PHYSICAL REVIEW B VOLUME 54, NUMBER 8 15 AUGUST 1996-II

Efficient, numerically stable multiband k-p treatment of quantum transport
in semiconductor heterostructures
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We present a method for treating quantum transport in heterostructures using mukilpaticcory. The
method is similar to the multiband quantum transmitting boundary method developed earlier for use with
multiband tight-binding band structure models, being efficient, numerically stable, and easy to implement. It
also has the advantages of being intuitive to use and easy to generalize to include magnetic field and strain
effects. We have applied this method to hole tunneling in prototymegipe GaAs/AlAs double-barrier
structure [S0163-18206)05331-3

[. INTRODUCTION double-barrier structure, and briefly compare our method
with some other available methods and also indicate how this
The physics of tunneling phenomena in semiconductor_nethod can be_ generalized for st_udy_ing s_train and magnetic-
heterostructures has been a subject of considerable investigigld effects. Finally, a summary is given in Sec. IV.
tion since the early work of Tsu and Esakh number of
theoretical works have been developed for understanding and Il. METHODS
simulating the behavior of tunneling structures. The transfer- The basi Its of the effecti th that if
matrix method based on the original technique of Kane’sth )?t rz:}suc retSL:]tiS(; v rie N |ec\,\|,\|/e-TarS ?h e(;ri%/ arl? tha |
k-p modef has been the most widely used. It is well known, € external potentiay varies siowly over the unit cell, the
) . effect of the periodic field of lattice can be replaced by a set
however, that the transfer-matrix method, when used in con: . X
. : . I : ._of parameters$i;; , which are determined by the unperturbed
junction with realistic multiband band-structure models, is

. . bulk band structure. The solutions to the original Sdhro
numerically unstable for device structures larger than a feVYnger’s equation can be obtained by solving the following
tens of A>* To circumvent the numerical difficulties that

o _ _ : coupled differential equation§:
arise in a transfer-matrix calculation, several techniques have

been developed recenfly® Among them, the multiband M

guantum transmitting boundary meth@dQTBM) (Ref. § > [Hij(=iV)+V(r)]F;=EF;, 1)

for tight-binding models has been shown to be equal to the =1

transfer-matrix method in numerical efficiency, but superiorynere the envelope functior is related to the wave func-

in numerical stability and ease of implementation. Theion py

MQTBM is a multiband generalization of Frensley’sne-

band effective-mass approximation implementation of the M

quantum transmitting boundary method, originally devel- z/f=2 Fiujo, 2
oped by Lent and Kirknéf for treating an electron wave =1

guide using a finite-element approach. The tight-binding foryyhereM is the number of the bands involved in the model,
mulation of the MQTBM has been successfully implemented,,  is the Bloch basis with lattice periodicity, and the form of
for the effective-bond-orbital modelto study interband tun- matrix elements (k) are determined by thie-p method?
neling in INAs/GaSb/AISb systenfs?and hole tunneling in | this paper, we will focus on one-dimensional quantum
GaAs/AlAs double-barrier heterostructurésit has also  transport in semiconductor heterostructures in which the sys-
been implemented in a SIater-Koster.second-n'elgrghﬁr tem varies only along the growth directior @xis), and is
tight-binding model* for studying X-point tunneling:* In  ransjational invariant in the lateral directions. The key to our
this paper, we present thep version of the multiband quan- method is the treatment of boundary conditions, as devel-
tum transmitting boundary method to complement the tightyped originally by Lent and Kirknef® Since this is much
binding MQTBM. Like the tight-binding version, MQTBM mgre easily explained in terms of a single-band model, for
for k-p is numerically efficient and stable, and easy to imple-the sake of clarity we first give a brief summary of the tech-
ment. In addition, thd&-p MQTBM has the following salient nique developed by Frensl8yThen we generalize the
features(1) k-p is readily familiar to many researchers, and, nethod to the multiband in thie-p theory.

(2) it can be easily generalized to include magnetic-field and
strain effects.

In Sec. Il, we give a detailed account of the method we
developed to study the tunneling phenomena in heterostruc- In a simple one-band model with a parabolic band struc-
tures. In Sec. Ill, we illustrate the method by applying it to ture of effective masa™*, the effective mass equation of the
the hole tunneling phenomena in prtype GaAs/AlAs  Hamiltonian is

A. One-band model
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d’F For1tFo_1—2F, -
e = 2 - (5b)

o

To solve Schrdinger’'s Eq.(3) using the finite difference
method, we carry the discretization in two steffy: Within
each heterojunction layer, the effective mass is assumed
to be constant, and the external potential varies slowly within
lattice spacing.(2) At the heterointerface, we assume the

.

2 3 o-160+l n-1nn+l N-1N current density is constant.
In each heterostructure region, Satirmer’s Eq.(3) can
be discretized as

FIG. 1. The entire active device region is specified\bjattice

points, typically with equal spacing. The two boundaries are ex- 22 2 72

tended to flatband regions where electron states are plane-wave-— ———F . +|——+V(x,)—E|F,— =——F

. . . . . .. Zm* a2 o—1 m* a2 T a Zm* a2 o+l
like. Thek- p differential equations are solved by applying the finite

difference method to these lattice points. ~0 6)

and similarly at each heterointerfaoe= %, the current con-
+VX)F(X)=EF(x). (3 tinuity condition (1m*)(dF/dx) can be discretized as

2 .d [ 1 dF(x)
m* dx

At the heterointerface between two materials, the wave 1 F

function and current continuity require thaF and B m_’L‘ n-1t

(1/m*)(dF/dx) be continuous across the interface. . .
In quantum tunneling problems, the boundary conditions}”hereL andR Igbel the left and right regions of the hetero-

are such that we have a known incoming plane-wave stat@terface. Equationg) and(7) can all be written in the form

from the left regjon, no incqming states from the right, and H,y 1Fy 1+H, FotH, o 1Fyy1=0,

unknown outgoing transmitted and reflected plane-wave ’ ' ’

states in the right and left regions, respectively. The wave o=2,...N—-1 (8)

functions on the left and right flatband regions are expresseﬁjhese constitute a set of linear equations on the discretized

1
mt )T g Fa=0 @

as envelope function§ ;.
FL=le X+ re kX, (4a) The key idea in Frensley’s treatment of boundary condi-
tions is to eliminate the unknown andt from Eg. (4) and
Fr=te'krR¥, (4b)  formulate the problem as a system of linear equations with

) ) only the envelope functions as the unknowns.aAt1 and
where | represents the known incoming plane-wave state, Eq. (43 gives

from the left region, whilet andr describe the transmitted

and reflected states. The central issue in the quantum tunnel- Fi=Il+r, (99
ing calculation is to evaluate the transmission coeffictent _ )
As schematically illustrated in Fig. 1, the entire device Fo=letre k2, (9b)

region is discretized into N lattice points {X,},
o=1,2,... N, typically with equal spacinga. The two
boundaries at the ends are extended to flatband regions Fl—eikLaF2:|(1—ei2kLa)_ (10)
where the electron states are plane-wave-like. If we choos
a to be on the order of lattice spacing, within the framework ; .

of effective-mass theory, the derivatives of envelope func the right region, Eqr4b), we have

Eliminatingr, we obtain

gimilarly applying the technique to the boundary condition

tion can then be well approximated by finite differences Fu_1€KR2—Fy=0. (11)
dF Foi1—Fo The above equations, together with E8), constitute a sys-
ax —Qa (53 tem of N linear equations which can be written in matrix

Xg form as
[ 1 —eka o ... 0 [ Fy ] [1(1—e%r¥)]
Hop Hop Hps O 0 F2 0
0 H3,2 H3V3 H314 0 e 0 F3 O
. . . .= . . (12
0 0 HN—l,N—Z HN—l,N—l HN—l,N I:N—l 0
0 0 —elkra 1 ][ Fn ] | 0 ]
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The boundary conditions of incoming and outgoing plane- Similar to the treatment in Sec. Il A, the discretization of
wave states in quantum tunneling problems are representédthralinger’s equatiofEq. (15)] is carried out in two steps:
by the boundary and inhomogeneous terms in this system dfl) Within each heterostructure layer, the Luttinger param-
linear equations. eters are assumed to be consta(@sAt the heterointerface,
Equation(12) can be solved readily using standard nu-the current density is assumed to be constant across the in-
merical mathematical algorithms. Having obtained the coefterface.
ficients of envelope functiofr;, it follows from Eq. (4b) Within each heterostructure layer, replacikgwith the
that the coefficient of transmitted plane-wave statsggiven  operator (1i/)(d/dx), Eq. (15 becomes
by 5
; (2) J iH@ J (0) =
t:e_lkR(N_l)aFN. (13) —H W—IH 5_X+H +V(X) F=EF. (19)
The transmission coefficient is given by the ratio of transmit-whereF is a vector of lengttM. Applying the finite differ-
ted and incident probability current densitiégiven by ence approximations of Eq5) at each discretized lattice
plane-wave absolute square amplitude times group velocitysoint o, the M coupled differential equationd9) are then
which, in turn, is proportional to thk gradient of the band transformed intdVl linear finite difference equations,
structure,
Ha',0'+lFa'+l+Ho,o'Fa'_FHO',U*lFO'*l:Ov (20)
S [tPvrl [t |ViERl

R T P AT =1 R
E (k) andEg(k) are the energy dispersions of the incident H :ZH(Z) +HOLy —E (219
and the transmitted bulk plane-wave states, respectively, 7o a2 7
which can be obtained by solving E@) in the left and right
flatband regions. _ H@ RO
Hoor1=— 2 ~155 (21b)
B. General multiband model
. H®  HO
1. Discretization of Schrdinger’s equation Hpoo1=— =z +i Sa (2190

It is quite straightforward to generalize the method illus-
trated in the one-band model to multiband cases. ThavhereH, . areM XM matrices. Equatiori20) has a form
effective-mass equations in multiband models are describegimilar to the tight-binding formulation with nearest-
by a set of coupled differential equation of enve|openeighb0r interaction. This important observation led us to
functions!® develop a similar method, based on the multibdadg
theory, to that of the tight-binding MQTBM approach for
M treating quantum transport.
> [Hij(—iV)+V(n]F,=EF;, (15)
=1 2. Current-density operator
whereM is the number of bands in the model. The bulk band It can be shown that the probability current density opera-

matrix element;; in the second-ordek-p method, can be tor in thek-p theory is then given By
generally written as

= 1 ty(2) oF _aF (2) ietH@
Hij :Di(j2)a,3kakﬁ+ Di(jl)aka+ Di(]_O) (16) Jx—m F'H 5— (?_XH F+iF'"H'YF
where indicese and 8 are summed ovex, y, andz. The —Re(F'J,F) 22)
linear terms ink usually appear when the model includes X2
explicitly the interaction between conduction band and vaith
lence bands of the system.
The problems we consider are one dimensional, in which 1 L 2) "
the system varies only along the growth directionakxis), ‘]x:g —2iH &”LH ' (23

and is translational invariant in the lateral directions. We can
rewrite the the Hamiltonian matrix element, Ed.6) as a
second-order polynomial ik,

3. Treatment of heterostructure interfaces

At the heterojunction interface= 7, the wave function

Hij =H§j2)kf+ Hi(jl)(k\\)kx+ Hi(]_0>(k”), (177  and current are required to be continuous across the inter-
. face. Following the treatment of Altarefff, we ignore the
with kj=k,y+k,z. In short, we can write differences in the Bloch basis functiong, for materials
5 across the heterointerface. Then the condition of wave func-
H(K)=H®@KZ+HM (k) ke +HO (k) (18 tion continuity results in the continuity of envelope functions
whereH (W areM X M matrices. An example of decompos- FL=Fr. (24)

ing the k-p Hamiltonian matrix element for thé&'g 4Xx4
valence band states is given in the Appendix. The current continuity requires thagF or
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oF
—2iH(2>a—X+H(1)F (25)

be continuous across the interface. So lthenatrices at the
interface should be corrected as

C2(HR+HP)  HR'-HY
nmn a2 I 2a (263
2HZ  HY -~
Howii=——2 ~155 (26b)
2H?  HY
H17,77—1 —ar‘f'lz (26C)

4. Boundary conditions
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The boundary conditions are such that the wave function
in the left region includes both the incoming and reflected
plane-wave states, and the wave function on the right region
has only transmitted plane-wave states. The eigenvalues
kyj in general can be complex values describing evanescent
states. Following the treatment of boundary conditions by
Ting, Yu, and McGill® we order the wave vectoks j such
thatj=1,2,...,M corresponds to the forward states which
propagate or decay to the riglie., k, ; is either positive real
number or its imaginary part is positive for electron states,
and vice versa for hole stajesvhilej=M+1,...,2M cor-
responds to the backward states which propagate or decay to
the left. The boundary conditions can be described in the
bulk eigenstate basis by choosing the proper form for the
wave functions in the left and right regions:

M

In calculating the transmission coefficient in tunneling F =exp(ik-r H)E (1 e x1 *Cyjtr e x1+M Ck Jem)s

problems, accurate treatment of the boundary condition is
crucial. The formulation of boundary conditions in the multi-

(333

band model is more sophisticated, and deserves special at-

tention. In bulk flatband region, the Bloch plane-wave solu-

tions of wave vectok can be generally written as
F=e*'C, (27)
whereC, satisfies that

H(k)C,=EC;. (29

M
Fr=explik; r”);l tea Gy, ;- (33b

wherek, ; andk; are the bulk complex wave vectors in the
left and right regions, respectively. In bulk crystals, the num-
ber of states propagating to the right should equal the num-
ber of states propagating to the left. Similarly, the number of

Matrix elementsH;; (k) are generally a quadratic polynomial states decaying to the right should equal to the number of

in k,, so for fixed energyE and in-plane wave vectd
there will be 21 complex wave vector solutions, ; and
associated eigenstaté?:;}j in general. The wave functiog

states decaying to the left.
Let I, r, andt be column vectors of dimensiod con-
taining the coefficient§l;}, {r;}, and{t;}, respectively.l

for given energ)E is in general a linear combination of these represents the known incoming states, whikndt describe

solutions,

2M
F(n=e""1 2, biex"Cy, 29

P
Yy=F(r)uo(r). (30

To find the 2V eigenstates given the energyandk; , we
rewrite Eq.(28) explicitly using Eq.(18) as
[H@KZ+HY (k)k+HO(k)—E]C,=0 (31

The generalized eigenvalue problem of E8{l) can be con-
verted into the standard eigenvalue form kyr,1%2°

0 1 Cx
_(H(Z))*l[H(O)(k”)—E] —(H(z))le(l)(kH) kyCi
Ck }

=Ky kG|

(32

It can be shown that the matrii(®) is nonsingulaf Equa-
tion (32) has 2V eigenvalue, ; solutions and &1 corre-

sponding eigenvecto§, ; . This method is much more con-
venient and efficient than some other calculations of the
complex band structuré$ which involves finding the zeros

of the secular determinant flet(k) —E].

the reflected and transmitted components. By examining Eqgs.
(338 and (33b), we find thatl, r, andt are related to the
envelope-function coefficients by a simple basis transforma-
tion,

F.| [Df D[t

= , 34
Fa| | D5, D5,||r (343
I:Nfl D?l D?Z

=l ~ . (34b)
Fn D71 D3| 0

where D;, DY, and Df;, DY, are M XM matrices whose
column vectors are the eigenvect@s ; andC,_ ; obtained

by solving Eq.(32) for the left and right regions, respec-
tively, and arranged in the same order as the corresponding
eigenvalues:

D}lz[ck)\,l! Ck)\,2! ey Ck)\,M]i (356)

D=[Cq m+1s Ci me2s -5 Ceaml, (35D

and
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D)2‘1=[eik;1ackwl, eik;zacsz, Cey eiki,MaCkx wml F;—Dg,D5, 'F,=Di,l —Dg,D5, 'Djil, (373
(363
N i a — DYDY Py 1 +Fy=0. (37b
D2,=[€"M+1%Cy M+ 1,
eM+23C, yiigs ..., €FaM3C, ,,], (36b)  Which are the generalized multiband forms of E(<) and
A N (11). These equations, together with EQQ), constitute a
wherex=L andR. system ofMN linear equations. This can be written in the

Now pursuing the same technique we applied in the onefollowing matrix form corresponding to the generalized
band model, we eliminateandt from Eqgs.(348 and (343, multiband model:

[ 1 - DkZDI2-2_1 0 T T T 0 1T Fl ] [ D&ll - DI:IZDIEZ_lDIéll ]
Hy, H,» H,s O 0 F, 0
L I
0 Hn-in-2 Hn-an-1 Ha-an| | Fa-z 0
0 -D§DR "t 1 Fx 0
|
Having obtained the envelope function coefficiehts it Due to the degeneracy, the electron eigenst@iefor a
follows from Eg.(34b) that the coefficients of the transmit- given energyE and k are not uniquely determined. For
ted plane-wave states are given by k=0, the eigenstates are decoupled into spin-up and spin-
R_1 down pure heavy-hole and light-hole states. In the case of
t=D3 "Fn. (39 Kk #0, there is mixing between heavy-hole and light-hole
Taking the normalization condition | =1, the total trans- bases. Wg construct gnd label the electron elgenstatg basis in
mission coefficient can be calculated from E2R):2. the following convention. The two degenerate basis for a
given energyE and k are constructed to bely ; and
M ZRG(CJ-TJXC]') KJy ;. For heavy-hole bandsz/;khhj is constructed so that
T(E*kH):JZl |tJ(E*kH)| Re(CT JC) (40 the heavy hole component with spin-down is zero,
It can be showh that the current components for a given Cy,py. 1= (Ug,Uz,U3,0).

subbandj,:Re(C;r:]Cj) is related to the group velocity . .
v;= (L) V,E;(K) by Its degenerate counterpart is therefore given by

_ * ok ok
j=pv, (41) CkHHrl_(O’u3’ uz ,u7),

in which the spin-up heavy-holgHH) component vanishes.

wherep=C'C. So the transmission coefficiefitcan also be L A
P Similarly, for light-hole(LH) bands, we choose

expressed as

M |UJ(E.,kH,R)| CkLH,T:(Ul!UZ!01U4)1

T(E,k”):;l |tj(E,|(”)|2m. (42 and

Cepy .1 =(—v7,0,—v3 ,v7).
Ill. APPLICATIONS AND DISCUSSIONS

These four eigenstates are orthogonal to each other and con-
stitute the basis for the electron states inllgevalence band.

For the purpose of illustration of our method, we consider The GaAs/AlAs double-barrier resonant tunneling struc-
the top of valence-banilg states. The four basis functions ture we consider has 50-A well width and 30-A barrier
and the 4<4 Luttinger-Kohn Hamiltonian are given explic- width. In our calculation, the flatband condition is assumed.
itly in the Appendix. The lack of inversion symmetry in the By assumption of the effective-mass theory, the envelope
[lI-V system is not represented by this Hamiltonian, there-functions vary slowly on the scale of the unit cell size, there-
fore the bands have a twofold degeneracy at every poikt in fore it is a good approximation to take the lattice constant as
space. It is known that statd€Jyy ;= | and ¢y ; are the step size in our discretization.
degenerate in energy and are orthogonal to each &ther, Figure 2 shows the transmission coefficients for normal
whereK is the Kramers time reversal operator ahés the  incident HH and LH states. In the calge=0, the HH and LH
space inversion operator. states are decoupled:

A. p-type GaAs/AlAs double barrier
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10

LH2i '
A HH3
%)
5
° 10° F77°7°
=
Q
o)
CC) FIG. 2. Transmission coefficients for heavy-
o hole (solid line) and light-hole (dashed ling
8 states through a@BA - 50 A - 30 A double-
£ .10 barrier heterostructure witk=0.
@ 10
© ---- LHout
= —— HHout
10'15 L L L
-0.40 -0.30 -0.20 -0.10 0.00
Incident Energy (eV)
-2 0 0 0 m

Y1 Y2 me:—a (44b)

L@ #2 0 y1+2v, 0 0 Y1+2v2
2m 0 0 Y1+2v, 0 ’

respectively. The resonant peaks correspond to the quasi-

0 0 0 717272 bound HH and LH states in the central well. As expected, the
(439 light-hole state has a higher transmission coefficient than the

(Drvs — 1O heavy hole due to smaller effective mass.
H (k) =H"(k)=0. (430 In Figs. 3 and 4, respectively, we show the transmission

coefficients for incoming HH and LH states witky|=0.03

The results would be the same as the ones derived using_—; : -
. . : . The nonzerd states contain mixing of heavy- and
simple one-band model, assuming the heavy-hole and light- ; : .
. ight-hole states, and interact with all the quasibound states
hole effective masses are . L : .
formed in the well, resulting in multiple transmission reso-
nances. The resonant states are labeled according to their

mEH:L’ (44  dominant bulk-state component. Because of the hole-mixing
Y1~ 27 effects, the incident heavy-hole state can transmit through
10° 1 .
HH4 LH2 HH in
1]
5
g 10° 1
'
8 FIG. 3. Transmission coefficients for heavy-
= hole (solid line) and light-hole (dashed ling
2 channels with a heavy-hole incoming state
é through a ® A - 50 A - 30 A double-barrier
g 10" | —— HHout ! : heterostructure with=0.03 A ~.
\
= ---- LHout ¢
10'15 L i L
-0.40 -0.30 -0.20 -0.10 0.00

Incident Energy (eV)
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FIG. 4. Transmission coefficients for heavy-
hole (solid line and light-hole (dashed ling
channels with a light-hole incoming state through
a 30 A - 50 A - 30 Adouble-barrier heterostruc-
i ture with kj=0.03 A 1.

Transmission Coefficients

-0.40 -0.30 -0.20 -0.10 0.00
Incident Energy (eV)

not only the heavy-hole channel, but also the light-hole chantend to incorporate the strain and magnetic-field effects. The
nel, and vice versa for the incident light-hole state. Thisstrain effect adds either a constant or linear term on the
hole-mixing effects inp-type GaAs/AlAs double-barrier k-p matrix element* and the magnetic field effect only af-
structures have been observed in experimentaV/  fects the matrix element by transformikg-k— (eA/c) and
characteristic$® including the constant magnetic moment enerygince the
matrix elements in Eq.38) are constructed directly from the
B. Discussions k-p matrix elements, it is very convenient to implement this

We first briefly compare our method with some Othermethod for various material systems. The application to the

: . agnetotunneling effect in interband and intraband hetero-
available methods. The well-known transfer-matrix methOdsTructures will be published elsewhere.

has been employed for studying hole tunneling in the frame-
work of k-p theory**®1”However, in addition to numerical
instability problems occurred for devices larger than a few IV. SUMMARY

tens of A? spherical approximation had to be used t0 Sim-  \ye have developed a method for quantum transport cal-
plify the multiband plane-wave solutions at each piecewisegjation in semiconductor heterostructures. The method is
constant potential region. The computational cost for an efy,caq on the multibarkkp theory and the multiband quan-

ficient mplement:iltgdn rc])f thfe tranﬁfer—mitnx method is the;,, transmitting boundary methddThe method circum-
same as our methddTherefore, the method we presented, ong the numerical instability encountered in the transfer-

here has a considerable advantage over the transfer-matgix. ... method, and is efficient and easy to implement. The
method. . . formulation based ok-p theory makes it suitable for study-
The scattering matrix method developed by Ko andi,q sirain and magnetic-field effects. We have demonstrated

Inksor? overcomes the numerica_l instability problem in the utility of the method by applying it to the hole tunneling
transfer-matrix method by separating the forward and backl-n p-type GaAs/AlAs double-barrier structures.

ward states, and relating the outgoing and incoming states
through the scattering matrix. By doing so, the less localized
and the propagating states dominate numerically, and the ACKNOWLEDGMENTS

physics of tunneling process is more faithfully described. he authors would like to thank R. R. Marquardt for help-
However, the gain in numerical stability is somewhat offsety | qiscussions. This work is supported by the Office of Na-

by added computational cost in constructing the scattering ResearcfONR) under Grant No. NO0014-89-J-1141.
matrix, especially in localized orbital band-structure models.

The computational technique we developed here is similar
to the MQTBM (Ref. 6 for tight-binding models, that is, it APPENDIX A: BASIS AND HAMILTONIAN
transforms the entire problem to a system of linear equations OF I'y STATES
in the final form. They are both efficient, numerically stable  The pasis functions for the top of the valence-bdngd
and easy to implement. They complement each other in varisiaies are chosen to be
ous applications. Problems liké-point tunneling are more
easily studied under the tight-binding framewdrkOn the
other handk-p method presented here has the advantages of up=|
being readily familiar to many researchers, and easy to ex-

X+iY

V2

NIlw
Nlw

)= T, (Ala)
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U= [32)= Fl(X+iv)L =221, (Al 2
P(k)= >m y1k*—Ey, (A3a)
1

u3=|%,—%>=—%[(X—iY)HZZL], (Alo 52

Qk)= 5~ Ya(KG+k5—2K2), (A3b)
ER T A (ALd)

4= 2y 2/ | T = |4 ﬁz

V2 S(k) = ﬁzﬁ va(ke—iky)k,, (A30)

The phases of these basis sati€y;=u,, Cu,=—uy,
Cu,= —u3, andCuz=u,, where the conjugation operator
C=JK is the product of space inversion operafoand the
Kramers time reversal operatH.

The Luttinger-Kohn Hamiltonian is given by

h2
R(K)= 5V3[ = 72(K;—kj) + 2i y3keky]. (A3d)

Choosing the growth direction along the direction,
P+Q -S R 0 H(k) can be decomposed as
-S* P-Q 0 R

HO=l g 0 pqg s | W H()=H@IZHHD (kA HO(k)  (A4)
0 R* s P+Q where
|
Y1— 27 0 0 0
h? 0 Y1+27, 0 0
-
H =om 0 0 v+ 2y, 0 , (A5a)
0 0 0 Y1— 27
0 —23ys(ke—iky) 0 0
72| —2\Bys(ketiky) 0 0 0
HS (k) = o PR .t (A5b)
2m 0 0 0 2\3ys(ke—iky)
0 0 2\3ys(k,+iky) 0
(r+y2)kf 0 V3L (K= K2)+ 21 yakok, ] 0
ok = 0 (= 72K 0 VAL (k2= k) + 2 ygkok,
Ok =35 212y i 2 .
M| V3 - ya(kE— kD) — 2i yskiky] 0 (y1- v2)K] 0
0 V3L = 72(KE = K§) = 2i yakiky ] 0 (71t 722
(A5c)
The current density operators is given by
~ 1
JZ=%(2H(2)kZ+ HY), (A6)
which can be expressed explicitly as
(r1=272)k; = \Bys(ke—iky) 0 0
5 f —V3ya(ke+iky)  (v1+272)k, 0 0 .
com 0 0 (y11+272)k, \/§Ys(kx—iky) '

0 0 VBya(ketiky)  (¥1—272)k,
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