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We report the construction of pseudopotentials that incorporate self-interaction corrections and electronic
relaxation in an approximate but very efficient, physically well-founded, and mathematically well-defined way.
These potentials are particularly useful for II-VI compounds which are distinguished by their highly localized
and strongly bound cationic semicored electrons. Self-interaction corrections to the local-density approxima-
tion ~LDA ! of density-functional theory are accounted for in the solids to a significant degree by constructing
appropriate self-interaction-corrected~SIC! pseudopotentials that takeatomicSIC contributions into account.
In this way translational symmetry of the Hamiltonian is preserved. Without increasing the complexity of the
numerical calculations we approximately account, in addition, for electronic relaxation in the solids by incor-
porating into our pseudopotentials relevant relaxation in the involvedatoms. By this construction we arrive at
very useful self-interaction and relaxation-corrected pseudopotentials and effective one-particle Hamiltonians
which constitute the basis forab initio LDA calculations yielding significant improvements in electronic
properties of II-VI compound semiconductors and their surfaces. The procedure is computationally not more
involved than any standard LDA calculation and, nevertheless, overcomes to a large extent the well-known
shortcomings of ‘‘state of the art’’ LDA calculations employing standard pseudopotentials. Our results for
electronic and structural properties of II-VI compounds agree with a whole body of experimental data.
@S0163-1829~96!02832-9#

I. INTRODUCTION

Most current electronic structure calculations treat sys-
tems of many interacting electrons within the density-
functional theory~DFT! of Hohenberg, Kohn, and Sham1,2

by employing the local-density approximation~LDA ! or the
local spin density~LSD! approximation, respectively. Due to
its formal and computational simplicity, as well as its very
impressive successes in describing ground-state properties of
many-electron systems, DFT-LDA has become the dominant
approach for calculating structural and electronic properties
of bulk semiconductors and their surfaces. For semiconduc-
tors the approach is now most often applied in conjunction
with ‘‘state of the art’’ nonlocal, norm-conserving pseudopo-
tentials. Although the eigenvalues of the Kohn-Sham equa-
tions as formal Lagrangian multipliers do not have a direct
physical meaning, except for the highest occupied
eigenvalue,3,4 their interpretation as electronic excitation en-
ergies has led to remarkable results in band-structure theory
of solids. Nevertheless, calculated electronic properties re-
sulting from such LDA calculations show a number of sys-
tematic shortcomings. The most apparent deficiency in many
semiconductors and insulators is the underestimate of band
gaps by typically 50% or more. This shortcoming is even
more severe in II-VI compound semiconductors. We find,
e.g., a LDA band gapEg

th of only 0.23 eV for ZnO~Ref. 5! as
opposed to the experimental value ofEg

expt53.44 eV. This
unusually large underestimate of the gap energy is intimately
related to another very severe shortcoming of standard LDA
calculations. They also fail to accurately describe strongly
localized semicored states and underestimate their binding
energies. This is partially due to unphysical self-interactions
and to the neglect of electronic relaxation contained in any
standard LDA calculation. Especially in the case of II-VI

semiconductors, thed-electron bands have been found in
many LDA calculations5–12 to occur some 3 eV too high in
energy as compared to experiment.13–17 In consequence,
their interactions with the anionp valence bands are artifi-
cially enlarged, falsifying the dispersions and bandwidth of
the latter and shifting them inappropriately close to the con-
duction bands. As a result, the LDA band-gap underestimate
is even significantly more pronounced for II-VI compounds
than for elemental or III-V semiconductors.

Since electronic and structural properties of II-VI com-
pound semiconductors, their surfaces and interfaces, are cur-
rently moving into the focus of interest because of their para-
mount technological potential in optoelectronics and
catalysis, one would like to have a more accurate theoretical
approach for their treatment available. A reliable description
of valence- and conduction-band states, in particular, near
the gap energy region, is mandatory for meaningful calcula-
tions of defect properties in II-VI bulk semiconductors,
band-edge properties in ternary or quaternary II-VI com-
pounds, and electronic properties of II-VI compound semi-
conductor surfaces and interfaces. Strongly misplacedd
bands significantly influence the anionp valence bands and
the gap energy. Therefore very accurate calculations for the
systems mentioned above by a straightforward application of
standard pseudopotential LDA cannot be achieved. Of
course, one could study such systems using quasiparticle
band-structure calculations18–22 including semicored elec-
trons explicitly within theGWapproximation. Such calcula-
tions have very recently been shown to be feasible, indeed,
for cubic bulk CdS~Ref. 21! and ZnSe~Ref. 22! but they are
very involved already for bulk crystals and forbiddingly in-
volved for II-VI semiconductor surfaces or interfaces.

From the work of Perdew and Zunger23 on free atoms and
ions it is well known that self-interactions, being most pro-
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nounced for tightly bound and highly localized states, give
rise to significant misplacements of respective energy levels.
Self-interaction corrections~SIC! including orbital relaxation
can easily be incorporated23 in electronic structure calcula-
tions for atoms within LDA or its spin-polarized variant, the
LSD approximation. But even SIC-LSD calculations fail to
yield exact binding energies of all atomic states because they
do not fully take into accountelectronic relaxation. Very
accurate atomic binding energies can be obtained, however,
within the so-called delta self-consistent field~DSCF!
approach.24 DSCF binding energies are derived from well-
defined total-energydifferencecalculations for ground states
of neutral and ionized atoms, avoiding to a great extent prob-
lems originating from the neglect of electronic relaxation as
contained in standard LDA calculations. But for solids such
DSCF calculations are not practicable to date.

If the SIC formalism is extended to solids, it gives rise to
orbital-dependent effective potentials which no longer have
the translational invariance of the original Bravais lattice.
Extended Bloch orbitals lead to nearly homogeneous one-
particle densities and to vanishing SIC contributions. Appro-
priately localized wave functions, on the contrary, can yield
strong SIC contributions within full SIC-LSD calculations.
To avoid the practical problems involved in SIC-LSD calcu-
lations for solids, the method has been applied previously in
simplified forms ~see, e.g., Ref. 25, and the references
therein!. More recently, self-consistent SIC-LSD calculations
have been reported, e.g., for bulk transition metals, high-Tc
superconductors, Ce compounds, and transition-metal oxides
by Svane and Gunnarson,26–28 Szotek, Temmermann, and
Winter,29–31and Arai and Fujiwara,11 respectively. The work
of these authors has clearly shown that SIC shifts occupiedd
states significantly down in energy also in solids. In conse-
quence, it would be highly desirable to carry out full SIC-
LDA calculations for II-VI semiconductors. We have inves-
tigated the feasibility of such calculations for wurtzite
crystals which have four atoms per bulk unit cell. It turned
out that such calculations would be extremely involved for
the bulk already and they are currently entirely out of reach
for surfaces or interfaces of zinc-blende~ZB! or wurtzite
(W) II-VI semiconductors.

From a more general point of view the question then
arises whether unphysical self-interactions can be corrected
for and electronic relaxation can be taken into account within
an alternative approach that is less involved. This is possible,
indeed, as we will show. We have devised an efficient theo-
retical framework that accounts in an approximate way for
both effects but, nevertheless, accurately describes electronic
and structural properties of II-VI semiconductor compounds.
A preliminary account of results obtained employing this
approach has been published recently.32

The basic idea on which we have built our approach is to
constructpseudopotentialsthat takeatomic self-interaction
corrections and electronic relaxation in the constituentatoms
into account from the very beginning. The idea to construct
SIC-pseudopotentials~PPs! is not new, in principle. It was
employed a long time ago in approximate SIC-LSD calcula-
tions for atoms and ions by Zunger33 and more recently, e.g.,
for bulk Ge by Rieger and Vogl.34 But the actual ways to
construct SIC-PPs in the previous publications are largely
different from our approach. We correct for the self-

interactions in the atoms in exactly the same way as de-
scribed by Perdew and Zunger in their original SIC
publication.23 In addition, we take electronic relaxation in the
atoms into consideration by referring to atomicDSCF re-
sults. Once our pseudopotentials are generated, they can be
transferred to solids in an appropriate and well-defined way
and can be employed in a standard LDA code. Our approach
is capable of overcoming the above-mentioned LDA prob-
lems and is, nevertheless, computationally not more involved
than any current ‘‘state of the art’’ LDA calculation. The
electronic and structural properties calculated with our
pseudopotentials are in gratifying agreement with a host of
experimental data on II-VI compounds.

In Zunger’s early SIC-PP approach for atoms and ions33

SIC corrections for the valence electrons werenot incorpo-
rated in the SIC pseudopotential but they were explicitly
taken into account. For atoms and ions this can be done
without any practical problems. But the extension of that
approach to solids is not straightforward and has, to the best
of our knowledge, not been reported to date. Rieger and
Vogl34 have generated SIC pseudopotentials by fully taking
into account the SIC-induced change of the Ge 3d core-
charge density in the construction. The effect of the related
corrections on the pseudopotential is noticeable. It leads to
improved gap energies at theL, G, andX points of the Bril-
louin zone of Ge. The SIC-induced shifts of the lowest con-
duction band were found to be nonrigid andk dependent.
Our construction of pseudopotentials is distinctly different
from those approaches, as will be shown in detail below.

In a recent publication, Zhang, Wei, and Zunger12 have
presented a broken-symmetry approach to the core hole in
II-VI semiconductors in order to better described-band ex-
citations in these solids. Their work is based on Slater’s
‘‘transition-state’’ concept35 and refers toDSCF calculations
in large supercells. For Zn-based IIB-VI semiconductors the
authors obtaind-band energies which agree with the experi-
mental values within 0.5–0.8 eV. Convergence of the results
with respect to supercell size is relatively slow, however, so
that the calculations are fairly involved for bulk compounds
already. It may be complicated, therefore, to actually apply
that approach to surfaces or interfaces. Such applications are
straightforward, on the contrary, in our approach.

Our paper is organized as follows. In Sec. II we describe
the construction of our pseudopotentials. Section III is de-
voted to the presentation and discussion of the results of our
applications of these pseudopotentials to II-VI semiconduc-
tors. In Sec. IV we describe the calculation of the total en-
ergy, of lattice constants, and bulk moduli within our ap-
proach and present results for a number of compounds. A
brief summary together with a short outlook concludes the
paper in Sec. V. Some important formal details are given in
the Appendix.

II. THEORETICAL APPROACH

In this section we first show the motivation of our ap-
proximate approach for taking self-interaction corrections
and electronic relaxation into account. In this context we
address basic properties of the constituent atoms of the stud-
ied compounds. Then we describe how the pseudopotentials
are actually constructed.
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A. Motivation of the approach

The LSD approximation of density-functional theory sim-
plifies the approximate calculation of ground-state properties
of a many-electron system with charge density
n~r !5n↑~r !1n↓~r ! by mapping the many-particle Schro¨-
dinger equation onto effective one-particle equations,1,2

Heff,s
LSDcas5«̃as

LSDcas ,

Heff,s
LSD @n#52¹21Vext1VCoul@n#1Vxc,s

LSD@n↑ ,n↓#, ~1!

ELSD@n↑ ,n↓#5(
a,s

occ

«̃as
LSD2

1

2 E VCoul@n#n~r !d3r

1Exc
LSD@n↑ ,n↓#

2(
s

E Vxc,s
LSD@n↑ ,n↓#ns~r !d3r ,

which can be solved iteratively.36 Within LSD, the inad-
equate description of localized states arises to a large extent
from unphysical self-interactions inherent in the approxima-
tion, as has been shown by Perdew and Zunger.23 These
authors have suggested accounting for unphysical self-
interactions by adding a correction term to the LSD energy
functional, which then reads

ESIC-LSD@n↑ ,n↓#5ELSD@n↑ ,n↓#

2(
a,s

occ F12 E VCoul@nas#nas~r !d3r

1Exc
LSD@nas,0#G . ~2!

The correction term gives a remarkable contribution to the
total energy if the one-particle densitiesnas are strongly
localized but vanishes if they are completely homogeneous.
According to the variational principle, the SIC-LSD energy
functional ~2! can be minimized by an iterative solution of
the related all-electron SIC-LSD equations

~Heff,s
LSD2VCoul@nas#2Vxc

LSD@nas,0# !cas

5(
a8

occ

la,a8
s ca8s . ~3!

For the total energy of atoms it has been shown that SIC-
LSD results are in much better agreement with experimental
data than LSD results.23,37,38In addition, atomic eigenvalues
resulting from Eq.~3! are in much better agreement with
measured binding energies than LSD eigenvalues, which
typically underestimate the measured energies by some 40%
~see, e.g., Refs. 23, 25, and 39, and the references therein!. In
spite of the very encouraging SIC-LSD results for atoms the
approach has not widely been used in solid-state calcula-
tions, so far, because applications of the SIC-LSD formalism
to solids are extremely demanding, as we have pointed out in
the Introduction.

In our alternative approach the very involved self-
consistent determination of appropriately localized one-
particle orbitals and resulting SIC potentialsfor the solid is
avoided. Our SIC potentials need to be calculated only once
for the atoms and are consecutively transferred to the solids.
To construct our pseudopotentials we need to have the most
accurate atomic energies available as a reliable reference.
Therefore we have first calculated all-electron LSD and SIC-
LSD eigenvalues and eigenfunctions for all constituent at-
oms of the II-VI compounds considered in this work. The
resulting eigenvalues are given in Table I. In our solid-state
calculations, to be described further below, we can employ
the LDA instead of the LSD approximation because we are
only concerned with systems that exhibit no spin polariza-
tion. Therefore we have calculated for further reference the
respective all-electron LDA and SIC-LDA eigenvalues and
eigenfunctions for the related atoms, as well. The respective
eigenvalues are also included in Table I. For further compari-
son the table shows, in addition, measured ionization
energies40 and calculatedDSCF binding energies which we
have obtained from all-electron LSD or LDA calculations,
respectively. We have also calculated respectiveDSCF ener-
gies within SIC-LDA and SIC-LSD. They are in slightly less

TABLE I. Experimental ionization energiesEexpt ~from Ref. 40! and atomic term values«̃ as resulting from all-electron LSD and
SIC-LSD, as well as all-electron LDA and SIC-LDA calculations. The term values«̃LDA

SIC-PP resulting from standard LDA calculations
according to Eq.~5! employing our SIC-PPs are given for further reference, as well. Binding energiesE as resulting from our LSD- and
LDA-DSCF calculations are also given.

Eexpt «̃ all-el
LSD «̃ all-el

SIC-LSD Eall-el
LSD-DSCF «̃ all-el

LDA «̃ all-el
SIC-LDA Eall-el

LDA-DSCF «̃ LDA
SIC-PP

Zn 4s 29.4 26.2 29.3 29.9 26.2 29.3 29.9 29.4
3d 217.2 210.4 220.0 217.9 210.4 220.0 217.9 220.0

Cd 5s 29.0 26.0 28.9 29.4 26.0 28.9 29.4 28.9
4d 217.6 211.9 218.9 218.0 211.9 218.9 218.0 218.7

O 2p 213.6 27.5 214.5 214.0 29.2 216.5 216.2 216.5
2s 228.5 221.9 229.1 228.8 223.8 231.0 230.9 231.2

S 3p 210.4 26.3 210.5 210.6 27.1 211.4 211.6 211.4
3s 220.3 216.3 221.4 221.2 217.3 222.4 222.4 222.5

Se 4p 29.8 26.0 29.7 210.0 26.7 210.5 210.8 210.5
4s 220.2 216.7 221.5 221.5 217.5 222.3 222.4 222.4

Te 5p 29.0 25.6 28.8 29.1 26.1 29.4 29.8 29.4
5s 217.8 214.8 218.9 219.0 215.4 219.5 219.7 219.5
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favorable agreement with experiment and therefore are not
considered further in this work as a reference.

There are a number of points to be stressed in connection
with the results in Table I which are most relevant for our
construction of appropriate pseudopotentials. First, we note
that the all-electron LSD results are largely at variance with
the experimental data. The all-electron SIC-LSD results con-
siderably improve on the comparison. The highest occupied
orbital energies~except for O 2p! are in very good agree-
ment with the experimental ionization energies, indeed, as
has already been discussed in detail by Perdew and Zunger.23

But there still occur significant differences, most noticeably
concerning the semicored states of Zn and Cd, as well as the
s core states of S, Se, and Te. The calculated all-electron
LSD-DSCF binding energies of thed states agree consider-
ably better with experiment. We note in this context that
LSD-DSCF leads to some extent to an overbinding of all
states, as is obvious in Table I. But the differences between
DSCF binding energies of different states of particular at-
oms, which are solely relevant in a solid-state calculation,
are almost in exact agreement with experiment for Zn, Cd,
and O and they only deviate by roughly 1 eV from experi-
ment for S, Se, and Te. Comparing respective all-electron
SIC-LSD eigenvalues with the LSD-DSCF binding energies,
we observe that the differences are of the order of 0.6 eV or
less for most of the states while they amount to 2.1 eV for
the Zn 3d and 0.9 eV for the Cd 5d states. Even more
interestingly, the differences between the Zn 4s–Zn 3d and
Cd 5s–Cd 4d energies as resulting from LSD-DSCF agree
with experiment within 0.2 eV while the respective SIC-LSD
eigenvalue differences deviate by 2.9 eV for Zn and 1.4 eV
for Cd from experiment. These deviations of the SIC-LSD
results from experiment are expected to largely be due to the
neglect of electronic relaxation in that approach. The relax-
ation is fully taken into account in LSD-DSCF only. It is
most pronounced for highly localized states~e.g., Zn 3d!.
All above general comments on the LSD results apply
equally well to our respective LDA results. For the Zn and
Cd atoms these are identical, anyway, because there is no
spin polarization in the closed shells of the@Ar#3d104s2 and
@Kr#4d105s2 configurations. In the open valence shells of O,
S, Se, and Te with their@rare gas#np4ns2 configurations with
n52, 3, 4, and 5, respectively, strong spin-polarization ef-
fects are to be observed. The respective binding energies, as
resulting from the LSD-DSCF and LDA-DSCF calculations,
differ by about 2.2, 1.1, 0.8, and 0.7 eV, respectively.

Our approach to describing SIC contributions inII-VI
compoundsapproximately by taking only respective atomic
SIC contributions into account may seem fairly crude, at a
first glance. But there are strong indications for the meaning-
fulness of such an approach. First, the underbinding ofd
bands in standard LDA results is roughly of the same size for
different compounds irrespective of their different lattice
constants.5–12 This is considered as a strong hint to the fact
that atomic effects are mainly responsible for the deviations.
Second, the bulk pseudocharge densities of all our investi-
gated II-VI compounds only slightly differ from respective
superpositions of atomic pseudocharge densities. As an ex-
ample we show a direct comparison of respective pseudo-
charge densities of ZnO in Fig. 1. The agreement is very
close, and it is even closer for CdS~see Ref. 41!. Therefore

it is possible to separate the bulk valence charge density into
localized one-particle orbital densities which are nearly iden-
tical to the respective atomic one-particle orbital densities
and thus should lead to similar SIC contributions in the solid
as in the related atoms. In addition, the band structure of
II-VI compound semiconductors is dominated by atomic ef-
fects. It is built up of separated band groups with nearly
atomic character.5–12The transfer of atomic SIC potentials to
the solid is therefore expected to give rise to shifts of the
single band groups similar to the SIC-induced shifts of the
respective atomic energy levels~see Table I!. To highlight
the expected SIC effects on the bulk band structures we have
schematically drawn in Fig. 2 the various band groups as
resulting from LDA calculations and we have indicated the
expectedshifts of the band groups according to SIC-LDA.
Note that the SIC-induceddownwardshift of all occupied
band groups has appropriately been accounted for in the
schematic drawing. These shifts should remedy the deficien-
cies of LDA calculations using standard pseudopotentials to
a considerable extent. An appropriate transfer of atomic SIC
contributions to the solid by appropriately constructed
pseudopotentials therefore seems very promising.

B. Construction of pseudopotentials

We first solve the one-particle all-electron SIC-LDA
equations for the involvedatoms,

S 2¹22
2Z

r
1VCoul@n#1Vxc

LDA@n#2VCoul@na#

2Vxc
LSD@na↑,0# Dca5 «̃a

SICca . ~4!

The exchange-correlation potential in the SIC term enters in
the spin-polarized form since SIC depends on the charge
densities of the particular states involved. In our calculations
for the atoms we apply the original SIC-LDA or SIC-LSD
formalism, respectively, as proposed by Perdew and
Zunger.23 Using this formalism, the orbitals can result as

FIG. 1. Comparison of the pseudocharge density along the
Zn–O bond direction in bulk ZnO with the respective superposition
of atomic Zn and O pseudocharge densities.
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slightly nonorthogonal but foratoms the influence of the
nondiagonal elements ofla,a8

s and the resulting nonorthogo-
nality effects are very small.

1. SIC pseudopotentials

Next, we replace the all-electron Coulomb potential
22Z/r in Eq. ~4! by an ionic pseudopotentialVps,a and solve
the resulting equations for the respectivepseudoatoms,

~2¹21Vps,a2VCoul@na
at#2Vxc

LSD@na↑
at ,0#

~5!
1VCoul@nv#1Vxc

LDA@nv#)Fa
ps5«̃ps,a

SICFa
ps,

wherenv is the total pseudocharge density of the valence
electrons,

nv~r !5(
a

occ

uFa
ps~r !u2, ~6!

andna
at is the atomic pseudocharge density of orbitala. We

now define the first three potential terms in Eq.~5! as our
SIC pseudopotentials, which are thus given as

Ṽps,a
SIC :5:Vps,a2VCoul@na

at#2Vxc
LSD@na↑

at ,0#5:Vps,a1dṼa
SIC.

~7!

This definition of SIC-PPs is different from that in the early
approach of Zunger.33 For the reasons discussed above we
employ atomic orbital charge densities in the SIC terms of
Eq. ~7! while Zunger used orbital-charge densities calculated
for the new chemical environment. The latter are readily
available in the small systems which he studied. The first
term, Vps,a , describes the influence of the nucleus and the
core on the valence electrons. For this part of our pseudopo-

tentials we employ ionic nonlocal norm-conserving pseudo-
potentialsVps,a

LDA from the literature42,43which are used in our
standard LDA calculations as well. We thus neglect the SIC
influence on the charge density of low-lying core electrons.
This is quite complementary to the approach of Rieger and
Vogl.34 For the energetically low-lying core states in II-VI
compounds it turns out to be well justified, however, as we
will point out further below. The second part,dṼa

SIC, is the
SIC contribution of valence electrona as defined in Eq.~4!.
In contrast to the common pseudopotential concept, our SIC
pseudopotentials contain not only information about the
nucleus and the core electrons but also have distinct infor-
mation about the behavior of the valence electrons in the
pseudoatoms.

Solving Eq.~5! for the pseudoatoms withVps,a5Vps,a
LDA , it

turns out that the resulting pseudoeigenvalues agree already
remarkably well, mostly within 0.1 eV, with the all-electron
SIC-LDA eigenvalues resulting from Eq.~4!, as can be seen
in Table I. In addition, the eigenfunctions fulfill to a very
high degree all conditions that are usually required for the
pseudo-wave-functions in the context of pseudopotential
constructions~see, e.g., Refs. 42 and 43!. In view of the
remaining very small differences concerning eigenvalues and
eigenfunctions we considered it not worthwhile to construct
and tabulate the ionic contributionsVps,a to our pseudopoten-
tials for each materialanew but we employ, instead, the
usual LDA pseudopotentialsVps,a

LDA that are readily available
from the literature.42,43 The close agreement of the resulting
energies«̃ LDA

SIC-PPwith «̃ all-el
SIC-LDA in Table I furthermore shows

that the influence of SIC on the charge densities of deeper
core states~e.g., Zn 3s and Zn 3p or Cd 4s and Cd 4p! can
only affect the pseudopotentials for the semicored electrons
and the valence electrons of II-VI compounds marginally.

FIG. 2. Comparison of theatomic term values from Table I as resulting from all-electron LDA~left panel! and all-electron SIC-LDA
calculations~right panel!. Note the difference in energy scales for the two panels. Apart from a rigid shift of all SIC-LDA term values to
lower energies relative to the LDA term values, distinctive changes in theterm-value differencesresulting from the two calculations are to
be noted. The latter are of paramount importance for the solid-state calculations. The bands that can be expected to result from corresponding
solid-state calculations are schematically indicated on the left- and right-hand side of the middle panel, respectively. In addition to cations
andd bands, as well as anions andp bands, there are alsosp-antibonding~sp-A! and -bonding~sp-B! bands.
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This is different for Ge 3d core states. The SIC influence on
their charge density has an appreciable effect on the resulting
pseudopotential for the valence electrons, as has been shown
in detail by Rieger and Vogl.34 One should note in this con-
text, that, e.g., Cd 4p and Cd 4s core states reside at267
and2106 eV, respectively, while the Ge 3d core states re-
side at about230 eV, only. In consequence, the SIC influ-
ence on the charge density of the latter has a much more
noticeable effect on the respective pseudopotential for the
valence electrons. Furthermore, we note that the 3d and 4d
states in Zn and Cd, respectively, are in a sense equivalent to
the 3d states in Ge. For these semicored states we actually
construct SIC-PPs so that the SIC effects on thesed states
are explicitly taken into account in our approach as well. It is
obvious from Table I that SIC pseudopotentials yield a much
better description of pseudoatoms than standard pseudopo-
tentialsVps,a

LDA alone.
The SIC pseudopotentialsṼps,a

SIC cannot directly be trans-
ferred to solid-state calculations because they all have the
same asymptotic22/r tails arising from the Coulomb poten-
tial in dṼa

SIC. This long-range behavior would cause an un-
wanted overlap between the SIC contributions from different
atomic sites in the solid. But this overlap can easily be

avoided, as we will explicitly show for ZnO. We have cho-
sen ZnO as a prototype example for our discussion because
the shortcomings of the LDA approach using standard
pseudopotentials are most pronounced for this compound. It
is obvious from Fig. 3 that the atomic charge densities of the
involved orbitals are strongly localized in space. In conse-
quence, the long-range22/r tails of the potentials have no
observable influence on the related atomic eigenvalues and
eigenfunctions.Actually, it is the product VCoul@na

at#Fa
ps that

matters in Eq. (5). It vanishes when the related wave func-
tion vanishes. We can therefore simply define an appropriate
radiusr loc beyond which the actual form of the SIC contri-
bution to the atomic pseudopotential is insignificant for the
eigenvalues and eigenfunctions of the pseudoatoms. We de-
termine r loc by the condition that the following restricted
expectation value of the SIC contribution to the eigenvalues:

E
0

r locE
V
Fa
ps~r !dṼa

SIC~r !Fa
ps~r !r 2dr dV

~8!

5:d«̃ps,a
SIC~r loc!,

has converged to within 1023 eV for the most extended va-
lence state involved in a compound. For the other less ex-
tended states convergence is then even better. We obtain
r loc58.34 a.u. for the Zn andr loc59.09 a.u. for the Cd com-
pounds using Zn 4s and Cd 5s orbitals in Eq.~8!, respec-
tively.

As is obvious from Fig. 3, the relevant productsdṼa
SICFa

ps

are of very short range except for the most extended orbital
~Zn 4s in the example of Fig. 3!. The latter product becomes
short ranged, as well, if we make use at this point of the
freedom to define the zero of our energy scale for the solid-
state calculations. We can simply add on both sides of Eq.
~5! the very same constant 2/r loc ~in Ry units! for all a. This
merely redefines the zero of our energy scale, which is arbi-
trary in a solid-state calculation, anyway. The Kohn-Sham
equations then read

H 2¹21Vps,a
LDA1dṼa

SIC1
2

r loc
1VCoul@nv#1Vxc

LDA@nv#J Fa
ps

5H «̃ps,a
SIC1

2

r loc
J Fa

ps5:«ps,a
SIC Fa

ps . ~9!

Since the22/r tails in dṼa
SIC are irrelevant beyondr loc for

the eigenvalues and eigenfunctions, we can now cut off the
potentials atr loc without sacrifice in accuracy. Our final SIC-
PPs for the solid-state calculations are then given as

Vps,a
SIC :5Vps,a

LDA1dVa
SIC:5Vps,a

LDA

1H 2VCoul@na
at#2Vxc

LSD@na↑
at ,0#1

2

r loc
, r<r loc

0, r.r loc

~10!

so that we finally have to solve the following Kohn-Sham
equations for the solids:

FIG. 3. Radial charge density distributionsra(r )54pr 2Ra
2(r )

for the Zn and O atoms~top panels! as resulting for the SIC-PPs
including dṼa

SIC. The latter are shown in the lower parts of the
upper panels. The SIC-PP contributionsdVa

SIC according to Eq.~10!
used in the solid-state calculations are shown in the middle panels.
The lower panels show the expectation values«ps,a

SIC(R) as defined in
Eq. ~12! for the Zn 4s, Zn 3d, O 2p, and O 2s states as a function
of the upper limitR of the r integration. They are converged to
better than 0.5% forR53 a.u. ~see also Table II!. Note that
«ps,a
SIC(R) in the lower panels is the expectation value of the full
Hamiltonian according to Eq.~12!.
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$2¹21Vps,a
SIC1VCoul@nv#1Vxc

LDA@nv#%Fa
ps

5«ps,a
SICFa

ps. ~11!

The SIC contributionsdVa
SIC to the SIC pseudopotentials are

shown in Fig. 3 as well. Actually, by adding 2/r loc on both
sides of Eq.~9! we refer our energies to the flat plateau of
dṼa

SIC for the Zn 4s ~see Fig. 3! or Cd 5s states, respectively,
i.e., to the flat plateau in the SIC contribution to the pseudo-
potential of the most extended state. In consequence, the
productdVa

SICFa
ps is now of extremely short range for the Zn

4s state as well~see Fig. 3!. The fact that our pseudopoten-
tials have a discontinuous slope atr loc has no influence at all
since the productsdVa

SICFa
ps vanish atr loc . In this way we

obtain a SIC pseudopotential which gives rise to only a truly
short-ranged SIC contribution so that overlap effects of the
SIC contributions become insignificant in the solid. The
pseudopotentialsVps,a

SIC reproduce the differences between the
term values as resulting withṼps,a

SIC from Eq. ~5! within 1023

eV and the related eigenfunctions are identical. It is impor-
tant to recognize that theatomicpseudocharge densitiesna

at

which are nearly identical to the solid-state pseudocharge
densities in the II-VI compounds considered in this work
enter the definition of our SIC-PPs in Eq.~10!.

In order to identify the spatial region around each atom
which contributes to the SIC part of the eigenvalues, we have
calculated

«ps,a
SIC~R!:5^Fa

psuĤeff,a
LDA uFa

ps&

1E
0

RE
V

Fa
ps~r !dVa

SIC~r !Fa
ps~r !r 2dr dV

~12!

as a function of the upper limitR of the r integration. The
resulting functions«ps,a

SIC(R) are shown in the lower panels of
Fig. 3 for the Zn 4s, Zn 3d, O 2p, and O 2s states and some
respective energies are given in Table II for a number ofR
values. It is obvious from Fig. 3 and Table II that the SIC
contributions converge very fast as a function ofR. As a
matter of fact they have converged already to better than 1%
at R52 a.u. for the different states except for O 2p for
which this convergence level is reached atR52.6 a.u. This

proves that the SIC contributions to the eigenvalues originate
from an extremely short-ranged region around each atom.

2. Self-interaction and relaxation-corrected pseudopotentials

So far, we have incorporated dominant self-interaction
corrections in our SIC pseudopotentials but we have not yet
sufficiently accounted forelectronic relaxation. For the sake
of brevity, we will refer to our pseudopotentials incorporat-
ing self-interaction corrections and electronic relaxation as
self-interaction and relaxation-corrected~SIRC! pseudopo-
tentials. When electronic band structures are measured, e.g.,
by angle-resolved photoelectron spectroscopy~ARPES!,
electrons are excited from occupied states. The lower these
states reside in energy below the Fermi level and the more
they are localized in space, the larger is the relaxation of the
valence-electron system in response to the excitation. This
relaxation gives rise to shifts in energy of the experimentally
observable levels. This was clearly to be seen already in the
results for atoms~see Table I! as we have discussed in Sec.
II A. The all-electronDSCF binding energies show signifi-
cant shifts with respect to the all-electron SIC-LSD or SIC-
LDA eigenvalues. The shifts are most pronounced for highly
localized semicored states, as we have pointed out already.
Our SIC-PPs were constructed in Sec. II B 1 such that they
yield basically the same eigenvalues and eigenfunctions for
the pseudoatoms as the full SIC-LSD or SIC-LDA formalism
of Perdew and Zunger.23 In consequence, they naturally can-
not yield a better description of the semicored states than the
full SIC calculations. Therefore an accurate description of
d-band positions, in particular, can only be achieved if more
accurateatomicbinding energies are built into the construc-
tion of appropriate pseudopotentials from the start. This can
indeed be achieved by referring to theDSCF results for the
constituent atoms, as given in Table I. An improvement of
the d-band description in the solid is to be expected if we
devise our pseudopotentials such that they yield theatomic
DSCF binding energies exactly. To this end we make use of
the freedom to construct our pseudopotentials accordingly.

TABLE II. Results of a convergence study of the atomic term
values of Zn and O resulting with our SIC-PPs as a function of the
upper limitR of the r integration in Eq.~12!. The values forR5`
exactly agree with the term values«̃LDA

SIC-PPin Table I, except for the
rigid shift of all levels by 2/r loc,3.26 eV. The term-valuediffer-
enceswhich are relevant for the solid-state calculations, only, are
not at all affected by this shift.

R
~a.u.!

«ps,Zn 4s
SIC

~eV!
«ps,O 2p
SIC

~eV!
«ps,Zn 3d
SIC

~eV!
«ps,O 2s
SIC

~eV!

2 26.11 212.80 216.52 227.65
3 26.08 213.16 216.68 227.96
4 26.10 213.22 216.70 227.98
5 26.11 213.23 216.70 227.98
` 26.11 213.23 216.70 227.98

TABLE III. Relaxation-induced atomic energy shiftsdṼa
DSCF~in

eV! to the pseudopotentials according to Eq.~14! as given by the
respective differences between atomicDSCF binding energies and
LDA term values calculated employing our SIC-PPs. Note that
these values are no free parameters but they are uniquely deter-
mined from the respective calculations and can directly be read off
from Table I. The values resulting for Zn 4s and Cd 5s from Table
I are put in parentheses. Their use would mean fully incorporating
the electronic relaxation of atomic Zn 4s and Cd 5s states. Because
it is more meaningful to ignore theDSCF shifts of these
conduction-band states altogether in the respective SIRC-PPs~for
details, see text! we neglect the respective shifts in our optimal
SIRC pseudopotentials, setting them to zero.

Zn 4s Zn 3d Cd 5s Cd 4d O 2s O 2p

0.0 0.0
dṼa

DSCF ~20.5! 2.1 ~20.5! 0.7 0.3 0.3

S 3s S 3p Se 4s Se 4p Te 5s Te 5p

dṼa
DSCF 0.1 20.2 0.0 20.3 20.2 20.4
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In the construction of our SIRC-PPs we follow the same
general route as for the SIC-PPs in Sec. II B 1. We define
SIRC pseudopotentials foratomsas

Ṽps,a
SIRC:5Ṽps,a

SIC1dṼa
DSCF. ~13!

The relaxation-induced shiftsdṼa
DSCF are defined such that

the SIRC-PPs yield atomic eigenvalues which exactly equal
theDSCF binding energies. This is simply accomplished by
defining

dṼa
DSCF:5Ea

LDA-DSCF2«̃a
SIC-PP. ~14!

The valuesdṼa
DSCF can simply be read off from Table I and

they are compiled for the convenience of the reader in Table
III. Note that they are no free parameters but are uniquely
determined from the calculated differences between
Ea
LDA-DSCF and «̃ a

SIC-PP. The SIRC pseudopotentials are then
transferred to the solid and, to avoid unwanted overlap ef-
fects, they are cut off in the same way as the SIC-PPs were
cut off in Sec. II B 1. They are then explicitly given as

Vps,a
SIRC:5Vps,a

SIC1dVa
DSCF5:Vps,a

LDA

1H 2VCoul@na
at#2Vxc

LDS@na↑
at ,0#1

2

r a
, r<r a

0, r.r a .

~15!

The cutoff radii follow from Eqs.~10! and ~15! as

2

r a
5dṼa

DSCF1
2

r loc
. ~16!

Note that thedVa
DSCF in Eq. ~15! have a small space-

dependent contribution while thedṼa
DSCF, defined in Eq.

~14!, are constants. The respective energy shifts 2/r a ~in a.u.!
guarantee that theVps,a

SIRC exactly reproduce the atomicDSCF
binding energies when used in a standard LDA calculation.
We employ our atomic LDA-DSCF energies instead of the
SIC-LDA-DSCF energies in this construction because the
former are in slightly better agreement with experiment than
the latter.

The termsdVa
DSCF entering the nonlocal short-range part

of our pseudopotentials are orbital dependent. This is per-
fectly alright since electronic relaxation is different for dif-
ferent orbitals. So it can only be taken into account appro-
priately in an effective one-particle potential by orbital-
dependent contributions. This is in the same spirit as
standard pseudopotential theory which describes the scatter-
ing properties of atomic potentials by different angular-
momentum-dependent components for different orbitals in
the respective nonlocal short-range parts ofVps,a

LDA . The non-
local relaxation-induced contributions in our SIRC-PPs are
again extremely short ranged. By construction, they yield
nearly the same wave functions as our SIC-PPs and atomic
eigenvalues which exactly equal the atomicDSCF binding
energies.

There is one final point to be considered in the context of
the SIRC-PPs. In Eq.~14! we have fully incorporated elec-
tronic relaxation as it applies to the constituent atoms of the
considered compounds and we have transferred these poten-

tials in Eq.~15! to the solids. But employing the relaxation-
inducedDSCF shifts of theatomicZn 4s and Cd 5s states in
a solid-state calculation is certainly not fully appropriate. In
Zn and Cd atoms the 4s and 5s subshells are fully occupied
by two electrons but in Zn and Cdcompoundsthe Zn 4s and
Cd 5s states form the bottom of the conduction bands and
they are not fully occupied, therefore. From a Mullikan
analysis of orbital occupancies41 we find that the Zn 4s states
of, e.g., ZnO are only occupied by 0.52e and the Cd 5s states
of, e.g., CdS are only occupied by 0.71e, clearly evidencing
the large ionicity of these compounds. It would thus not be
quite correct to fully implement the relaxation-induced shifts
dṼa

DSCF of the atomic Zn 4s and Cd 5s states in the con-
struction of the respective 4s and 5s pseudopotentials of the
solid. The limiting alternative is to ignore the relaxation-
induced shiftsdṼa

DSCF in the Zn 4s and Cd 5s SIRC pseudo-
potentials for the solids altogether. Certainly, the truth lies
somewhere in between applying full atomic relaxation and
entirely neglecting it. But the truth is certainly closer to the
neglect of electronic relaxation of the Zn 4s and Cd 5s states
than fully incorporating it, as is obvious from the orbital
occupancies in the solids. Which one of the two variants is
more appropriate can eventually only be decided on the basis
of actual results. It turns out that the entire neglect of the
dṼa

DSCFshifts for Zn 4s and Cd 5s states overall yields con-
siderably better results than applying full relaxation to these
states, as was to be expected in view of the relatively small
orbital occupancies of these orbitals in the solids. Thus our
optimal SIRC-PPs are defined as in Eqs.~15! and ~16! with
the respectivedṼa

DSCF values as given in Table III.
This concludes the construction of our pseudopotentials

for II-IV compounds. They are defined in Eqs.~10! and~15!,
respectively. According to the general arguments detailed in
this section we expect our SIC-PPs to yield a considerably
better description of electronic properties of II-VI semicon-
ductor compounds than standard pseudopotentialsVps,a

LDA and
the SIRC-PPs to yield the best description as far as agree-
ment with measured electronic properties is concerned.

3. Implementation of the pseudopotentials

The pseudopotentialsVps,a
SIC andVps,a

SIRC can now be sepa-
rated, as usual, into a local long-range and an orbital-
dependent short-range part. According to Eqs.~10! and ~15!
the long-range parts of these potentials are identical to the
long-range part ofVps,a

LDA and thus have the usual asymptotic
22Zv/r behavior. This long-range part is treated as a local
potential in the calculations for the solid, as usual. The non-
local parts ofVps,a

SIC or Vps,a
SIRC consist of the nonlocal part of

Vps,a
LDA and the nonlocal, short-range SIC or SIC-DSCF con-

tribution dVa
SIC or dVa

SIC1dVa
DSCF, respectively. These po-

tentials now have the standard form of nonlocal, norm-
conserving pseudopotentials but they have built in the most
dominant self-interaction corrections or self-interaction and
relaxation corrections, respectively, that need to be ac-
counted for in more accurate solid-state electronic structure
calculations. They can simply be transformed into the sepa-
rable form as suggested by Kleinman and Bylander44 ~see the
Appendix! and can directly be implemented in a solid-state
LDA band-structure calculation. Therefore, simplified SIC-
LDA or SIC-LDA-DSCF calculations for solids can be car-
ried out by employing our SIC-PPs or our SIRC-PPs using a
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standard LDA band-structure code. Only the input pseudo-
potentials need to be changed according to Eqs.~10! or ~15!,
respectively, at the very beginning of the self-consistent it-
erations. In consequence, our approximate approach is very
efficient and can easily be transferred to more complicated
systems such as surfaces or interfaces. We have carried out
such calculations employing our pseudopotentials for
ZnO(101̄0), CdS(101̄0), and CdSe(101̄0) surfaces. A pre-
liminary account of results for surfaces, which will be dis-
cussed in detail elsewhere, is given in Ref. 45. The results
show very good agreement with experiment, indeed.

III. RESULTS

In this section we present and discuss results of applica-
tions of our pseudopotentials in electronic structure calcula-
tions for bulk II-VI compound semiconductors. All these cal-
culations were carried out at the experimental lattice
constants. We have studied 11 zinc-blende~ZB!, wurtzite
(W), and rocksalt~RS! structures of Zn and Cd compounds.
Most of these structures are stable under normal conditions
but some can only be grown epitaxially on suitable sub-
strates. For each of the 11 configurations we have carried out
four separate self-consistent LDA calculations employing
standard pseudopotentialsVLDA, our SIC pseudopotentials
VSIC, and the two variants of our SIRC pseudopotentials
VSIRC. To identify the influence of the relaxation-induced
shifts dṼa

DSCF, as discussed in Sec. II B 2, we have carried
out two SIRC-PP calculations for each material using for the
Zn 4s and Cd 5s components either the full atomic relax-
ation shift~20.5 eV, as shown in parentheses in Table III! or
entirely neglecting it in the SIRC-PPs. Therefore we have in
total 44 band structures of II-VI compounds available as a
data basis for an identification of the applicability and use-
fulness of our pseudopotentials. As is obvious from Eqs.~10!
and~15! the standard pseudopotentialsVLDA enter in all our
calculations. We employ the ionic pseudopotentials of
Bachelet, Hamann, and Schlu¨ter42 for the Zn and Cd cations
and those of Gonze, Stumpf, and Scheffler43 for the O, S, Se,
and Te anions. In all our calculations the exchange-
correlation potential is taken into account in the Ceperley-

Alder form46 as parametrized by Perdew and Zunger.23 For
the selenides and tellurides we have taken spin-orbit cou-
pling into account, in addition. As basis sets we employ 80
Gaussian orbitals per unit cell for the RS and ZB and 160
Gaussian orbitals per unit cell for theW compounds, respec-
tively, with appropriately determined decay constants.
Brillouin-zone sums are carried out at six and ten specialk
points47 for theW and RS or ZB crystals, respectively.

A. Result obtained usingVSIC

Let us first address the band structure of ZnO which
shows the most severe shortcomings as compared to experi-
ment when it is calculated with standard pseudopotentials.
The full bulk band structure of ZnO is shown along the high-
symmetry lines of the hexagonal Brillouin zone in Fig. 4.
The left panel shows the standard PP and the right panel
shows the SIC-PP result. The measured gap,d-band width,
and anions-band position are indicated by horizontal dashed
lines in each case. Both band structures exhibit four band
groups that are characteristic forW II-VI compounds. The
lowest two bands derive from anions states~O 2s!. Next
follow the ten cationic semicored bands~Zn 3d! and closely
above these reside the six mostly anion-derived O 2p va-
lence bands. Above the gap we observe the lowest group of
conduction bands, the bottom of which is mostly derived
from cationics states~Zn 4s!. All shortcomings of standard
pseudopotential LDA calculations mentioned already in the
Introduction are most obvious in the left panel of Fig. 4. The
O 2p valence bands occur close to the conduction bands.
The semi-cored bands occur roughly 3 eV too high in en-
ergy as compared to experiment. In consequence their inter-
action with the anionp valence bands~mainly O 2p derived!
is unrealistically strong. The dispersion of thesep bands is
therefore falsified. More importantly, they are pushed up in
energy close to the bottom of the conduction bands so that
the fundamental gap is almost closed. All these deficiencies
are overcome to a large extent by employing our SIC-PPs, as
is obvious from the right panel of Fig. 4. The Zn 3d bands
and the O 2p bands now occur considerably lower in energy
relative to the bottom of the conduction bands. Concomi-
tantly, the O 2p valence bands are no longer pushed up very
close to the conduction-band bottom and thep-d interactions
are much smaller now. In consequence, the gap has opened
up dramatically and the width of the O 2p valence bands has
increased from 4.0 eV~left panel! to 5.2 eV ~right panel!.
The results of our SIC-PP calculations are in much better
agreement with experiment than the standard PP results, as is
obvious from the right panel of Fig. 4. The calculated O 2p
valence-band width of 5.2 eV, in addition, agrees remarkably
well with the measured bandwidth of 5.3 eV.48 It is impor-
tant to note that our SIC-PPs not only give rise to rigid shifts
of entire band groups but they also influence the dispersion,
most noticeably of the occupied bands, considerably. This is
the case because reducedp-d interactions and the respec-
tively increaseds-d interactions alter the dispersions of all
occupied bands to some extent. In addition, our SIC-PPs
have space-dependent contributionsdVSIC~r ! that consider-
ably affect the dispersions as well.49 In summary, we observe
impressive improvements in the band structure of ZnO re-
sulting from a straightforward implementation of our SIC-
PPs within standard LDA calculations.

FIG. 4. LDA bulk band structure of ZnO as calculated using
standard pseudopotentials~PP, left panel! or our SIC pseudopoten-
tials ~SIC-PP, right panel!. All energies are referred to the respec-
tive top of the valence bands. The horizontal dashed lines indicate
the measured gap energy~from Ref. 48!, the d-band width~from
Ref. 16!, and the anions-band width~from Ref. 13!.
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Let us now broaden the data base for a more general
discussion of the effects brought about in the band structures
of II-VI compounds by the SIC-PPs. We first concentrate on
salient key features, namely, the gap and thed-band ener-
gies. They are given in Table IV, as resulting for the differ-
ent pseudopotentials used, together with experimental
data.48,50,51Obviously in all cases the results obtained with
standard pseudopotentials42,43are largely at variance with the
experimental data. Our SIC-PP results, in general, grossly
improve the agreement between theory and experiment.

Comparing the PP and SIC-PP results in the first two
columns of Table IV we may discernprimaryandsecondary
effects of the SIC contribution to the pseudopotentials. The
most pronounced primary effect is that the SIC-PPs induce
shifts of the band groups in the solids that are very similar in
nature to the respective SIC-induced shifts of the related
atomic term values~cf. Table I and Fig. 2!. We observe that
the cationicd bands strongly shift to lower energies with
respect to the anionicp valence bands. Comparing the
d-band energies as resulting from PP and SIC-PP calcula-
tions, they occur roughly 6 eV lower in energy for the Zn
compounds, except for ZnO where they are only lowered by
4 eV, and they occur some 4 eV lower in energy for the Cd
compounds, except for CdO where the related shift is about 3
eV. The somewhat different behavior of the compounds in-

volving O is related to the fact that the highly localized O 2s
and O 2p orbitals show a much stronger SIC effect than the
comparatively more extendeds andp orbitals of S, Se, and
Te. In consequence the SIC shift of the cationd bands rela-
tive to the anionp bands is smaller in ZnO and CdO than in
the other compounds. The energetic lowering of semicored
bands is more pronounced in Zn compounds~roughly 6 eV!
than in Cd compounds~roughly 4 eV!, as was to be ex-
pected. The respective atomic term values~cf. Table I and
Fig. 2! show the same behavior, which is simply due to the
fact that Zn 3d states are more localized than Cd 4d states
and therefore show a larger SIC shift.

Another very gratifying primary effect is the downward
shift of the anionp valence bands relative to the cations
conduction bands. There are two reasons for it. First, the
anion p states are much more localized than the cations
states and therefore undergo a comparatively larger SIC shift
~see also Fig. 2! and second, thep valence bands are no
longer pushed up in energy by unrealistically largep-d in-
teractions. In consequence, the gap opens up considerably in
many of the compounds. This effect is most pronounced for
compounds involving O and it decreases with increasing spa-
tial extent of the anionp orbitals. In addition, it is more
pronounced in the Zn than in the Cd compounds. This is due
to the fact that thed bands occur already comparatively
lower with respect to the anionp bands in the Cd than in the
Zn compounds when they are calculated with standard
pseudopotentials. Thus the reduction ofp-d interactions due
to the SIC-induced downward shift of thed bands is more
pronounced in the latter than in the former. This general
behavior nicely correlates with the related SIC-induced shifts
in the atoms~cf. Table I and Fig. 2! and with the ionicity of
the compounds. The more ionic a compound~e.g., ZnO or
CdO! the more localized are its wave functions and the larger
are the SIC effects. The relatively least ionic and most cova-

FIG. 5. Comparison of calculated and measured upper valence
bands ofW CdSe. The LDA band structures have been calculated
with standard pseudopotentials~PP, left panel! and with our SIC
pseudopotentials~SIC-PP, right panel!. Spin-orbit coupling has ex-
plicitly been taken into account. The symmetry of the calculated
bands~1, 3 even and 2, 4 odd with respect to the mirror plane!
favorably compares with the polarization and angle-resolved photo-
electron spectroscopy data~n even andh odd, from Ref. 52!.

TABLE IV. Gap energiesEg and averaged-band energiesEd

~in eV! as resulting from LDA calculations employing standard
PPs, SIC-PPs, and SIRC-PPs, respectively, in comparison with ex-
perimental data from Ref. 48, if not stated otherwise. Note that the
d bands have a considerable width both in experiment and in theory
~see, e.g., Figs. 4, 8, and 9!. We give averaged-band energies as
resulting from our calculations while experiment usually cites the
energetic position of the maximum of thed-band peak.

PP SIC-PP SIRC-PP Expt.

ZnOw Eg 0.2 3.8 3.5 3.4
Ed 25.0 28.9 27.5 27.8

ZnSw Eg 2.0 3.4 3.7 3.9
Ed 25.9 211.4 29.4

ZnSZB Eg 1.8 3.3 3.6 3.7a

Ed 25.7 211.4 29.5 29.0
ZnSeZB Eg 0.6 1.8 2.1 2.7a

Ed 26.2 212.2 210.1 29.4
ZnTeZB Eg 0.7 1.0 1.4 2.4

Ed 26.5 213.0 210.8 29.8
CdORS Eg 20.6 2.0 1.7 0.8

Ed 26.2 29.0 28.2 212.0
CdSW Eg 1.2 2.4 2.5 2.5b

Ed 26.8 210.5 29.7 29.6
CdSZB Eg 1.1 2.2 2.4 2.4a

Ed 26.8 210.5 29.7
CdSeW Eg 0.4 1.1 1.4 1.8

Ed 27.4 211.3 210.4 210.0
CdSeZB Eg 0.2 1.1 1.3

Ed 27.4 211.3 210.4
CdTeZB Eg 0.3 0.5 0.8 1.6

Ed 27.8 212.2 211.0 210.5

aReference 50.
bReference 51.
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lent compounds in our series~i.e., ZnTe and CdTe! show the
weakest SIC effects in their band structures.

As an important secondary effect, we observe changes in
the dispersions of the shifted bands as mentioned already in
the context of Fig. 4 for ZnO. Similar changes induced by
dVa

SIC~r ! in the dispersions of anion-derivedp valence bands
are observed for other compounds as well. In Ref. 32 we
have shown comparisons of calculated and measured bands
for ZnO and forW CdS. Using our SIC-PPs, we obtained
considerably improved agreement with the data of Zwicker
and Jacobi16 for ZnO and of Magnusson and Flodstro¨m52 for
W CdS, as compared to our standard LDA results, concern-
ing both the dispersion and the symmetry properties of these
bands. In Fig. 5 we show a respective comparison between
calculated and measured bands forW CdSe. The agreement
of our SIC-PP results with the data of Magnusson and
Flodström52 is again very satisfactory. Not only the disper-
sions, in particular fromM toMG/2, and the symmetry char-
acter of the calculated and measured bands are in good
agreement but also the measured energy position and the
spin-orbit splitting of the two bands near25 eV are very
well described by our SIC-PP results. The remaining devia-
tions between calculated and measured bands closer to theG
point could very well be related to experimental difficulties
in precisely determining the intrinsic top of the valence
bands with respect to the extrinsic Fermi level.53 Similar
deviations occur near theG point forW CdS, as well.32

Another secondary effect is to be noted. In all compounds
the downward shift of the semi-cored bands leads to an
increaseds-d interaction with the low-lying anionics bands
giving rise to a decrease of their dispersions. This effect is
most pronounced in ZnS and CdS but it is also to be seen in
Fig. 4 for ZnO.

In spite of all the improvements obvious from Table IV
and Figs. 4 and 5 there still remain distinct deviations be-
tween our SIC-PP results and experiment, most noticeably
concerning the gap energy and theabsoluteposition of thed
bands. The main goal of our SIC-PP calculations was to
overcome the misplacement of thed bands and the related
unphysical consequences on gap energies, as well as on
p-band widths and dispersions which are characteristic for
standard LDA results. That goal has been reached and from
any practical point of view our effective LDA-type Hamilto-
nians employing SIC-PPs are already far superior, as com-
pared to standard pseudopotential LDA Hamiltonians, for all
applications mentioned in the Introduction. But now, as is
obvious from the second column of Table IV, thed bands
occur up to 3 eV too low in energy for the Zn compounds
~except ZnO! and roughly 1 eV too low in energy for the Cd
compounds~except CdO! as compared to experiment. For
calculations of occupied bands near the gap energy region as
needed, e.g., for comparisons with ARPES data, this is of no
practical relevance. But it remains, nevertheless, a nuisance
from a general theoretical point of view. As we have already
discussed in the context of Table I and in Sec. II B 2, that
problem is related to electronic relaxation, which is not prop-
erly accounted for inVSIC.

B. Results obtained usingVSIRC

To address the remaining problems mentioned above, we
have taken electronic relaxation into account as well, in the

way described in Sec. II B 2. The respective SIRC-PP results
are given in the third column of Table IV. The question
whether one should fully incorporate the atomicDSCF shifts
due to electronic relaxation in a solid-state calculation was
addressed already in Sec. II B 2. This question is most rel-
evant for the resulting gap energies. We have stated already
that the complete neglect of atomic relaxation-induced shifts
of the Zn 4s and Cd 5s states is probably more meaningful

FIG. 6. Calculated averaged-band positions for some II-VI
compounds which are stable inW or ZB modification under normal
conditions. Theoretical results are shown by open symbols while
experimental data~from Ref. 48! are shown by full dots~-d-!. Our
LDA calculations have been carried out with standard PPs~-n-!,
SIC-PPs~-h-!, and with SIRC-PPs~-s-!.

FIG. 7. Calculated and measured gap energies for some stable
II-VI compounds. Our LDA values resulting with standard pseudo-
potentials~PP! and with our SIRC pseudopotentials~SIRC-PP! are
compared with the experimental data from Refs. 48, 50, and 51.
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than fully incorporating it. This conclusion is borne out by
our SIRC-PP results. Fully incorporating thedṼa

DSCF shifts
of all atomic states in our potentials for the solids, indeed,
yields d-band energies that agree with experiment within
0.5–0.8 eV but the gap energies are less accurate than in the
results obtained neglecting thedṼa

DSCF contributions to the
Zn 4s and Cd 5s pseudopotentials. Our final results, given in
the third column of Table IV, were obtained with the latter
SIRC-PPs.

In Fig. 6 we show a direct comparison ofd-band positions
as resulting from PP, SIC-PP, and SIRC-PP calculations with
experimental data for seven ZB andW compounds. These
seven compounds are stable under normal conditions. The
underbinding of thed bands by roughly 3 eV in standard PP
calculations and their overbinding in SIC-PP calculations is
clearly to be seen. The SIRC pseudopotentials, on the con-
trary, yield d-band energies in reasonable agreement with
experiment. The deviations are less than or equal to 0.5 eV
except for the ZB compounds ZnSe and ZnTe where the
remaining differences are 0.7 and 1.0 eV, respectively.

In Fig. 7 we show a direct comparison of measured gap
energies with respective PP and SIRC-PP results. It is most
obvious from Table IV and Figs. 6 and 7 that the SIRC
pseudopotentials not only yield very satisfactoryd-band po-
sitions from any practical point of view but also significantly
improved results for the gap energies, in particular, for the
more ionic compounds. Only with increasing covalent char-
acter of the binding and with increasing spatial extent of the
anion p orbitals in the selenides and tellurides does the
agreement decrease to some extent. This may be related to
the stronger hybridization in these more covalent solids. Our
approximation of calculating the SIC contributions to the

pseudopotentials by employing atomic orbital-charge densi-
tiesna

at certainly becomes less accurate in these compounds.
It is interesting to note that the gap energies in ZB ZnSe

and ZnTe andW CdSe show precisely the same deviations
from experiment as the respectived-band positions~see
Table IV!. The related deviations are similar for ZB CdTe as
well. This shows that theenergy differencebetween Zn 4s
and Zn 3d or Cd 5s and Cd 4d states is accurately described
in our calculations both in the atom and in the solids. Only
the relative positions of the Se 4p and Te 5p bands deviate
by 0.6, 1.0, 0.4, and 0.8 eV, respectively.54 It is most reveal-
ing to address theseenergy differencesas resulting from our
calculations in some more detail. In Table V we have sum-
marized the differences between anions andd term values
of the Zn and Cd pseudoatoms in comparison with the re-
lated energy differencesEc2Ed , whereEc is the bottom of
the conduction bands. Since the bottom of the conduction
bands in the II-VI compounds is derived from anions states,
the energy differenceEc2Ed is a measure for the change of
Es
cation2Ed

cation that occurs when Zn or Cd atoms are incor-
porated in Zn or Cd compounds. The respective changes in
the solid, on the one hand, result from interactions, most
importantly from first-nearest-neighbor anion-cation and
second-nearest-neighbor cation-cation interactions. But in
addition, the different electronic screening in the compounds
as compared to that in the atoms gives rise to changes in
these energy differences as well. First we note in Table V
that the respective energy differences in the cations and in
the compounds are significantly different. Our approach

FIG. 8. LDA bulk band structures of wurtzite ZnO, CdS, CdSe,
and of rocksalt CdO as resulting with our SIRC-PPs. All energies
are referred to the respective top of the valence bands. The horizon-
tal dashed lines indicate measured gap energies andd-band widths
~from Refs. 16, 48, 50, and 51!. In the band structure ofW CdS
~lower left panel! we have included ARPES data~heavy dots; from
Ref. 55! at high-symmetry points for comparison.

TABLE V. Energy differences~in eV! between anions andd
term values of Zn and Cd atoms in comparison with the related
energy differences between the bottom of the conduction bandsEc

and the d-band positions in Zn and Cd compounds, given by
Ec2Ed , as resulting with standard pseudopotentials~PP!, SIC
pseudopotentials~SIC-PP!, and the two variants of our SIRC
pseudopotentials~SIRC-PP!. Our results for the SIRC-PPs includ-
ing full atomic relaxation shifts are labeled by FR and those result-
ing for the SIRC-PPs neglecting relaxation of the anions
conduction-band states are labeled NR~for details, see text!. Ex-
perimental data are from Refs. 48, 50, and 51.

PP SIC-PP SIRC-PPFR SIRC-PPNR Expt.

EZn 4s2EZn 3d 4.2 10.6 8.0 8.5 7.8

Ec2Ed

ZnOW 5.2 12.7 12.2 11.0 11.2
ZnSZB 7.9 14.7 12.0 13.1 12.7
ZnSeZB 7.5 14.0 11.3 12.2 12.3
ZnTeZB 6.8 14.0 11.4 12.2 12.2

ECd 5s2ECd 4d 5.9 9.8 8.6 9.1 8.6

Ec2Ed

CdSW 8.0 12.9 11.6 12.2 12.1
CdSeZB 7.8 12.4 11.2 11.8 11.8
CdTeZB 8.1 12.7 11.3 11.8 12.3
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yields this behavior appropriately, although we have only
incorporated atomic properties of the constituent atoms in
our pseudopotentials. This simply means that the use of our
SIRC-PPs on a crystal lattice gives rise to a correct descrip-
tion of interactions and of electronic screening in the solids.
Second we note that the standard PPs entirely fail to describe
the measured differences accurately, both in the pseudoa-
toms and in the compounds, as was to be expected. Our
SIC-PPs considerably improve on the comparison but there
are still significant deviations from the measured energy dif-
ferences. In thepseudoatomsour SIRC-PPs including full
atomic relaxation yield the best agreement with the data, as
was to be expected on the basis of their construction. But for
the solids the SIRC-PPs including full relaxation yield en-
ergy differences which deviate up to 1.0 eV from the data.
Our optimal SIRC-PPs, which entirely neglect the
relaxation-induced shiftsdṼa

DSCF of Zn 4s and Cd 5s states
in the solids, yield energy differences which are very close to
the data~see the fourth and fifth columns of Table V!, show-
ing that these atomic SIRC-PPs and their appropriate transfer
to the solids constitute a reliable basis for accurate band-
structure calculations of II-VI compounds.

In Figs. 8 and 9 we show band structures for II-VI Zn and
Cd compound semiconductors that are stable in RS, ZB, or
W configurations, respectively, under normal conditions.
Figure 8 shows our SIRC-PP results forW and RS com-
pounds while Fig. 9 shows respective results for ZB com-
pounds. We note again that the compounds containing Se
and Te have been studied including spin-orbit interaction.
We have indicated the measured fundamental gaps and
d-band widths16,48,51,55by horizontal dashed lines in each
case. In all band structures we observe significant improve-
ments, as compared to standard PP band structures, concern-

ing the comparison between theory and experiment except
for the RS compound CdO. For this compound, the measured
d-band position of212 eV is much lower than the calculated
averaged-band position of28.2 eV. The experimental result
is somewhat astonishing in view of the fact that the mea-
suredd-band energy for CdO does not at all follow the trend
in d-band positions that is obvious from Table IV and Fig. 6.
Thed-band binding energies increase along the O, S, Se, and
Te series both for the Zn and Cd compounds. In our theo-
retical results CdO nicely follows this general trend but the
measuredd-band energy, reported already 25 years ago,56

grossly deviates from it. We do not think that these devia-
tions originate from peculiarities related to the sixfold coor-
dination in the rocksalt structure since we have obtained
grossly improved band-structure results for the rocksalt com-
pound NaCl, in general, as well by employing our pseudo-
potentials.

All band structures shown in Figs. 8 and 9 have been
calculated with our SIRC-PPs neglecting the relaxation shifts
dṼa

DSCF in the Zn 4s and Cd 5s pseudopotentials. These
SIRC-PPs turn out to be most appropriate both on the basis
of the general arguments given above and on the basis of the
favorable results they yield in comparison with experiment.
Comparing the SIRC-PP band structure of ZnO in the upper
left panel of Fig. 8 with the respective SIC-PP band structure
in the right panel of Fig. 4 we recognize that inclusion of
electronic relaxation inVSIRC further improves thed-band
position and the gap energy but only has a marginal effect on
the dispersions of the bands. We find the same conclusion to
obtain for all other compounds studied. Significant changes
in band dispersions relative to the standard pseudopotential
LDA results are mainly brought about bydVSIC. The addi-
tional dVa

DSCF corrections definingVSIRC only give rise to
small additional shifts of the band groups, changing their
dispersions at most by 0.1 eV. In the lower left panel of Fig.
8, showing the band structure ofW CdS, we have included
the ARPES data of Stoffel55 as well. Again we observe grati-
fying agreement between theory and experiment.

The differentW band structures in Fig. 8 and the different
ZB band structures in Fig. 9 show very similar topologies,
respectively. The lower two panels of Fig. 8 allow for a
direct identification of the changes induced by an exchange
of the anions S and Se in theW Cd compounds. The same
obtains for the upper two panels of Fig. 9 while the lower
two panels of Fig. 9 exhibit the changes that occur when the
cations Zn and Cd are exchanged in the tellurides. Compar-
ing our band structures and the energy values in Table IV we
observe that the gross features of the band structures of par-
ticular compounds are largely similar for theW and ZB
modifications. Thed-band energy positions and the widths
of the anion-derivedp valence bands are almost identical for
both modifications. Only the gap energy for theW modifi-
cations turns out to be roughly 0.1 eV larger than that of the
respective ZB modifications. The difference of some 0.1 eV
results from all our calculations as well, in good agreement
with experiment.

In view of the fact that the implementation of our pseudo-
potentialsVSIC andVSIRCdoes not increase the complexity of
the respective LDA calculations in any way and, neverthe-
less, does yield much better results than standard pseudopo-
tential LDA calculations, we consider the band structures

FIG. 9. LDA bulk band structures of zinc-blende ZnS, ZnSe,
ZnTe, and CdTe as resulting with our SIRC-PPs~see also caption of
Fig. 8!.
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presented in this section as significant progress in electronic
structure theory of II-VI compound semiconductors, indeed.

IV. EVALUATION OF THE TOTAL ENERGY

The description of structural parameters of solids within
LDA employing standard pseudopotentials is usually in good
agreement with experimental data. Therefore the question
arises whether structural parameters like lattice constants and
bulk moduli can equally well be described within LDA when
our pseudopotentials are used. We first address the formal
aspects of this question and then present related results.

A. Formalism for total-energy calculations

For the calculation of structural parameters we need the
total energy of the system. It is a ground-state property on
which electronic relaxation has no bearing. Thus in the con-
text of total-energy calculations only self-interaction correc-
tions need to be taken into account. In the framework of
pseudopotential theory, the total energy is given within the
full SIC-LDA approach23 @cf. Eqs.~1! and~2! for SIC-LSD#
as

ESIC-LDA@nv#5(
a

occ

«̃ps,a
SIC1DE11DE2 , ~17!

with

DE152 1
2 E VCoul@nv#nv~r !d

3r1E «xc
LDA@nv#nv~r !d

3r

2E Vxc
LDA@nv#nv~r !d

3r ~18!

and

DE25(
a

occ E $ 1
2VCoul@na#2«xc

LSD@na↑,0#1Vxc
LSD@na↑,0#%

3na~r !d3r , ~19!

wherenv andna are now the respective valence- and orbital-
charge densities in the solid. Note that this SIC-LDA form of
the total energy is not simply obtained by summing up the
eigenvalues of Eq.~11! and correcting for double counting
by DE1 , as is usual in LDA. Within our approach we also
have to incorporate theDE2 term. This is the case, because
we have approximated the full SIC contribution to the poten-
tial @cf. Eq. ~4!#, following from the linear variation of the
full SIC-LDA total energy with respect to the one-particle
orbitals, bydṼa

SIC, i.e., by the nonlocal SIC contributions to
our SIC-PPs. We can representDE2 by the following inte-
gral:

DE25:(
a

occ E Ṽa@na#na~r !d3r ~20!

involving the potentialṼa[na] whose definition becomes ob-
vious from a direct comparison of Eqs.~19! and ~20!. From
the solutions of Eq.~11! we can determine the valence-
charge densitynv but we cannot resolve the orbital-charge
densitiesna of the solid. In the same spirit as in Sec. II B we

use theatomic pseudocharge densitiesna
at instead of the

orbital-charge densitiesna of the solid to evaluate the SIC
contribution inDE2 . This is consistent since the SIC contri-
butions to the eigenvalues«̃ ps,a

SIC were evaluated the same
way. We rewriteṼa as

Ṽa@na
at#5:Va@na

at#1
1

r loc
~21!

and approximateVa in complete analogy to Sec. II B 1@cf.
Eq. ~10!# by the short-range potential

Va@na
at#

>H 12 VCoul[na
at#2«xc

LDA@na
at#1Vxc

LDA@na
at#2

1

r loc
, r<r loc

0, r.r loc.

~22!
With «̃ ps,a

SIC5«ps,a
SIC22/r loc according to Eq.~9! the appropriate

total energy in our SIC-PP approach then reads

ESIC-PP@nv#5(
a

occ

«ps,a
SIC2

2N

r loc
2
1

2 E VCoul@nv#nv~r !d
3r

1E «xc
LDA@nv#nv~r !d

3r

2E Vxc
LDA@nv#nv~r !d

3r

1(
a

occ E Va@na
at#na~r !d3r1

N

r loc
. ~23!

Therefore in our approximate approach we do not need to
evaluate the localized orbital-charge densitiesna as is nec-
essary for a full SIC-LDA solid-state calculation of the total
energy. The integrals involved in the calculation ofDE2 are
solved for the solid by projecting the solid-state wave func-
tions onto the localized atomic one-particle orbitals so that
the respective term in Eq.~23! is approximated as

(
a

occ E Va@na
at#na~r !d3r

'(
n,k

K cn,kU(
a

uFa
psVa&^Fa

psVau

^Fa
psuVauFa

ps& Ucn,kL . ~24!

This term can be calculated in a very efficient manner by
representing theVa as nonlocal, separable potentials~see the
Appendix!. The net constant2N/r loc occurring in Eq.~23! is
a mere consequence of our choice of the reference energy for
the eigenvalues«ps,a

SIC in Eq. ~9!. It naturally enters and it
improves the calculation of cohesive energies but it has no
influence on the lattice constants or bulk moduli which fol-
low from derivatives of the total energy. The total energy of
the solid is then given by Eqs.~23! and~24! in general agree-
ment with the respective SIC-LDA total energy of pseudoa-
toms. It is obtained from a self-consistent LDA calculation
for the solid using our SIC-PPs which also provide the Bloch
orbitalscn,k for the calculation ofDE2 . For pseudoatoms,
our respective results agree roughly within 0.1 eV with the
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total energy resulting from full SIC-LDA calculations.
Therefore the analogous approximation of the total SIC-LDA
energy of the bulk system by Eqs.~23! and ~24! is justified.
Omitting theDE2 term, on the contrary, leads to very inap-
propriate results both for pseudoatoms and for solids.

B. Results of total-energy calculations

We have applied the total-energy formalism described
above to calculate lattice constants and bulk moduli for a set
of W, RS, and ZB II-VI compounds. Of course, the usual
ion-ion term is included in these calculations, as well. For
comparison we have calculated the respective quantities also
within the standard pseudopotential LDA approach. Our re-
sults are compared in Table VI with experimental data.48 In
general, we first note that the lattice constants resulting from
our SIC-PP calculations are some 2% larger than those re-
sulting from standard PP calculations. In particular, the lat-
tice constants resulting with our SIC-PPs agree considerably
better with experiment~except for ZnO and CdO! than the
PP results. For most compounds considered they agree with
experiment to within better than 1%. The increase of the
lattice constants induced by SIC are related to the respective
weakening of thep-d hybridization. An increased binding of
the cationic semicored states gives rise to a weakening of
the chemical bond and a concomitant increase of the bond
lengths and lattice constants. For the same reason the bulk
moduli resulting withVps

SIC are smaller than those resulting
with Vps

LDA and agree considerably better with experiment

~except for ZnO, for which the improvement is only mar-
ginal!. These general trends obtain likewise for both the ZB
andW compounds. Similar effects on lattice constants and
bulk moduli by inclusion of SIC have been observed previ-
ously for bulk Ce~Refs. 28 and 31! and bulk Ge~Ref. 34! as
well.

V. SUMMARY AND OUTLOOK

We have reported the construction of SIC and SIRC
pseudopotentials for II-VI compound semiconductors. The
SIC-PPs, as compared to standard PPs, yield considerable
improvements in the electronic structure of these compounds
and they turn out to yield very reliable structural results for
RS, ZB, andW II-VI compounds. While the SIC-PPs are
most appropriate for the calculation of the ground-state en-
ergy of these solids they are not yet accurate enough to pre-
cisely describe semicored-band positions and gap energies
since they do not fully incorporate electronic relaxation.
Electronic relaxation is then accounted for in our SIRC-PPs
and they yield band-structure energies that are in gratifying
agreement with experiment. Not only thed-band positions
are satisfactorily described but also the gap energies in the
more ionic compounds, for which our approximate approach
is suited best, are in favorable agreement with the data.
Small deviations remain only between calculated and mea-
suredd-band positions and gap energies for more covalent
compounds, most noticeably for selenides and tellurides. For
these our approximation to calculate the SIC contributions to
the pseudopotentials by employing atomic orbital-charge
densities instead of the solid-state orbital-charge densities
becomes less appropriate. There are ways to further improve
on this point and we are working on it.

The ideas and concepts developed in this paper are appli-
cable, when appropriately generalized, to other classes of
solids as well, as we plan to discuss in a future publication.
Also for bulk NaCl, SiC, and GaAs we obtain considerable
improvements in their electronic properties when calculated
with our pseudopotentials. The improvements are most pro-
nounced for the more ionic compounds NaCl and SiC and
somewhat less impressive for GaAs. Even for Si or diamond
improvements result within our current approach but they are
relatively small as compared to those for the II-VI com-
pounds, as was to be expected. Other very intriguing classes
of solids that are most promising for an application of our
SIC- and SIRC-PPs are transition metals and transition-metal
oxides.

The key feature of our SIC- and SIRC-PP approach is the
fact that it allows for straightforwardab initio LDA calcula-
tions of structural and electronic properties of semiconduc-
tors and insulators yielding results which agree very satisfac-
torily with the available experimental data. Nevertheless,
they are not more involved than any ‘‘state of the art’’ LDA
calculation for these solids.
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TABLE VI. Lattice constantsa, c ~in Å!, and bulk moduliB ~in
Mbar! of W, RS, and ZB II-VI semiconductor compounds as cal-
culated using standard pseudopotentials~PP! and our SIC pseudo-
potentials~SIC-PP! in comparison with experimental data from Ref.
48.

Table V PP SIC-PP Expt.

ZnOW a 3.23 3.29 3.25
c 5.18 5.29 5.21
B 1.60 1.59 1.43

ZnSW a 3.71 3.83 3.82
c 6.06 6.28 6.26
B 1.02 0.83 0.76

ZnSZB a 5.25 5.42 5.41
B 1.01 0.81 0.76

CdORS a 4.65 4.78 4.70
B 1.72 1.52

CdSW a 4.03 4.15 4.13
c 6.54 6.76 6.70
B 0.87 0.74 0.61

CdSZB a 5.69 5.85 5.82
B 0.87 0.70

CdSeW a 4.21 4.29 4.30
c 6.86 7.02 7.01
B 0.75 0.62 0.55

CdSeZB a 5.91 6.07 6.05
B 0.79 0.66

CdTeZB a 6.26 6.40 6.48
B 0.79 0.52
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APPENDIX: SEPARABLE PSEUDOPOTENTIALS

In this appendix we briefly present the representation of
the nonlocal pseudopotentialsVps,a

LDA , Vps,a
SIC , Vps,a

SIRC, andVa as
separable pseudopotentials. Separable pseudopotentials, as
suggested by Kleinman and Bylander,44 are commonly used
to reduce the computational load of anab initio pseudopo-
tential calculation. In order to obtain a specific nonlocal
pseudopotential in separable form, each angular momentum
( l ) component is first separated into a local and a nonlocal
~nl! part.

Vps,l5Vlocal1Vl
nl . ~A1!

The choice of the local part is arbitrary. The separable
Kleinman-Bylander form is given by

VKB~r ,r 8!5Vlocal~r !d~r2r 8!

1(
l

(
m52 l

l

Ul~r !Rl~r !Yl ,m~U,w!Yl ,m* ~U8,w8!

3Ul~r 8!Rl* ~r 8!. ~A2!

TheYlm are spherical harmonics andRl(r ) are solutions of
the radial Schro¨dinger equation

F2
d2

dr2
1
l ~ l11!

r 2
1Vps,l~r !G rRl~r !5ElrRl~r ! ~A3!

for a standard pseudopotential. TheUl are defined by

Ul~r !5
Vps,l~r !2Vlocal~r !

@* Rl* ~r !@Vps,l~r !2Vlocal~r !#Rl~r !r 2dr#1/2
. ~A4!

Our calculations are carried out employing Gaussian basis
sets. The resulting potential matrix elements of the local part
of ~A2! are evaluated by transformingVlocal into a Fourier
representation. The remaining integrals involving two Gaus-
sians and a plane wave are solved analytically. The matrix
elements of the nonlocal potential are evaluated as described
in the Appendix of Ref. 5.

In our standard LDA calculations we use for the anions
the pseudopotentials from the tables of Gonze, Stumpf, and

Scheffler.43 In these pseudopotentials the highest angular
component is used asV local

LDA . For the cations we use the
pseudopotentials from the tables of Bachelet, Hamann, and
Schlüter.42 In order to avoid ghost states and in order to
create a very smooth local part ofVKB

LDA we have chosen the
l50 components asV local

LDA for the cations. We obtain the
radial wave functionRl

LDA from the solution of~A3! with
Vps,l5Vps,l

LDA . ThusUl
LDA is given by

Ul
LDA~r !

5
Vps,l
LDA~r !2Vlocal

LDA~r !

@* Rl*
LDA~r !@Vps,l

LDA~r !2Vlocal
LDA~r !#Rl

LDA~r !r 2dr#1/2
.

~A5!

The SIC pseudopotential

Vps,l
SIC5Vps,l

LDA1dVl
SIC ~A6!

consists of the standard pseudopotential addressed above and
the additional SIC contribution as detailed in Sec. II B 1. As
local part ofVKB

SIC we have chosen the local part of the stan-
dard pseudopotentialV local

LDA . We obtain the corresponding ra-
dial wave functionsRl

SIC from the solution of~A3! with
Vps,l5Vps,l

SIC. ThusUl
SIC is given in this case by

Ul
SIC~r !5

Vps,l
SIC~r !2Vlocal

LDA~r !

@* Rl*
SIC~r !@Vps,l

SIC~r !2Vlocal
LDA~r !#Rl

SIC~r !r 2dr#1/2
.

~A7!

The SIRC pseudopotentials including electronic relaxation
~see Sec. II B 2! can be treated exactly the same way when
Vps,a
SIC is replaced byVps,a

SIRC and the wave functionsRl
SIC are

replaced byRl
SIRC.

The nonlocal terms in the potentialsVl , which are re-
quired to calculate the total energy of the bulk system using
Eq. ~24!, are short ranged by construction. Thus in this case
Vlocal is zero and the respectiveUl is simply given by

Ul~r !5
Vl~r !

@* Rl*
SIC~r !Vl~r !Rl

SIC~r !r 2dr#1/2
. ~A8!
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32D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B52, R14 316

~1995!.
33A. Zunger, Phys. Rev. B22, 649 ~1980!.
34M. M. Rieger and P. Vogl, Phys. Rev. B52, 16 567~1995!.
35J. C. Slater,The Self-consistent Field for Molecules and Solids

~McGraw-Hill, New York, 1974!.
36Throughout this paper we use the Rydberg energy as energy unit,

if not stated otherwise.
37J. G. Harrison, J. Chem. Phys.78, 4562~1983!.
38M. R. Pederson and Chun L. Ling, J. Chem. Phys.88, 1807

~1989!.
39O. Gunnarson and R. O. Jones, Solid State Commun.37, 249

~1981!.
40C. E. Moore,Atomic Energy Levels, Natl. Bur. Stand~U.S.! Circ.

No. 467~U.S. GPO, Washington, DC, 1949!, Vol. I; ibid. ~U.S.
GPO, Washington, DC, 1952!, Vol. II; ibid. ~U.S. GPO, Wash-
ington, DC, 1958!, Vol. III.

41D. Vogel, Diploma thesis, Universita¨t Münster, 1994~unpub-
lished!.

42G. B. Bachelet, D. R. Hamann, and M. Schlu¨ter, Phys. Rev. B26,
4199 ~1982!.

43X. Gonze, R. Stumpf, and M. Scheffler, Phys. Rev. B44, 8503
~1991!.

44L. Kleinman and D. M. Bylander, Phys. Rev. Lett.48, 1425
~1982!.

45J. Pollmann, P. Kru¨ger, M. Rohlfing, M. Sabisch, and D. Vogel,
in Proceedings of the International Conference on the Forma-
tion of Semiconductor Interfaces (ISFSI-5), Princeton, New Jer-
sey, edited by A. Kahn@Appl. Surf. Sci.35, 3170~1996!#.

46D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
47D. J. Chadi and M. L. Cohen, Phys. Rev. B8, 5747~1973!.
48Semiconductors Physics of Group IV Elements and III-V Com-

pounds, edited by K. H. Hellwege and O. Madelung, Landolt-
Börnstein, New Series, Group III, Vol. 17, Pt. a~Springer, Ber-
lin, 1982!; Semiconductors. Intrinsic Properties of Group IV
Elements and III-V-II-VI, and I-VII Compounds, edited by K.-H.
Hellwege and O. Madelu¨ng, Landolt-Börnstein, New Series,
Group III, Vol. 22, Pt. a~Springer, Berlin, 1987!.

49The SIC pseudopotentials derived by Rieger and Vogl for Ge also
give rise tok-dependent band shifts~see Ref. 34!.

50U. Rossow, T. Werninghaus, D. R. T. Zahn, W. Richter, and K.
Horn, Thin Solid Films233, 176 ~1993!.

51D. R. T. Zahn, G. Kudlek, U. Rossow, A. Hoffmann, I. Broser,
and W. Richter, Adv. Mater. Opt. Electron.3, 11 ~1994!.

52K. O. Magnusson and S. A. Flodstro¨m, Phys. Rev. B38, 1285
~1988!.

53K. O. Magnusson~private communication!.
54Of course, one could easily arrive at gap energies andd-band

positions for the selenides and tellurides as well that practically
agree with experiment by respectivead hoc choices of the
DṼa

DSCF contributions to the 4p and 5p pseudopotentials of Se
and Te, respectively. Doing so would be very sensible from a
practical point of view and should turn out to be useful, e.g., in
the context of actual calculations of particular bulk defect or
surface and interface properties. But it would mean leaving our
well-defined theoretical framework and introducing the
relaxation-induced shift of the anionp states to a certain extent
as an empirical parameter in the SIRC-PPs. In this work we
refrain from such an empirical procedure.

55N. G. Stoffel, Phys. Rev. B28, 3306~1983!.
56C. J. Vesely and D. W. Langer, Phys. Rev. B4, 541 ~1971!.

54 5511SELF-INTERACTION AND RELAXATION-CORRECTED . . .


