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Large enhancement of the perpendicular giant magnetoresistance
in pseudorandom magnetic multilayers
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It is predicted that the current-perpendicular-to-plane giant magnetoresigi@Rée GMR in magnetic
multilayers with dimensions smaller than the electron mean free path is greatly enhanced by growing layers
with thicknesses that follow a pseudorandom number sequence. The CPP GMR, calculated from the Kubo
formula, is shown to increase exponentially with the multilayer thickness. This is due to Anderson localization,
which is strong in zero field, but becomes weak in one of the spin channels when the layer moments are aligned
in a saturating magnetic fielfiS0163-182896)08326-9

The giant magnetoresistan¢€MR) effect in magnetic 120%. The CPP GMR they calculate is due, entirely, to scat-
multilayers has received much attentioithe GMR effect, tering from perfect Co/Cu interfaces.
which is usually studied in the current-in-pla(@IP) geom- Although present experiments are in the diffusive limit,
etry, occurs when the magnetizations of neighboring magthe “clean” regime identified by Schegt al® will be real-
netic layers oriented spontaneously antiparallel are aligneged in future deviceélt is, therefore, worthwhile to explore
parallel in a saturating magnetic field. The resistance denew possibilities this regime offers for GMR optimization.
creases dramatically in an applied field and CIP GMR ratiogone of them is control over the arrangement of ferromagnet/
as high as 200% have been reported for F&RBf. 2 su-  gnmagnet interfaces which govern the CPP GMR. The only
perlattices. The dimensions of a magnetic multilayer in th&, (o that determines the ballistic CPP GMR of a periodic
direction of the current flow are usually macroscopic in theg,, o jatich is the magnetic contrast of its unit cell. This in

CIP geometry, i.e., much greater than the electron mean fret‘arn depends on the difference between the strengths of the

path. The CIP GMR effect takes place, therefore, in the dnc'stcattering potentials for the majority- and minority-spin elec-

fusive regime and is believed to be due to spin-dependeqrons at a ferromagnet/spacer interface. Since nature provides

scattering from magnetic impurities that migrate into non- ith a limited g b P £ .t/ t P bi

magnetic spacer layers near the interfaces. Owing to reduc with a imited number of ferromagnetinonmagnet combi-
nations, this places an upper bound on what can be achieved

symmetry, rigorous theoretical treatment of CIP GMR in the''¢ ! o : s
diffusive limit is very difficult and a satisfactory microscopic With conventional periodic superlattices. The purpose of this
contribution is to show that the total magnetic contrast, and

theory of the effect is still lacking.
An important development is the observafiai GMR in hence the CPP GMR of a layered structure, can be greatly
the current-perpendicular-to-plan€PP geometry. Elec- enhanced by disordering the sequence of interfaces in a
trons in the CPP geometry cross a large number ofnultilayer. This can be achieved by growing magnetic or
ferromagnet/spacer interfaces and are partially reflected &onmagnetic layers, or layers of both types, with thicknesses
each interface from spin-dependent potential steps whodéat follow a predetermined pseudorandom sequence. | shall
strengths depend on the offsets of the majority- andefer to such multilayers as pseudorandom spin valves. It
minority-spin bands in the magnetic and nonmagnetic layerswvill be demonstrated that the CPP GMR of the pseudoran-
The role of multiple scattering from the interfaces is, there-dom spin valve increases exponentially with its thickness as
fore, much enhanced compared with the CIP geometry. Ifong as the valve remains in the “clean” regime.
fact, Asancet al® conclude, on the basis of their calculations  In contrast to periodic superlatticBsCPP transport in
for a single-orbital tight-binding model, that GMR in the pseudorandom spin valves is not in the ballistic regime. This
CPP geometry is dominated by such band structure effectis because electrons are scattered from a disordered array of
and impurity scattering is only of minor importance. interfaces and the mean free path for this type of scattering
Schepet al® have taken a further step and identified ais, therefore, only of the order of the distance between two
situation accessible to experiment in which impurity scatterneighboring interfaces, i.e., very short. Nevertheless, the
ing is negligible and hence rigorous calculations of GMR areCPP GMR of a pseudorandom spin valve can be calculated
possible. This is the “clean” limit in which all the dimen- rigorously from the Kubo formula. The calculation will be
sions of a multilayer sample are smaller than the mean fredescribed for a multilayer with alternating magnetic and non-
path for scattering from impurities. If one further assumesmagnetic layers which is prepared according to the following
that the multilayer is periodic, transport is in the ballistic prescription. A pseudorandom sequence of intefiérg dis-
regime and the conductan¢EMR) is obtained simply by tributed uniformly over an intervglM ,,Mpna is gener-
counting the number of propagating states. Saitegd® per-  ated and the thicknessds; of the magnetic layergmea-
formed such a calculation for ballistic point contacts madesured in numbers of atomic planese chosen to follow this
from Co/Cu superlattices. They found usial initio bands  sequence. All the nonmagnetic layers have the same thick-
that CPP GMR in the absence of impurities can be as high asess ofN atomic planes chosen so that the exchange cou-
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pling between any two neighboring magnetic layers is antifunctions are calculated assuming that the electrons are non-
ferromagnetic. The layer magnetizations in zero field areinteracting in the nonmagnetic spacer and experience
therefore, antiparallel. | stress, that once such a multilayer isxchange-split one-electron potentials in the ferromagnet.
prepared, the position of each interface in it is known pre-Although this is not essential, the same atomic potentials in
cisely. Any particular multilayer for which a calculation of the leads and nonmagnetic layers are assumed and the same
the GMR is made can, therefore, be reproduced experimeroppingt in all the layers is used.
tally by growing the magnetic layers with the same known An efficient way to calculate the matrix elements
sequencdM;}, and vice versa. In other words, the relevantGg;, Gy, andG; is to set first the hoppinty; between the
quantity to be calculated is the sample specific GMR, whiclplanes 0 and 1 equal to zero. This creates an imaginary
means that no statistical averaging is involved. cleavage plane which separates the infinite sample into two
CPP GMR measurements are usually made in the twoindependent left and right overlayers on semi-infinite ideal
terminal geometry:® | shall, therefore, calculate the CPP leads. It follows from Dyson's equation that the required
GMR of a pseudorandom spin valve sandwiched betweematrix elements of the Green’s function for the connected
two semi-infinite “ideal” lead wires with negligible resis- sample are given by Ggo=(1—t?goe911) ‘oo,
tances which play the role of contaéts.Under these con- Gy;=(1—t2goe911) ~*d1;, and Go;=Go=tgosG11, Where
ditions, the conductancg’ in a spin channeé can be cal- g, andg,; are the surface matrix elements of the Green’s
culated for any configuration of the magnetic layers from thefunctions for the isolated left and right overlayers. It is con-
Kubo formula®®°3 The usual GMR rati®Rgyr, defined in  venient to pass the cleavage plane between the first and sec-
terms of the conductances for the ferromagnéfiM) and  ond atomic planes of the right ideal lead. The right overlayer
antiferromagnetid AF) configurations of the magnetic lay- is, therefore, just a semi-infinite ideal lead and its surface

ers, is given by Green’s functiong,; is known analytically’® The left over-
; . - . layer consists of a semi-infinite ideal lead, the pseudorandom
Revr=(I'em+ I'igy =20 4p) 120 57 (1) spin valve, and one atomic plane of the right ideal lead. The

surface Green’s function of the left overlayer is generated
» recursivel{'! from the surface Green’s function of the left
' semi-infinite ideal lead. All the atomic planes of the left
overlayer are deposited one by one on the left lead and the

Since the wave vectd?” parallel to the layers is conserved
the total conductancE? is the sum of partial conductances

1“0:2 (32/h)r0(|2H), 2) Green'’s function is updated after each deposition from the
K| Dyson equation
wherel'?(k)) is the transmission coefficient in the channel ggev\“ZH):[EF_VU_W(EH)_tzggld(lzﬂ)]_la ()

(IZH ,0) (Refs. 9,3 and the sum in Eq.2) is over aIIIZH from
the two-dimenfional Brillouin zon€éBZ). The transmission WhereW(IZ”) is the in-plane dispersion common to all the
coefficient I'?(k)) for a general multiorbital tight-binding atomic planes an¥” is the local atomic potential depending

band structure is given by on the type of an atomic plane which is being deposited. The
_ _ local potential in each atomic plane of the ferromagnetic lay-
T (ky) = 4T G k) tos( Ky GTy(Kptao(K)) ers is given byv!'' =V A2, whereV™ is the atomic
- Lo level in the ferromagnet anfll is the exchange splitting. The
— R Ggy(K))t1o(k)) Gga(ktio) I} (3)  potential in each atomic plane of the nonmagnetic spacer is

V7=V*P, | recall that the thicknesses of the magnetic layers
follow a pseudorandom sequenidd;} whereas the nonmag-
I S X netic spacer layers are all deposited with the same thickness
223;:]8”?:]?3:}”1%2"r;?;%eei (F))'alrallﬁleIEt(E>3)th|:bIZIy(§rnZtrtL\JA(I:ct)ureOf N atomic planes. The last recursion step is the deposition
~ X R g N g of a single atomic plane of the ideal lead, which gives the
Gi j(k)) = (1/2)[G; j(k)) =Gy ;(kp ], and Gi;(ky), Gi; (k) exact one-electron Green'’s functigg, of the left overlayer.
are the matrix elements between principal plan¢sof the An example of a sequence of potentials seen by the
advanced and retarded one-electron Green'’s functions eVa'Fhajority- and minority-spin electrons in the FM and AF con-
ated at the Fermi energfr. Similarly, to; is the tight-  figyrations of a pseudorandom spin valve is shown in Fig. 1.
binding hopping matrix between the principal planes 0,1The atomic potentials in a tight-binding model are, of
Because of the current conservation, the choice of the planegurse, defined on discrete atomic planes; the solid lines in
0,1 is arbitrary. Finally, the trace is taken over all the orbitaIFig. 1 are, therefore, only a guide to the @yEhe potentials
indices that are contained implicitly in the principal layer gre measured in unitst2 1, wheret is the hopping integral.
indices 0,1. They were chosen to model approximately the situation in
For multilayers with nonmagnetic layers made of Cu, aco/Cu. Because there is a very good match between the
single-orbital tight-binding model should already contain allhands in Co and Cu for the majority-spin electréribe po-
the interesting physics since for eveliythere is only one tential step at the spacer/ferromagnet interface for the
band at the Cu FS. The Kubo formula will, therefore, bemajority-spin  carriers was chosen to be small
evaluated for a simple cubiso single-orbital tight-binding V!'—V%=0.2. A much larger potential steg'—Vs=0.6
band with nearest-neighbor hopping and (001) orientation ofvas chosen to simulate a mismatch between the bands in Co
the layers. In that caséy;=t;o=t is a scalar and each prin- and Cu in the minority-spin chann®IThe Fermi energy in
cipal layer consists of a single atomic plane. The Green’she spacer, measured from the bottom of the band, was set at

Equation(3) is a straightforward generalization of the result
obtained earlier by Lee and FisAdor a single-orbital tight-
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FIG. 1. Pseudorandom potentials seen by the minority-spin &
(dashed ling and majority-spin(solid line) electrons in the ferro- g 15 } .
magnetic(FM) configuration, and the potential seen by electrons of =
either spin orientation in the antiferromagneffd=) configuration. - 1ok ]
The parameters are given in the text.
Er=0.8(also in units 2=1). This value was chosen so that S5t 1
the perpendicular enerdy, =Eg—E of electrons incident

at small angles on the interface lies above the top of the -
potential relief. This again mimics the situation in 5 10 15 20 25 30 35 40 45 50

Co/Cu001).° Finally, four atomic planes were used for each VALVE THICKNESS Nger
spacer layer and the thickness of the magnetic layers was ) _

Taking the pseudorandom sequence of potentials show pseudqrandom spin val\(eirclles) and of an equivalent periodic
in Fig. 1 as a typical example, the transmission coefficientSuPeriattice(squares on the thickness of the structufd,: (a)
for the majority- and minority-spin electrons in the FM and V=% Mmin=2, Mma=4; (0) N=5, Mpuin=5, Mma=6; the
AF configurations of the magnetic layers were evaluated'®'9Nts of the potentials are as in Fig. 1.
from Egs.(3) and(4) for structures containing in total of up
to 500 atomic planes. The CPP GMR was then determine

from Egs.(1) and(2). Convergence in the sum ova was
ki for abput 2000 points in the ireducible segment O xponential enhancement of the CPP GMR is obtained not
the two-dimensional BZ. Since there are no approximation

in the recursion method based on repeated application of E%nly for a pseudorandom sequence of magnetic layer thick-
- 'esses but also when the thicknesses of the nonmagnetic lay-
(4), the CPP GMR is evaluated from the Kubo formula ex- 9 Y

ers or the thicknesses of both types of layer are randomized.

actITyH T thm of th lculated CPP GMR is ol The physical mechanism that causes an exponential
di elgatura og_ar:t m of the cahcu ﬁFek f th 1S IC;Ot'growth of the CPP GMR is Anderson localizatithln the

ted in Fig. 28) (circley against the thickness of the valve absence of impurities, conduction takes place in independent

which is measured in the number of repelts; of a “unit . . ~ .
PeRl one-dimensionalk|,o) channels. Electrons in each channel

cell” consisting of two magnetic and two nonmagnetic lay- .
ers. The CPP GMR of an equivalent periodic superlatticeSee the same pseudorandom sequence of potentials but they

with the same potentials is also shown in Fi¢p)asquares sample it with different . perpendicular energies
For the superlattice, the thicknelsk of all the magnetic lay- E, iEF_ Ej. The cionductance in every channel satisfies
ers is taken to be the mean of the random distributiod ”(K)=exH—L/A\?(k)], whereL is the length of the channel
(M=3). The average “unit cell” of the pseudorandom spin (valve thicknessand \“(k) is the localization length. An
valve and the unit cell of the equivalent superlattice thusexponential decrease of the conductance of a one-
contain the same number of atomic plares., 14. It is  dimensional disordered conductor is not only predicted theo-
clear from Fig. 2a) that the CPP GMR of the pseudorandom retically but has recently been observed at room temperature
spin valve increases exponentially with the valve thicknessin very thin gold wires:®

The ballistic CPP GMR of the equivalent ordered superlat- The key property of a pseudorandom spin valve is that the
tice is, on the other hand, independent of the thickness. It cadegree of disorder in it, and hence the degree of electron
be seen from Fig. () that, even for a relatively thin pseu- localization, is controlled by an applied magnetic field. It can
dorandom valveN,,~ 20 (about 300 atomic plangsa huge be seen from Fig. 1 that the degree of disorder is large for
enhancement of the CPP GMR by a factor of almost 5000 isarriers of either spin orientation in the AF configuration

chieved. Calculations for other choices of the potentials and
or different pseudorandom sequences of layer thicknesses
Il lead to qualitatively the same behavior. Moreover, an
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(and also for the minority-spin carriers in the FM configura-lattice (N=5, M =5). The exponential growth of the GMR
tion) but becomes small in the majority-spin channel whenin Fig. 2(b) is now so slow that an enhancement over the
the magnetic moments are aligned parallel in an appliegeriodic superlattice is only by a factor of 2-3 for
field. The localization length in a typicﬁh channel is, there- Nrp=20. This example serves to illustrate that Anderson lo-
fore, short in the AF configuration for both spin orientationsCal'z""t'or_1 eﬁe_:cts V_VOUId not l_)e observable in conventlongl
but becomes long for the majority-spin electrons in the FMsuperIatUces in which fluctuations of the order of one atomic

: : : plane occur spontaneously due to terrace formation. To
configuration. It follows that the magnetic contrast of eaChachieve the desirable very large enhancement of the CPP

k; channel increases exponentially with its length. AIthoughGMR, one has to grow deliberately multilayers with large
localization lengths fluctuate from channel to channel angy,ctuations in layer thicknesses.
the magnetic contrast of some channels may,.therefore, N The predicted enhancement of the CPP GMR should be
crease only very slowly, the results shown in Fig@Zlem-  gpservaple in pseudorandom nanostructure valves sand-
onstrate that the weight of such low-contrast channels is negyiched between macroscopic contacts, provided the valve
ligible in the sum ovek which determines the GMR ratio. dimensions are smaller than the mean free path for scattering
Because the disorder in a pseudorandom spin valve iffom random imperfectiongother than the interfacgsThis
imposed and, hence, reproducible, it can be manipulated 8 the experimental situation to which the present calculation
optimize the GMR ratio. Given the constraint that the totalpased on the Kubo formula strictly applies. A long mean free
thickness of the pseudorandom spin valve should remaipath is, therefore, desirable but the present model calcula-
smaller than the mean free path for scattering from impuritions indicate that several tens of nanometers should be suf-
ties, one can formulate several simple rules for GMR optificient for a large enhancement. This is within the reach of
mization. First, the magnetic contrast of an individual current growing techniques.
ferromagnet/spacer interface should be high, which is the An interesting question arises whether the enhancement
case, e.g., for Co/Cu or Fe/Cr. The thickness of the layersf the CPP GMR persists in pseudorandom valves with
that are not subject to fluctuations should be small since thigansverse dimensions greater than the mean free path. Scat-
maximizes the number of repealé,,. The mean thickness ering from imperfections leads to mixing & channels
of the layers whose thicknesses are made to fluctuate shoujghich might eventually destroy one-dimensional localiza-
be also small since it again maximizék,. On the other tion, However, what the upper bound is, if any, on the valve
hand, fluctuations in the thicknesM =M ma—M min,  diameter is difficult to estimate theoretically. As a first step,
should be large compared with the medn In fact, the ratio it would, therefore, be interesting to measure the CPP GMR
AM/M determines the rate of increase of GMR with the of pseudorandom valves with macroscopic transverse dimen-
valve thickness. This is illustrated in Fig? where the CPP  sions since they can be readily manufactured by the existing
GMR of a pseudorandom valve with the same heights otechniques. It is, however, to be expected that a very large
potentials as in Fig. 1 but wittM;,=5, M,,,=6, and  enhancement can only be achieved in the “clean” regime,
N=5 is compared with that of an equivalent periodic super.e., with nanostructure valves.
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