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It is predicted that the current-perpendicular-to-plane giant magnetoresistance~CPP GMR! in magnetic
multilayers with dimensions smaller than the electron mean free path is greatly enhanced by growing layers
with thicknesses that follow a pseudorandom number sequence. The CPP GMR, calculated from the Kubo
formula, is shown to increase exponentially with the multilayer thickness. This is due to Anderson localization,
which is strong in zero field, but becomes weak in one of the spin channels when the layer moments are aligned
in a saturating magnetic field.@S0163-1829~96!08326-9#

The giant magnetoresistance~GMR! effect in magnetic
multilayers has received much attention.1 The GMR effect,
which is usually studied in the current-in-plane~CIP! geom-
etry, occurs when the magnetizations of neighboring mag-
netic layers oriented spontaneously antiparallel are aligned
parallel in a saturating magnetic field. The resistance de-
creases dramatically in an applied field and CIP GMR ratios
as high as 200% have been reported for Fe/Cr~Ref. 2! su-
perlattices. The dimensions of a magnetic multilayer in the
direction of the current flow are usually macroscopic in the
CIP geometry, i.e., much greater than the electron mean free
path. The CIP GMR effect takes place, therefore, in the dif-
fusive regime and is believed to be due to spin-dependent
scattering from magnetic impurities that migrate into non-
magnetic spacer layers near the interfaces. Owing to reduced
symmetry, rigorous theoretical treatment of CIP GMR in the
diffusive limit is very difficult and a satisfactory microscopic
theory of the effect is still lacking.3

An important development is the observation4 of GMR in
the current-perpendicular-to-plane~CPP! geometry. Elec-
trons in the CPP geometry cross a large number of
ferromagnet/spacer interfaces and are partially reflected at
each interface from spin-dependent potential steps whose
strengths depend on the offsets of the majority- and
minority-spin bands in the magnetic and nonmagnetic layers.
The role of multiple scattering from the interfaces is, there-
fore, much enhanced compared with the CIP geometry. In
fact, Asanoet al.5 conclude, on the basis of their calculations
for a single-orbital tight-binding model, that GMR in the
CPP geometry is dominated by such band structure effects
and impurity scattering is only of minor importance.

Schepet al.6 have taken a further step and identified a
situation accessible to experiment in which impurity scatter-
ing is negligible and hence rigorous calculations of GMR are
possible. This is the ‘‘clean’’ limit in which all the dimen-
sions of a multilayer sample are smaller than the mean free
path for scattering from impurities. If one further assumes
that the multilayer is periodic, transport is in the ballistic
regime and the conductance~GMR! is obtained simply by
counting the number of propagating states. Schepet al.6 per-
formed such a calculation for ballistic point contacts made
from Co/Cu superlattices. They found usingab initio bands
that CPP GMR in the absence of impurities can be as high as

120%. The CPP GMR they calculate is due, entirely, to scat-
tering from perfect Co/Cu interfaces.

Although present experiments are in the diffusive limit,
the ‘‘clean’’ regime identified by Schepet al.6 will be real-
ized in future devices.7 It is, therefore, worthwhile to explore
new possibilities this regime offers for GMR optimization.
One of them is control over the arrangement of ferromagnet/
nonmagnet interfaces which govern the CPP GMR. The only
factor that determines the ballistic CPP GMR of a periodic
superlattice6 is the magnetic contrast of its unit cell. This in
turn depends on the difference between the strengths of the
scattering potentials for the majority- and minority-spin elec-
trons at a ferromagnet/spacer interface. Since nature provides
us with a limited number of ferromagnet/nonmagnet combi-
nations, this places an upper bound on what can be achieved
with conventional periodic superlattices. The purpose of this
contribution is to show that the total magnetic contrast, and
hence the CPP GMR of a layered structure, can be greatly
enhanced by disordering the sequence of interfaces in a
multilayer. This can be achieved by growing magnetic or
nonmagnetic layers, or layers of both types, with thicknesses
that follow a predetermined pseudorandom sequence. I shall
refer to such multilayers as pseudorandom spin valves. It
will be demonstrated that the CPP GMR of the pseudoran-
dom spin valve increases exponentially with its thickness as
long as the valve remains in the ‘‘clean’’ regime.

In contrast to periodic superlattices,6 CPP transport in
pseudorandom spin valves is not in the ballistic regime. This
is because electrons are scattered from a disordered array of
interfaces and the mean free path for this type of scattering
is, therefore, only of the order of the distance between two
neighboring interfaces, i.e., very short. Nevertheless, the
CPP GMR of a pseudorandom spin valve can be calculated
rigorously from the Kubo formula. The calculation will be
described for a multilayer with alternating magnetic and non-
magnetic layers which is prepared according to the following
prescription. A pseudorandom sequence of integers$Mi% dis-
tributed uniformly over an interval@Mmin ,Mmax# is gener-
ated and the thicknessesMi of the magnetic layers~mea-
sured in numbers of atomic planes! are chosen to follow this
sequence. All the nonmagnetic layers have the same thick-
ness ofN atomic planes chosen so that the exchange cou-
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pling between any two neighboring magnetic layers is anti-
ferromagnetic. The layer magnetizations in zero field are,
therefore, antiparallel. I stress, that once such a multilayer is
prepared, the position of each interface in it is known pre-
cisely. Any particular multilayer for which a calculation of
the GMR is made can, therefore, be reproduced experimen-
tally by growing the magnetic layers with the same known
sequence$Mi%, and vice versa. In other words, the relevant
quantity to be calculated is the sample specific GMR, which
means that no statistical averaging is involved.

CPP GMR measurements are usually made in the two-
terminal geometry.4,3 I shall, therefore, calculate the CPP
GMR of a pseudorandom spin valve sandwiched between
two semi-infinite ‘‘ideal’’ lead wires with negligible resis-
tances which play the role of contacts.8,5. Under these con-
ditions, the conductanceGs in a spin channels can be cal-
culated for any configuration of the magnetic layers from the
Kubo formula.9,8,5,3. The usual GMR ratioRGMR, defined in
terms of the conductances for the ferromagnetic~FM! and
antiferromagnetic~AF! configurations of the magnetic lay-
ers, is given by

RGMR5~GFM
↑ 1G FM

↓ 22GAF
↑,↓!/2GAF

↑,↓ . ~1!

Since the wave vectorkW i parallel to the layers is conserved,
the total conductanceGs is the sum of partial conductances,

Gs5(
kW i

~e2/h!Gs~kW i!, ~2!

whereGs(kW i) is the transmission coefficient in the channel
(kW i ,s) ~Refs. 9,3! and the sum in Eq.~2! is over allkW i from
the two-dimensional Brillouin zone~BZ!. The transmission
coefficient Gs(kW i) for a general multiorbital tight-binding
band structure is given by

Gs~kW i!54Tr$G̃00
s ~kW i!t01~kW i!G̃11

s ~kW i!t10~kW i!

2Re@G̃01
s ~kW i!t10~kW i!G̃01

s ~kW i!t10!#%. ~3!

Equation~3! is a straightforward generalization of the result
obtained earlier by Lee and Fisher8 for a single-orbital tight-
binding model. The indices 0,1 in Eq.~3! label any two
neighboring principal planes parallel to the layer structure,
G̃i , j (kW i)5(1/2i )@Gi , j

2 (kW i)2Gi , j
1 (kW i)#, andGi , j

2 (kW i), Gi , j
1 (kW i)

are the matrix elements between principal planesi , j of the
advanced and retarded one-electron Green’s functions evalu-
ated at the Fermi energyEF . Similarly, t01 is the tight-
binding hopping matrix between the principal planes 0,1.
Because of the current conservation, the choice of the planes
0,1 is arbitrary. Finally, the trace is taken over all the orbital
indices that are contained implicitly in the principal layer
indices 0,1.

For multilayers with nonmagnetic layers made of Cu, a
single-orbital tight-binding model should already contain all
the interesting physics since for everykW i there is only one
band at the Cu FS. The Kubo formula will, therefore, be
evaluated for a simple cubic~sc! single-orbital tight-binding
band with nearest-neighbor hopping and (001) orientation of
the layers. In that case,t015t105t is a scalar and each prin-
cipal layer consists of a single atomic plane. The Green’s

functions are calculated assuming that the electrons are non-
interacting in the nonmagnetic spacer and experience
exchange-split one-electron potentials in the ferromagnet.
Although this is not essential, the same atomic potentials in
the leads and nonmagnetic layers are assumed and the same
hoppingt in all the layers is used.

An efficient way8 to calculate the matrix elements
G01, G00, andG11 is to set first the hoppingt01 between the
planes 0 and 1 equal to zero. This creates an imaginary
cleavage plane which separates the infinite sample into two
independent left and right overlayers on semi-infinite ideal
leads. It follows from Dyson’s equation that the required
matrix elements of the Green’s function for the connected
sample are given by G005(12t2g00g11)

21g00,
G115(12t2g00g11)

21g11, andG015G105tg00G11, where
g00 andg11 are the surface matrix elements of the Green’s
functions for the isolated left and right overlayers. It is con-
venient to pass the cleavage plane between the first and sec-
ond atomic planes of the right ideal lead. The right overlayer
is, therefore, just a semi-infinite ideal lead and its surface
Green’s functiong11 is known analytically.10 The left over-
layer consists of a semi-infinite ideal lead, the pseudorandom
spin valve, and one atomic plane of the right ideal lead. The
surface Green’s function of the left overlayer is generated
recursively8,11 from the surface Green’s function of the left
semi-infinite ideal lead. All the atomic planes of the left
overlayer are deposited one by one on the left lead and the
Green’s function is updated after each deposition from the
Dyson equation

gnew
s ~kW i!5@EF2Vs2w~kW i!2t2gold

s ~kW i!#
21, ~4!

wherew(kW i) is the in-plane dispersion common to all the
atomic planes andVs is the local atomic potential depending
on the type of an atomic plane which is being deposited. The
local potential in each atomic plane of the ferromagnetic lay-
ers is given byV↑,↓5VFM7D/2, whereVFM is the atomic
level in the ferromagnet andD is the exchange splitting. The
potential in each atomic plane of the nonmagnetic spacer is
Vs5Vsp. I recall that the thicknesses of the magnetic layers
follow a pseudorandom sequence$Mi% whereas the nonmag-
netic spacer layers are all deposited with the same thickness
of N atomic planes. The last recursion step is the deposition
of a single atomic plane of the ideal lead, which gives the
exact one-electron Green’s functiong00 of the left overlayer.

An example of a sequence of potentials seen by the
majority- and minority-spin electrons in the FM and AF con-
figurations of a pseudorandom spin valve is shown in Fig. 1.
~The atomic potentials in a tight-binding model are, of
course, defined on discrete atomic planes; the solid lines in
Fig. 1 are, therefore, only a guide to the eye.! The potentials
are measured in units 2t51, wheret is the hopping integral.
They were chosen to model approximately the situation in
Co/Cu. Because there is a very good match between the
bands in Co and Cu for the majority-spin electrons,6 the po-
tential step at the spacer/ferromagnet interface for the
majority-spin carriers was chosen to be small
V↑2Vsp50.2. A much larger potential stepV↓2Vsp50.6
was chosen to simulate a mismatch between the bands in Co
and Cu in the minority-spin channel.6 The Fermi energy in
the spacer, measured from the bottom of the band, was set at
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EF50.8 ~also in units 2t51). This value was chosen so that
the perpendicular energyE'5EF2Ei of electrons incident
at small angles on the interface lies above the top of the
potential relief. This again mimics the situation in
Co/Cu~001!.6 Finally, four atomic planes were used for each
spacer layer and the thickness of the magnetic layers was
made to fluctuate between two and four atomic planes.

Taking the pseudorandom sequence of potentials shown
in Fig. 1 as a typical example, the transmission coefficients
for the majority- and minority-spin electrons in the FM and
AF configurations of the magnetic layers were evaluated
from Eqs.~3! and~4! for structures containing in total of up
to 500 atomic planes. The CPP GMR was then determined
from Eqs.~1! and ~2!. Convergence in the sum overkW i was
achieved for about 2000 points in the irreducible segment of
the two-dimensional BZ. Since there are no approximations
in the recursion method based on repeated application of Eq.
~4!, the CPP GMR is evaluated from the Kubo formula ex-
actly.

The natural logarithm of the calculated CPP GMR is plot-
ted in Fig. 2~a! ~circles! against the thickness of the valve
which is measured in the number of repeatsNrpt of a ‘‘unit
cell’’ consisting of two magnetic and two nonmagnetic lay-
ers. The CPP GMR of an equivalent periodic superlattice
with the same potentials is also shown in Fig. 2~a! ~squares!.
For the superlattice, the thicknessM of all the magnetic lay-
ers is taken to be the mean of the random distribution
(M53). The average ‘‘unit cell’’ of the pseudorandom spin
valve and the unit cell of the equivalent superlattice thus
contain the same number of atomic planes~i.e., 14!. It is
clear from Fig. 2~a! that the CPP GMR of the pseudorandom
spin valve increases exponentially with the valve thickness.
The ballistic CPP GMR of the equivalent ordered superlat-
tice is, on the other hand, independent of the thickness. It can
be seen from Fig. 2~a! that, even for a relatively thin pseu-
dorandom valveNrpt'20 ~about 300 atomic planes!, a huge
enhancement of the CPP GMR by a factor of almost 5000 is

achieved. Calculations for other choices of the potentials and
for different pseudorandom sequences of layer thicknesses
all lead to qualitatively the same behavior. Moreover, an
exponential enhancement of the CPP GMR is obtained not
only for a pseudorandom sequence of magnetic layer thick-
nesses but also when the thicknesses of the nonmagnetic lay-
ers or the thicknesses of both types of layer are randomized.

The physical mechanism that causes an exponential
growth of the CPP GMR is Anderson localization.12 In the
absence of impurities, conduction takes place in independent
one-dimensional (kW i ,s) channels. Electrons in each channel
see the same pseudorandom sequence of potentials but they
sample it with different perpendicular energies
E'5EF2Ei . The conductance in every channel satisfies12

Gs(kW i)}exp@2L/ls(kWi)#, whereL is the length of the channel
~valve thickness! and ls(kW i) is the localization length. An
exponential decrease of the conductance of a one-
dimensional disordered conductor is not only predicted theo-
retically but has recently been observed at room temperature
in very thin gold wires.13

The key property of a pseudorandom spin valve is that the
degree of disorder in it, and hence the degree of electron
localization, is controlled by an applied magnetic field. It can
be seen from Fig. 1 that the degree of disorder is large for
carriers of either spin orientation in the AF configuration

FIG. 1. Pseudorandom potentials seen by the minority-spin
~dashed line! and majority-spin~solid line! electrons in the ferro-
magnetic~FM! configuration, and the potential seen by electrons of
either spin orientation in the antiferromagnetic~AF! configuration.
The parameters are given in the text.

FIG. 2. Dependences of the logarithm of the CPP GMR ratio of
a pseudorandom spin valve~circles! and of an equivalent periodic
superlattice~squares! on the thickness of the structureNrpt : ~a!
N54, Mmin52, Mmax54; ~b! N55, Mmin55, Mmax56; the
heights of the potentials are as in Fig. 1.
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~and also for the minority-spin carriers in the FM configura-
tion! but becomes small in the majority-spin channel when
the magnetic moments are aligned parallel in an applied
field. The localization length in a typicalkW i channel is, there-
fore, short in the AF configuration for both spin orientations
but becomes long for the majority-spin electrons in the FM
configuration. It follows that the magnetic contrast of each
kW i channel increases exponentially with its length. Although
localization lengths fluctuate from channel to channel and
the magnetic contrast of some channels may, therefore, in-
crease only very slowly, the results shown in Fig. 2~a! dem-
onstrate that the weight of such low-contrast channels is neg-
ligible in the sum overkW i which determines the GMR ratio.

Because the disorder in a pseudorandom spin valve is
imposed and, hence, reproducible, it can be manipulated to
optimize the GMR ratio. Given the constraint that the total
thickness of the pseudorandom spin valve should remain
smaller than the mean free path for scattering from impuri-
ties, one can formulate several simple rules for GMR opti-
mization. First, the magnetic contrast of an individual
ferromagnet/spacer interface should be high, which is the
case, e.g., for Co/Cu or Fe/Cr. The thickness of the layers
that are not subject to fluctuations should be small since this
maximizes the number of repeats,Nrpt . The mean thickness
of the layers whose thicknesses are made to fluctuate should
be also small since it again maximizesNrpt . On the other
hand, fluctuations in the thickness,DM5Mmax2M min,
should be large compared with the meanM̄ . In fact, the ratio
DM /M̄ determines the rate of increase of GMR with the
valve thickness. This is illustrated in Fig. 2~b! where the CPP
GMR of a pseudorandom valve with the same heights of
potentials as in Fig. 1 but withMmin55, Mmax56, and
N55 is compared with that of an equivalent periodic super-

lattice (N55, M55). The exponential growth of the GMR
in Fig. 2~b! is now so slow that an enhancement over the
periodic superlattice is only by a factor of 2–3 for
Nrpt'20. This example serves to illustrate that Anderson lo-
calization effects would not be observable in conventional
superlattices in which fluctuations of the order of one atomic
plane occur spontaneously due to terrace formation. To
achieve the desirable very large enhancement of the CPP
GMR, one has to grow deliberately multilayers with large
fluctuations in layer thicknesses.

The predicted enhancement of the CPP GMR should be
observable in pseudorandom nanostructure valves sand-
wiched between macroscopic contacts, provided the valve
dimensions are smaller than the mean free path for scattering
from random imperfections~other than the interfaces!. This
is the experimental situation to which the present calculation
based on the Kubo formula strictly applies. A long mean free
path is, therefore, desirable but the present model calcula-
tions indicate that several tens of nanometers should be suf-
ficient for a large enhancement. This is within the reach of
current growing techniques.

An interesting question arises whether the enhancement
of the CPP GMR persists in pseudorandom valves with
transverse dimensions greater than the mean free path. Scat-
tering from imperfections leads to mixing ofkW i channels
which might eventually destroy one-dimensional localiza-
tion. However, what the upper bound is, if any, on the valve
diameter is difficult to estimate theoretically. As a first step,
it would, therefore, be interesting to measure the CPP GMR
of pseudorandom valves with macroscopic transverse dimen-
sions since they can be readily manufactured by the existing
techniques. It is, however, to be expected that a very large
enhancement can only be achieved in the ‘‘clean’’ regime,
i.e., with nanostructure valves.
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