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Infrared absorption spectroscopy is used to study the conduction band intersubband transitions in Si-doped
In0.07Ga0.93As/Al 0.40Ga0.60As multiple quantum-well structures with the doping being restricted to the well
region. The chemical potential determined by the electron density is designed to be above the second subband
edge for samples with certain well widths, so that two absorption peaks with a different wavelength would be
observed as one of the requirements for a two-colors photodetector. The optical absorption spectra are calcu-
lated from which the peak position energies are extracted and compared with the experimental measurements
for different well widths. Good agreement between numerical results and experimental data is achieved. In our
theory, self-consistent screened Hartree-Fock calculations were performed, which includes the effects of the
z-dependent electron effective mass, dielectric constant, and the nonparabolic dispersion. The strain effect is
also taken into consideration by the deformation theory. In addition, the calculated optical absorption spectra
included the many-body depolarization and excitonlike shifts.@S0163-1829~96!01432-4#

I. INTRODUCTION

There has been increasing interest in multiband infrared
detectors for simultaneous imaging in separate wavelength
bands.1–3One possible design for a two-colors photodetector
is a quantum well with at least three confined states to gen-
erate large oscillator strengths for all possible intersubband
transitions. To achieve this goal, one can increase either the
barrier height or well width. In case of doping in the well
region, the two-dimensional electron density (n2D) is in-
creased as the well width (L) increases assuming that the
three-dimensional doping concentration remains constant.
For fixedn2D and barrier material AlyGa12yAs, one can still
increase the barrier height by choosing the well material as a
ternary alloy InxGa12xAs instead of GaAs. In a single-
particle picture, the electron wave functions and energy sub-
bands are completely decided by the barrier height and well
width. When the quantum well is doped with electrons to
obtain intersubband transition optical absorption spectra, the
Coulomb interaction between electrons becomes very impor-
tant, which leads to the wave functions and energy levels
being dependent onn2D and temperature (T).

One way to monitor the changes in the material optical
response is using a weak probe light that induces the inter-
subband transitions in the materials studied. The optical ab-
sorption technique has been proven to be one of the simplest
and most applicable methods4–7 to characterize materials. A
full understanding of their optical properties is necessary,
because of their potential use as optoelectronic devices such
as photodetectors, modulators, and lasers. Early work8–13 on
the intersubband transitions in Si-doped quantum wells
showed that the exchange energy has a nontrivial contribu-
tion to the subband structure. The design of these photode-
vices requires an accurate theory for the purpose of device
modeling. For the two-colors infrared photodetector, the
strength of the two absorption peaks should be comparable,

and the separation of the two peaks should be distinguish-
able. By performing a theoretical modeling including the
screened exchange interaction as described in this paper, one
can find the optimal condition for the design of the two-
colors infrared photodetector.

In this paper, we calculate the optical absorption spectra
from which the peak positions are analyzed. In order to com-
pare the theoretical prediction and the experimental measure-
ments, we have included the conduction band shift due to the
strain effect, nonparabolic dispersion, screened exchange en-
ergy, and depolarization and excitonic shifts. In Ref. 6, the
screening to the exchange interaction was neglected, and an
infinite-barrier square well model was used to calculate the
exchange energy. This will certainly overestimate the ex-
change energy. In Ref. 13, there are only two bound states in
the quantum well. Also, there is no strain effect included,
and only the ground state is populated. This excludes the
possibility of quantum well as a two-colors photodetector.
From the present theoretical analysis, the optical absorption
spectra evolving withL is shown. Consequently, the optimal
condition for the design of two-colors infrared photodetec-
tors can be obtained. Moreover, the temperature behavior of
the observed optical absorption spectra in a 100 Å well width
sample is reproduced theoretically and explained as a result
of the subband thermal depopulation.

The rest of the paper is organized as follows. In Sec. II,
we derive the formula of the self-consistent screened
Hartree-Fock calculation. In Sec. III, we generalize the
Thomas-Fermi static screening model by including the finite-
size electron distribution. In Sec. IV, we obtain the general
formula for the linear optical absorption coefficient and re-
fractive index function, which include many-body effects
such as collective dipole moment and vertex corrections14

~excitonlike shift!. Experiment, results, and discussions are
presented in Sec. V. Finally, we present our conclusions in
Sec. VI.
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II. SELF-CONSISTENT SCREENED HARTREE-FOCK
CALCULATION

When we restrict the selective doping only to the
quantum-well region, we can neglect the bending of the con-
duction band edges in the well and barriers. Therefore, we
are able to model an individual InxGa12xAs/Al yGa12yAs
quantum well by a symmetric and finite square-well potential
VQW(z)50 inside the well with a widthL andDEc outside
the well, whereDEc50.57@1.455y11.53x20.45x2#1dEc
is the barrier height,x andy are the alloy-composition indi-
ces for well and barrier materials, respectively, anddEc is
the shift of conduction band edge due to the strain effect. It
should be pointed out that the In segregation is not a problem
in the present samples, since we have only 7% In in the well
materials. Therefore, our assumption of a square well is still
valid. The Schro¨dinger equation, which determines the wave
function f j (z) and energy levelEj in the self-consistent
Hartree approximation5,10,13 is

F2
\2

2

d

dzS 1

m* ~z!

d

dzD1VQW~z!1VH~z!Gf j~z!5Ejf j~z!,

~1!

where j51, 2, 3, . . . is thesubband index,m* (z) is mW ,
and mB for well and barrier materials, respectively. By
using the virtual-crystal approximation,5 we find mB /me
50.0665(12y)10.15y for the barrier ~Al yGa12yAs!
and mW /me50.0665(12x)10.0225x for the well
~In xGa12xAs! materials, whereme59.10956310231 kg is
the free electron mass. The nonparabolic dispersion can be
included through13,15,16

me

mW~k!
511

Ep

3 F 2

Eg1\2k2/2mW
1

1

Eg1D01\2k2/2mW
G ,
~2!

where we have only included the nonparabolic effect for the
In xGa12xAs well material,mW(k) depends on the wave
numberk. In Eq.~2!, the energy gap, spin-orbit splitting, and
interband Kane matrix elements for the InxGa12xAs layer
are15 D050.34120.09x10.14x2 ~eV!, Ep522.71~eV!, and

Eg51.51921.53x10.45x225.40531024S T2

2041TD ~eV!.

~3!

Considering that the effective mass of electrons in the well,
and barrier materials are different, we obtain an ‘‘average’’
effective mass of electrons in thej th subband of the quantum
well by using the first-order perturbation theory,10,13,15

1

mj* ~k!
5

Pj

mW~k!
1
12Pj

mB
, ~4!

wheremj* (k) depends on both the subband indexj andk. In
Eq. ~4!, Pj is the quantum-well dwelling probability, as de-
fined in Ref. 13.

In terms of a deformation theory,5 we find the shift of the
conduction band edge due to the strain effect

dEc52De iS c112c12
c11

D , ~5!

where e i5(aB2aW)/aW is the biaxial strain,
D524.55(12x)23.6x is the deformation potential,
c11511.88(12x)18.33x and c1255.38(12x)14.53x are
the elastic stiffness constants, andaW55.6533(12x)
16.0584x and aB55.6533(12y)15.662y are the lattice
constants for the well and barrier materials.16

In a classical picture, every electron in the quantum well
will be acted on by a summarized Coulomb force from all
other electrons and ionized donors. The quantum-mechanical
counterpart of this force is the Hartree potential in Eq.~1!.
The Hartree potential is decided from the Poisson’s
equation5,10,13

d

dzFes~z!
d

dz
VH~z!G54pe2@Nim~z!2r~z!#, ~6!

where es(z)54pe0eb(z) depending onz, eb(z) is the di-
electric constant which is taken as 12.04(12x)113.43x for
the well material and 12.0422.93y for the barrier material.16

The impurity doping profile isNim(z)5Nim
3D inside the well

and zero outside the well, whereNim
3D denotes the doping

concentration. The electron density function in Eq.~6! can be
calculated by

r~z!52(
j

uf j~z!u2

3F 1

2pE0
1`

dk k
1

11exp$@Ej~k!2m#/kBT%G , ~7!

whereEj (k) is the Coulomb renormalized electron kinetic
energy, which will be given below. In Eq.~7!, m is the
chemical potential. The charge neutrality condition in this
system13 can be used to determinem self-consistently for a
fixed n2D .

The Coulomb interaction will further renormalize the
electron kinetic energy calculated from the self-consistent
Hartree approximation by adding a screened exchange-
interaction effect to it. For the calculated self-consistent Har-
tree wave functionsf j (z) and energy levelsEj , we can
include the screened exchange interaction which strongly de-
pends onT andn2D . This allows us to generalize the self-
consistent Hartree calculation into the screened self-
consistent Hartree-Fock calculations. The renormalized
electron kinetic energy used in Eqs.~7! can be calculated
through13,18

Ej~k!5Ej1
\2k2

2mj* ~k!
1(

i ,k8
ni~k8!

3F(
n

« in
21~ uk2k8u!VF

n j~ uk2k8u!G , ~8!

where« in
21(qi) is the inverse of a generalized Thomas-Fermi

static dielectric-function matrix, which will be given below,
and the VF

n j(uk2k8u) is the exchange-interaction matrix

element,10,13,18
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VF
n j~ uk2k8u!52

e2

2e0ebuk2k8u E2`

1`

dzE
2`

1`

dz8f j* ~z!

3fn~z!

3exp~2uk2k8uuz2z8u!fn* ~z8!f j~z8!.

~9!

As an electron is excited from thenth subband to the
j th subband at thez position, there will be another electron
simultaneously making an intersubband transition from the
j th subband to thenth subband at thez8 position. Eventu-
ally, there is an exchange between these two indistinguish-
able electrons at these two positions. Their fermion character
contributes a negative sign in the exchange interaction. The
Hartree interaction can only produce a shift of the energy
level. However, the difference in the energy levels depends
weakly only on the subband index,T, and n2D . The ex-
change interaction also gives rise to an additional nonpara-
bolic dispersion which can shift the peak position and change
the line shape.

III. SCREENING OF THE EXCHANGE INTERACTION

The electron-electron interaction can shiftm in the mean-
field theory. This gives rise to an induced-charge density in
the system, which in turns constrains the electron-electron
interaction through the Poisson’s equation. From Eq.~7!, we
can rewrite the electron density function as

r~z!5(
j

uf j~z!u2Nj~m!, ~10!

where

Nj~m!5
1

pE0
1`

dk knj~k!. ~11!

Within the mean-field theory, we treat the electron-electron
interaction as an induced potential that is determined through
the Poisson’s equation,

2¹2c ind~r i ,z!5
1

e0eb
@rext~r i ,z!1r ind~r i ,z!#, ~12!

wherer i5(x,y) is a two-dimensional~2D! position vector in
the quantum-well plane,eb511.9 is the average background
dielectric constant,rext(r i ,z) is the external test-charge den-
sity, andr ind(r i ,z) is the induced-charge density calculated
as the additional part ofr(z), due to the shift ofm by the
amount of2ec ind(r i ,z) and is given by13,17

r ind~r i ,z!52e2c ind~r i ,z!(
j

uf j~z!u2
dNj~m!

dm
. ~13!

Inserting Eq.~13! into Eq. ~12!, we arrive at

2¹2c ind~r i ,z!12(
j

uf j~z!u2qj
TFc̄ j

ind~r i!5
1

e0eb
rext~r i ,z!,

~14!

where we have defined

c̄ j
ind~r i!5E

2`

1`

dzuf j~z!u2c ind~r i ,z!, ~15!

and the inverse of the Thomas-Fermi screening length is de-
fined as

qj
TF5

e2

8pe0ebkBT
E
0

1`

dk kcosh22FEj~k!2m

2kBT
G . ~16!

After the following Fourier transformations

c ind~r i ,z!5E d2qi

~2p!2
E dqz
2p

exp@ i ~qi•r i1qzz!#c ind~qi ,qz!,

~17!

c̄ j
ind~r i!5E d2qi

~2p!2
exp~ iqi•r i!c̄ j

ind~qi!, ~18!

rext~r i ,z!5E d2qi

~2p!2
E dqz
2p

exp@ i ~qi•r i1qzz!#rext~qi ,qz!,

~19!

uf j~z!u25E dqz
2p

exp~ iqzz! f j~qz!, ~20!

Eq. ~14! reduces to a simple matrix equation,

(
j

Fdn, j1
qj
TF

qi
Fn j~qi!G c̄ j

ind~qi!5cn
ext~qi!, ~21!

whereqi is the modulus of a 2D wave vector in the quantum-
well plane,

Fn j~qi!52qi E dqz
2p

f n~2qz! f j~qz!

qi
21qz

2

5E
2`

1`

dzE
2`

1`

dz8ufn~z!u2

3exp~2qiuz2z8u!uf j~z8!u2, ~22!

is the form factor due to the finite-size electron distribution,

cn
ext~qi!5

1

e0eb
E dqz
2p

f n~2qz!r
ext~qi ,qz!

qi
21qz

2

5
1

2e0ebqi
E

2`

1`

dzÈ1`

dz8ufn~z!u2

3exp~2qiuz2z8u!rext~qi ,z8!, ~23!

and

c̄ j
ind~qi!5E dqz

2p
f j~2qz!c

ind~qi ,qz!. ~24!

From Eq.~21!, we find that the static dielectric-function ma-
trix in the generalized Thomas-Fermi model to be

«n j~qi!5dn, j1
qj
TF

qi
Fn j~qi!, ~25!

which has been used to screen the exchange interaction in
Eq. ~8!.
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IV. LINEAR OPTICAL ABSORPTION COEFFICIENT

When an externalz-polarized electromagnetic field is ap-
plied, the resulting perturbation in the electron density func-
tion will produce an optical response from a normal mode of
density fluctuation. In the long wavelength limit, only the
vertical intersubband transitions~with the same in-plane mo-
mentum for the initial and final states! need to be considered.
For a probe field interacting weakly with the electrons in the
quantum wells, described by a perturbationV̂ to the Hamil-
tonian induced by the probe field, the absorption coefficient
is defined as the ratio of the energy absorbed per unit volume
and per unit time to the incident flux19

babs~v!5
\v

n~v!Aebe0cEprobe2
W~v!, ~26!

where Eprobe is the amplitude of the probe field,v is the
frequency of the probe field,n(v) is the scaled frequency-
dependent refractive index function, andW(v) is the prob-
ability per unit time for the system to make an intersubband
transition from an initial stateu i & with the energyEi to a final
state u f & with the energyEf . The intersubband transition
probability can be calculated from the Fermi’s golden rule
~see Ref. 13 and references therein!. A straightforward cal-
culation yields

babs~v!5
vAeb
cn~v!

@rph~v!11#ImaL~v!, ~27!

where

aL~v!5
2e

EprobeLA
E dr i E dzdr~r i ,z,v!z, ~28!

is the Lorentz ratio,13,20andrph(v) is the photon distribution
factor.13 From the Maxwell’s equation for any transverse
electromagnetic field,21 we get

1

eb
¹2E~r ,v!1

v2

c2
@11ReaL~v!#E~r ,v!

1 i
v2

c2
ImaL~v!E~r ,v!50, ~29!

from which we can find the dispersion relation by assuming
a plane wave form toE(r ,v),

Fv

c
n~v!1

i

2Aeb
babs~v!G 2

5
v2

c2
@11ReaL~v!1 i ImaL~v!#. ~30!

Using Eq.~30!, we obtain the refractive index function

n~v!5
1

A2
$11ReaL~v!

1A@11ReaL~v!#21@ ImaL~v!#2%1/2. ~31!

The Lorentz ratio in Eq.~28! is calculated as13,20

aL~v!52
e

pe0ebEprobeL(j , j 8
E
0

1`

dk kr j j 8~k,v!F j 8 j .

~32!

For noninteracting electrons, the first-order perturbation part
of the density-matrix element in the linear response theory
can be obtained from the Liouville’s equation,10,13,20

r j j 8~k,v!5eEprobeF j j 8F nj~k!2nj 8~k!

\v2Ej 8~k!1Ej~k!1 ig j j 8
G ,

~33!

whereg j j 85(g j1g j 8)/2 is the dephasing rate in the inter-
subband transition, and the bare dipole moment for noninter-
acting electrons is

F j j 85F j 8 j
* 5E

2`

1`

dz f j* ~z!zf j 8~z!. ~34!

In our numerical calculations, we have made use of the phe-
nomenological formula5,15 for the homogeneous broadening
of j th subband and it is given by

g j~meV!53.14410.101310211n2D~1011cm22!

12.55F 1

exp~\vph/kBT!21G , ~35!

which depends onT andn2D . In Eq. ~35!, g j is independent
of the subband indexj , the optical phonon frequency is
\vph536.7 meV. The quadratic term ofn2D ~Ref. 5! in g j is
neglected, since the scattering is only proportional ton2D in
the Born approximation.17

When an electron is excited to a high subband, it induces
a density fluctuation in the neighboring electrons through the
long-range Coulomb force. This will introduce a dynamical
screening on the bare Coulomb interaction.

In the quantum statistical theory, by adding the Hartree
interaction part to the perturbation part of the Hamiltonian,
we obtain the density fluctuation13

dr~z;v![E dr idr~r i ,z;v!

5 (
j, j 8

f j 8
* ~z!f j~z!eEprobe@F j j 81Dj j 8~v!#x j j 8

~1!
~v!,

~36!

whereDj j 8(v) is the collective dipole moment as a correc-
tion to the bare dipole momentF j 8 j , and x j j 8

(1)(v) is the
susceptibility of the interacting electrons which will be given
below. By solving the Poisson’s equation for the Hartree
interaction in the self-consistent-field theory,10,13,20 we get
the following linear-matrix equation forn,n8 ~Ref. 13!:
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(
j, j 8

Dj j 8~v!Fdn, jdn8, j 82x j j 8
~1!

~v!E
2`

1`

dzE
2`

1`

dz8fn* ~z!fn8~z!S 2
e2

2e0eb
Uz2z8U Df j 8

* ~z8!f j~z8!G
5 (

j, j 8
x j j 8

~1!
~v!E

2`

1`

dzE
2`

1`

dz8fn* ~z!fn8~z!S 2
e2

2e0eb
Uz2z8U Df j 8

* ~z8!f j~z8!. ~37!

We can see from Eq.~37! that the screening effect has been
included in the dielectric function which is shown as a coef-
ficient matrix.

In Eq. ~36!, we have introduced the susceptibility of in-
teracting electrons. It is known that at the same time when
one of the electrons is excited to a higher subband, it will
create a ‘‘hole’’ state in the initial occupied subband. This
yields an ‘‘excitonic’’ interaction between the excited elec-
tron and the ‘‘hole’’ state.

In Eq. ~36!, the susceptibility of interacting electrons is

x j j 8
~1!

~v!5
1

pE0
1`

dk kx j j 8
~0!

~k,v!G j j 8~k,v!, ~38!

where j, j 8, and the susceptibility of noninteracting elec-
trons is

x j j 8
~0!

~k,v!5
nj~k!2nj 8~k!

\v2Ej 8~k!1Ej~k!1 ig j j 8

1
nj 8~k!2nj~k!

\v1Ej 8~k!2Ej~k!1 ig j j 8
. ~39!

The vertex part,G j j 8(k,v), in Eq.~38! is due to the excitonic
interaction14 and can be calculated by summing over all the
ladder diagrams. The result of this summation is the follow-
ing Bethe-Salpeter’s equation13,20 for j, j 8,

G j j 8~k8,v!511
1

~2p!2
E d2kx j j 8

~0!
~k,v!G j j 8~k,v!

3F (
m<m8

« j j 8,mm8
21

~ uk82ku,0!VF
mm8~ uk82ku!G .

~40!

In Eq. ~40!, the small exciton-coupling effect is neglected.
We have also used the inverse of a static dielectric-function
matrix in the random-phase approximation in this equation to
screen the vertex correction. In the random-phase approxi-
mation, the intersubband-type Lindhard’s dielectric-function
matrix for j, j 8 andm<m8 can be written as

« j j 8,mm8~qi ,v!

5d j ,md j 8,m82Uj j 8,m8m~qi!H 2

~2p!2
E d2k

3
2@nm~k!2nm8~ uk1qiu!#@Em8~ uk1qiu!2Em~k!#

~\v1 ig j j 8!
22@Em8~ uk1qiu!2Em~k!#2 J ,

~41!

where the intersubband excitation coupling is

Uj j 8,m8m~qi!5
e2

2e0ebqi
E

2`

1`

dzE
2`

1`

dz8f j* ~z!f j 8~z!

3exp~2qiuz2z8u!fm8
* ~z8!fm~z8!. ~42!

By combining the effects of the collective dipole moment
and vertex correction, Eq.~32! can be generalized to

aL~v!52
e2

pe0ebL
(
j, j 8

F j 8 j@F j j 81Dj j 8~v!#

3E
0

1`

dk kx j j 8
~0!

~k,v!G j j 8~k,v!. ~43!

The effect due to the screening and vertex correction tends to
shift the peak position up and down, respectively. In addi-
tion, the screening will shrink the peak width but the vertex
correction will expand it.

V. EXPERIMENT, RESULTS, AND DISCUSSIONS

The multiple quantum-well~MQW! structures used in the
present study were grown by the molecular-beam epitaxy
technique on semi-insulating GaAs substrates. All samples
consist of 50 periods and only the In0.07Ga0.93As well
regions were Si-doped$@Si#52.031018 cm23%. The
Al 0.4Ga0.6As barrier thickness is 100 Å for all samples. The
infrared absorption was recorded at the Brewster’s angle of
GaAs ~73°) from the normal using a BOMEM Fourier-
transform interferometer. The spectra were recorded and per-
formed using a continuous flow cryostat andT was con-
trolled within 60.5 K.

The calculated optical absorption spectra atT578 K are
shown in Fig. 1 for differentL ranging from 55 Å to 200 Å.
It is obvious from this figure that only theE12 transition can
be seen in samples withL smaller than 100 Å. For
L.100Å, the second energy subband~first excited state!
starts to be populated asL increases. Consequently, a second
peak becomes observable which is related toE23 transition,
as shown in the 115 Å well sample. The strength of these
two intersubband transitions becomes comparable for the
sample of 125 Å well width. AsL increases, the first excited
state drops belowm causing a phase blocking forE12 tran-
sition. This is clearly seen in samples withL.150 Å, where
the strength of theE12 transition is decreased dramatically as
compared to that of theE23 transition.

The theoretical results shown in Fig. 1 were verified ex-
perimentally, as shown in Fig. 2. In this figure, we plotted a
few intersubband transitions observed at 78 K in samples
with different L. We have observed only one intersubband
transition (E12) in samples wherem lies between the ground
and first excited states (L<100 Å!. However, asL increases
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FIG. 1. The calculated evolution of the absorption coefficient spectra for different values of the well widthL at T578 K in the
Al yGa12yAs/InxGa12xAs quantum well withx50.07,y50.40,nim

3D5231018 cm23. The labels in the figures indicate the well width.
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above 118 Å we observed two intersubband transitions. As
an example, we plotted the spectrum obtained for a 125 Å
well sample as the dashed line. For samples withL.150 Å,
we were unable to observe theE12 transition. In addition, the
peak position energy of theE23 transition becomes almost
independent ofL for samples withL.175 Å.

For direct comparison between theory and experiment, we
plotted the peak position energies ofE12 andE23 transitions
in Fig. 3 as a function ofL. It is clear from this figure that
good agreement between theory~solid and dotted lines! and
experiment~solid squares and circles! is achieved. It is also
noted in Fig. 3 that the separation between two intersubband
transitions is increased asL increases. Thus far, we are
able to show the following. First, the optical absorption
measurements of the intersubband transitions in the
In 0.07Ga0.93As/Al 0.4Ga0.6As MQW show that one transition
related toE12 is observed in samples in whichm lies be-
tween the ground and first excited states. Second, two inter-
subband transitions related toE12 and E23 transitions are

observed for samples in whichm is above the first excited
state. Third, the strength of theE12 transition is decreased as
m is raised above the first excited state, which is achieved by
increasingL. In fact, we are unable to observe theE12 tran-
sition in samples withL larger than 175 Å, which can be
explained by the phase blocking. The phase blocking is a
result of the Pauli’s exclusion principle for electrons. Con-
sidering that the electrons are excited from the ground state
to the first excited state, we know that it can happen only
when the initial state is occupied and the final state is empty,
or partially empty, at the same time. Ifm is above the first
excited state, the population in the excited state would block
out the electron transition from the ground state to the first
excited state. Since the peak strength~intensity! depends
strongly on the number of allowed transitions from the
ground state to the first excited state, it is then easy to ex-
plain the suppression of theE12 transition asm is raised
above the first excited state.

It should be pointed out that the line shape of the inter-
subband transition is not a major subject of this paper. How-
ever, the theoretical spectra in Fig. 1 were broadened using
Eq. ~35! except the first two spectra~samples 55 and 75 Å!
which were broadened using a constant. We find this to be
necessary in order to compare the experimental and theoreti-
cal peak strengthE12 transition. The broadening issue, how-
ever, does not have any implications on the peak position
energies.

Additional support to the present theory is based on the
temperature behavior of the intersubband transitions in a
sample wherem lies very close to the first excited state. In
this regard, we recorded the optical absorption spectra of the
intersubband transitions in a 100 Å well width sample. The
result is shown in Fig. 4~a! in which we presented two spec-
tra observed at 295 and 78 K. From this figure we noted that
two intersubband transitions can be clearly seen in the spec-
trum obtained at 295 K. The large~small! peak is related to
theE12 (E23) transition. AsT is reduced to 78 K, the small
peak, which is related to theE23 transition, disappeared. This
could be easily explained in term of the depopulation of the
first excited state asT is decreased. These results were pro-
duced theoretically as shown in Fig. 4~b!. We plotted in this
figure the calculated optical absorption spectra at 78 and 295
K. At T578 K, we find only aE12 transition~dashed line!
because the first excited state is depopulated. However, at
295 K we can see bothE12 andE23 transitions since the first
excited state becomes partially populated at this temperature.
TheE12 transition peak produces a blueshift whenT is low-
ered. This blueshift is due to an exchange interaction effect
as it was described earlier.13 The peak position ofE23 in our
calculation is higher than the one measured in the experi-
ment. Noting that the energy levelE3 is close to the barrier
heightDEc for L5100 Å sample, we expect that theE3 state
can be quite extended in thez direction. Therefore, our infi-
nite barrier model,5 which puts two infinite barriers 100 Å
away from the left and right edges of the quantum well, can
overestimate the value ofE3. This is the main reason for the
disagreement ofE23 peak position between the theory and
experiment.

The explanation of the temperature behavior observed in
the experiment, as shown in Fig. 4~a!, can be best understood
by showing the depopulation process, as shown in Fig. 5. In

FIG. 2. Optical absorbance as a function of the photon energy
for several samples with the well width recorded atT578 K. The
sample parameters are the same as those in Fig. 1. The dashed line
is for a sample with two intersubband transitions.

FIG. 3. Comparison of the calculated~lines! and measured
~symbols! peaks position energies of the two intersubband transi-
tions related toE12 andE23 at 78 K, as a function of the well width
L.
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this figure, three energy levels calculated from the self-
consistent screened Hartree-Fock approximation,E1, E2, and
E3 represented by solid, dashed-dotted, and long-dashed
lines, are plotted as a function ofL at T578 K. We also
plottedm as the dotted line in this figure. ForL5100 Å,m is
above the ground state but below the first excited state,
which means that the first excited state is depopulated at
T578 K. However, whenT is raised to 295 K, some elec-
trons will be thermally excited to the first excited state, giv-
ing rise to theE23 transition, which can be clearly seen in the
295 K spectra in both Figs. 4~a! and 4~b!.

VI. CONCLUSIONS

In conclusion, we have established a theoretical model for
a two-colors infrared photodetector, which does not contain
adjustable parameters. This model was tested against the op-
tical absorption measurements of intersubband transitions in
In 0.07Ga0.93As/Al 0.4Ga0.6As multiple quantum wells. Good
agreement between experiment and theory was achieved for
the peak position energies of intersubband transitions in
samples with differentL. The present theoretical model is

based on self-consistent screened Hartree-Fock approxima-
tion, which included the effects of the subband- and
z-dependent electron effective mass,z-dependent dielectric
constant, and the nonparabolic dispersion. The strain effect
was incorporated in the current theory using the deformation
theory. In addition, the depolarization and excitonlike shifts
were included as well.

We have observed experimentally and predicted theoreti-
cally that only one intersubband transition exists in the
present multiple quantum-well structures in whichm is be-
low the first excited state in the well. Asm is raised above
the first excited state by increasingL and keeping the three-
dimensional doping constant, we were able to observe and
calculate two intersubband transitions. TheE12 transition,
however, suppressed due to phase blocking asm approaches
the second excited state. We also noted that two intersub-
band transitions related toE12 and E23 were observed at
room temperature for samples in whichm is just below the
first excited state. TheE23 transition was dramatically de-
creased~disappeared! asT is decreased to 78 K. This obser-
vation was explained in terms of thermal depopulation of the
first excited state. Finally, we have shown that two intersub-
band transitions in In0.07Ga0.93As/Al 0.4Ga0.6As multiple
wells could be observed with equal strength for samples with
a well width of 125 Å. These two transitions could be used
for two-colors photodetector applications. Future work is fo-
cused on the tuning of these two transitions to cover specific
wavelength regions, the separation between the two transi-
tions, and the barrier design in which the electrons can be
excited and collected under a bias.
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FIG. 4. Comparison between experimental~a! and theoretical
~b! spectra taken for a sample with a well width of 100 Å. The two
peaks in the spectra measured~calculated! at 295 K are related to
the E12 andE23 transitions and the peak in the spectra measured
~calculated! at 78 K is related to theE12 transition.

FIG. 5. The calculated energy levels (Ej ) and the chemical po-
tential (m) at T578 K by using the self-consistent screened
Hartree-Fock formula as a function of the well widthL. The sample
parameters are the same as those in Fig. 1. From the bottom to the
top, the solid, dashed-dotted, and long-dashed lines representE1,
E2, andE3, respectively. The dotted line corresponds tom.
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