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We develop a general mean-field matrix theory for calculating phase boundaries and structure factors for a
class of lattice gas Hamiltonians. We investigate the oxygen ordering in@B#¢ . , by applying the theory
and by Monte Carlo simulation using an extension to three dimensions of the two-dimensional anisotropic next
nearest neighbor lattice gas model. The calculation of the structure factor in three spatial dimensions on a
256% 256X 16 system has been implemented on a massively parallel computer, the Connection Machine CM2.
This allows for an extremely accurate determination of the line shape of the structure factor in the entire
reciprocal space in excellent agreement with the mean-field prediction. We report on the results for an oxygen
stoichiometry ofx=0.4, x=0.5, andx= 0.6 for temperatures betwedn=450 and 800 K. Using a sum-rule
argument we have calculated the fluctuation-renormalized transition temperature into the ortho-ITphase,
good agreement with Monte Carlo simulation results. This allows an analytic description of the dependence of
T. on the interactiorV, in the third dimension and on the oxygen stoichiometryAn explanation for the
experimental observation of the lack of a Bragg peak in the ordered ortho-Il phase g€¥R3g . , is offered
in terms of scattering from platelike antiphase oxygen-ordered donj&0463-182806)06222-4

I. INTRODUCTION tained to allow for a detailed comparison with experimental
data and analytical results. On the other hand, in simulation
The physical properties of complex systems, e.g., withstudies it may be difficult and very elaborate to establish the
disordered surface and bulk structures, artificial multilayersinfluence of variations in the model parameters on the physi-
structure on a mesoscopic scale, and nonequilibrium phesal properties. It is, therefore, of significant interest to estab-
nomena, have been the focus of solid state physics in recelish analytical methods that may be used to analyze and ex-
years. Experimental studies of the static and kinetic orderingplain these parameter dependences.
properties of such systems have become possible via the One of the main purposes of the present work is to for-
rapid development of highly advanced structural techniguesnulate a theory for the diffuse scattering and the susceptibil-
which supply increasingly higher resolution and shorter samity x(q) for a general class of lattice gas models. In the first
pling times. The techniques include real space methods likapproach a mean-field theory is established but it is devel-
scanning tunnel microscog$TM) atomic force microscopy oped further and utilized to calculate the effects of fluctua-
(AFM) and high-resolution transmission electron microscopytions on the phase diagram using the theoretical knowledge
(TEM), and indirect ¢-spacg diffraction techniques, where abouty(q) and the sum rule which relategq) to the sto-
new powerful neutron, electron beam, and in particular x-rayichiometry x. This is an alternative, and more systematic,
synchrotron sources have opened for innovative studies. Theay of including effects of correlations than provided by the
neutron and x-ray diffraction techniques have significant adeluster variation methodCVM).1~3 Our theory includes
vantages for nondestructive studies, and they may supplglusters of all sizes in a simple analytic form for any lattice
information on the bulk of these materials. gas Hamiltonian. The theory is useful for calculating the
Interesting structural information is often contained in thetransition temperaturd.. However (like CVM), it is not
details of thediffuse scattering, including also themall aimed at discussing critical exponents and other critical
anglescattering, which is directly proportional to the diffuse properties.
part of the structure factoBy;(q). However,Syq(q) is dif- The general mean-field matrix theory presented in this
ficult to interpret and convert into the corresponding behavpaper is applied to the ASYNNNEnisotropic next-nearest-
ior in real space. Computer simulations may be used as ameighbor interactionmodel, which is a 2D anisotropic lattice
important tool to bridge this gap in our understanding. Withgas model used to account for the oxygen ordering in the
the increasingly more powerful computers becoming availbasal plane of the high-temperature superconductor YBa
able, simulation studies of large systems in three dimensionsCu;Og¢.,.% In the standard form the ASYNNNI model,
(3D) have become feasible. Hereby finite-size effects are reintroduced by de Fontainet al.®> contains concentration-
duced and sufficiently good resolution and statistics are oband temperature-independent interaction parameters. It is
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fundamentally an anisotropic antiferromagnetic Ising modelit is evident from the experimer(ts***that there is a signifi-
When used in the case of=0.5 for the variable oxygen cant correlation between the oxygen ordering in adjacent
stoichiometry it corresponds to having applied a finite mag-CuO, planes. Hence there is a need for a three-dimensional
netic field such that half the system is fully ferromagneticallymodel.

polarized and the remaining half is in an antiferromagnetic In this paper we have focused on equilibrium properties,
state. It is a nontrivial model by which we can elucidate a&nd have found good agreement f8(q) with the experi-
number of principally interesting consequences of anisoMments in the disordered phase. In the ordered phase the 3D
tropic interactions on the structure factor and it is further-Simulations show that it is very difficult to achieve an equi-
more of relevance for understanding the oxygen ordering idibrium one-domain state. This was not found in the corre-
the YBa,Cu304., superconductor. spon_dmg 2D_ S|mulat|_on studiéd: However, this opserva—

In the present work we have focused on the simpleion is more in Ime with the.experlmental fact that it has so
ASYNNNI model with concentration-independent short- far been impossible to glggam long-range ordered superstruc-
range interactions, and used the theory in order to describ&res in YBaCu;Og. " We have not undertaken a full
its generic behavior. It is easy to include additional featuresStudy of the nonequilibrium behavior, but we will discuss a
like longer-range interactions ax-dependent parameters, few results. o .
which may be needed in detailed comparisons with experi- 1he paper is organized in the following way. In Sec. Il we
ments. The theory is applicable also to the discussion oflevelop a mean-fieldMF) matrix theory for calculating
phase transition problems in, for example, alloys, which arEphas_e bo_undanes and structure factors of a genera_l lattice gas
often described by lattice gas models. The theory formulatefi@miltonian, and apply this theory to the 3D extension of the
for the susceptibilityy(q) and the scattering functio(q) ASYNNNI modgl. In Sec. lll we develop atheory for |n'cl'ud-
has been tested by comparing with accurate Monte Carl§'d the fluctuation effects on the phase diagram giving a
simulation data performed for large systems. We have studnctional dependence of the parameters in the model. Sec-
ied systems of size 256256x 16 in order to achieve suffi- tion IV contains the results of numerical Monte CafddC)
ciently high resolution in reciprocal space to permit a de_smqlatlons and a comparison will be m:_alde with the analyti-
tailed analysis of the line shape. Such system sizes agdl line shapes as vyell as re'cent 'experlmental data. A sum-
comparable to the size of the twin domains found inMa&ry and a conclusion are given in Sec. V.

YBa,Cu;04, « due to weak orthorhombic distortions in the

oxygen-ordered phasés. Il. SUSCEPTIBILITIES AND STRUCTURE FACTORS
conseauences of adding t the ASYNNNI model annterac, " Order (0 estabiish a systematic notation and the rela
tion in the third dimension, and use it in the region of thet'ons. between the susceptlbllme_s and structgre factors, we
phase diagram where 2D studies have established go nsider a general class of lattice gas Hamiltonians of the
agreement with experiments. It is of particular interest to
investigate the influence of a change in the oxygen stoichi-

ometry aroundk= 0.5 on both the short-range order and the H=— 1 > JB(r =1 ) (1 ) P (1 )

line shape of the diffuse scattering. In this region the double- 247, Brg

cell ortho-Il structure is observéd* and there is evidence

for a relation between the superconducting properties and the - w(r ) o(r,), (1)
short-range oxygen ordér> This is the reason why the oxy- aly

ige%nigtrgr?gicgls hbi/n?]r;i?gnlna:ﬁ?fgleaﬁf?;;%gﬁfgoggjsd where in the sunk, the vectorr , runs over all sites in the
well as other techniqued:?* Computer simulatios>~26ys- ~ vth  sublattice, and v runs over all sublattices
ing the 2D ASYNNNI model have contributed to an under- ?=1, ... Ns. The interaction parameters between sublat-
standing of an important part of the behavior in a certainticesa andg, J*#(r,—r ), can conveniently be considered
range of temperatureb and oxygen stoichiometry. How- ~ @s matrix elements in a matrix The site occupation vari-
ever, it has become clear that the ASYNNNI model is anablec“(r,) is equal to 1,0 depending on whether sifeis
idealized model, capable neither of describing thermodyoccupied or not. The chemical potentjaf(r,) is in general
namic properties like the chemical potential of oxygen faith-inhomogeneous. The position vectoy, can be written
fully in a large temperature inter/d?®® nor of structural r,=R+d,, whereR=n;a,+n,a,+nsa;, and wheren,,
properties at low temperatur&s!?'* or low oxygen Ny, andns are integers. The Fourier transform of the matrix
stoichiometryt142” where additional long-range interac- elements is given by

tions including elastic forces seem to be needed to describe
the observed partially ordered superstructdfedt There-
fore, it is important to limit the use of the model to the region
where it is valid. The simple 2D ASYNNNI model is par-
ticularly useful for describing the transition between a tetragwhich in an analogous manner may be arranged into the
onal disordered oxygen state and the orthorhombic orderethatrix J(g). In general we will calculate the Fourier trans-
states for a single CuQplane. Thus, good agreement hasformationA(q) of any quantityA(r) by applying the trans-
been obtained for the experimental phase boundary and thtarmation in Eq.(2). We separate the occupation number
found by Monte Carlo simulations and for the anisotropy ofinto two termso*(r ) =(o“(r,)) + 8o*(r,), where the first
the in-plane peak widths of the structure factttslowever, term is the thermal average occupation at the sjteand

IP@)=2 TR eI —rp), 2
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Sa*(r,) is the deviation from the averagaimilarly for
B). We denote the average value &y(r,)=(c%(r,)). The
nonlocal susceptibility can then generally be expressed as

1
Xaﬁ(ra_rﬁ)zﬁ<5aa(ra)5oﬁ(rﬁ)>' (3)
The Fourier transform of“#(r ,— rz) is calculated as in Eq.
(2) and is denoted by *?(q), which is conveniently ar-
ranged into the matrix(q). It is shown in the Appendix,
Eqg. (A11), that the nonlocal susceptibility matr(q) in the
mean-field(MF) approximation obeys a self-consistency re-
lation relating the nonlocal susceptibility matrix to the local
susceptibility matrix and the Fourier-transformed pair inter-
action matrixJ(q) as follows:

x(@)=[(x)"*=Iq]™* (4)

Here  is the local susceptibility matrifsee Eq(A8)], with
diagonal elementg&all other matrix elements are zgro

o

1
Xa=je 7 Oal17C0). 5)
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FIG. 1. The crystallographic structure of YBau;Og, , With a
unit cell indicated by the solid lines. All oxygen sites assume per-
ovskite positions located halfway between the copper atoms along

In the case where all sublattices are equivalent, which ishe square edges. The variable oxygen stoichiometry refer to the
generally the case in the disordered phase, there is no neexd and O5 sites in the basal planes, which are separated by

for any subdivision into sublattices. Then the local susceptitc|=

bility matrix obeys y=x1 and the average wave-vector-
dependent susceptibilityper sitg¢ becomes

lzx

where 7(q) is the Fourier transform of the total interaction
that a given site is subject to, i.eZ(q)zNS’lEaBJ“ﬁ(q).
The structure facto8(q) is generally calculated by separat-
ing the structure factor into two parts3(q) = Sgaqdd)

+ S4if(q) (see Refs. 33—35where

Xal Q)= (@=[x)"*-JAD]  (®)

2

1
Sair(Q) = Nmt< >

In EqQ. (7), Ny is the total number of sites and all particles
are assumed to have the same scattering lelagtBombin-
ing Egs.(3) and (7), the diffuse part of the structure factor

e'da(a(r,))b

a,r,

SBragg( q)

N tot]

2 e a5 ?(r )b 7)

can be expressed in terms of the nonlocal susceptibility may, _

trix by

Saif(d) = *A(q). (8)

A. Mean-field theory for the ASYNNNI model

The modeling of the ordering of oxygen atoms in the
CuO, basal planes of YBgCu;0g4,, is done by the three-
dimensional extension of the ASYNNNI model. This aniso-

11.7 A along the verticat axis. TheO1 and O5 sites are
represented by sublattices.1 . ,8 used in defining the mean-field
Hamiltonian. The numbering convention derives from Aukrust
et al. (Ref. 39. Thea axis is along thd1)-(3) sites and thé axis

is along the(5)-(7) sites. The oxygen atoms prefer to order in
chains, forming subsystems as discussed in the text. The oxygen
pair interaction parameterd,, V,, V3, andV, are defined as
follows: V, is the nearest neighbor repulsidfy, is the next nearest
neighbor attraction between pairs bridged by ®&y,is the next
nearest neighbor repulsion between pairs not bridged by Cu, and
V, is the nearest neighbor attraction between pairs on adjacent basal
planes.

tive interaction between pairs of oxygen atoms which are
bridged by a copper atofNNNCu), while V5 a repulsive
interaction between oxygen atoms which are not bridged by
a copper atom(NNNV). The interplane coupling is intro-
duced by an attractive interactidn, between pairs of oxy-
gen atoms located vertically above and below each other on
adjacent basal plangBINPI). This leads to the Hamiltonian

NNNCu
(1 =Vz 2 a(no(r’)
(" (')
NNNV NNPI

_V3<2> (r<r><r<r'>—v4<2> a(o(r)=p2 o(r),

VZU(r

9

where the sums run over all oxygen pafrs’), which are
nearest neighbofNN and NNP) or next nearest neighbors
(NNNV and NNNCuy, respectively. The relative magnitude

tropic lattice gas model contains four pair interaction param-of the interaction parameteks;, V,, andV; has been es-

etersV,, V,, V3, andV, defined as followdcf. Fig. 1).
V; is the nearest neighbdNN) repulsion between pairs of
oxygen atomsY, is the next nearest neighb@NN) attrac-

tablished by a comparison between experimental data and
2D simulation result§;?>3¢3"while the additional interplane
couplingV, has been adopted from Ref. 38,



(V1,V5,V3,Va) = (—V;,0.36V,, — 0.12/,,0.02/,),
(10

with V/kg=4490 K. The ASYNNNI model Hamiltonian
can be brought into the form of E{l) by using theN;=8
sublattices introduced by Aukrust al®® (see Fig. 1 This
gives rise to the interaction paramete]%ﬁ(ra—rﬂ), with
a,B=1,...,8, between sublatticer and sublattice3. The
physical relevant interaction parameters for bBai;Og. «
are V,>0>V;>V,; andV,>0 which stabilize the experi-
mentally observed ortho-Ix=1) and the ortho-ll x=13)
phases. The ground state is easily determined from(&®L.
by considering the minimum of+MF) subject to the con-
straint that the average concentration satisfieg,
EN;12aca=x/2. Due to the symmetries in the Hamil-
tonian, the concentrations satisfy c;Ec,=c,),
(cg=cy=cy), (cs=cg=c.), and c;=cg=c,y), Where we
have introduced four concentrationg, c,, ¢., andcy.
Finite values for givert, correspond to occupied chains of
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pied 1-2 and 3-4 chaing{=c,=1) with the remaining sites
being empty and occupied perpendicular 5-6 and 7-8 chains
(c.=cyq=1) with the remaining sites empty. At low, finite
temperatures in the ortho-Il phase, the domain consisting of
predominantly occupied 1-2 chains,& 1) has in addition a
smaller thermal occupation of both the parallel 3-4 chains
(cp#0) and of the perpendicular 5-6 and 7-8 chains
(cc=cy#0). Upon increasing the temperature, we may en-
ter the ortho-I phase where,=c, and c,=c4. Conse-
quently, the phase boundary separating the ortho-1l and the
ortho-l phases can be determined as the temperature at which
the equalityc,=c, becomes valid. If we increase the tem-
perature even further, all the sublattices eventually become
equally populated¢,=c,=c.=cy, and we enter the tetrag-
onal phase. Similarly, the phase boundary separating the
ortho-l phase and the tetragonal phase can be determined
from this equality. In the case of a continuous transition the
phase boundaries can be obtained much more simply from
the condition of a diverging diffuse structure factor or sus-

oxygen atoms, as can be seen from Fig. 1. We shall deno@eptibility.

partial occupancy in terms of subsystems of the full

1,...,8system.
Consider first the ortho-ll phase at=31. There are four

possible domains, which are occupied 1-2 chains, while the

remaining sites are emptyc{=1); occupied 3-4 chains,
while the remaining sites are emptg,&1); and analo-
gously for the perpendicular 5-6 chains.€ 1) and the 7-8

The Fourier transforfff of the interaction matrixJ can be
written in terms of the interaction parameters in E9).as

J(q)=<

A(Q)
B'(a)

B(a)

A" a9

chains €4=1); see Fig. 1. In the pure ortho-l phase, atwhereA(q) andB(q) are 4x4 matrices andh\(q) is given
x=1 there are two possible domain types. These are occuy

2V4C05(qz) ZVZCOS(qy) 2V3001qx) 0
2V,co4qy) 2V,c040,) 0 2V3c0gdy)
A(q)= (12
2V3co9dy) 0 2V,4c044,)  2Vpcoqdy)
0 2Vicoqdy,) 2Vycogqy) 2V,c04q,)

The interaction matriB(q) can be written, using the phase
factorsp=e/(%* /2 gndm=e (%= W72 35

p m nr p*
m* p* p m

B(q)=V, o o m (13
p* m* m p

introduce the susceptibilities of subsystems, corresponding to
using all the symmetries of the oxygen-ordered phases,
where all single sites within the subsystem have the same
oxygen occupancy and consequently the same local suscep-
tibility x. Consider first the subsystem consisting of sublat-
tices 1,2,3,4(ortho-I symmetry. The average susceptibility

for this subsystemy14(x,q), can be calculated using E@t)
where the &4 matrix A(q), Eq. (12), is to be used as the
interaction matrixJ(q). Since all sites in this case are
equivalent, we obtain according to E®)

To describe the perpendicular subsystems, we have intro-
duced the vectocﬁz(qy,qx,qz) related tog=(qy,dy,q,) by

a rotation of 90°. In the following we will, using mean-field x14(X, )
theory, discuss the pertinent features of the structure factor
which subsequently is studied by Monte Carlo simulations.
The MF results are important in order to gain insight into the = ——; .
multidimensional parameter space and to derive suitable (X)"—2V35c08qy) — 2Voc08qy) — 2V,4c08q,)
functional forms to which experimental or numerical data for

Sqir(q) may be fitted. These functional forms correctly in- (14)
clude a number of important geometrical features, but flucAnalogously, the susceptibility for the perpendicular sub-
tuation effects are of course not included. It is convenient tasystem of the ortho-I symmetry is given ly4(x,q). In the

1
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ortho-I phase we have the situatiog=c,#c.=c4, and we  the susceptibilitiesy14(xa.9), and x14(xq.0) from the two
denote the local susceptibilitieg, and x4 for the two sub-  subsystems 1,2,3,4 and 5,6,7,8 according to(B42). The
systems, respectively. The structure factor can be calculatezbupling matrix is V(q)=B(q) and consequentiV(q)
directly from Eqgs.(4) and(8) or alternatively by combining =V,(p+p*+m+m*). We obtain

Suir(@) = kg Th?

2114 (a0 + X3 (ko @)} +4Vacog a2 c08y12)
X1 (Xa ) x14 (xa,8) — 16Vicos(q,/2)cog (g, /2)
In the tetragonal phase the two local susceptibilities are equal,

1 X
-3/,
and Sg;(q) from Eq.(15) is isotropic due to the invariance under the exchamge]. We may use Eq(15) to determine the

phase boundary between the ortho-l and the tetragonal phases by determining the temperatures of diveBygi@g, of
whereQ,=(2,0,0) is the characteristic ortho-I reflection. Direct evaluation using Ejsand (14) yields

(15

o o 1 X
Xa_Xd_kB_TE

X
kBT('\:"F(x)zx(l—E)(—2V1+V2+V3+V4). (16)

In the ortho-1 phase, the local susceptibilities of the two subsystems are diffggehky. We can without loss of generality
assume a predominant occupation of the 1-4 subsystggad,) constrained by the conditiory + c4= x. It follows from Eq.
(A4) to first order ine, wheree=e*V1%/keT thatcy=e/(1+ €). Due to the strong nearest neighbor repulsign(V,<0), it
follows thate becomes exponentially small as we redigd. According to Eq.(5), yq=e€/kgT and we may usgy as an
expansion parameter in an expansion for 8d). To leading order ire we obtain

Suir(d) =kgTh?

1 [ 1+ 4V, x4c0g 0x/2) cog qy/2) 1

>< X 3 ~ ° ©
XadXa:®) 5 1—16Vixax14(Xa,4)c0(q,/2)cof(q,/2)

Anticipating the phase transition to the ortho-1l phase with the divergence at the characteristic wav&yectar,0,0) we
may expandSy;(q) aroundQ, to second order im, yielding

Sair(Qy+ ) =kgTb?

1 1—2V xalx
X2 ) T Voge— (Vat AV 2 Va2
Xa 20y 3 1Xd)dx T Vad;

(18

where we have introduced the diverging susceptibilityphase boundaries nonetheless are very useful since they in-
Xa=X14Xa,Qu)=[xa*+2V3—2V,—2V,] % If instead dicate where the short-range ord@RO becomes signifi-
we have considered the alternative ordered domain with theant.
5-8 chains occupied and the 1-4 chains being empty, the According to Eq.(18) the line shape oSy(q) near a
result is identical except that the peak occurQgqtand that Bragg point,Q,, is essentially a Lorentzian, with aniso-
dx andqy in Eq. (17) are interchanged. The mean-field criti- tropic full width at half maxima(FWHM). This is slightly
cal temperaturé’QAF(x) for the ortho-l-ortho-Il transition is modulated by a multiplicative “background” function
determined from Eq.(18) as the temperature at which 1—2V,y40.. The modulating function is linear ig,, giv-
Sqi(Qy) diverge (X;1=0). We obtain to leading order in ing rise to a shift in the ortho-Il superstructure reflection by
€ AQ,. To first order in e the shift s
AQ,=¢€|V4|/(2kgT|V3|x,). Because of the dependence on
keTe' (X)=2(x—€)(1+€e=x)(Vo+Vy=Va). (19 Xa» AQy vanishes aT™ as given in Eq(19). Therefore, the
The resulting mean-field phase diagram is not expected to B8ragg peak develops exactly @ . However, abovely"
accurate with respect to the onset of long-range ofide0), within the ortho-I phase, a shift of the peak is predicted. This
i.e., the positions of the phase boundaries. The effects dgéhift is also present when ortho-I LRO is replaced by ortho-I
fluctuations will modify it strongly as discussed in Sec. Ill. SRO andy, is replaced by the exact susceptibility, which is
However, it has previously been foulidhat the mean-field diverging at the trud . <TM" . In the regionT < T<TMF the
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LRO is replaced by a SRO in which there simultaneouslyheen neglected. That implies the}'™>T_ in particular for
exist finite domains of populated 1-4 and 5-8 subsystemsow-dimensional systems, where the fluctuations are large.
The ortho-I Bragg peak is therefore broadened to an anisq@n the other hand, the MF functional form of the wave-
trOplC Lorentzian, reflectlng the Spatlal extent of the OrthO'lvector_dependent Suscept|b|||ty is expected to be quite accu-
domains. Below the transition temperature to the ortho-llgte aboveT . This will in fact be demonstrated below, us-
structure, these domains are further subdivided into the COling the Monte Carlo simulations. The average wave-vector-
responding ortho-Il domains, with the chains in the givendependent susceptibility,(q) in Eq. (6) satisfies the sum
directions. This gives rise to the anisotropic orthd8RO e NEnlEar\/(CI):(kBT)_lcav(l—Cav), where N, is the
peaks atQ, andQ, . From Eq.(17) we can determine the total number of sites and,, is the average concentration.
ratios of the anisotropies in the.FWHM,k(T)/A.h(T) and According to Eq.(6), T = 7(Q)c.(1—c,). By replacing
AK(T)/AR(T). To ‘;'[St order in e we obtain AK(T)/  the sumNy s, by the volume integral over the Brillouin
Ah(T)= \/(|V3|+4V1Xd)/|Vz°- Analogously we obtain zone, the sum rule can be written in the f8f Y
AI(T)/AR(T)=\/(]V3|+4Vixg)!|Va|. This allows for a de-

termination of the interaction parameters from a measure- 1 sz 27 2 1 TMF
: : _ i d J d f do, 577 ~= =,
ment of the relative widths of the structure factor. The widths W o Ox o Ay o q; R—7(q)/ Q) T

Ah(T), Ak(T), and AlI(T) should scale with the reduced 22)
temperature as a power lajf —T|”, with ¥MF=3 It is
important to note, that according to mean-field theory theyhere we have used thgt,(q) in the disordered phase has
anisotropiesAk/Ah andAl/Ah are independent of tempera- the form Eq.(6). The principle behind the approximation is
ture and oxygen stoichiometry, when the influence ofy  to assume thaR can be generalized beyond the MF value to
can be neglected. represent the true local inverse susceptibility. TRecan be
In the same fashion, we can discuss the structure factor ifteated as an independent variable and @8) used to de-
the ortho-Il phase. Since is exponentially small at loWl,  termineT for a givenR. For continuous variables this ap-
we will take e=0. Consider the subsystem consisting of only proach is called the spherical approximatféwhen used in
sublattices 1,2(ortho-Il symmetry. The susceptibility for the Heisenberg model, one can obtain a very accurate esti-
this system,x15(x,d), can be found in an analogous way mate for the correct by determining it as the temperature
from Eq. (11) by using Eq.(6). We obtain at which Eq.(22) is fulfiled when y,(Q) diverges, i.e.,
when R— 1.2 One obtains, for example, the correct depen-
Y, 0) = — 1 . (20 dence on the length of the spin in Heisenberg spin systems,
1240 (X)*l—2V2cos(qy)—2V4cos{qz) and the correct dependence of the spatial dimensioraljty
in the sense thal ;=0 for D=<22 The spherical approxi-
mation has not previously been used for Ising-like models.
For the Ising model the dynamics is stochastic and the use of
Eq. (22) requires madification due to the fact that it always
x12(x,0). The structure factor in the ortho-Il phase can befg;tgvz gﬂ'tgxsgg:]ggtgomﬂli 2%?"; (()arng]rgoyu;;ss:ri;%sa?ndtﬁ(re

calculated by combining the susceptibilitigs,(xa.d), and case of small Heisenberg clustéfsTherefore we introduce

X1Xp.0) from the two subsystems 1,2 and 3,4 according o, gap ag=Q, and determind  as the temperature at which

Eq. (A12), where the average coupling is given by p=;, S8, with a smalls.** An alternative method of includ-

The susceptibility for the 3-4 subsystem is identical to that o
the 1-2 subsystem and is therefore also given by (E6).

The oxygen chains for the 5-6 and the 7-8 subsystem ar
rotated by 90° and thus the susceptibility is given by

V(q) =2V4cos@,). We obtain ing correlation effects on the phase diagram is the CVM
L 1. 1. theory*™ The result of the CVM theory depends on how

Sy(q) =k szf{X12 (Xa @)+ X12 (Xp,Q)} +2V5c08qy) large clusters are included in the calculation. In the present

difl 4) = Ke X15-(Xa ) X135 (Xb.0) —4V3c0S(a,) theory clusters of all sizes are automatically included via the

(22) complete sum over the entire reciprocal space.

. . . We shall here calculate the fluctuation-correctgaising
The corresponding expansion 8§(q) aroundQy gives an g4 (29 for the ortho-l-ortho-1l transition by applying the

anisotropic Lorentzian. There is no shift in the Bragg posi-Sum rule to the susceptibilityyi(x,q), with J(q)

tion in this case, since there is no term linear dq. = 21VcoSEL) -+ VacoSE) +V,cos This requires solvin
The anisotropies are determined bWk(T)/Ah(T) the[intzegra(IqX) 30SEy)+VacosEy) ] g g

=y|V3l/|V,| and AI(T)/Ah(T)=yV|V3|/|V4|, where

y= \/Zxaxb/(XaZJr sz). This completes the mean-field calcu- 27 27 27 1

lation of the line shapes. These line shapes include very im- G(t)= JO dXJO dy . dzt—acoy—ﬁcosy— 7G0T

portant geometrical effectdike the shift in the peak posi- 23)

tion) and give a representation in the entire reciprocal space.

As will be shown, the inclusion of these features is pertinentthus we need a generalization of the isotropic Watson

for obtaining an understanding of the Monte Carlo results. integralf‘S By applying the method of Morita and
Horiguchf*® the integral can be shown to be given by

Ill. INCLUSION OF FLUCTUATION EFFECTS

It is well known that mean field-theory predicts a too high G(t)= S—WJ'WkaK(kZ),
transition temperature because the fluctuation effects have VyBJo
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FIG. 2. The ortho-I—ortho-Il transition temperatufe/TM* at
x~ 3 plotted versus the inplane anisotroMs|/|Vs|. The results are
based on numerical solution of E(R2), for the parameter values
Vi=—V,, V,=0.36V,, V3=—0.12/,, TV =024V, /kg .

where
4B,y 1/2
=t acos0=(B=97]

(24

and K(k) is the complete elliptic integral of the first kind;

see Ref. 47. The sum rule allows us to investigate the influ
e-

ence of parameters in the model. First, we consider the d
pendence off; of the in-plane anisotropyV,|/|Vs|, of the
ortho-lI-ortho-ll phase transition. By using Eq®2) and
(24) we estimateR=1.02 in order to obtain the correct tran-
sition temperature for the 2D ASYNNNI modédtx= 3), as
determined from Monte Carlo simulatiof$This is shown
in Fig. 2. For the isotropic case we obtaif,
=2.144/y/kg. This can be compared with the exact
T.=2.268/y/kg for the nearest neighbor Ising model. For
the cluster variation method the corresponding result& are
for the pair approximatiof .= 2.885/,/kg and for the four-
point—five-point approximationT.=2.35%,/kg. As we

0.75
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0.20

FIG. 3. The ortho-lI-ortho-Il transition temperatufg/T¥" at
x~3 plotted versus the interplane interaction paramatgrV,.
The results are obtained as in Fig. 2.
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move away from the isotropic case the model attains some
1D character and ;. decreases. Next we consider the depen-
dence ofT, on the interplane coupling/,/Vy,. We have in
Fig. 3 calculatedT(V,)/T¥". This result shows that the
introduction of even a very small interplane coupling
leads to a dramatic increase ., and much larger than
could be expected from mean-field thepc§. Eq.(14)]. This
is because the two-dimensional Ising model is a case of mar-
ginal LRO* For the isotropic casdV,|=|V3|=|V,|, we
find T.=4.48W,/kg, which can be compared with
T.=4.51V,/kg obtained from high-accuracy Monte Carlo
studies® In Sec. IV we report on our Monte Carlo simula-
results using the 3D ASYNNNI model with
V,=0.02V,|. TheT, obtained from the Monte Carlo simu-
lation is in excellent agreement with the estimate from the
sum rule. Therefore Fig. 3 allows us to predic{V,) reli-
ably for other values of the interplane coupling parameter.
We now turn to a discussion of thedependence of ..
In the dilute limit,x<x,, wherex, is the percolation thresh-
old (x,~0.3 for a monodomain of orthoslithe LRO is re-
placed by SRO even dt=0, since for these low concentra-
tions the particles cannot arrange themselves into ortho-I or
ortho-Il  structures. The same arguments hold for
X>1-Xp, so that for the ortho-Il phase, LRO is replaced by
SRO. Thus, whem— 1 the ortho-II structure is not stable. In
this limit the small number of vacancies will &&= 0 arrange
themselves in long chains. If there are no long-range inter-
actions, these chains will be randomly distributed and con-
stitute a so-calledlagneli phase®®! If there are long-range
interactions, other phases may appear. Recently, there has
been found experimental evidence for the presence of SRO
of the ortho-lll symmetry at low temperatures and
x=0.7732 This phase consists of two full chains with the
third missing, etc. Theoretically, such phases have been con-
sidered by Cedeet al®® and by Zubkuset al3! However,
since the ordering kinetics at low temperature is very slow,
the higher-order modulated phases are difficult to form and
therefore to observe in both experiments and, in particular, in
Monte Carlo simulations. Consequently, we shall not discuss
thex—0 andx— 1 regions. Fox~ 3, on the other hand, we
expect the ASYNNNI model to include most of the pertinent
interactions needed to describe the high-temperature behav-
ior. Therefore, the value of; calculated using Eq22) and
E'a.F (24) is predicted to have the same dependence as
T, e,

To(X')=To(x= 3)[1-4(x'— )], (25
where x’ =x—1. Accordingly, a parabolic dependence on
x' is predicted with a maximum shifted towargs 3. Since

€ increases with temperature, the shift is predicted to be
larger if T;(x=3) increases, for example, by the inclusion of
V,#0.

IV. MONTE CARLO SIMULATIONS

The Monte Carlo technique has the large advantage that it
does include fluctuation effects very accurately, although
there are also a number of drawbacks. One problem is that
the results are numerical, not providing insight into the de-
pendence, in functional form, of the results on the model
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eters are given in Eq10)], both for the 2D systentwhere

025 V,=0) and for the 3D system. The resultirgl phase dia-
/7’ . gram is shown in Fig. 4. The location of the phase boundary
— 0-20 A o was determined by calculating the position of the peak in the
i‘o T " ﬂo/ fluctuations of the order paramete#is and 6, for the two
d 015 .4 g ol kinds of LRO; see Ref. 23. The Monte Carlo data have been
o e =5 g obtained both by Glauber dynami¢sircles and Kawasaki
% 1 < ==—g—" dynamics(diamonds. In the case of Glauber dynamicsjs
o 010 3///“" N only indirectly determined from the-x relation. For the 2D
=3 o a system(open symbolg the system size was &30, while
£ v o 0]] o} f . :
3 005 | or the 3D system(solid _ s_ymb_ol$ the system size was
= 64X 64X 8. To check the finite-size dependence of the results
in 2D, larger system sizes 18000 and 20& 200 were used
0.000.3 0:4 o5 0‘6 atx=0.4 andx=0.5 for a complete temperature scan across

the phase boundary. The differencesTin were small and
within the computational uncertainty. For additional compu-
] ) ) tational details about the 2D calculation; see Ref. 23.
FIG. 4. Comparison of the phase diagrams in & plane The phase diagram contains the high-temperature oxygen-
’c\>/|bta|ned b?’ the 2|D and Tt:e EXteredf 35 A;FYNNNI model b{idisordered tetragonal phasg)(and the two low-temperature
onte Carlo simulation. e results of the fluctuation-correcte (?f(ygen-ordered orthorhombic phases, the ortho-I pl(l@ft)e

mean-field theory are also shown as solid curves. Open circles an

diamonds represent Monte Carlo data obtained by Glauber and Kzfli-nd ortho-ll phase€(Oll) as indicated in the figure. The

wasaki dynamics, respectively, on the 2D system with interactiondaShed lines represent phase boundaries both for the 2D and

parametersv, = — Vo, V,=0.36V,, Va= —0.12/y, and V,=0. the 3D systems and are all consistent with being of second

Solid symbols have the same meaning for the 3D system merder as eXpeCted from finite-size Scalsislgg ana!ysis of the or-

V,, V,, andV; as before, and/,=0.02/,. The triangles are the der parameter dlscu_ssed by Aukrestal. Th2eO trla_ngles are

experimental data points from Ref. 20. The dashed curves connedi’® €xperimental points from Andersenal,™ which have

ing the Monte Carlo data divide the phase diagram into thredd€€n plotted by using an absolute temperature scale factor of

phases: the disordered tetragonal pha3e énd the two orthorhom-  Vo/Kg=4490 K. This value has been obtained by fitting the

bic phases ortho-I and ortho-lI. calculated value off ;(x=0.4)=0.12Ay/kg in 3D to the
experimental valug.=570 K. For this reason the experi-

. ] mental data points fall on the 3D phase boundary. There is
parameters as, e.g., mean-field theory does. Another impogn overall agreement between the experimental data and the
tant problem concerns finite-size effects. The theory of3p ASYNNNI model, although at high temperatures the ex-
finite-size scaling in particular for thermally driven phaseperimental values falls systematically lower. Additional
transitions provides a mean for overcoming this problem b)bhysics, e.g., inclusion of electronic degrees of freetfam
extrapolating quantities such &g obtained from a series of strain fields, may be needed to account for this deviation.
small system sizes. For quantities like the structure factofrhe results of the fluctuation corrected mean-field theory,
Suir(q). the resolution ing space is limited by the system Egq.(25), are also shown in Fig. 4 as solid lines. It is remark-
size?* so that finite-size scaling cannot be applied. Thereforgyple that the transition temperature is in close agreement
in order to resolve details in the line shape, large systenyith the Monte Carlo data over a wide range of oxygen
sizes with good statistics are needed. This in turn is exstoichiometries. It should also be noted that the theory cor-
tremely time consumingrunning several weeks on a work- rectly predicts that the maximum at.(x) for the ortho-I to
station is not uncommonVectorizing the procedure is not ortho-I transition is shifted towards> 2, and that the shift

easy, because the Monte Carlo algorithm is an inherentlys |arger for the 3D system than for the 2D system because
sequential process, where the basic computational step co- increases with temperatufef. Eq. (18)].

sists of randomly selecting a lattice site and updating it ac-
cording to some transition probability. Nevertheless, in re-
cent years several vectorized and parallel updating
algorithms have been devised for speeding up the conver-

gence. One of the problems arising from the use of paralleghe CM2 Connection Machine with 65536 single-bit proces-

updgting methods is the necess'alry'redefinition' of the tim%ors. The program was implemented in Connection Machine
variable. However, as far as equilibrium properties are cons

; ' Fortran(CMF) with calls to the Connection Machine Scien-
cerned, the sequential and the parallel updating methods le ¢ Software Library (CMSSL). To update the lattice we
to the same results. In the present study we have develope : - :
parallel updating algorithm for the 3D extension of the Ave used the Metropolis algorithm employing the standard

) .~ method of dividing the lattice into noninteracting sublattices.
ASY.NNNI model, which natprally maps onto the underlying Since only one of the chosen sublattices can be updated at a
architecture of the Connection Machine CM2.

time (without violating detailed balangeeach one has been
spread across all the available processors of the CM2. Before
each calculation of the structure factor, the different sublat-
We have calculated the phase diagram by Monte Carldices are therefore reassembled into the full lattice. By align-
simulation of the Hamiltonian Eq9) [the interaction param- ing the different sublattices and the full lattice properly, and

Oxygen stoichiometry x

B. Structure factor calculations

The calculation of the structure factors was performed on

A. Phase diagram
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FIG. 5. The line shapes of the,0,0) superstructure reflectid®y(q) for scans along the main axes in reciprocal spabgk,(), are
shown on a natural-logarithmic scale for 0.4, x=0.5, andx=0.6 for T=0.12V,/kg (450 K) to T=0.18V,/kg (800 K). The circles are
the actual Monte Carlo data points for a 3D system (2866X 16) with interaction parametei$, = —V,, V,=0.36V,, V3=—0.12V/,,
andV,=0.02/,, while the solid curves represent the best fits to @d) plus a diffuse peak centered around (1,0,0) for the ortho-I phase
and a diffuse peak at (0,0,0) representing large-scale particle fluctuations. Deviations from the fitted line shapes indicate nonequilibrium
domain formations. This is in particular evidentxat 0.6 due to the increased relaxation time.
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by using the communication commands from the CMSSL s the reason why the fluctuation-corrected mean-field theory

this reassembling process can be carried out without makingredicts the transition temperatures so accurately-as.

necessary any data transfer between processors. In the coffhe reason for the deviations farvery different fromj is

puter simulation the structure fact8(q) has been calcu- discussed below. The result for the sca®g(3,k,0) and

lated from Eq.(7) with So(r) replaced byo(r) using a  S,(%,0,1) are shown in the two lower panels of Fig. 5. For

standard fast Fourier transform. This includes the Bragghese scans, it can be shown that the theoretical line shape

points in addition toSy;(q). obtained from Eq(17) is exactly equal to an infinite sum of
For the results of the structure factors reported on below, grentzian  line shapes located at,2n+1,0) and

we have used a system size of 268656X 16. In th_e simula- (3,0,1+1) (n being an integer respectively. This result is

tions we have used fMonte Carlo steps per si@®CSS  \aid within the mean-field theory both above and below

for equilibration, followed by 5¢10* MCSS with averaging T ForT>T. thi : :
. . th
performed every 10 MCSS. Using 16384 processors, we ob[ c- FOf o this agrees with the analytical resuits for both

tained a peak performance of &10° MCSS/sec. By appli he 1D and the 2D Ising models Let us briefly discuss the

cation of the symmetry relations pertinent to the oxygen Iat-SyStemaltIC behavior reported in Fig. 5, starting with

tice of YBa,CusOg., (space groupP4/mmm), we have Sdif(%,o,l). The widthAl provides the in_ve_rse interplane cor-
reduced the computational efforts of calculating the structur elation length _J‘fc' At the oxygen stoichiometryx=0.4, it
ollows that &. increases whefT approached§ . both from

factors to an irreducible zone of reciprocal space which i
1/16 of the Brillouin zone. In addition the symmetry proper- 2P0ve and below. Fol below T, we enter the ordered
ties of the oxygen lattice were utilized which means that arPrtho-Il phase(cf. Fig. 4, and there is @-function peak at
additional factor of 2 was gained in the statistics by the av{2,0,0) (not shown, which gives rise to LRO of ortho-II. A
eraging, giving a total of 1.810° averages. In Fig. 5 are Similar scenario is also seen f@&(30,) at x=0.5 and
shown the scan$g;(h,0,0), Syi(2,k,0), andSy(3,0,) for  x=0.6, although the ortho-Il fluctuations are present in a
three different oxygen stoichiometries=0.4, x=0.5, and LRO of the ortho-I phase, giving rise to&function peak at
x=0.6. The scans are presented on a natural-logarithmicl,0,0). Comparing, for different oxygen stoichiometries,
scale, and they were performed through thevector Q, at a constant temperature, we notice that for
=(3,0,0) corresponding to the characteristic peak for thel =0.12/g/kg, the interplane correlation lengté; has a
phase transition of the ortho-Il phase. The scans are showRinimum atx=0.5, while it increases both for=0.4 and

for seven different temperatures ranging fromXx=0.6. Moving on toSy{(3k,0), the widthAk gives the
T=0.12V,/kg (450 K) to T=0.18V,/kg (800 K). The tran- inverse correlation length g4 within the basal plane along
sition temperatures are concentration dependeinfig. 4,  the copper-oxygen chains. Comparing wi(3,0,1), a
and are given for the three different stoichiometries in thesimilar behavior both in the temperature as well as in the
upper panels of Fig. 5. The vertical scale gives the absolutéoncentration dependence is observed. Again we find ex-
intensities and applies directly to the scans @t tremely good agreement with the theoretical “cosine” line
=0.12V,/kg . For presentation purposes the remaining scan§hape both above and beldy. Despite the weak interplane

at T,=(0.12+0.0Im)Vy/kg, m=1,...,6, have been interaction paramete¥,, the system exhibits striking 3D
shifted vertically upwards by . The circles are the actual behavior. This is clearly seen when comparing with the 2D
Monte Carlo data points, while the solid curves represent théimulation (with V4=0).>® The deviations from the fitted
best fit to the same theoretical expression, @d), with the  line shape, in particular at= 0.6, are due to nonequilibrium
simplification thaty,4(xa,q) in the denominator is substi- domain formations as will be discussed later. In the upper
tuted by xa=x14(xa.Qu). In order to fit the Monte Carlo panels of Fig. 5 are shown the results for thescans,
data, it is necessary in addition to E4.7) to include two  Sui(h,0,0). In this direction the widttAh of the (3,0,0) peak
diffuse peaks centered around (0,0,0) and (1,0,0), respe€arries information about the correlation lengthwithin the
tively. The (1,0,0) contribution arises partly from SRO basal plane transverse to the copper-oxygen chains. The
ortho-! fluctuations; this contribution could have been incor-(z,0,0) peak shows a similar temperature and concentration
porated more systematically by including the intricate anddependence as discussed previously. However, the position
cumbersome coupling scheme for three subsystems, as digf the peak is shifted away from the exagtd,0) position, as
cussed in the Appendix. The (0,0,0) contribution arises fron® result of the nearest neighbor repulsMp, which will be
large-scale concentration variations, which have not been agliscussed below. For thescan ax=0.4, LRO of ortho-I is
counted for by our mean-field theory. The widths and intenot present(cf. Fig. 4), and the diffuse (1,0,0) peak arises
sity of these two 3D Lorentzians are adjustable parameters ifiom higher-order reflections of the ortho-Il peak in addition
the fit to the Monte Carlo data. Further, because of the into SRO ortho-I. Atx=0.5 (except forT=0.18V,/kg) and
trinsic limitations of mean-field theory, which prevents a re-for x=0.6 there exists LRO ortho-I, which gives rise to an
liable estimate of thex,T) relations in the phase diagram, additionals-function contribution at (1,0,0). It is interesting
we have chosery, and x4, and the temperatur€ in Eq.  to note by comparison between the correspondingnd |

(17) as free parameters. The very high resolution obtained iscans that the difference between SRO or LRO of ortho-I can
the computer simulation allows for an accurate analysis obnly be distinguished from thie scan. The importance of the
the line shape, especially in the tails. It follows from Fig. 5 additional (0,0,0) contribution increases fowery different
that the theoretical line shape gives an almost perfect fit térom 3 and if it is neglected in the sum rule, large deviations
the Monte Carlo data for all concentrations and temperaturesan be expected, as observed in Fig. 4 forx, and

In fact this remarkable agreement is not restricted to thex~1—x,. The simulated structure factor allows us to follow
scans presented, but includes the entire reciprocal space. Thiwe behavior of the (0,0,0) peak. Por0.4 andx=0.6 this
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peak has an entirely different temperature variation than the
critical scattering contributing at3(0,0) and (1,0,0), since
the origin is of geometrical nature. For stoichiometries devi-
ating fromx= 3, the connected regions of either holes(

1) or particles &> 3) increase as the temperature is reduced, <
giving rise to more large scale inhomogeneity in the concen-
tration. Therefore, the intensity of the (0,0,0) peaks increases
upon decreasing the temperature. In contrast, the behavior at
x=0.5 shows that the peaks narrow and decrease in intensity
with temperature, since the domain walls containing either
holes or patrticles are disfavored at low temperature.

In Figs. §a) and Gb) are shown the widths within the ee, es ® oa °
basal plane of the diffuse0,0) peak ak=0.4 as a function 11 0.00 &2 :
of temperature. The widthdh (h scan and Ak (k scarn 0.60 0.00 0.25
have been calculated for several different system sizes both h t
in 2D and in 3D. In addition the system size is indicated

0.06

0.04 |

0.02 a

log[S(h,0,0)b7]

0.50

FIG. 7. Right: peak positiomAh+ % of the ortho-II superstruc-
ture reflectionSy;(q) for scans along thér axis as function of

04 reduced temperatutte=[ T—T.(X)]/T¢(x). The system is identical
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FIG. 6. Comparison between the 2D and the 3D Monte Carl
calculation of the peak width of the diffuse structure fac®gr(q)
at (1/2,0,0) as function of temperature for thescan(a) and the
k scan(b), respectively. The oxygen stoichiometry has been fixed t
x=0.4. The solid symbols represent data points on the 3D syste
parameters V,=—V,,
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to that in Fig. 5. The symbols denote different oxygen stoichiometry
as follows: x=0.4 (circley, x=0.5 (squares and x=0.6 (tri-
angles. Left: enlargement of the data f&y;(h,0,0) including the
fits from Fig. 5 at x=0.4 for temperaturesT=0.18V,/kg
(t=0.415), T=0.1Ny/kg (t=0.339), and T=0.16V,/kg
(t=0.262).

either(A) or (B), referring to the updating dynamics used in
the simulations.(A) corresponds to an updating dynamics
(Kawasaki exchange dynamjoshich is faithful to the local
diffusive modes whildB) corresponds to a faster unphysical
updating method(Glauber dynamigs allowing oxygen-
vacancy exchanges over arbitrary distances. However, for
equilibrium quantities these two methods yield identical re-
sults; see Ref. 23. Although the 2D ASYNNNI model is of
Ising type, the universality class of the tetragonal-to-
orthorhombic ortho-Il phase transition has been suggested by
Barteltet al®’ to be that of theXY model with cubic anisot-
ropy, with an exponent~ 0.8 which depends on the oxygen
concentration. The dashed lines in Figga6and &b)
through the 2D data represent a best fit to the data for the
largest system usingg=0.8, and using the value for
T2P(x=0.4)=0.1052/,/kg ; see Ref. 23. In the 3D case, our
numerical data are consistent with the critical exponent
v=0.64 of the 3D Ising model. The dashed curves in Figs.
6(a) and @b) through the 3D data represent a best fit to the
100X 100X 8 data usingv=0.64. It was argued in Sec. Il
that close tdT,, where the influence of,4 can be neglected,
the in-plane anisotroppk/Ah= |V;|/|V,| is independent

of temperature. The Monte Carlo results suggest that the in-
plane anisotropyAk/Ah, to a very good approximation is
indeed temperature independent. From Figs) @nd &b)

we obtain the valueak/Ah=0.52 for the 3D system and
Ak/Ah=0.50 for the 2D system; see Ref. 23. Hence we find
that the inclusion of a weak interplane interaction only mar-

ginally affects the anisotropy. We note that the mean-field
theory would give a misleadingly

larger anisotropy
Ak/Ah=0.58. These features are of importance when com-

=—-0.12V,, andV,=0.02, while open symbols are those of the 2D paring with the experimental results for the anisotropies.

system, using/,=0.0. The dashed curves through the data points
are the best fits to the scaling relatiphi— T,|” with »=0.8 and

v=0.64 for the 2D and 3D systems, respectively.

According to Eq.(18) the line shape ofS4:(q) near a
Bragg pointQ, is modulated by a multiplicative “back-
ground” term 1— 2V, x40y, Which gives rise to a shift in the
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FIG. 8. Real space snapshots of the oxygen configuration in the basal plane for the 3D syste25@566) in Fig. 5, both above and
belowT,, for oxygen stoichiometries=0.4, x=0.5, andx=0.6. For the snapshots aboVg, the reduced temperature was chosen to be
the sama~0.1, while for those below ., the snapshots represent state3 at0.10v,/kg . The nonequilibrium behavior is most clearly
seen for concentrations=0.5 andx=0.6. In the last row is shown the low-temperature scaf$h,0,0) analogous to those presented in
Fig. 5. Forx=0.4 the thick vertical line represent the Bragg contribution. See detailed description in text.

ortho-1l superstructure reflection hyQ, . In Sec. Il it was seen that the theoretical line shape agrees with the Monte
shown that to first order in x4 the shift is Carlo data and that the peak position is shifted.
AQ,=xalV1l/(2|V3|xa) wWhich depends exponentially on  In Fig. 8 is shown real space snapshots of the oxygen
temperature. In Fig. Tright) is shown the shifAQ, in the  configuration in the basal plane for the system in Fig. 5, both
peak position as function of reduced temperatureabove and belowl,, for oxygen stoichiometriex=0.4,
t=(T—-T.)/T., for different oxygen stoichiometries. It is x=0.5, andx=0.6. For the snapshots aboVg, the reduced
evident thatA Q, becomes zero dat=0. This is in agreement temperature was chosen to be the sam®.1, while for
with the mean-field expression, sinceTat, x, diverges so those belowT., the snapshots represent quenched states at
that AQ, is identically zero. The predicted exponential de-T=0.10Vy/kg for the two largest concentrations. Above
pendence is found far>0. In Fig. 7 (left) is shown an en- T.(x=0.4) only SRO of ortho-l and ortho-Il is present, and
largement of the profiles fox=0.4 at T=0.16V,/kg, one can identify domains both along theand theb axes.
T=0.1Ny/kg, and T=0.18V,/kg, from which it can be Below T.(x=0.4) the SRO ortho-II is replaced by LRO,



568 T. FIIG et al. 54
while ortho-1 remains as SRO. It is clear from the snapshotshese domains is locked by a domain from a perpendicular
that the concentration fluctuations increase upon decreasirggbsysteniwhich is easily seenwith copper-oxygen chains
the temperature. BeloW (x=0.4) eithera or b type do- along the transverse direction. The corresponding structure
mains are selected. The reason is simply that when the cofactor resembles that of=0.5 although the oscillations are
relation length along the chain direction becomes of the orsmaller and the peak more narrow due to larger roughness of
der of the system size, percolating domains are formed, anidne walls.

only if these have the same chain direction, can they coexist.

In the last row are shown the profiles of t8g:(h,0,0) scan,

analogous to those presented in Fig. 5.xAt0.4 the Bragg V. SUMMARY AND CONCLUSION
contribution is shown as a thick vertical line; this was omit- ]
ted in Fig 5. Consider the snapshotsxat0.5 andx=0.6 We have developed a general mean-field theory for a

class of lattice gas Hamiltonians and applied it to the
ASYNNNI model. We have shown that the particular nature
of this model, having two essentially decoupled subsystems,
gives rise to intricate features in the susceptibijiyg), ba-

aboveT,. They both show presence of LRO orth¢ef. Fig.
4) and SRO ortho-ll. There is clearly a difference in the
ortho-ll fluctuations compared to thosext 0.4. Since al-

re.ady.a percolating dpmam is formed of eitteeor b type, sically of geometrical origin, which are very well accounted
this disfavors fluctuations of the other type. F)QFO'S and .for by the mean-field theory. The predicted line shape agrees
x=0.6 belowT,, the system becomes trapped in a NOnequipgsentially perfectly with the MC data in the complete recip-
librium state, where one can identify two percolating do-rocq| space, above and below the transition temperature
mains with the same oxygen chain direction, a phase and af__ ¢ further agrees with recent, accurate experimental data
antiphase domain, respectively. Along the (h,0,0) direc-  5p6yeT, .8 The deviation from the Lorentzian line shapes
tion (transverse to the chainghe real space structure can arising from the sum over all contributions giving the “co-
therefore bet_ represented by F(r)=A(r)Dy(r)  sine” form is confirmed by accurate fits to the simulated data
+(1—=A(r))Df™(r), where A(r) is approximately a box on a logarithmic scale. A predicted shift in the peak position
function with a widthloa, which is unity in the ortho-Il  of the (~0.5,0,0) peak is demonstrated. The theory is used
phase and zero otherwise, whilg (r) and D{"(r) repre- in conjunction with a sum-rule argument, similar to the
sent perfect structures of ortho-Il and its antiphase. This casgpherical approximation used for continuous models, to pre-
was discussed by Fiigt al>* The Fourier transforms of the dict a fluctuation-corrected transition temperatufg(x),
phase and the antiphase are the same and the totghich depends both on the dimensionalityand the stoichi-
Si(a) = b?| F(0)|?=2[ 1 - cos@a) 1Sr(a) is modulated with  ometry x. This leads to an analytic theory foF,(x) at
twice the period of the ortho-1Bg4(q). However, diffuse  x~0.5 in good agreement with the Monte Carlo results. This
scattering for a domain of sizg and a lattice constarst is  allows a direct insight into the parameter dependence of
given by Syi(q) = sir?(qlya/2)/sirf(qal2), whereq is mea- T.(x) without having to resort to time-consuming Monte
sured from the ortho-Il peaks. Sintga is of the order of Carlo calculations. We have performed a series of extensive
half the system size, this explains the fast oscillations. Thé/onte Carlo calculations. The phase diagram has been de-
actual phase-antiphase domain wall is rough. Accordinglytermined both in 2D and in 3D by including a small
A(r) must be represented by a narrow distribution of boxinteraction term between adjacent CuOplanes in
sizes around the medg, representing the different domain YBa,Cu3;04,,. A dramatic increase of the transition tem-
widths. This gives rise to a nonvanishing envelope functiorperaturesl .(x) for all x is found when the small interaction
for Syir(h,0,0). The width of this function is related to the in the third dimension is included. This is of importance
domain wall roughness. It is not related to the domain widthwhen comparisons between first-principles parameters and
lo. In the simulations, the slab domain is stabilized becaus¢he experimental data are made. Actually, for the 3D simu-
of finite-size effects and the periodic boundary conditihs. lations the parameters used to fit the experimental phase tran-
We have tested that the observed domains, bothxf0.5  sition line separating the tetragonal and orthorhombic phases
and x=0.6, form plates which penetrate the entire systenare in very close agreement with the first-principle in-plane
perpendicular to the plane shown. It is counterintuitive that gparameters determined by Sterne and Wil& contrast to
small interplane coupling can cause such a drastic effect, arttie 2D ASYNNNI model, the 3D extension accounts for an
it demonstrates the value of performing simulations on realintermediate-temperature range with ortho-I structure before
istic system sizes. Similar platelike domains are likely tothe onset of the ortho-1l phase fa=0.5, but the suppres-
form in the real YBaCu3Og, , Material. In experiments one sion is not as pronounced as in the experiménts.

would average over several platelet thicknesses. This aver- Also the line shape changes radically to a Lorentzian
ages away the rapid oscillations, except the very first. Thehape also belowl, in contrast to the 2D result. The
resulting diffuse scattering contains information about thebehavior of the correlation length is found to follow that of
roughness of the platelets, but not their widths. Notice furthe 2D and 3D Ising models, with exponents consistent with
ther that atx=0.5 there is a suppression of the (0,0,0) peakthe Ising universality classes. The anisotropy in the correla-
compared to that ok=0.6, showing that the concentration tion lengths is found to be independentidfand ofx. This is
variations are largest away from perfect stoichiometry. Thismportant, since the anisotropy is related to the model pa-
is also clearly seen from the snapshots in Fig. 8xAt0.6  rameters and can be measured directly in scattering experi-
the situation is the same as fee=0.5. There are also two ments. The in-plane anisotropy is in qualitative agreement
antiphase domains, although it is difficult to see diréCtly with the experimentally observed values, whereas the
because in this case the domain walls are more rough. One ofaxis correlations are much larger than observed experimen-



54 MEAN-FIELD AND MONTE CARLO CALCULATIONS OF THE ... 569

tally. This shows that the interplane interaction parameters obtained by expansion of Eql) to first order in
V,, suggested by de Fontainet al®® and used for the &a“(r,)=0c%(r,)—c,(r,), wherec,(r,) is the mean con-
present simulations, is far too large. W, is reduced centration. We obtain by reintroducingf'(r,),
(V,4~0.004/,) to obtain agreement with the experimentally
observed anisotropies in the diffuse scatterihgis reduced VIE o8
by 10% according to the fluctuation-corrected analytical re- H :EZ BEr JP(r =1 p)Ca(ra)Ca(rp)
sult presented in Sec. Ill and Fig. 3. However, for such a “la Plp
small value ofV, problems arise in establishing equilibrium
in the simulations. In contrast to the 3D simulations the peak
width anisotropy ratios obtained experimentally fo= 0.5
are temperature dependent in the measured range abowgere
T.=400 K and up to 475 K. Below they are constant but
the line shape changes gradually from a Lorentziah.db a
Lorentzian squared at room temperature, which behavior is HYr ) =p(rg)+ 2 J*P(r,—rp)cprp).  (A2)
taken as reminiscent of a 3D random field Ising system. P

In the simulations, equilibrium is generally obtained in |y the form Eg.(Al) the mean-field Hamiltonian can be
the smaller systems. In order to obtain high resolution injiewed as a constant term plus a Zeemann term that gives
x(q) we have also studied very large systems by using gise to splittings of the energy levels. The mean-field free

parallel algorithm, developed for the Connection machinesnergy is obtained from the partition functfdn
CM2. The high accuracy obtained from the parallel simula-

tions allowed us to carefully test the developed theory. How- E_ —HMFT
ever, it was found that it wgs sometimes diffri)cult in thg simu- FH= —kgTIn{Tre " eT), (A3)
lations to reach the equilibrium statessumed to be a one .4 any thermal average with respect4F is obtained by
domain state The scattering from the multidomain states

shows interesting behavior. It is surprisingly found that the Troe H"FikeT

weak interplane coupling is able to stabilize large domains in (0)= roe (A4)

— 2 HY(re)o®(ry), (A1)

a,l,

the third dimension. The observed domains are platelike with Tre M keT

rather smooth surfaces. A perfect plane plate of thickness

I, would give rise to a sif{qly)/q? type scattering instead of Equation (A3) may be written using the concentrations
a Bragg peak. Roughness and variations in plate thicknes(r,) in the conventional form as/"F=(H"F)—TSYF,
would smoothen the oscillations, leaving a broad diffusewhere(H"F) is given by Eq.(A1) with o*(r,) replaced by
peak with a width characteristic of the domain walls, but nothe average value,(r,) and the entropy is given by

Bragg peaks. The width provides no information about the

domain size, however. It is possible that the experimentally

MF _
observed broad peakwith no Bragg peaKsin the ordered ST= _kBaZr {Ca(ra)In[Ca(ra)]
phase of YBaCu3;0¢, « should be understood in this way. :
This would resolve a long-standing question why long range +[1=cu(ry)In(l—cy(r )]} (A5)

order is not observed experimentally as Bragg superstructure

peaks In other less anisotropic materials the domain wall This well-known form for the entropysee, e.g., Ref. 64s

planes are more rough and the above-discussed Fresnel-typgnce generalized to an arbitrary number of sublattices or

oscillations should be less pronounced. constituents. By considering"* as a functional in the vari-
ablesc,(r,), the expectation values a@f,(r,) can also be

determined by minimizingF", which amounts to solving
the equationg. /¢ ,(r,)=0. The result of the minimiza-
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Ha(r”):kBTm(—l—ca(ra)

APPENDIX: MEAN-FIELD THEORY

FOR A MULTISUBLATTICE SYSTEM ac,(r,)  dc,(ry) dH(r,)

In this appendix we develop a general mean-field matrix Xaﬁ(ra_rﬁ’)z a/ﬁ(rﬁ) T 9H%(r,) (9M,8(r3) '
formalism for calculating the phase diagram, susceptibilities,
and structure factors of a general class of lattice gas Hamiwhere we have applied the chain rule. The first term in Eq.
tonians following Refs. 61,62. The mean-field Hamiltonian(A7) is the local susceptibility; it is diagonal and given by

(A7)
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. aca(r x(@)=[x""=Ia)] " (A11)
Xa= —(<<r“(r )o(ry))—(o*(ra))?)/keT
Consider the situation where the system is separated into two
1 subsystems with different local susceptibilitigs# x,,; see
k T c (1—c,), (A8)  Eg. (6). Let us introduce the average susceptibility for the-

subsystems  consisting of n  sublattices y,/(Q)

where in the last equality we have assumed translationak 1/n EaﬁX“B(q). From Eq.(6) we obtain the two wave-
symmetry, i.e.u*(r,)— n“. In this case, differentiation us- vector-dependent average susceptibilitiegq),xp(q).

ing Eq. (A2) and Eq.(A7) yields
Xaﬁ(ra—r5)=5(a[ 5aﬂ5ra,rﬁ+2r JN(r ,—1)
Vily

XXVB(r,/—rﬁ)]. (A9)

To solve this equation we make use of a Fourier transforma-

tion, Eq.(2). By invoking the folding theorem we obtain

X () =Xa

5aﬁ+2y J“V(q)x”f(q)), (A10)

the subsystems are coupled byrmdn matrix V(q), it can
be shown from Eq(A11) that the total susceptibility is given

by
(@) +xp M@} +V(Q)

V(g)?
(A12)

Z :z{Xa

Nsap Xa (@xp @) -V

Xad )=

where V(g)= 1/n Eaﬁ{vaﬁ(q)+vﬂa*(q)}/2 is the sum
over the real part of all matrix elements ¥{q) divided by
the number of interacting sublattices. This result also holds if
xa(q) # xp(q) for other reasons, for example, because of dif-
ferent interactions within the subsystems. It is straightfor-

which is the self-consistency relation relating the interactingwvard, but lengthy, to derive the corresponding results for

and the noninteracting susceptibility. Equati@i0) may be
solved fory(q) and expressed in matrix notation as

three or more different subsystems with,(q) # xp(Q)
# xc(0).
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