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We report a partly variational calculation of biexcitonic states in a semiconductor quantum wire subjected to
a magnetic field. The longitudinal component of the biexciton wave function is computed variationally, while
the transverse component is obtained from exact numerical solution of the Schro¨dinger equation. We find that
an external magnetic field squeezes the biexciton wave function, causing the binding energy to increase
substantially. The increase is more pronounced in wider wires where the biexcitonic wave function is ‘‘softer’’
and hence more squeezable. This increase can enhance the already giant third-order nonlinear susceptibilities
predicted for quantum wires, thus making these systems attractive for applications in nonlinear optics.
@S0163-1829~96!03531-X#

I. INTRODUCTION

Quasi-one-dimensional excitons and biexcitons~excitonic
molecules! in quantum wires have been a subject of consid-
erable theoretical research since they are responsible for
the giant third-order nonlinear susceptibilityx~3! of one-
dimensional systems.1–5 Within the rotating wave
approximation,1 the biexciton binding energy contributes di-
rectly to x~3!. An external magnetic field can increase this
binding energy, leading to stronger optical nonlinearities.
Additionally, the field can act as an agent to modulate the
nonlinear absorption and/or gain in quantum wires, which
opens up the possibility of realizingexternally tunablecou-
plers, limiters, phase shifters, switches, etc.

In the past, the effects of a magnetic field on excitonic
complexes have been largely ignored since a magnetic field
is technologically less significant than an electric field in
device applications. However, a magnetic field has two im-
portant advantages. First, it increases the exciton-biexciton
binding energy by squeezing the electrons and holes to-
gether, while an electric field decreases the energy by spa-
tially separating oppositely charged particles. Therefore, a
magnetic field can cause improved nonlinear optical proper-
ties. Second, it offers far richer insight into the physics of
excitonic complexes, especially for low-dimensional sys-
tems.

There have been relatively few theoretical studies of ex-
citons in quantum wires1–11 and even fewer dealing with
biexcitons.6,10,12–14 To our knowledge, the influence of a
magnetic field15 on these entities has not been explored in
sufficient detail. Experimental data in this area are sparse and
only recently has the effect of a magnetic field on exciton
absorption and magnetophotoluminescence in quantum wires
been reported.16,17 Unambiguous signatures of biexcitons in
quantum wires were also observed very recently18 and it is
an important development since the mere existence of these
entities in one-dimensional structures has been quite moot.19

Unlike the exciton problem, which is straightforward, the
biexciton problem in the context of quantum wires is some-
what complex and beset with ambiguities. Recently, Ivanov
and Haug19 claimed that biexcitons do not exist instrictly
one-dimensional wires because of the strong influence of the

polariton effect~although, for very strong binding energies
they can exist as a broad resonance!. Physically, this result
was attributed to the ‘‘topological’’ feature of a one-
dimensional structure; the exciton inside the biexciton cannot
make a complete oscillation. However, this argument breaks
down for realistic quantum wires with nonzero lateral dimen-
sions. In our calculations, we consider realistic wires with
lateral dimensions larger than the Bohr radius of excitons
and the polaritonic effect is not likely to be critical.

Another problem with biexcitons is the lack of a standard
model. While there are standard models20–27for excitons, the
paucity of experimental data for comparison has inhibited
the emergence of a single, commonly accepted theoretical
model and/or numerical approach for the calculation of biex-
citonic states. In most cases, the biexciton problem is treated
variationally, even though there is no concrete evidence that
this is adequate or justified. The archetypal examples of such
calculations are works by Brinkman, Rice, and Bell28 ~bulk!,
Kleinman29 ~quantum well!, and Banyaiet al.6 ~quantum
wire!. In a more recent study, Madaraszet al.10,30 calculated
exciton and biexciton binding energies variationally for rect-
angular GaAs quantum wires treating the Coulomb interac-
tion terms exactly in their full three-dimensional form. The
trial wave function was chosen to be of the Heitler-London
type. However, Ishida, Aoki, and Ogawa31 presented a study
of biexcitons within the framework of a one-dimensional
tight-binding model and showed that in their model calcula-
tion, the effect of particle correlation over the lattice-constant
length scale is important. This makes conventional varia-
tional methods or the Heitler-London approximation ques-
tionable. In our particular case, the correlation effect is not
critical for three reasons. First, unlike Ishida, Aoki, and
Ogawa, we are primarily interested in the regime of moder-
ate quantum confinement~in our case wire width
Ly5100–700 Å and wire thicknessLz5100–300 Å, which
is characteristic of standard samples!. Ishida, Aoki, and
Ogawa considered biexcitons in strongly confined one-
dimensional wires with wire width smaller then the size~ef-
fective Bohr radius! of an exciton~about 100 Å for GaAs!.
For this type of narrow 1D system, the exciton wave function
becomes very compact and the behavior of electrons and
holes on the atomic length scale assumes critical importance.
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Obviously, this is not the case with our structures. Another
objection raised by Ishida, Aoki, and Ogawa pertained to the
treatment of the Coulomb interaction with its characteristic
1/r singularity. Usually, the singularity is dealt with by an
arbitrary numerical truncation procedure as in Ref. 6. It was
this truncation that was criticized. However, we treat the
Coulomb interaction in its full three-dimensional form,
which allows us to treat the 1/r singularity without the ap-
plication of any ad hoc truncation procedure. Finally, the
discrepancy between the Ishida, Aoki, and Ogawa result and
the conventional variational result based on a Heitler London
scheme becomes significant~about 50%! when the electron
and hole effective masses are similar~s5me/mh'1!. In our
case, we are dealing with effective mass ratioss'0.1, which
makes the discrepancy much smaller.

In the next section, we present the theory. This is fol-
lowed by results and finally the conclusion.

II. THEORY

We consider a quantum wire of rectangular cross section
as shown in the inset of Fig. 1 with infinite potential barriers
located aty56Ly/2 andz56Lz/2. A magnetic field of flux
densityB is applied along thez direction.

At the outset, we neglect both correlation and polaritonic
effects. Since polaritons arise from the radiative renormaliza-
tion of a biexciton, we cannot include them perturbationally

in the model presented here. Therefore, these effects are re-
served for a future study.

For nondegenerate and isotropic bands, the Hamiltonian
of a biexciton in a quantum wire subjected to a magnetic
field is given in the envelope-function approximation by

HXX5
1

2me
~px1

2 1px2
2 !1

1

2mh
~pxa

2 1pxb
2 !1

1

2me
~py1

2 1py2
2 !1

1

2mh
~pya

2 1pyb
2 !1

1

2me
~pz1

2 1pz2
2 !1

1

2mh
~pza

2 1pzb
2 !

1
1

2me
@e2B2~y1

21y2
2!22eB~y1px11y2px2 !#1

1

2mh
@e2B2~ya

21yb
2!12eB~yapxa1ybpxb!#1VCoulomb1Vconf,

~1!

whereVconf is the confinement potential along they and z
directions, andVCoulomb is the Coulomb interaction between
various charged entities. The electron coordinates are sub-
scripted by the numerals 1 and 2 while hole coordinates are
subscripted by the lettersa andb. In Eq. ~1! we neglected
the Zeeman splitting since the Lande´ g factor is small for
GaAs.

For weak Coulomb interaction~characteristic of relatively
narrow gap materials with large dielectric constant!, the
wave function of the biexciton in az-directed magnetic field
can be written as a product of particle-in-a-box states along
the z direction, magnetoelectric states along they direction,
and a Heitler-London-type symmetric linear combination of
Gaussian orbitals~involving variational parameters! along
thex direction. Because of this particular choice of the wave
function, it is convenient to use the following relative and
center-of-mass coordinates to transform the Hamiltonian in
Eq. ~1!:

X5@me~x11x2!1mh~xa1xb!#/2~me1mh!,

x1a5x12xa , x2b5x22xb , xab5xa2xb .

To rewrite the biexciton Hamiltonian in the new coordi-
nate system, we utilize the usual canonical transformations
for the momentum operators. We also drop the kinetic en-
ergy operators associated with the center-of-mass motion
since the Hamiltonian is invariant inX so thatPX is a good
quantum number. We are only interested in obtaining biex-
citonic states that can be accessed optically, and under opti-
cal excitation, the center-of-mass motion can be neglected
since the photon momentum is too small to create states of
significant center-of-mass kinetic energy. Consequently, the
transformed Hamiltonian becomes

FIG. 1. Biexciton binding energy in a GaAs quantum wire as a
function of wire widthLy for three different values of the magnetic
flux densityB. When there is no field present, the binding energy
decreases monotonically with increasing wire width. When the field
is present, there the binding energy curves tend to saturate beyond a
wire width of about 300 Å. The thickness along thez direction is
200 Å.
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wherem is the reduced mass. The Coulomb interaction term
in Eq. ~2! is given by
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where

r ag
2 5~ya2yg!21~za2zg!2,

xa,g5xa2xg ,

with a,g51,2,a,b, andaÞg.
In choosing the variational wave function, we are moti-

vated by many considerations. In the regime of weak quan-
tum confinement, where the lateral dimensionsLy,z of the
wire are much larger than the effective Bohr radiusaB* of a
free exciton, the Coulomb interaction energy is dominant
over the confinement energy. In that case, one may apply the
‘‘free boson’’ model to determine the different electron-hole-
pair states. The ‘‘free boson’’ model is based on the Heitler-
London approximation in which the biexciton wave function
is written as a linear combination of atomic orbitals in anal-
ogy with the hydrogen molecule. The linear combination is
chosen symmetric in space so that it corresponds to the sin-
glet state, which is known to be lower in energy than the
triplet state.19

In the regime of strong quantum confinement,Ly,z are
smaller than the effective Bohr radiusaB* . In this case, the
confinement energy is the dominant contribution. Electrons
and holes are confined separately, and the Coulomb potential
may be neglected in comparison with the large kinetic en-
ergy caused by the strong confinement. In our case, we are
primarily interested in the regime of moderate quantum con-
finement. Therefore, we have to adopt a physically realistic
trial wave function that would allow us to use the Heitler-
London approach while taking into account the difference in
the motion along confined and ‘‘free’’ directions. We
achieve this by considering the electrons and holes to be
independently quantized alongy andz directions, while ap-
plying the Heitler-London approximation along thex direc-
tion. Following the approach in Refs. 10 and 12 we choose a
trial wave function as a singlet state with the electron-hole-
pair contributions given by the Gaussian-type ‘‘orbital’’
functions:

C5
1
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The wave functionsgag are Gaussian orbitals whose
‘‘spread’’ h and t are variational parameters. It is obvious
that these parameters physically correspond to the electron-
hole and hole-hole separations along the length of the quan-
tum wire. The quantityS is a normalization constant, which
can be evaluated as described in Ref. 12. The quantities
fe,h(ye,h), arey components of the wave functions of inde-
pendently confined electrons and holes in the quantum wire
under a magnetic field. They are magnetoelectric states and
are to be calculated independently by solving the Schro¨-
dinger equation. This is achieved by following the prescrip-
tion given in Ref. 32. The quantitiesxe,h(ze,h) are thez
components of the wave function of independently confined
electrons and holes. These quantities are not affected by the
magnetic field~the magnetic field is oriented along thez
direction! and are therefore represented by particle-in-a-box
states.

The chosen trial wave function implies that the ‘‘true’’
wave function is more sensitive to the separation between the
holes than between the electrons. Since holes have higher
effective masses, this assumption is physically realistic.

The biexciton binding energyEB
XX is given by

EB
XX5min^CuHXXuC&22 min̂ cuHXuc&, ~11!

where min^CuHXXuC& is found by minimizing the expecta-
tion value of the HamiltonianHXX with respect to the hole-
hole variational parametert, and min̂cuHXuc& is found by
minimizing the expectation value of the exciton Hamiltonian
with respect to the electron-hole variational parameterh as
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described in Ref. 11. As pointed out by Klepfer, Madarasz,
and Szmulowicz,12 introduction of a third variational param-
eter, which allows for relaxation of the electron-hole pair
within the biexciton, would not seriously change the biexci-
ton binding energy when there is no magnetic field present.
We tacitly assume that the same is true when a magnetic
field is present. Mathematical details of computing the ex-
pectation values of the exciton and biexciton Hamiltonian
are provided in the Appendix. One should note that every
imaginary term in the expectation value of the Hamiltonian
vanishes exactly, which makes the expectation value strictly
real and shows that the trial wave function space is admis-
sible.

Before concluding this section, we should make a few
remarks about the computational details. The evaluation of
the integrals in the Coulomb term of the expectation value
~see Appendix! is not straightforward owing to the 1/r sin-
gularity. References 5 and 10 avoided dealing with this by
applying a Fourier transform of the Coulomb term. This is
not possible in our case since we have a magnetic field
present, which transforms particle-in-a-box states along the
width of the quantum wire~y direction! into magnetoelectric
states whose wave functionsfe,h(ye,h), are calculated nu-
merically. Fortunately, unlike in the case of the strictly one-
dimensional Coulomb potential, the Coulomb term treated in
its full three-dimensional form is not pathological, and can
be integrated in real space using the extended~multidimen-
sional! definition of the improper integral that exists for this
situation. This procedure involves evaluation of five- and
seven-dimensional integrals in real space. We checked for
the convergence of the integrals by setting all but the free
coordinates to zero and letting the relative coordinates along
the x direction gradually vanish over a hypersphere in order
to ensure that the volume element approaches zero faster
than the singularity.

III. RESULTS AND DISCUSSION

All the results that we present are for GaAs quantum
wires. The electron and hole effective masses are assumed to
be 0.067m0 and 0.5m0, respectively. The relative permittiv-
ity of GaAs is taken as 12.9.

In Fig. 1, we present the biexciton binding energy as a
function of wire widthLy for three different values of the
magnetic field. The binding energy always decreases with
increasing wire width as expected because of decreasing
electrostatic confinement. For narrow widths<100 Å, the
magnetic field has little effect. Only at large widths does it
cause the rate of decrease to decelerate. These features can
be explained by invoking the complementary roles of elec-
trostatic and magnetostatic confinement. At narrow widths,
the electrostatic confinement is predominant and the mag-
netic field has little or no effect. Once the wire width signifi-
cantly exceeds the magnetic lengthA\/eB, the electrostatic
confinement becomes weaker and yields dominant sway to
the magnetostatic confinement. Since the latter depends only
on the magnetic field strength and is independent of the wire
width, the dependence of the binding energy on the wire
width becomes much weaker. In the limit of very wide wires
~approaching the two-dimensional limit!, the electrostatic
confinement will gradually vanish. The magnetoelectric

states will condense into pure Landau orbits and the confine-
ment will be entirely of magnetostatic origin. In that case, we
expect the binding energy to become independent of the wire
width so that the top two curves in Fig. 1 will saturate at a
constant value. This is exactly what happens asymptotically
asLy→`.

Figure 2 shows the biexciton binding energy as a function
of the magnetic field for different values of wire widthLy .
For relatively wide wires~Ly5700 Å!, the binding energy
increases sublinearly with the magnetic field, whereas for
narrower wires~Ly5500 Å!, the increase is superlinear. For
wider wires, the magnetostatic confinement takes over the
dominant role at relatively low magnetic field strengths and
hence increasing the magnetic field to very high values will
not have a dramatic effect. This causes the sublinearity. For
narrower wires, the increase is superlinear since at low val-
ues of the field, the electrostatic confinement is dominant and
the field has no effect. Only at relatively high fields, the
binding energy increases as the magnetostatic confinement
becomes increasingly dominant.

Figures 3~a! and 3~b! show the probability density distri-
bution of the biexciton as a function of relative coordinates
x1a and x2b ~the separation along the wire between oppo-
sitely charged particles! with and without magnetic field.
These two relative coordinates are the separations between
one electron and one hole, and between the other electron
and the other hole. The presence of two peaks can be easily
understood as follows. Energetically, the most favored con-
figuration in a quasi-one-dimensional system is ‘‘e-h-e-h,’’
which means that no two like charges are physically contigu-
ous. Consequently, there are two favored values ofx1a and
x2b—the distance between nearest-neighbor particles and the
distance between the two extreme particles in the above con-
figuration. The effect of the magnetic field is to squeeze the
biexciton wave function along the free~x axis! direction for
both relative coordinates. This is a consequence of magneto-
static confinement.

The dependence of the ratio of biexciton to exciton bind-

FIG. 2. Biexciton binding energy in a GaAs quantum wire as a
function of magnetic flux density for two values of the wire width:
Ly5500 Å andLy5700 Å. The thickness along thez direction is
200 Å.
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ing energyEB
XX/EB

X on the mass ratios5me/mh has tradi-
tionally been a subject of significant interest and has been
investigated by various authors for quasi-one-dimensional
systems,6,31 for two-dimensional systems,29 and for
bulk.28,33–37The primary findings until now have been that
~i! the ratio decreases monotonically with increasings from
s50 ~hydrogen molecule limit! to s51 ~positronium limit!,
~ii ! the ratio versuss plot is symmetric abouts51, ~iii ! the
ratio at any value ofs decreases with increasing dimension-
ality ~quantum wire→quantum well→bulk!, and~iv! the plot
has zero slope ats51. All of these features are unaffected by
a magnetic field as shown in Fig. 4. The slight nonzero slope
at s51 is a consequence of numerics and also the Heitler-
London-type approximation for the variational wave func-
tion.

The magnitude of the energy ratio is of course material
dependent since it depends on the Coulomb interaction31 and
hence on the dielectric constant. It should be noted that the
ratio is always quite large, which makes the so-called ‘‘adia-
batic approximation,’’ where the biexciton is treated as a
molecule of two structureless excitons,19 questionable since
this approximation is founded on the assumption that the
exciton is much more tightly bound than the biexciton. The
dependence of the ratio ons is strongest~i.e., the slope of
the plot is largest! for the highest magnetic field and the
intercept is also largest for the highest field. Because of these

two features, there are crossings between the three character-
istics in Fig. 4. The ratio of the binding energies increases
with magnetic field for small values ofs, but decreases with
the magnetic field ass approaches unity~i.e., the electron
and hole effective masses become equal!.

In order to verify the verity of our model, we have com-
pared our results for the binding energy~without any mag-
netic field! with those given in Refs. 5, 10, and 12. The
ground-state binding energies are in excellent agreement
over the whole range of wire widthLy5150–700 Å. The
agreement deteriorates slightly at small values ofLy and this
happens because of the different values of effective masses
used in the different calculations. We have also compared
our results with those experimentally measured and reported
in Refs. 16 and 17. Since Ref. 17 usedT-shaped edge quan-
tum wires rather than wires of rectangular cross sections, a
direct quantitative comparison is not possible. Nontheless,
there is excellent qualitative agreement.

IV. CONCLUSION

In this paper, we presented numerical calculations of the
biexciton ground-state binding energies in a quasi-one-
dimensional structure subjected to a magnetic field. The field
increases the binding energies and this can be utilized to
modulate the nonlinear optical properties, specifically the
third-order nonlinear susceptibilityx~3!, in a quantum wire.
We found that even a modest change in the binding energy,
caused by a relatively modest magnetic field of 1 T, can
result in a significant change in the differential nonlinear
refractive index and differential absorption in a quantum
wire. Therefore, a magnetic field is a useful entity and has a
practical application in this respect~calculations of refractive
index and absorption will be reported in a forthcoming pub-
lication!. The effect of the magnetic field is most pronounced
in the widest wires because the wave function of both elec-
trons and holes are ‘‘softest’’ in them and hence most
‘‘squeezable’’ by a magnetic field.38 Consequently, wider
wires are more suitable for magneto-optic modulators in

FIG. 3. Plot of the biexciton probability density as a function of
relative coordinatesx1a,x2b for a quantum wire with and without
magnetic field. The wire dimensions areLz5200 Å, Ly5700 Å.

FIG. 4. The ratio of the biexciton to exciton binding energy as a
function of electron-hole mass ratios for different values of mag-
netic flux density. The wire dimensions areLz5200 Å,Ly5700 Å.
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which a magnetic field is used to tunex~3! and therefore the
nonlinear refractive index.
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APPENDIX

In this appendix, we derive the expectation value of the
Hamiltonian for both an exciton and a biexciton in a quan-
tum wire subjected to a magnetic field.

For nondegenerate and isotropic bands, the Hamiltonian
of a free Wannier exciton is given within the envelope-
function approximation by
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The last term~Zeeman splitting! will be neglected since the
Landég factor is very small in GaAs~g*520.445!. Follow-
ing Ref. 11, we adopt the standard variational approach and
write the exciton trial wave function as

c[c~x,ye ,yh ,ze ,zh!
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wheregt(x,h) is chosen to be the Gaussian-type ‘‘orbital’’
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in which h is a variational parameter that determines the
electron-hole separation. The variablesxe,h(ze,h) are thez
components of the wave functions, which are not affected by
the magnetic field. They are given by particle-in-a-box states
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The electron and hole wave functions along they direction,
fe,h(ye,h), are to be calculated numerically when a magnetic
field is present. This is done by solving the Schro¨dinger
equation directly following the prescription given in Ref. 32.

Calculation of the expectation values of the exciton
and biexciton Hamiltonians

First, we calculate the expectation value of the exciton
Hamiltonian in Eq.~A1! with a trial wave function given by
~A2!–~A4!. For clarity, each term is treated separately.

The first term, ^cuP̂ X
2/2M uc&, is zero since the wave

function does not depend onX. The kinetic term of relative
motion along thex direction can be integrated analytically
using the fact thatfe ,fh ,xe ,xh are normalized:
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In the above, a prime denotes spatial derivative~single prime
is the first and double prime the second derivative!. The ki-
netic term along they direction is affected by the magnetic
field and is given by
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Integrating by parts and taking into account thatfe,h are zero
at the boundaries, we can eliminate the second derivatives
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54 5717MAGNETOBIEXCITONIC STATES IN A QUANTUM WIRE



Along the z direction we have the regular confinement en-
ergy
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2 .

The next two terms in the expectation value of the Hamil-
tonian vanish. The term̂cu[eB(ye2yh)/M ]PXuc& is zero
because, again, the wave function does not depend onX and
the other term is zero due to the fact that the functiongt and
its derivative are orthogonal to each other:
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Note that the vanishing of these two paramagnetic terms
makes the expectation value of the total Hamiltonian strictly
real and shows that the trial wave function space is admis-
sible. The expectation value of the remaining diamagnetic
term is given by the sum of two integrals
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Combining all the above terms with the Coulomb term, we obtain the expectation value of the exciton Hamiltonian as

^cuHXuc&5
\2

2mh2 1
\2p2

2mW2 1
\2

2me
E

2L/2

L/2

~fe8!2 dye1
\2

2mh
E

2L/2

L/2

~fh8!2 dyh1
e2B2

2me
E

2L/2

L/2

~feye!
2 dye

1
e2B2

2mh
E

2L/2

L/2

~fhyh!
2 dyh2

e2

4pe E
V

gt
2~x,h!fe

2fh
2xe

2xh
2

@x21~ye2yh!
21~ze2zh!

2#1/2
dz, ~A5!

wheredz5dx dye dyh dze dzh . The integration of the last~Coulomb! term is carried out over a hyper-rectangleV, which
has an infinite interval along thex direction and limited by6Ly/2 and6Lz/2 along they andz directions, respectively.

In order to calculate the expectation value of the biexciton Hamiltonian in Eq.~2!, we rewrite the trial wave function in
~4!–~10! in a form given below:

C5
1

S
$e2~x1a

2
1x2b

2
!/h21e2@~x2b2xab!21~x1a1xab!2#/h2%e2xab

2 /t2fa~ya!xa~za!.

Denoting

F1~x!5e2~x1a
2

1x2b
2

!/h2,

F2~x!5e2@~x2b2xab!21~x1a1xab!2#/h2,

and omitting normalized componentsfa(ya)xa(za), we take the derivatives analytically:

]2

]x1a
2 C5

22

Sh2 HF1~x!S 122
x1a
2

h2 D 1F2~x!S 122
~x1a1xab!

2

h2 D JGab~xab!, ~A6!

]2

]x2b
2 C5

22

Sh2 HF1~x!S 122
x2b
2

h2 D 1F2~x!S 122
~x2b2xab!

2

h2 D JGab~xab!, ~A7!

]2

]xab
2 C5

22

S H 2F2~x!S 1h22
~x2b22xab2x1a!

2

h4 1
2~x2b22xab2x1a!xab

h2t2 D 1@F1~x!1F2~x!#S 1t22 2xab
2

t4 D JGab~xab!,

~A8!

]2

]x1a]xab
C5

22

Sh2 F2~x!H 11
2~x1a1xab!~x2b22xab2x1a!

h2 JGab~xab!1
4xab
St2h2 $F1~x!x1a1F2~x!~x1a1xab!%Gab~xab!,

~A9!

]2

]x2b]xab
C5

2

Sh2 F2~x!H 11
2~x2b2xab!~2x2b12xab1x1a!

h2 JGab~xab!1
4xab
St2h2 $F1~x!x2b1F2~x!~x2b2xab!%Gab~xab!.

~A10!
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Using the above results for the derivatives, we can calculate
the expectation value of the biexciton Hamiltonian
^CuHXXuC&.

The only remaining exercise is to show that the expecta-
tion values of the imaginary terms vanish. To show this, we
prove the general result that the trial wave function is or-
thogonal to all its first derivatives along thex axis. Consider
the integral

E
V

C
]

]x1a
C dx. ~A11!

Substituting for the first derivative

]

]x1a
C5

22

Sh2 $F1~x!x1a1F2~x!~x1a1xab!%Gab~xab!,

~A12!

and integrating overya , za , andx1a we obtain

1

2S2 E2`

1`E
2`

1`

e22xab
2 /t2@F1~x!1F2~x!#2ux1a52`

x1a51`dx2b dxab .

~A13!

Based on the definition ofF1,2~x!, it is easy to see that the
integrand in the last equation is zero. By analogy, we can
prove that the expectation values of all other imaginary terms
in the Hamiltonian vanish. Again, this makes the expectation
value of the biexciton Hamiltonian strictly real so that the
trial wave function space is admissible.
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