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Magnetobiexcitonic states in a quantum wire
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We report a partly variational calculation of biexcitonic states in a semiconductor quantum wire subjected to
a magnetic field. The longitudinal component of the biexciton wave function is computed variationally, while
the transverse component is obtained from exact numerical solution of thedBrjeoequation. We find that
an external magnetic field squeezes the biexciton wave function, causing the binding energy to increase
substantially. The increase is more pronounced in wider wires where the biexcitonic wave function is “softer”
and hence more squeezable. This increase can enhance the already giant third-order nonlinear susceptibilities
predicted for quantum wires, thus making these systems attractive for applications in nonlinear optics.
[S0163-182696)03531-X

[. INTRODUCTION polariton effect(although, for very strong binding energies
they can exist as a broad resonandghysically, this result
Quasi-one-dimensional excitons and biexcitémecitonic  was attributed to the “topological”’ feature of a one-
molecule$ in quantum wires have been a subject of consid-dimensional structure; the exciton inside the biexciton cannot
erable theoretical research since they are responsible fonake a complete oscillation. However, this argument breaks
the giant third-order nonlinear susceptibility® of one-  down for realistic quantum wires with nonzero lateral dimen-
dimensional system’s® Within the rotating wave sions. In our calculations, we consider realistic wires with
approximatiort, the biexciton binding energy contributes di- lateral dimensions larger than the Bohr radius of excitons
rectly to x®. An external magnetic field can increase thisand the polaritonic effect is not likely to be critical.
binding energy, leading to stronger optical nonlinearities. Another problem with biexcitons is the lack of a standard
Additionally, the field can act as an agent to modulate themodel. While there are standard mod&té’for excitons, the
nonlinear absorption and/or gain in quantum wires, whichpaucity of experimental data for comparison has inhibited
opens up the possibility of realizingxternally tunablecou-  the emergence of a single, commonly accepted theoretical
plers, limiters, phase shifters, switches, etc. model and/or numerical approach for the calculation of biex-
In the past, the effects of a magnetic field on excitoniccitonic states. In most cases, the biexciton problem is treated
complexes have been largely ignored since a magnetic fieldariationally, even though there is no concrete evidence that
is technologically less significant than an electric field inthis is adequate or justified. The archetypal examples of such
device applications. However, a magnetic field has two im-<alculations are works by Brinkman, Rice, and B¥{bulk),
portant advantages. First, it increases the exciton-biexcitoKleinmarf® (quantum wel, and Banyaiet al® (quantum
binding energy by squeezing the electrons and holes towire). In a more recent study, Madarastzal 1% calculated
gether, while an electric field decreases the energy by spaxciton and biexciton binding energies variationally for rect-
tially separating oppositely charged particles. Therefore, angular GaAs quantum wires treating the Coulomb interac-
magnetic field can cause improved nonlinear optical propertion terms exactly in their full three-dimensional form. The
ties. Second, it offers far richer insight into the physics oftrial wave function was chosen to be of the Heitler-London
excitonic complexes, especially for low-dimensional sys-type. However, Ishida, Aoki, and Ogaivgresented a study
tems. of biexcitons within the framework of a one-dimensional
There have been relatively few theoretical studies of extight-binding model and showed that in their model calcula-
citons in quantum wirds!! and even fewer dealing with tion, the effect of particle correlation over the lattice-constant
biexcitons®1%12-14Tg our knowledge, the influence of a length scale is important. This makes conventional varia-
magnetic field® on these entities has not been explored intional methods or the Heitler-London approximation ques-
sufficient detail. Experimental data in this area are sparse arttbnable. In our particular case, the correlation effect is not
only recently has the effect of a magnetic field on excitoncritical for three reasons. First, unlike Ishida, Aoki, and
absorption and magnetophotoluminescence in quantum wirgdgawa, we are primarily interested in the regime of moder-
been reported®!’ Unambiguous signatures of biexcitons in ate quantum confinementin our case wire width
quantum wires were also observed very recéfithnd it is L,=100-700 A and wire thickneds,=100-300 A, which
an important development since the mere existence of these characteristic of standard samplesshida, Aoki, and
entities in one-dimensional structures has been quite ffloot.Ogawa considered biexcitons in strongly confined one-
Unlike the exciton problem, which is straightforward, the dimensional wires with wire width smaller then the sigé
biexciton problem in the context of quantum wires is some<ective Bohr radius of an exciton(about 100 A for GaAs
what complex and beset with ambiguities. Recently, lvanowor this type of narrow 1D system, the exciton wave function
and Haugd® claimed that biexcitons do not exist strictly =~ becomes very compact and the behavior of electrons and
one-dimensional wires because of the strong influence of thioles on the atomic length scale assumes critical importance.
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Obviously, this is not the case with our structures. Another s . ; .
objection raised by Ishida, Aoki, and Ogawa pertained to the B=0 tesla; ~o-
treatment of the Coulomb interaction with its characteristic
1/r singularity. Usually, the singularity is dealt with by an
arbitrary numerical truncation procedure as in Ref. 6. It was
this truncation that was criticized. However, we treat the
Coulomb interaction in its full three-dimensional form,
which allows us to treat the i/singularity without the ap-
plication of any ad hoc truncation procedure. Finally, the
discrepancy between the Ishida, Aoki, and Ogawa result and
the conventional variational result based on a Heitler London
scheme becomes significaf@bout 50% when the electron
and hole effective masses are simila=m./m,,~1). In our
case, we are dealing with effective mass raties0.1, which . . ‘ . ’ .
makes the discrepancy much smaller. 100 200 0| 500 600 700

In the next section, we present the theory. This is fol-
lowed by results and finally the conclusion.
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FIG. 1. Biexciton binding energy in a GaAs quantum wire as a
function of wire widthL,, for three different values of the magnetic
flux densityB. When there is no field present, the binding energy
decreases monotonically with increasing wire width. When the field
Il. THEORY is present, there the binding energy curves tend to saturate beyond a

We consider a quantum wire of rectangular cross SECtIOPIIVIre width of about 300 A. The thickness along thelirection is
as shown in the inset of Fig. 1 with infinite potential barriers 200 A.
located aty=*L,/2 andz= *L,/2. A magnetic field of flux  in the model presented here. Therefore, these effects are re-
densityB is applied along the direction. served for a future study.

At the outset, we neglect both correlation and polaritonic  For nondegenerate and isotropic bands, the Hamiltonian
effects. Since polaritons arise from the radiative renormalizaef a biexciton in a quantum wire subjected to a magnetic
tion of a biexciton, we cannot include them perturbationallyfield is given in the envelope-function approximation by

1 1
Hxxzz_r’ne (P%,+P5,)+ 2m, (Py,+ pxb)+ (pyl pY2)+ (py pyb)+ (pzl p22)+ 2m;, (pz REA

1
[e?B(y+Y35) —2eB(Y1Pyx, +YaPx, )]+ 5 [eZBZ(ya+yb)+2eB(yapx+ybpxb]+VCoulomb+Vconfa
(1)

2me

V\{her(a_vconf is the conﬁnement potentie}I along. tiyeand z X=[Mg(X1+ X5) + My(Xa+ Xp) 1/2(Mg+my),
directions, andV cq,0mp iS the Coulomb interaction between
various charged entities. The electron coordinates are sub-
scripted by the numerals 1 and 2 while hole coordinates are
subscripted by the letteis andb. In Eq. (1) we neglected

the Zeeman splitting since the Landefactor is small for
GaAs.

For weak Coulomb interactioftharacteristic of relatively 1O rewrite the biexciton Hamiltonian in the new coordi-
narrow gap materials with large dielectric consjarthe  nate system, we utilize the usual canonical transformations
wave function of the biexciton in adirected magnetic field for the momentum operators. We also drop the kinetic en-
can be written as a product of particle-in-a-box states alongrgy operators associated with the center-of-mass motion
the z direction, magnetoelectric states along thdirection,  since the Hamiltonian is invariant M so thatPy is a good
and a Heitler-London-type symmetric linear combination ofquantum number. We are only interested in obtaining biex-
Gaussian orbitalginvolving variational parametersalong  citonic states that can be accessed optically, and under opti-
thex direction. Because of this particular choice of the wavecal excitation, the center-of-mass motion can be neglected
function, it is convenient to use the following relative and since the photon momentum is too small to create states of
center-of-mass coordinates to transform the Hamiltonian irsignificant center-of-mass kinetic energy. Consequently, the
Eq. (2): transformed Hamiltonian becomes

X1a=X17Xa,  Xop=X27Xp, Xgp=Xag—™Xp.
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whereu is the reduced mass. The Coulomb interaction term 1
in Eq. (2) is given by W= g {¥1ahant Y2ath1n} Gan(Xan), 4
v ¢ [ - (=) (=D where
Coulomb—
4776 \/Xia_‘_r%a \/X§b+r§_b \/X§b+r§b ¢a7:gay()ba(ya)Xa(Za)()by(yy)Xy(Zy)! (5)
(—1) N 1 N 1 . with
2 1,2 2 12 2 2.2 22
VX5aHT3a Xopt T VXio+TD Gap(Xap) =€ X', (6
where and
2= (Va¥y)2+ (24 2,)° gra=e /" @
ay Ya y'y a y) la ’
2 2
Xa,y:Xa_Xyi Jp=¢€ Xab! 7 ’ (8)
with a,y=1,2a,b, anda#y. O2a= e*(XZb*Xab)z/v{ (9)
In choosing the variational wave function, we are moti-
vated by many considerations. In the regime of weak quan- gyp=e (tatXan) /7’ (10)

tum confinement, where the lateral dimensidns, of the . ) )
wire are much larger than the effective Bohr radifsof a 1€ wave functionsg,, are Gaussian orbitals whose
‘spread” » and 7 are variational parameters. It is obvious

free exciton, the Coulomb interaction energy is dominant ;
over the confinement energy. In that case, one may apply t at these parameters phy_5|cally correspond to the electron-
ole and hole-hole separations along the length of the quan-

“free boson” model to determine the different electron-hole- : e L9 )
pair states. The “free boson” model is based on the Heitlerlum wire. The quantitys is a normalization constant, which

London approximation in which the biexciton wave function can be evaluated as described in Ref. 12. The quantities
is written as a linear combination of atomic orbitals in anal-‘ﬁe,h(yevh)' arey components of the wave functions of inde-

ogy with the hydrogen molecule. The linear combination ispendently confined electrons and holes in the quantum wire

chosen symmetric in space so that it corresponds to the siffnder @ magnetic field. They are magnetoelectric states and
are to be calculated independently by solving the Schro

glet state, which is known to be lower in energy than the® ; = ; i :
triplet statet? dinger equation. This is achieved by following the prescrip-
tion given in Ref. 32. The quantitiege ,(z.,) are thez

components of the wave function of independently confined

confinement energy is the dominant contribution. Electronselex:'[rc’r!s ?n?dhﬁles' These_ q:cj_alrglt_les are n(ﬁ aflfectedhgy the
and holes are confined separately, and the Coulomb potentig]agn.etIC ield(the magnetic field is oriente along t

may be neglected in comparison with the large kinetic en- Irection and are therefore represented by particle-in-a-box
ergy caused by the strong confinement. In our case, we arcéates.

primarily interested in the regime of moderate quantum con- The cho'ser! trial wave fu_nctlon implies th_at the “true
finement. Therefore, we have to adopt a physically realist ave function is more sensitive to the separation between the

trial wave function that would allow us to use the Heitler- Oles than between the electrons. Since holes have higher

. A, . . effective masses, this assumption is physically realistic.
London approach while taking into account the difference in The biexciton binding energg XX is given by

the motion along confined and “free” directions. We
achieve this by considering the electrons and holes to be XX _ i XX\ — 2 i X

independently quantized alorygandz directions, while ap- Eg”=min(W|H™| W) —2 min(y|H” ), (12)
plying the Heitler-London approximation along tkedirec-  where min(\PlHXX|\I') is found by minimizing the expecta-
tion. Following the approach in Refs. 10 and 12 we choose &on value of the Hamiltoniadd** with respect to the hole-
trial wave function as a singlet state with the electron-hole-hole variational parameter, and mify{H*|) is found by
pair contributions given by the Gaussian-type “orbital” minimizing the expectation value of the exciton Hamiltonian
functions: with respect to the electron-hole variational parameters

In the regime of strong quantum confinemehy,, are
smaller than the effective Bohr radiag . In this case, the
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described in Ref. 11. As pointed out by Klepfer, Madarasz,
and SzmulowicZ? introduction of a third variational param-
eter, which allows for relaxation of the electron-hole pair L =500 A: o
within the biexciton, would not seriously change the biexci- I Y
ton binding energy when there is no magnetic field present.
We tacitly assume that the same is true when a magnetic
field is present. Mathematical details of computing the ex-
pectation values of the exciton and biexciton Hamiltonian
are provided in the Appendix. One should note that every
imaginary term in the expectation value of the Hamiltonian
vanishes exactly, which makes the expectation value strictly
real and shows that the trial wave function space is admis-
sible.

Before concluding this section, we should make a few
remarks about the computational details. The evaluation of
the integrals in the Coulomb term of the expectation value , . s s .
(see Appendixis not straightforward owing to the rlkin- 0 2
gularity. References 5 and 10 avoided dealing with this by
applying a Fourier transform of the Coulomb term. This is

not pOSSIbIFT' In our case since we have a magnetic erI(1;1unction of magnetic flux density for two values of the wire width:
present, which transforms particle-in-a-box states along thg _g5o4 & andl. =700 A. The thickness along thedirection is
width of the quantum wirdy direction into magnetoelectric 260 A y

states whose wave functions, (Y. ), are calculated nu-

merical!y. Fortunately, unIikel in the case of the strictly ONe€-states will condense into pure Landau orbits and the confine-
Fj|men5|onal C.oulom.b potent|al,' the Coulomb tgrm treated "ment will be entirely of magnetostatic origin. In that case, we
Its f_uII three-d|_men3|0nal form_ls not pathologlca_ll,_and Car‘expect the binding energy to become independent of the wire
be integrated in real space using the extendeditidimen- 4 5o that the top two curves in Fig. 1 will saturate at a

s!onap deflnlt!on of the Improper integral th&.lt eX|sts_for this constant value. This is exactly what happens asymptotically
situation. This procedure involves evaluation of five- and |

seven-dimensional integ_rals in real space. We checked for Fiygure 2 shows the biexciton binding energy as a function
the convergence of the lnt(_agrals by setting all bUt the fre%f the magnetic field for different values of wire width, .
coordinates to zero and letting the relative coordinates along0

[ . ) r relatively wide wires(L,=700 A), the binding energy
the x direction gradually vanish over a hypersphere in ordef o565 sublinearly with the magnetic field, whereas for
to ensure that the volume element approaches zero fast

. . filrrower wiregL, =500 A), the increase is superlinear. For
than the singularity. wider wires, the magnetostatic confinement takes over the
dominant role at relatively low magnetic field strengths and

IIl. RESULTS AND DISCUSSION hence increasing t_he magnetic_ field to very high_valugs will
not have a dramatic effect. This causes the sublinearity. For
All the results that we present are for GaAs quantumnarrower wires, the increase is superlinear since at low val-
wires. The electron and hole effective masses are assumeddes of the field, the electrostatic confinement is dominant and
be 0.06Tny and 0.5n,, respectively. The relative permittiv- the field has no effect. Only at relatively high fields, the
ity of GaAs is taken as 12.9. binding energy increases as the magnetostatic confinement
In Fig. 1, we present the biexciton binding energy as aecomes increasingly dominant.
function of wire widthL, for three different values of the Figures 3a) and 3b) show the probability density distri-
magnetic field. The binding energy always decreases witlhution of the biexciton as a function of relative coordinates
increasing wire width as expected because of decreasing, and x,, (the separation along the wire between oppo-
electrostatic confinement. For narrow widtks100 A, the sitely charged particlg¢swith and without magnetic field.
magnetic field has little effect. Only at large widths does itThese two relative coordinates are the separations between
cause the rate of decrease to decelerate. These features cme electron and one hole, and between the other electron
be explained by invoking the complementary roles of elec-and the other hole. The presence of two peaks can be easily
trostatic and magnetostatic confinement. At narrow widthsunderstood as follows. Energetically, the most favored con-
the electrostatic confinement is predominant and the magdiguration in a quasi-one-dimensional system & t-e-h,”
netic field has little or no effect. Once the wire width signifi- which means that no two like charges are physically contigu-
cantly exceeds the magnetic lengtfi/eB, the electrostatic ous. Consequently, there are two favored valueg,gfand
confinement becomes weaker and yields dominant sway t®,,—the distance between nearest-neighbor particles and the
the magnetostatic confinement. Since the latter depends ontlistance between the two extreme particles in the above con-
on the magnetic field strength and is independent of the wiréiguration. The effect of the magnetic field is to squeeze the
width, the dependence of the binding energy on the wirédiexciton wave function along the frég axis) direction for
width becomes much weaker. In the limit of very wide wires both relative coordinates. This is a consequence of magneto-
(approaching the two-dimensional liyitthe electrostatic static confinement.
confinement will gradually vanish. The magnetoelectric The dependence of the ratio of biexciton to exciton bind-

Ly=700 A: ="~
L,=200 A

o ~ ©
T T

BIEXCITON BINDING ENERGY (meV)
)

o

4 6 8 10 12 14
MAGNETIC FIELD FLUX DENSITY (tesla)

FIG. 2. Biexciton binding energy in a GaAs quantum wire as a
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3+ FIG. 4. The ratio of the biexciton to exciton binding energy as a

function of electron-hole mass ratio for different values of mag-
netic flux density. The wire dimensions drg=200 A, L, =700 A.

two features, there are crossings between the three character-

14
054 /I ‘ istics in Fig. 4. The ratio of the binding energies increases
) //I"‘“ \\\\»;a///l'w‘\\\ with magnetic field for small values @f, but decreases with

> %&&M’f‘o“““}& the magnetic field ag- approaches unityi.e., the electron

and hole effective masses become efjual
In order to verify the verity of our model, we have com-
pared our results for the binding ener@yithout any mag-
00 netic field with those given in Refs. 5, 10, and 12. The
(b) ground-state binding energies are in excellent agreement
over the whole range of wire width,=150-700 A. The
FIG. 3. Plot of the biexciton probability density as a function of agreement deteriorates slightly at small valuek pénd this
relative coordinates;,,Xop for a quantum wire with and without happens because of the different values of effective masses
magnetic field. The wire dimensions arg=200 A, L, =700 A. used in the different calculations. We have also compared
our results with those experimentally measured and reported
in Refs. 16 and 17. Since Ref. 17 uskdhaped edge quan-
m wires rather than wires of rectangular cross sections, a
irect quantitative comparison is not possible. Nontheless,
there is excellent qualitative agreement.

40

ing energyE §*/E 5 on the mass ratio=m,/m;, has tradi-
tionally been a subject of significant interest and has bee
investigated by various authors for quasi-one-dimension
system®3! for two-dimensional systenfs, and for
bulk.2233-3"The primary findings until now have been that
(i) the ratio decreases monotonically with increasinfyfom
=0 (hydrogen molecule limjtto =1 (positronium limij,
(i) the ratio versusr plot is symmetric abouir=1, (iii ) the
ratio at any value ofr decreases with increasing dimension-  In this paper, we presented numerical calculations of the
ality (quantum wire=quantum wehl-bulk), and(iv) the plot  biexciton ground-state binding energies in a quasi-one-
has zero slope at=1. All of these features are unaffected by dimensional structure subjected to a magnetic field. The field
a magnetic field as shown in Fig. 4. The slight nonzero slopéncreases the binding energies and this can be utilized to
at o0=1 is a consequence of numerics and also the Heitlermodulate the nonlinear optical properties, specifically the
London-type approximation for the variational wave func-third-order nonlinear susceptibility’®, in a quantum wire.
tion. We found that even a modest change in the binding energy,
The magnitude of the energy ratio is of course materiacaused by a relatively modest magnetic field of 1 T, can
dependent since it depends on the Coulomb interattam  result in a significant change in the differential nonlinear
hence on the dielectric constant. It should be noted that theefractive index and differential absorption in a quantum
ratio is always quite large, which makes the so-called “adia-wire. Therefore, a magnetic field is a useful entity and has a
batic approximation,” where the biexciton is treated as apractical application in this respe@alculations of refractive
molecule of two structureless excitolisquestionable since index and absorption will be reported in a forthcoming pub-
this approximation is founded on the assumption that thdication). The effect of the magnetic field is most pronounced
exciton is much more tightly bound than the biexciton. Thein the widest wires because the wave function of both elec-
dependence of the ratio anis strongesii.e., the slope of trons and holes are “softest” in them and hence most
the plot is largestfor the highest magnetic field and the “squeezable” by a magnetic fieff. Consequently, wider
intercept is also largest for the highest field. Because of thessires are more suitable for magneto-optic modulators in

IV. CONCLUSION
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which a magnetic field is used to tun€ and therefore the Dame High Performance Computing ComplgPCO.
nonlinear refractive index.
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2 2 2 2
PX  p; Py TP pyh+pzh+eB(ye—yh) e?B2

=t — 2 2
H 2M+2/L+ 2m, + 2 M Pyx+eB(Ye/Mgt+yn/my)px+ 5 (ye/me+yr/mp)

e2

4776[X2+ (ye_yh)2+ (Ze_ Zh)

+Veond Ye Yn1Ze 1 Zn) — 2]1/2+59*MBB- (A1)

The last term(Zeeman splitting will be neglected since the The first term,(zp|l5>2</2M|zﬂ>, is zero since the wave
Landeg factor is very small in GaA§g* =—0.445. Follow-  function does not depend of. The kinetic term of relative
ing Ref. 11, we adopt the standard variational approach andhotion along thex direction can be integrated analytically

write the exciton trial wave function as using the fact thatp,, ¢y, xe . xn are normalized:
P h? (e
P=(X.Ye ,YnZe:Zp) b 21 v o fﬁm 0:9¢ dx
=0u(X, 7) he(Ye) Pn(Yn) Xe(Ze) Xn(Zn), (A2)
ﬁZ 2 2 1/2
whereg;(X, ) is chosen to be the Gaussian-type “orbital” - 2u 7 (;)
function:
f*w 2000 ()P 1]l
s x| e [2x/7)*= 1dx= 5 —.
9(X, 1) = —11 (— e 7 (A3) . . o .
n ™ In the above, a prime denotes spatial derivafsiagle prime

. _ _ o _ is the first and double prime the second derivativighe ki-
in which # is a variational parameter that determines thenetic term along the direction is affected by the magnetic
electron-hole separation. The variablgs(z. ) are thez field and is given by
components of the wave functions, which are not affected by
the magnetic field. They are given by particle-in-a-box states 52 P
+ 00
I 2 2
< '70‘ (/f> - Zme,h f_w gt dxf_uz(ﬁh,e dyh,e
L/2

2 Ze,h
Xe,n(Zen) = L_ZCO L) (A4)
X benden dYen
L2

The electron and hole wave functions along thdirection, -
den(Yen), are to be calculated numerically when a magnetic

2
pye,h

2Mg

field is present. This is done by solving the Scfinger 52 (e
equation directly following the prescription given in Ref. 32. = om dehden dYen-
eh J—L2 ' '
Calculation of the expectation values of the exciton Integrating by parts and taking into account tibgt, are zero
and biexciton Hamiltonians at the boundaries, we can eliminate the second derivatives
First, we calculate the expectation value of the exciton p 52 L
Hamiltonian in Eq.(Al) with a trial wave function given by < y Yeh llf> _ j (% 1)2 dye .
(A2)—(A4). For clarity, each term is treated separately. 2Mg 2Mep Sz "® ’
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Along the z direction we have the regular confinement en- (y|eB(ye,Mg+yp,/My) Pyl ) =i €B(Ye/ Mg
ergy

+
¢>: h2m? +yh/mh)£m g:9;dx=0.

The next two terms in the expectation value of the Hamil-Note that the vanishing of these two paramagnetic terms
tonian vanish. The ternfy{[eB(y.—Y,)/M]Py|#) is zero  makes the expectation value of the total Hamiltonian strictly
because, again, the wave function does not deperXi@and  real and shows that the trial wave function space is admis-
the other term is zero due to the fact that the functipand  sible. The expectation value of the remaining diamagnetic
its derivative are orthogonal to each other: term is given by the sum of two integrals

7)-*

Combining all the above terms with the Coulomb term, we obtain the expectation value of the exciton Hamiltonian as

L/2
? dx J . GRARyHm yEImydye dy,

e?B?
< Y| —— (Y me+ypimy)| i

e’B2 (L2 3232 L/2
¢eye th B ¢hyh dyh

2mg J -2

X h2 n2m? B2 (U2 2 g K2 L2 R e2B2 (L2 ,
U= 5ot 5ot o | (007 dver e [ (607 dvct 5 [ (vl dye
e?B2 (L2 e? 97 (X, ) PEDEXEXE
+ o 2 dyn— f = d¢, A5
2my ) P T 2 | BT (yem v P (ze- 20T H (A5

whered{=dx dy, dy, dz, dz,. The integration of the lagiCoulomb term is carried out over a hyper-rectandle which
has an infinite interval along the direction and limited by=L /2 and=L,/2 along they andz directions, respectively.
In order to calculate the expectation value of the biexciton Hamiltonian inf&gwe rewrite the trial wave function in

(4)—(10) in a form given below:
1 (2 2 2 _ _ 2 2 2. 2,2
P = §{e (XTa T Xop)/ 1 4 @~ [(X2p=Xap) "+ (X1a+ Xap) ) 7 le Xap! T DoY) XalZa)-
Denoting
Fa(x)=e (at X/

F 2()() =g~ [(x2p— Xab)zJr (X1at Xab)z]/ﬂzy

and omitting normalized components,(y,) x.(Z,), we take the derivatives analytically:

” po23 (1 2 X +F (1 o s ab)) G A6
&Xfa Sr] F1(x) 2(X) 77— ab(Xab) (A6)
? g2 (1 22 Xy +F (1 o v~ Xar)®) | A7
e S F1(x) 2(X) 7 ab(Xap),s (A7)
& -2 1 (Xop— 2Xap—X12)2  2(Xop— 2Xap— X12)Xab 1 2%3,
w2 V=5 {2F2<x>(?— At 2z FIFi00+ Fa0]| 2= =27 | | GanlXan),
(A8)
32 -2 2(X1aF Xab) (X2p— 2Xap— X12) 4%,y
i V=57 Fz<x>{1+ | Gan(an) g2, 2 {Fa00%Xaat Fo(X) (Xaat Xan) FGan(Xab),
(A9)
32 2 2(Xop— Xap) (— Xop+ 2Xap+ X14) 4Xqp
axzt,axab“’:ngz(X)(“ Tz | GanlXan) + gz, {F 100X+ Fa(X)(Xon ~ Xab)} GanlXap):

(A10)
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Using the above results for the derivatives, we can calculatand integrating ovey,,, z,, andx;, we obtain
the expectation value of the biexciton Hamiltonian
(W|H*N W),

The only remaining exercise is to show that the expecta-
tion values of the imaginary terms vanish. To show this, we 1 [+« [+ )2 -
prove the general result that the trial wave function is or-5g2 f f e~ ' T [F1(X)+Fa(x)] |X1:
thogonal to all its first derivatives along tleaxis. Consider ”
the integral (A13)

=40
_ 0% dXgp.

J
v T dx. All
J;’) (9X1a ( )

Based on the definition df ,(x), it is easy to see that the
integrand in the last equation is zero. By analogy, we can
prove that the expectation values of all other imaginary terms
d -2 in the Hamiltonian vanish. Again, this makes the expectation
X1a v= S {F10)X1a+ F2(X) (X127 Xap) } Gan(Xab), value of the biexciton Hamiltonian strictly real so that the
(A12) trial wave function space is admissible.

Substituting for the first derivative
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