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We present a method for treating quantum transport in heterostructures using multibandk•p theory. The
method is similar to the multiband quantum transmitting boundary method developed earlier for use with
multiband tight-binding band structure models, being efficient, numerically stable, and easy to implement. It
also has the advantages of being intuitive to use and easy to generalize to include magnetic field and strain
effects. We have applied this method to hole tunneling in prototypicalp-type GaAs/AlAs double-barrier
structure.@S0163-1829~96!05331-3#

I. INTRODUCTION

The physics of tunneling phenomena in semiconductor
heterostructures has been a subject of considerable investiga-
tion since the early work of Tsu and Esaki.1 A number of
theoretical works have been developed for understanding and
simulating the behavior of tunneling structures. The transfer-
matrix method based on the original technique of Kane’s
k–pmodel2 has been the most widely used. It is well known,
however, that the transfer-matrix method, when used in con-
junction with realistic multiband band-structure models, is
numerically unstable for device structures larger than a few
tens of Å.3,4 To circumvent the numerical difficulties that
arise in a transfer-matrix calculation, several techniques have
been developed recently.5–8 Among them, the multiband
quantum transmitting boundary method~MQTBM! ~Ref. 6!
for tight-binding models has been shown to be equal to the
transfer-matrix method in numerical efficiency, but superior
in numerical stability and ease of implementation. The
MQTBM is a multiband generalization of Frensley’s9 one-
band effective-mass approximation implementation of the
quantum transmitting boundary method, originally devel-
oped by Lent and Kirkner10 for treating an electron wave
guide using a finite-element approach. The tight-binding for-
mulation of the MQTBM has been successfully implemented
for the effective-bond-orbital model11 to study interband tun-
neling in InAs/GaSb/AlSb systems,6,12 and hole tunneling in
GaAs/AlAs double-barrier heterostructures.13 It has also
been implemented in a Slater-Koster second-neighborsp3

tight-binding model14 for studying X-point tunneling.15 In
this paper, we present thek–p version of the multiband quan-
tum transmitting boundary method to complement the tight-
binding MQTBM. Like the tight-binding version, MQTBM
for k–p is numerically efficient and stable, and easy to imple-
ment. In addition, thek–pMQTBM has the following salient
features:~1! k–p is readily familiar to many researchers, and,
~2! it can be easily generalized to include magnetic-field and
strain effects.

In Sec. II, we give a detailed account of the method we
developed to study the tunneling phenomena in heterostruc-
tures. In Sec. III, we illustrate the method by applying it to
the hole tunneling phenomena in ap-type GaAs/AlAs

double-barrier structure, and briefly compare our method
with some other available methods and also indicate how this
method can be generalized for studying strain and magnetic-
field effects. Finally, a summary is given in Sec. IV.

II. METHODS

The basic results of the effective-mass theory are that if
the external potentialV varies slowly over the unit cell, the
effect of the periodic field of lattice can be replaced by a set
of parametersHi j , which are determined by the unperturbed
bulk band structure. The solutions to the original Schro¨d-
inger’s equation can be obtained by solving the following
coupled differential equations:16

(
j51

M

@Hi j ~2 i¹!1V~r!#F j5EFi , ~1!

where the envelope functionsFi is related to the wave func-
tion by

c5(
j51

M

F juj0 , ~2!

whereM is the number of the bands involved in the model,
ui0 is the Bloch basis with lattice periodicity, and the form of
matrix elementsHi j (k) are determined by thek–p method.2

In this paper, we will focus on one-dimensional quantum
transport in semiconductor heterostructures in which the sys-
tem varies only along the growth direction (x axis!, and is
translational invariant in the lateral directions. The key to our
method is the treatment of boundary conditions, as devel-
oped originally by Lent and Kirkner.10 Since this is much
more easily explained in terms of a single-band model, for
the sake of clarity we first give a brief summary of the tech-
nique developed by Frensley.9 Then we generalize the
method to the multiband in thek–p theory.

A. One-band model

In a simple one-band model with a parabolic band struc-
ture of effective massm* , the effective mass equation of the
Hamiltonian is
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\2

2

d

dx S 1

m*
dF~x!

dx D1V~x!F~x!5EF~x!. ~3!

At the heterointerface between two materials, the wave
function and current continuity require thatF and
(1/m* )(dF/dx) be continuous across the interface.

In quantum tunneling problems, the boundary conditions
are such that we have a known incoming plane-wave state
from the left region, no incoming states from the right, and
unknown outgoing transmitted and reflected plane-wave
states in the right and left regions, respectively. The wave
functions on the left and right flatband regions are expressed
as

FL5IeikLx1re2 ikLx, ~4a!

FR5teikRx, ~4b!

where I represents the known incoming plane-wave state
from the left region, whilet and r describe the transmitted
and reflected states. The central issue in the quantum tunnel-
ing calculation is to evaluate the transmission coefficientt.

As schematically illustrated in Fig. 1, the entire device
region is discretized into N lattice points $xs%,
s51,2, . . . ,N, typically with equal spacinga. The two
boundaries at the ends are extended to flatband regions
where the electron states are plane-wave-like. If we choose
a to be on the order of lattice spacing, within the framework
of effective-mass theory, the derivatives of envelope func-
tion can then be well approximated by finite differences

dF

dx U
xs

⇒ Fs112Fs

a
, ~5a!

d2F

dx2 U
xs

⇒ Fs111Fs2122Fs

a2
. ~5b!

To solve Schro¨dinger’s Eq.~3! using the finite difference
method, we carry the discretization in two steps:~1! Within
each heterojunction layer, the effective massm* is assumed
to be constant, and the external potential varies slowly within
lattice spacing.~2! At the heterointerface, we assume the
current density is constant.

In each heterostructure region, Schro¨dinger’s Eq.~3! can
be discretized as

2
\2

2m* a2
Fs211S \2

m* a2
1V~xs!2EDFs2

\2

2m* a2
Fs11

50, ~6!

and similarly at each heterointerfaces5h, the current con-
tinuity condition (1/m* )(dF/dx) can be discretized as

2
1

mL*
Fh211S 1

mL*
1

1

mR*
DFh2

1

mR*
Fh1150, ~7!

whereL andR label the left and right regions of the hetero-
interface. Equations~6! and~7! can all be written in the form

Hs,s21Fs211Hs,sFs1Hs,s11Fs1150,

s52, . . . ,N21. ~8!

These constitute a set of linear equations on the discretized
envelope functionsFs .

The key idea in Frensley’s treatment of boundary condi-
tions is to eliminate the unknownr and t from Eq. ~4! and
formulate the problem as a system of linear equations with
only the envelope functions as the unknowns. Ats51 and
2, Eq. ~4a! gives

F15I1r , ~9a!

F25IeikLa1re2 ikLa. ~9b!

Eliminating r , we obtain

F12eikLaF25I ~12ei2kLa!. ~10!

Similarly applying the technique to the boundary condition
at the right region, Eq.~4b!, we have

FN21e
ikRa2FN50. ~11!

The above equations, together with Eq.~8!, constitute a sys-
tem of N linear equations which can be written in matrix
form as

3
1 2eikLa 0 ••• ••• ••• 0

H2,1 H2,2 H2,3 0 ••• ••• 0

0 H3,2 H3,3 H3,4 0 ••• 0

A � � � A A

0 0 HN21,N22 HN21,N21 HN21,N

0 ••• ••• ••• 0 2eikRa 1

4 3
F1

F2

F3

A

FN21

FN

4 53
I ~12ei2kRa!

0

0

A

0

0

4 . ~12!

FIG. 1. The entire active device region is specified byN lattice
points, typically with equal spacinga. The two boundaries are ex-
tended to flatband regions where electron states are plane-wave-
like. Thek•p differential equations are solved by applying the finite
difference method to these lattice points.
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The boundary conditions of incoming and outgoing plane-
wave states in quantum tunneling problems are represented
by the boundary and inhomogeneous terms in this system of
linear equations.

Equation ~12! can be solved readily using standard nu-
merical mathematical algorithms. Having obtained the coef-
ficients of envelope functionFi , it follows from Eq. ~4b!
that the coefficient of transmitted plane-wave statest is given
by

t5e2 ikR~N21!aFN . ~13!

The transmission coefficient is given by the ratio of transmit-
ted and incident probability current densities~given by
plane-wave absolute square amplitude times group velocity,
which, in turn, is proportional to thek gradient of the band
structure!,

T~E!5
St
SI

5
utu2uvRu
uI u2uvLu

5
utu2

uI u2
u¹kERu
u¹kELu

. ~14!

EL(k) andER(k) are the energy dispersions of the incident
and the transmitted bulk plane-wave states, respectively,
which can be obtained by solving Eq.~3! in the left and right
flatband regions.

B. General multiband model

1. Discretization of Schro¨dinger’s equation

It is quite straightforward to generalize the method illus-
trated in the one-band model to multiband cases. The
effective-mass equations in multiband models are described
by a set of coupled differential equation of envelope
functions,16

(
j51

M

@Hi j ~2 i¹!1V~r!#F j5EFi , ~15!

whereM is the number of bands in the model. The bulk band
matrix elementHi j in the second-orderk•p method, can be
generally written as

Hi j5Di j
~2!abkakb1Di j

~1!aka1Di j
~0! ~16!

where indicesa andb are summed overx, y, andz. The
linear terms ink usually appear when the model includes
explicitly the interaction between conduction band and va-
lence bands of the system.

The problems we consider are one dimensional, in which
the system varies only along the growth direction (x axis!,
and is translational invariant in the lateral directions. We can
rewrite the the Hamiltonian matrix element, Eq.~16! as a
second-order polynomial inkx ,

Hi j5Hi j
~2!kx

21Hi j
~1!~ki!kx1Hi j

~0!~ki!, ~17!

with ki5kyŷ1kzẑ. In short, we can write

H~k!5H~2!kx
21H~1!~ki!kx1H~0!~ki! ~18!

whereH (n) areM3M matrices. An example of decompos-
ing the k–p Hamiltonian matrix element for theG8 434
valence band states is given in the Appendix.

Similar to the treatment in Sec. II A, the discretization of
Schrödinger’s equation@Eq. ~15!# is carried out in two steps:
~1! Within each heterostructure layer, the Luttinger param-
eters are assumed to be constants.~2! At the heterointerface,
the current density is assumed to be constant across the in-
terface.

Within each heterostructure layer, replacingkx with the
operator (1/i )(]/]x), Eq. ~15! becomes

S 2H~2!
]2

]x2
2 iH~1!

]

]x
1H~0!1V~x! DF5EF. ~19!

WhereF is a vector of lengthM . Applying the finite differ-
ence approximations of Eq.~5! at each discretized lattice
point s, theM coupled differential equations~19! are then
transformed intoM linear finite difference equations,

Hs,s11Fs111Hs,sFs1Hs,s21Fs2150, ~20!

with

Hs,s5
2H~2!

a2
1H~0!1Vs2E, ~21a!

Hs,s1152
H~2!

a2
2 i

H~1!

2a
, ~21b!

Hs,s2152
H ~2!

a2
1 i

H~1!

2a
, ~21c!

whereHs,s8 areM3M matrices. Equation~20! has a form
similar to the tight-binding formulation with nearest-
neighbor interaction. This important observation led us to
develop a similar method, based on the multibandk•p
theory, to that of the tight-binding MQTBM approach for
treating quantum transport.

2. Current-density operator

It can be shown that the probability current density opera-
tor in thek•p theory is then given by4,17

Jx5
1

i\ S F†H~2!
]F

]x
2

]F†

]x
H~2!F1 iF†H~1!FD

5Re~F†JxF!, ~22!

with

Jx5
1

\ S 22iH~2!
]

]x
1H~1!D . ~23!

3. Treatment of heterostructure interfaces

At the heterojunction interfaces5h, the wave function
and current are required to be continuous across the inter-
face. Following the treatment of Altarelli,18 we ignore the
differences in the Bloch basis functionsui0 for materials
across the heterointerface. Then the condition of wave func-
tion continuity results in the continuity of envelope functions

FL5FR . ~24!

The current continuity requires thatJxF or
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22iH~2!
]F

]x
1H~1!F ~25!

be continuous across the interface. So theH matrices at the
interface should be corrected as

Hh,h5
2~HR

~2!1HL
~2!!

a2
2 i

HR
~1!2HL

~1!

2a
, ~26a!

Hh,h1152
2HR

~2!

a2
2 i

HR
~1!

2a
, ~26b!

Hh,h2152
2HL

~2!

a2
1 i

HL
~1!

2a
. ~26c!

4. Boundary conditions

In calculating the transmission coefficient in tunneling
problems, accurate treatment of the boundary condition is
crucial. The formulation of boundary conditions in the multi-
band model is more sophisticated, and deserves special at-
tention. In bulk flatband region, the Bloch plane-wave solu-
tions of wave vectork can be generally written as

Fk5eik–rCk, ~27!

whereCk satisfies that

H~k!Ck5ECk . ~28!

Matrix elementsHi j (k) are generally a quadratic polynomial
in ka , so for fixed energyE and in-plane wave vectorki
there will be 2M complex wave vector solutionskx, j and
associated eigenstatesCkj

in general. The wave functionc

for given energyE is in general a linear combination of these
solutions,

F~r!5eiki•r i(
j51

2M

bie
ikx, j xCkj

, ~29!

c5F~r!u0~r!. ~30!

To find the 2M eigenstates given the energyE andki , we
rewrite Eq.~28! explicitly using Eq.~18! as

@H~2!kx
21H~1!~ki!kx1H~0!~ki!2E#Ck50 ~31!

The generalized eigenvalue problem of Eq.~31! can be con-
verted into the standard eigenvalue form forkx ,

19,20

F 0 1

2~H~2!!21@H~0!~ki!2E# 2~H~2!!21H~1!~ki!
GF Ck

kxCk
G

5kxF Ck

kxCk
G . ~32!

It can be shown that the matrixH(2) is nonsingular.3 Equa-
tion ~32! has 2M eigenvalueskx, j solutions and 2M corre-
sponding eigenvectorsCk, j . This method is much more con-
venient and efficient than some other calculations of the
complex band structures,4,21which involves finding the zeros
of the secular determinant det@H(k)2E#.

The boundary conditions are such that the wave function
in the left region includes both the incoming and reflected
plane-wave states, and the wave function on the right region
has only transmitted plane-wave states. The eigenvalues
kx, j in general can be complex values describing evanescent
states. Following the treatment of boundary conditions by
Ting, Yu, and McGill,6 we order the wave vectorskx, j such
that j51,2, . . . ,M corresponds to the forward states which
propagate or decay to the right~i.e.,kx, j is either positive real
number or its imaginary part is positive for electron states,
and vice versa for hole states!, while j5M11, . . . ,2M cor-
responds to the backward states which propagate or decay to
the left. The boundary conditions can be described in the
bulk eigenstate basis by choosing the proper form for the
wave functions in the left and right regions:

FL5exp~ iki•r i!(
j51

M

~ I je
ikx, j
L xCk, j1r je

ikx, j1M
L xCkL , j1M !,

~33a!

FR5exp~ iki•r i!(
j51

M

t je
ikx, j
R xCkR , j

. ~33b!

wherekx, j
L andkx, j

R are the bulk complex wave vectors in the
left and right regions, respectively. In bulk crystals, the num-
ber of states propagating to the right should equal the num-
ber of states propagating to the left. Similarly, the number of
states decaying to the right should equal to the number of
states decaying to the left.

Let I , r, and t be column vectors of dimensionM con-
taining the coefficients$I j%, $r j%, and $t j%, respectively.I
represents the known incoming states, whiler andt describe
the reflected and transmitted components. By examining Eqs.
~33a! and ~33b!, we find thatI , r, and t are related to the
envelope-function coefficients by a simple basis transforma-
tion,

FF1

F2
G5FD11

L D12
L

D21
L D22

L GF IrG , ~34a!

FFN21

FN
G5FD11

R D12
R

D21
R D22

R GF t0G . ~34b!

whereD11
L , D12

L and D11
R , D12

R areM3M matrices whose
column vectors are the eigenvectorsCkL , j

andCkR , j
obtained

by solving Eq.~32! for the left and right regions, respec-
tively, and arranged in the same order as the corresponding
eigenvalues:

D11
l 5@Ckl,1

, Ckl,2
, . . . , Ckl ,M

#, ~35a!

D12
l 5@Ckl ,M11 , Ckl ,M12 , . . . , Ckl,2M

#, ~35b!

and
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D21
l 5@eikx,1

l aCkl,1
, eikx,2

l aCkl,2
, . . . , eikx,M

l aCkl ,M
#,
~36a!

D21
l 5@eikx,M11

l aCkl,M11 ,

eikx,M12
l aCkl ,M12 , . . . , e

ikx,2M
l aCkl,2M

#, ~36b!

wherel5L andR.
Now pursuing the same technique we applied in the one-

band model, we eliminater andt from Eqs.~34a! and~34a!,

F12D12
L D22

L 21F25D11
L I2D12

L D22
L 21D21

L I , ~37a!

2D21
RD11

R 21FN211FN50. ~37b!

which are the generalized multiband forms of Eqs.~10! and
~11!. These equations, together with Eq.~20!, constitute a
system ofMN linear equations. This can be written in the
following matrix form corresponding to the generalized
multiband model:

3
1 2D12

L D22
L 21 0 ••• ••• ••• 0

H2,1 H2,2 H2,3 0 ••• ••• 0

0 H3,2 H3,3 H3,4 0 ••• 0

A � � � A

0 0 HN21,N22 HN21,N21 HN21,N

0 ••• ••• ••• 0 2D21
RD11

R 21 1

4 •3
F1

F2

F3

A

FN21

FN

4 53
D11
L I2D12

L D22
L 21D21

L I

0

0

A

0

0

4 ~38!

Having obtained the envelope function coefficientsFs , it
follows from Eq.~34b! that the coefficients of the transmit-
ted plane-wave states are given by

t5D21
R 21FN . ~39!

Taking the normalization condition ofuI u51, the total trans-
mission coefficient can be calculated from Eq.~22!:21

T~E,ki!5(
j51

M

ut j~E,ki!u2
Re~Cj

†JxCj !

Re~CI
†JxCI !

. ~40!

It can be shown4 that the current components for a given
subband j j5Re(Cj

†ĴCj ) is related to the group velocity
vj5(1/\)¹kEj (k) by

j5rv, ~41!

wherer5C†C. So the transmission coefficientT can also be
expressed as

T~E,ki!5(
j51

M

ut j~E,ki!u2
uv j~E,ki ;R!u
uv I~E,ki ;L !u

. ~42!

III. APPLICATIONS AND DISCUSSIONS

A. p-type GaAs/AlAs double barrier

For the purpose of illustration of our method, we consider
the top of valence-bandG8 states. The four basis functions
and the 434 Luttinger-Kohn Hamiltonian are given explic-
itly in the Appendix. The lack of inversion symmetry in the
III-V system is not represented by this Hamiltonian, there-
fore the bands have a twofold degeneracy at every point ink
space. It is known that statesKJck,↑5ck,↓ and ck,↑ are
degenerate in energy and are orthogonal to each other,22

whereK is the Kramers time reversal operator andJ is the
space inversion operator.

Due to the degeneracy, the electron eigenstatesCk for a
given energyE and k are not uniquely determined. For
ki50, the eigenstates are decoupled into spin-up and spin-
down pure heavy-hole and light-hole states. In the case of
kiÞ0, there is mixing between heavy-hole and light-hole
bases. We construct and label the electron eigenstate basis in
the following convention. The two degenerate basis for a
given energyE and k are constructed to beck,↑ and
KJck,↑ . For heavy-hole bands,ckhh ,↑ is constructed so that
the heavy hole component with spin-down is zero,

CkHH ,↑5~u1 ,u2 ,u3 ,0!.

Its degenerate counterpart is therefore given by

CkHH ,↓5~0,u3* ,2u2* ,u1* !,

in which the spin-up heavy-hole~HH! component vanishes.
Similarly, for light-hole~LH! bands, we choose

CkLH ,↑5~v1 ,v2 ,0,v4!,

and

CkLH ,↓5~2v4* ,0,2v2* ,v1* !.

These four eigenstates are orthogonal to each other and con-
stitute the basis for the electron states in theG8 valence band.

The GaAs/AlAs double-barrier resonant tunneling struc-
ture we consider has 50-Å well width and 30-Å barrier
width. In our calculation, the flatband condition is assumed.
By assumption of the effective-mass theory, the envelope
functions vary slowly on the scale of the unit cell size, there-
fore it is a good approximation to take the lattice constant as
the step size in our discretization.

Figure 2 shows the transmission coefficients for normal
incident HH and LH states. In the caseki50, the HH and LH
states are decoupled:
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H~2!5
\2

2mF g122g2 0 0 0

0 g112g2 0 0

0 0 g112g2 0

0 0 0 g122g2

G ,
~43a!

H~1!~ki!5H~0!~ki!50. ~43b!

The results would be the same as the ones derived using
simple one-band model, assuming the heavy-hole and light-
hole effective masses are

mHH* 5
m

g122g2
, ~44a!

mLH* 5
m

g112g2
, ~44b!

respectively. The resonant peaks correspond to the quasi-
bound HH and LH states in the central well. As expected, the
light-hole state has a higher transmission coefficient than the
heavy hole due to smaller effective mass.

In Figs. 3 and 4, respectively, we show the transmission
coefficients for incoming HH and LH states withukiu50.03
Å 21. The nonzerok i states contain mixing of heavy- and
light-hole states, and interact with all the quasibound states
formed in the well, resulting in multiple transmission reso-
nances. The resonant states are labeled according to their
dominant bulk-state component. Because of the hole-mixing
effects, the incident heavy-hole state can transmit through

FIG. 2. Transmission coefficients for heavy-
hole ~solid line! and light-hole ~dashed line!
states through a 30 Å - 50 Å - 30 Å double-
barrier heterostructure withki50.

FIG. 3. Transmission coefficients for heavy-
hole ~solid line! and light-hole ~dashed line!
channels with a heavy-hole incoming state
through a 30 Å - 50 Å - 30 Å double-barrier
heterostructure withki50.03 Å 21.
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not only the heavy-hole channel, but also the light-hole chan-
nel, and vice versa for the incident light-hole state. This
hole-mixing effects inp-type GaAs/AlAs double-barrier
structures have been observed in experimentalI -V
characteristics.23

B. Discussions

We first briefly compare our method with some other
available methods. The well-known transfer-matrix method
has been employed for studying hole tunneling in the frame-
work of k–p theory.4,18,17However, in addition to numerical
instability problems occurred for devices larger than a few
tens of Å,3 spherical approximation had to be used to sim-
plify the multiband plane-wave solutions at each piecewise-
constant potential region. The computational cost for an ef-
ficient implementation of the transfer-matrix method is the
same as our method.6 Therefore, the method we presented
here has a considerable advantage over the transfer-matrix
method.

The scattering matrix method developed by Ko and
Inkson5 overcomes the numerical instability problem in
transfer-matrix method by separating the forward and back-
ward states, and relating the outgoing and incoming states
through the scattering matrix. By doing so, the less localized
and the propagating states dominate numerically, and the
physics of tunneling process is more faithfully described.
However, the gain in numerical stability is somewhat offset
by added computational cost in constructing the scattering
matrix, especially in localized orbital band-structure models.

The computational technique we developed here is similar
to the MQTBM ~Ref. 6! for tight-binding models, that is, it
transforms the entire problem to a system of linear equations
in the final form. They are both efficient, numerically stable
and easy to implement. They complement each other in vari-
ous applications. Problems likeX-point tunneling are more
easily studied under the tight-binding framework.15 On the
other hand,k–pmethod presented here has the advantages of
being readily familiar to many researchers, and easy to ex-

tend to incorporate the strain and magnetic-field effects. The
strain effect adds either a constant or linear term on the
k–p matrix element,24 and the magnetic field effect only af-
fects the matrix element by transformingk→k2(eA/c) and
including the constant magnetic moment energy.25 Since the
matrix elements in Eq.~38! are constructed directly from the
k–p matrix elements, it is very convenient to implement this
method for various material systems. The application to the
magnetotunneling effect in interband and intraband hetero-
structures will be published elsewhere.

IV. SUMMARY

We have developed a method for quantum transport cal-
culation in semiconductor heterostructures. The method is
based on the multibandk–p theory and the multiband quan-
tum transmitting boundary method.6 The method circum-
vents the numerical instability encountered in the transfer-
matrix method, and is efficient and easy to implement. The
formulation based onk–p theory makes it suitable for study-
ing strain and magnetic-field effects. We have demonstrated
the utility of the method by applying it to the hole tunneling
in p-type GaAs/AlAs double-barrier structures.
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APPENDIX A: BASIS AND HAMILTONIAN
OF G8 STATES

The basis functions for the top of the valence-bandG8
states are chosen to be

u15u 32 ,
3
2 &5S X1 iY

A2 D ↑, ~A1a!

FIG. 4. Transmission coefficients for heavy-
hole ~solid line! and light-hole ~dashed line!
channels with a light-hole incoming state through
a 30 Å - 50 Å - 30 Ådouble-barrier heterostruc-
ture with ki50.03 Å 21.
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u25u 32 ,
1
2 &5

1

A6
@~X1 iY!↓22Z↑#, ~A1b!

u35u 32 ,2
1
2 &52

1

A6
@~X2 iY!↑12Z↓#, ~A1c!

u45u 32 ,2
3
2 &52S X2 iY

A2 D ↓. ~A1d!

The phases of these basis satisfyCu15u4 , Cu452u1 ,
Cu252u3 , andCu35u2 , where the conjugation operator
C5JK is the product of space inversion operatorJ and the
Kramers time reversal operatorK.

The Luttinger-Kohn Hamiltonian is given by

H~k!5F P1Q 2S R 0

2S* P2Q 0 R

R* 0 P2Q S

0 R* S* P1Q

G , ~A2!

with

P~k!5
\2

2m
g1k

22EV , ~A3a!

Q~k!5
\2

2m
g2~kx

21ky
222kz

2!, ~A3b!

S~k!5
\2

2m
2A3g3~kx2 iky!kz , ~A3c!

R~k!5
\2

2m
A3@2g2~kx

22ky
2!12ig3kxky#. ~A3d!

Choosing the growth direction along thez direction,
H(k) can be decomposed as

H~k!5H~2!kz
21H~1!~ki!kz1H~0!~ki! ~A4!

where

H~2!5
\2

2mF g122g2 0 0 0

0 g112g2 0 0

0 0 g112g2 0

0 0 0 g122g2

G , ~A5a!

H~1!~ki!5
\2

2mF 0 22A3g3~kx2 iky! 0 0

22A3g3~kx1 iky! 0 0 0

0 0 0 2A3g3~kx2 iky!

0 0 2A3g3~kx1 iky! 0

G , ~A5b!

H~0!~ki!5
\2

2mF ~g11g2!ki
2 0 A3@2g2~kx

22ky
2!12ig3kxky# 0

0 ~g12g2!ki
2 0 A3@2g2~kx

22ky
2!12ig3kxky#

A3@2g2~kx
22ky

2!22ig3kxky# 0 ~g12g2!ki
2 0

0 A3@2g2~kx
22ky

2!22ig3kxky# 0 ~g11g2!ki
2

G .
~A5c!

The current density operators is given by

Ĵz5
1

\
~2H~2!kz1H~1!!, ~A6!

which can be expressed explicitly as

Ĵz5
\

mF ~g122g2!kz 2A3g3~kx2 iky! 0 0

2A3g3~kx1 iky! ~g112g2!kz 0 0

0 0 ~g112g2!kz A3g3~kx2 iky!

0 0 A3g3~kx1 iky! ~g122g2!kz

G . ~A7!
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