q{7 (r) and
QY (r), defined by Eq.(7), are nothing but these trans-
formed vectors apart from the normalization constant:

with a, and Bg as expansion coefficients. The gauge condi-
tion [kg-a(G)]=0, or[efY)(G)-a(G)]=0 from Eq.(B13),
eliminates the coefficien8g, leading to

i (6);=8(G);, 1

aG)=2 an &"(6)~ (ke &"(G)]es (G)).

(B20)
Strictly speaking, before arriving E(D(klé) which forms by — o<oing this into Eq(B18) and remembering that" is a
definition an orthonormal set, an additional transformation is

i i = (L)
necessary within the space spanned by the ve"é@rswhich solution of Eq.(B18) for the eigenvalues= vy, andeg” for

. =0, we obtain
are not necessarily mutually orthogonal.
For real and positive:(r), the matrixe(GG'’) is posi-
tive definite, meaning that the closure relation B®) setup >, (w2, — 0?) apeV(G) — w?Bsel)(G)= — cwkgu(G).
amongQ{"(r) andQ{)(r) is transferred directly to the lin- " 821)
ear independence of the eigenvectef8 and &) of the
secular equation of EqB12). The conclusion is thus that Equating the coefficients of the vectef) andel’ on both

any vectors in th& space may be expressed as a superposkides, with kG=|kG|e(GL)(G) on the right-hand side, then

Qa(G");=83(G");. (B15)

tion of {el"} (overn) and{el")} (overG). leads to

With these preparations, we now proceed to determining
the eigenmodes for the vector and scalar potenti(s) and W=k, (B22)
V(r), which are connected witk(r) through with

E(r)=—WV(r)+i =A(r) (B16) W m
c an#0, v(G)=- W[kgeﬂ (G)la,. (B23

Let v(G) anda(G) be their Fourier components. This is anth photonic-band solution. For the solution of

() In the gauge oW (r)=0. »=0, we find thate,,= 0 for all n andv (G) is arbitrary. The

This is a trivial case since E¢B16) shows the eigenvec- glectric field obtained from EqB16) is confirmed to repro-
tors for a(G) to be —ic/w times that of the electric field. guce properly the transverse and longitudinal eigenmodes
Specifying the normal mode of the vector potential by thegiven by the eigenvectoe” and e, respectively. From

indexn, we find Eq. (B20), we conclude that only the photonic bands that are
ic not genuinely transverse carry the nonzero scalar potential.

agT)(G):— —eE]T)(G) (B17) These bands will then couple strongly with a longitudinal

Wkn external probe, an impinging charged particle, for example.

(111 In the Lorentz gauge oV -A(r) —i(w/c)V(r)=0.
Expanding the vector potential as in E§19), the gauge
condition now reads

for the photonic-band staten. Note that for the longitudinal

eigenmodes) a finite 8’ is not determined, because of

the divergent prefactor<{ic/w) with »=0.

(1) In the Coulomb gauge d¥- A(r)=0. o

In terms ofv(G) anda(G), Maxwell's equations reduce > ankg-eD(G) ]+ Bglkg- €4 (G)]— <v(G)=0.
n

(B24)

Eliminating the scalar potential in E¢B18) leads to

to

J

22 [ukelzai,-—<kG>i<kG>j]5GG/

2

o 2 (0= 0?) aye(G)— w2 Beely(G)
_?E(GG,)(S”]a(G,)] n

=—c%kg{ X ke €(G)]+Bolks €5 (G)]}.

=23 €(GG) (ke )w(G)). (B19 n
2 (B25)
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As in the Coulomb gauge, it then follows that Again, the electric field is then seen from E&16) to be
. proportional toe” as it should be.
(0~ 0%)ay=0, In the casgb), we obtain from the second of E(B26)
(0= clkel)Be=2 anc?lkellke & (G)].  (B26) (0®=c?ke|*) Be=0, (B29)
We have two cases from the first equation: from which we have an interesting solution,

(8 o= wy, with a,#0,
(b) @,=0 for all n.

In the casda) the second of EqB26) leads to w=clkg], (B30)

c?kg| - with Bg#0, v(G)=Bs, anda(G) = Bgel)(G). This is an
G:m[k@en (G)]an. (B27) eigenmode of a purely longitudinal vector potential, with a
different eigenvalue. However, EqB16) leads then to
From Eq.(B24), the scalar potential is obtained as e(G)=0, implying that the solution is a kind of ghost solu-
Coope tiog.(;)he_ e?genmo?e Wi;[]h)z ? ﬁxcgjdeld frgm the cazéa)
= [kg-el an , is identical to that of the Coulomb gauge, because
v(© wkn_cz|kG|2[kG & (G)lan. (828 the gauge condition reduces in this cas&té\(r)=0.
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