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An effective medium theory for the calculation of the conductivity in the presence of inelastic scattering has
been developed. Our approach turns out to be quite universal and applicable to arbitrary types of disorder. In
contrast to other effective medium theories, our method does not rely on the introduction of an ordered lattice
but focuses on the diffusion processes in the disordered media. We obtain a quantum diffusion equation in the
presence of inelastic scattering which takes into account the Fermi correlation. The form of this equation shows
the inapplicability of the concept of a spectral density for the conductivity used in earlier effective medium
treatments. Furthermore, we apply our formalism to the calculation of the conductivity in the variable range
hopping regime. For the dc conductivity we obtain Mott’s law. In addition, we derive a simple formula for the
frequency dependence of the ac conductivity.@S0163-1829~96!00132-4#

I. INTRODUCTION

So far, numerous papers have been devoted to the study
of hopping transport in disordered media~see Refs. 1 and 2
and references therein!. One of the most intricate problems in
this field is the calculation of the impurity-averaged conduc-
tivity. To tackle this problem several methods have been
applied. Among them, the percolative approach and the ef-
fective medium theory have proved to be particularly useful.
Both methods rely on an interpretation of the system of
transport equations as a random resistor network. While the
percolative approach takes advantage of the fact that the ad-
mittances of the network vary by many orders of magnitude
and therefore the current mainly follows the path of least
resistance, the standard effective medium theory3 focuses on
a typical admittance of the network. This admittance is con-
sidered to be placed in a network with equal admittances
forming an ordered lattice. The ordered network is chosen to
imitate the average surroundings as well as possible, which
is done by requiring that the electric field around the typical
admittance is equal to the homogeneous field of the effective
medium.

For nearest neighbor hopping~NNH!, where the spread of
the energy levels is neglected, both methods lead to similar
results, which fully agree with the experimental situation. In
the case of variable range hopping~VRH!, where the transi-
tions are inelastic, the situation is more intricate. In this case
the application of percolation theory to the calculation of the
conductivity leads to Mott’s law.

In Ref. 4 Mott’s law was found by means of a modified
effective medium theory, which is based on the Kubo-
Greenwood formula. However, the weakness of this ap-
proach is that the conductivity is expressed through the spec-
tral density, which ignores the inelastic character of the
transitions. Accordingly, only an averaging over the differ-
ence of the site energies was performed.

On the other hand, a deviation from Mott’s law was de-

tected in Ref. 5, where the standard effective medium theory
was used. In this approach the conductances were considered
to be random quantities in a (d11)-dimensional space,
whered is its spatial dimension. Accordingly, an indepen-
dent averaging over the initial and the final sites was per-
formed.

The reasons for the deviation of the effective medium
result from the percolative one were discussed in Ref. 6 and
Ref. 7. To achieve correspondence, the authors of Ref. 6
suggest restriction of the averaging procedure to sites having
energies of orderkTlns/s0 near the Fermi level, wheres is
the conductivity ands0 a normalization factor. In conse-
quence of this restriction the site density becomes tempera-
ture dependent and the conductivity obeys Mott’s law. How-
ever, it is not clear how to incorporate this restriction into the
standard effective medium theory.

The aim of the present paper is the development of an
effective medium theory which copes with the above-
mentioned difficulties. Moreover, the theory should also be
applicable to the study of the influence of a magnetic field on
the transport properties in the hopping regime. To do so, we
generalize an effective medium treatment which was sug-
gested in Ref. 8 for the calculation of the conductivity in the
NNH regime to the case of inelastic scattering. The advan-
tage of this method lies in the fact that it does not rely on the
introduction of an ordered lattice, which implies the defini-
tion of nearest neighbors, but focuses on the diffusion pro-
cesses in disordered media. In particular, in the case of VRH,
where the transitions do not occur between nearest neighbors
in thed-dimensional configuration space, but between near-
est neighbors in a (d11)-dimensional space, this fact is cer-
tainly advantageous.

Below we represent an effective medium approach that is
based on a transition from discrete to continuous coordinates
in a (d11)-dimensional space. The method turns out to be
quite universal and applicable to arbitrary types of disorder.
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In our approach the diffusion in a (d11)-dimensional space
turns out to be most important. The diffusion process, which
also implies the diffusion of energy between environments
with different energies, leads to integral equations with re-
spect to the energy. Owing to the Fermi correlation the ker-
nel of these integral equations not only depends on differ-
ence coordinates but also on sum variables. The character of
these integral equations shows clearly the inapplicability of
notions like the spectral density for the conductivity in the
VRH regime. Moreover, we obtain the quantum diffusion
equation in the presence of inelastic scattering, which fully
takes into account the Fermi correlation reproducing the
characteristics of VRH.

Furthermore, we demonstrate the applicability of our
method to the investigation of the frequency dependence of
the conductivity in the VRH regime. Here, the advantages of
our method show up in the emergence of a natural restriction
of the electronic transport processes to a small region near
the Fermi surface, as suggested in Ref. 6.

II. THE CONDITIONAL PROBABILITY FUNCTION

In order to establish a theory for the conductivity we start
with an expression for the current. In the linear approxima-
tion with respect to the external electric fieldE, the current
can be written in the form5

j5
e2bs

V (
m

RmCm~Um1E•Rm!. ~1!

HereCm5 f m(12 f m), where f m5 f (em) is the Fermi distri-
bution function with site energyem , Rm is the position vec-
tor of sitem, V is the volume,b the inverse temperature,
e the unit charge, ands52 iv, wherev is the frequency of
the applied external electric field. The quantityUm has the
interpretation of the electrochemical potential at sitem. It is
related to the chemical potential mm through
Um52E•Rm1mm /e. To obtain the dc current the limit
s→0 has to be taken in Eq.~1!.

In order to calculate the quantityUm we use the rate equa-
tions linearized with respect to the external electric field.1

They are given by

sCm~Um1E•Rm!5(
m

Gm8m~Um82Um!. ~2!

The quantitiesGm8m , which are related to the two site tran-
sition probabilities entering the rate equations in the absence
of the field, can be represented in the form

Gm8m5gm8mACmCm8, ~3!

wheregm8m is defined by

gm8m5
Jm8m
2

\2 e22STE
2`

`

dtH expF i\ ~em82em!t

1(
q

gq
2@12cos~q•Rm8m!#

Nsinh~\vq/2kT!
cos~vqt !G21J . ~4!

Herevq is the frequency of a phonon with wave vectorq,
gq the electron-phonon coupling constant,Rm8m5Rm8
2Rm , N is the number of sites of the sytem under consid-
eration, and

ST5
1

2N(
q

gq
2@12cos~q•Rm8m!#cothS \vq

2kTD . ~5!

The resonance integralsJm8m are supposed to have the form

Jm8m5J0exp~22auRm8mu!, ~6!

wherea21 is the localization length. Expression~4! is valid
for arbitrary electron-phonon coupling strength. Owing to
their definition the quantitiesgm8m are symmetric with re-
spect to their indices. Furthermore, they depend only on dif-
ference coordinates, i.e., they have the form

gm8m5g~ uRm8mu,uem8mu!. ~7!

To solve Eq.~2! we use the Green’s function method. In
reminiscence of the NNH problem we require the Green’s
functionP to satisfy an equation of the type

sPm8m5dm8m1(
m9

~Pm8m9Vm9m2Pm8mVmm9!. ~8!

To achieve correspondence we choose the coefficientsam
and the potentialsVm8m in accordance with the rate equations
~2!. Doing so, we obtain the following equation for the
Green’s functionP:

sPm8m5dm8m1(
m9

gm9mSACm

Cm9
Pm8m92ACm9

Cm
Pm8mD .

~9!

Using the solution of Eq.~9! the electrochemical potentials
are determined according to

CmUm52(
m8

sCm8~E•Rm8!Pm8m . ~10!

Owing to the principle of detailed balance and the law of
probability conservation, the Green’s functionP satisfies the
sum rules

(
m8

sCm8Pm8m5Cm , ~11!

(
m

sPm8m51. ~12!

Both properties can be easily derived from Eq.~9!. Using the
sum rules the current can be represented in the form

j5
e2bs2

2V (
m8m

Rm8mCm8Pm8m~E•Rm8m!. ~13!

The introduction of the Green’s functionP reminds one of
the diffusion function in a four-dimensional space with co-
ordinatesrm5$Rm ,em%. However, as the transition prob-
abilities between the sites, i.e., the quantities
gm8mACm /Cm8, are nonsymmetric and moreover do not only
depend on difference coordinates but also on sum variables,
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the nature of this diffusion process is rather strange. This fact
is obviously related to the Fermi correlation acting differ-
ently for NNH and for VRH. In the latter case the transitions
are inelastic. Therefore, one is not only concerned with dif-
fusion in space but also with diffusion of energy.

III. THE CONTINUOUS REPRESENTATION

In order to proceed further it is expedient to convert to
continous coordinates. This can be achieved by defining the
new Green’s function

P~r8,r!5 (
m8m

d~r82rm8!Pm8md~r2rm!, ~14!

wherer5(R,e). Using the definition~14! the equation of
motion for the Green’s function~9! can be written in the
form

sP~r8,r!5h~r8!d~r82r!1E dr1P~r8,r1!V~r1 ,r!,

~15!

whereh(r)5(md(r2rm). In three dimensions the function
h(R) represents the well known structural factor describing
the atomic structure of materials. The potentialV, which is
linear in the functionh containing the disorder, is given by

V~r8,r!5E dr1wr1
~r8,r!h~r1!, ~16!

where

wr1
~r8,r!5w~r8,r1!@d~r12r!2d~r82r!#, ~17!

w~r8,r!5g~r8,r!AC~e!

C~e8!
. ~18!

Hereg(r8,r)5gm8murm85r8,rm5r . Owing to their structure,
the quantities~17! have the properties

wr8~r8,r!50 , ~19!

E drwr1
~r8,r!50 . ~20!

In addition, the transition probabilities~18! satisfy the rela-
tion

C~e8!w~r8,r!5C~e!w~r,r8!. ~21!

Equations~20! and~21! represent the law of probability con-
servation and the principle of detailed balance on the level of
transition probabilities. Due to property~19! double occu-
pacy of points in the configuration space is prevented.

Equation~15! has the advantage that all random quantities
are comprised in the Green’s functionP and in the function
h. Furthermore, the expression for the Green’s functionP is
quite close to the Green’s function equation usually consid-
ered in the theory of impurity scattering. Reiterating Eq.
~15!, we obtain the following equation for the Green’s func-
tion P:

P5
1

s (
n50

`

hS 1sVD n. ~22!

The series expansion~22! can be represented diagrammati-
cally in the customary way depicted in Fig. 1. As the lowest-
order term in~22! contains the functionh, the diagrammatic
representation differs slightly from those considered in the
theory of impurity scattering.

In this representation the requirements of the principle of
detailed balance and the law of probability conservation read

E drsP~r8,r!5h~r8!, ~23!

E dr8sC~e8!P~r8,r!5C~e!h~r!. ~24!

Using the new Green’s functionP the conductivity can be
represented as

sab5
e2bs2

2V E dr8dr~R82R!a~R82R!bC~e8!P~r8,r!.

~25!

IV. A DIAGRAMMATIC THEORY FOR THE
CONFIGURATIONAL AVERAGED

GREEN’S FUNCTION

In order to calculate the configurational averaged Green’s
function we apply the methods of standard perturbation
theory. To do so, we first define a proper averaging proce-
dure. In order to calculate the configurational average we
assume the sites to be statistically independently and uni-
formly distributed in space. Furthermore, we suppose the
probability distribution of site energies to be given by some
function p($em%). Therefore, the configurational average of
an arbitrary quantityA depending on the random variables
$Rm% and$em% is calculated according to

^A&5E )
m

dRm

V
demp~$em%!A~$Rm ,em%!. ~26!

In particular, the application of the averaging procedure to
the functionh serves as definition for the density of states
N(e) of the configurational averaged system, i.e.,
^h(r)&5N(e).

In order to calculate the configurational averaged Green’s
function we average the series~22! term by term. Further-
more, we represent the resulting expansion in the customary
way depicted in Fig. 2.

It can be seen from Fig. 2 that the set of all diagrams can
be decomposed into two subsets, the setS containing all
diagrams connected with the empty point and the classF

FIG. 1. Diagrams contributing to the Green’s functionP. All
points are numbered consecutively. The empty point denotes the
single structural factorh. A solid line starting at the pointi and
ending atj represents a factord(r i2r j )/s. Every full dot is asso-
ciated with a potentialV(r i ,r j ).
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containing all other diagrams. Owing to this decomposition
the configurational averaged Green’s function can be written
as

P̄~r8,r!5E dr1S~r8,r1!F~r1 ,r!. ~27!

Furthermore, the classF can be divided into the class of
irreducible diagramsP and the class of reducible diagrams.
Owing to this procedure the functionF can be shown to
satisfy the Dyson equation

sF~r8,r!5d~r8,r!1E dr1P~r8,r1!F~r1 ,r!. ~28!

To obtain the functional dependence of the functionP with
respect toF we have to perform a summation of diagrams
contributing toP. However, as the consideration of all dia-
grams is impossible we are forced to use an approximation.
To perform a partial summation we neglect all interference
diagrams. In consequence of this neglect the functionsP and
S can be represented by the diagrams depicted in Fig. 3 and
Fig. 4.

The set of diagrams depicted in Fig. 3 can be generated by
means of the propagatorP r̃ , being a solution of the equa-
tion

P r̃5w r̃1w r̃FP r̃ . ~29!

Here we have used a matrix notation for brevity. Owing to
the relations~19! and ~20! the propagatorP r̃ satisfies

Pr8~r8,r!50 , ~30!

E drP r̃~r8,r!50 . ~31!

By means ofP r̃ the irrducible partP is obtained from the
equation

P~r8,r!5E dr̃N~ ẽ !P r̃~r8,r!. ~32!

Furthermore, the diagrammatic expansion for the function
S depicted in Fig. 4 can be cast into the form

S~r8,r!5N~e8!S d~r82r!1E dr1F~r8,r1!Pr8~r1 ,r! D .
~33!

The relations~23! and ~24! result in additional requirements
on the functionsS andF. Using the sum rules they can be
shown to satisfy the relations

sE drF~r8,r!51 , ~34!

E dr8C~e8!S~r8,r!5C~e!N~e!. ~35!

In order to obtain an expression for the conductivity we in-
sert P̄ in Eq. ~25!. Furthermore, we take into account the
translational invariance and isotropy of the impurity aver-
aged system. Doing so, we obtain

s5
e2b

2d E drde8der 2C~e8!N~e8!HP~r ue8,e!

1S2E dr1dS~r2r 1ue8,e1!F~r 1ue1 ,e!J , ~36!

where

dS~r ue8,e!5E dr1F~r2r 1ue8,e1!P r ,e8~r 1 ,e1u0,e!.

~37!

V. THE EFFECTIVE MEDIUM

Despite the neglect of interference diagrams the system of
equations~28!, ~29!, and ~32! is still complicated and non-
linear. To solve it approximately we generalize the effective
medium theory suggested in Ref. 8 to the case of VRH.

To introduce the effective medium we decomposeF into
two parts, one part containing the effective medium and a
part F̃ describing the deviations from the effective medium
solution, according to

FIG. 3. Diagrams contributing to the functionS. Here every
solid line connecting the pointsi and j is associated with a function
F(r i ,r j ).

FIG. 4. Diagrams contributing to the irreducible partP. Every
solid line is associated with a functionF(r i ,r j ).

FIG. 2. Diagrams contributing to the configurational averaged
Green’s function. The performance of the averaging procedure is
symbolized by dashed lines. Correlated averaging is denoted by
joint lines.
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F~r8,r!5F̃~r8,r!1s~r8!d~r82r!. ~38!

In order to investigate the consequences of this decomposi-
tion we insert Eq.~38! into ~29!. Doing so, the effect is a
partial summation of diagrams. Owing to this partial summa-
tion the unrenormalized transition probabilities~18! are re-
placed by renormalized ones according to

w̃~r8,r!5
w~r8,r!

11s~r8!w~r8,r!
. ~39!

Furthermore, the series for the propagatorP r̃ can be repre-
sented in the form

P r̃5w̃ r̃1w̃ r̃ F̃P r̃ , ~40!

where the quantityw̃ r̃ is the transition probability~17! with
w(r8,r1) replaced byw̃(r8,r1).

Let us now elaborate the structure of the functions(r)
further. Due to the fact that the functionP, like the functions
F andS, has to meet the requirements of detailed balance
and of probability conservation, the choice of the function
s(r) is not arbitrary. As on the level of transition probabil-
ties the fulfillment of these requirements is guaranteed by the
relations ~20! and ~21!, we demand that the renormalized
transition probabilities satisfy these relations too. This re-
quirement can be incorporated if the functions(r) is chosen
according to

s~r!5 fC~e!, ~41!

where f is a parameter depending neither on position nor on
energy.

To fix f we investigate the formula~36! for the conduc-
tivity further. After the insertion of Eq.~40! into Eq.~36! the
conductivity can be represented ass5s11s2. The contri-
butionss1 ands2 are given by

s15
e2b

2d E drde8der 2N~e8!N~e!W~r ue8,e!, ~42!

s25
e2b

2d E drdr1de8r 2C~e8!N~e8!

3$N~e1!dPr1
~r ,e8u0,e!

1s2dS~r2r 1ue8,e1!F~r 1ue1 ,e!%, ~43!

where

dP r̃~r8,r!5E dr1dr2w̃ r̃ ~r8,r1!F̃~r1 ,r2!P r̃~r2 ,r!,

~44!

W~r ue8,e!5C~e8!w̃~r ue8,e!. ~45!

Owing to the relation~21! the quantityW(r ue8,e) is sym-
metric with respect to its arguments.

Equation~42! has just the well known structure that one
would expect to encounter in an effective medium theory. Its
contribution to the conductivity is proportional to the square
of the hopping length multiplied by an effective transition
probability. Furthermore, the characteristics of the inelastic
transitions result in integrations over the initial and the final
energy. The occurrence of two integrations prevents the in-
troduction of a spectral density for the conductivity or the
usage of the Kubo-Greenwood formula, suggested in Ref. 4.

The contribution ofs2 to the conductivity is proportional
to the fluctuationsF̃, i.e., it vanishes for vanishing fluctua-
tions. In order to fixf we require that

s250 . ~46!

Doing so, we obtain a self-consistency equation for the ef-
fective mediumf . Furthermore, the frequency dependence of
the parts2 results in a frequency dependence of the effective
medium.

As Eq. ~46! is a complicated implicit equation for the
effective mediumf , the determination off by means of~46!
seems to be hopeless. Therefore, a further approximation is
needed. Assuming the fluctuations to be small, we linearize
the self-consistency equation~46! with respect to the fluctua-
tions. This procedure is analoguous to the calculation of the
effective medium on the basis of the vanishing of thet ma-
trix in the standard perturbation theory. Retaining only the
first order contribution of Eq.~46! with respect to the fluc-
tuations, we obtain

05E drde8deC~e8!N~e8!r 2

3 H E dr1N~e1!dPr1
~1!~r ,e8u0,e!1sdS~1!~r ue8,e!J ,

~47!

where

dP r̃
~1!~r ,e8u0,e!5E dr1dr2w̃ r̃ ~r ,e8ur1!F̃~r1 ,r2!

3~w̃ r̃ ~r2u0,e!, ~48!

dS~1!~r ue8,e!5E dr1F̃~r2r 1ue8,e1!w̃r ,e8~r1u0,e!.

~49!

To eliminate the fluctuationsF̃ we replaceF̃ by F according
to Eq. ~38!. However, as the full functionF is calculated
from the Dyson equation~28! this procedure results again in
an infinite series in the fluctuations. As we have already ne-
glected higher-order terms in the fluctuations retaining these
contributions is not justified. Therefore, we have to use the
the lowest order approximation of the functionF with re-
spect to the fluctuations. Doing so, the self-consistency equa-
tion takes the form

2E dkde8dedẽN~ ẽ !N~e8!¹W~ku ẽ,e8!F~kue8,e!¹W~kue,ẽ !5 f E dkde8deN~e8!N~e!@¹W~kue8,e!#2, ~50!
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whereW(kue8,e) is the Fourier transform of the quantity
~45!. The functionF, defined by

F~kue8,e!5F~kue8,e!C21~e!, ~51!

contains the functionF only to lowest order with respect to
the fluctuations. Accordingly, it satisfies the equation

sC~e8!F~kue8,e!5d~e82e!1E de1N~e1!

3$W~kue8,e1!F~kue1 ,e!

2W~0ue8,e1!F~kue8,e!%. ~52!

To complete the approximation scheme we elaborate the
transition probabilities further. Using Eq.~45! the effective
transition probabilities take the form

W~r8,r!5
G~r8,r!

11 fG~r8,r!
, ~53!

where

G~r8,r!5nexpS 22auR2R8u

2
ue82e f u1ue2eFu1hue82eu

2kT D . ~54!

The functionG(r8,r) is the continuous analog of the quan-
tity Gm8m defined by Eq.~3!. The parameterh entering Eq.
~54! is equal to 1 for weak and 0 for strong coupling with
phonons. Whereas in the first case the factorn is only
weakly temperature dependent, it is of activation type in the
latter case. Using Eqs.~53! and ~54! we obtain

W~kue8,e!5nexp~2rc!E dR
eik•r

11exp@2rc12aR1~ ue82eFu1ue2eFu1hue82eu!/2kT#
, ~55!

where rc5 lnfn is a dimensionless parameter, which mea-
sures the critical length of a hop. As we are interested in the
region of largerc we approximate the integrand in Eq.~55!
by a step function, which is zero for
rc.2aR1@ ue82eFu1ue2eFu1hue82eu#/2kT. Doing so,
we obtain

W~kue8,e!5nexp~2rc!S 2pm

q D d/2S rc
2a D dJd/2~qm!Q~m!,

~56!

whereJn(x) is the Bessel function,Q(x) the step function,
q5rck/(2a), andy5e/(2kTrc) . The quantitym entering
Eq. ~56! is defined by

m512uy82yFu2uy2yFu2huy82yu. ~57!

Approximation~56!, which relies on the properties of Fermi
integrals, is strongly related to the ideas of percolation
theory.1 This description corresponds to a transition to the
picture of a hypersphere in a (d12)-dimensional space with
coordinatesR, e8, ande. The parameterrc has the interpre-
tation of the critical diameter at which hopping conduction
occurs. However, rather often only jumps across the Fermi
surface are taken into account, which permits the consider-
ation of the percolation problem in a (d11)-dimensional
space with coordinatesR ande82e.9

VI. TEMPERATURE AND FREQUENCY DEPENDENCE
OF THE CONDUCTIVITY IN THE VRH REGIME

In order to calculate the conductivity we insert the effec-
tive transition probability~56! into Eq. ~42!. Owing to the
step function the range of integration is restricted to a small
region of widthkT/rc near the Fermi level. If the density of

states within this range has no peculiarities we can replace
the density of states by the density of states at the Fermi
level. Doing so, we obtain

s~v!5
apd/2

~d13!~d14!G~21d/2!

ne2NF
22kTrc

d14

~2a!d12

3exp~2rc!, ~58!

whereG(x) is the Gamma function anda is a numerical
coefficient, which is equal to 4 for strong coupling and 3/2
for weak coupling with phonons. The frequency dependence
of the conductivity is entirely contained in the frequency
dependence of the effective medium.

To elaborate the dependence of the conductivity on the
frequency and on the temperature further we have to solve
the self-consistency equation~50!. However, as mentioned
above, the calculation of the effective mediumf relies on the
solution of the integral equation~52!. Only in the case of
NNH, whereN(e)5nd(e), does the integral equation~52!
reduce to an algebraic equation which can be solved easily.
In this case, Eq.~52! describes diffusion in an effective ho-
mogeneous coordinate space. As for NNH our results agree
fully with those obtained in Ref. 8, we do not pursue this
problem further.

In the case of VRH Eq.~52! takes into account the inelas-
tic character of the transitions and describes diffusion in a
four-dimensional space with coordinatesR ande. In particu-
lar, for homogenuous particle distributions (q→0) it de-
scribes the diffusion of energy without mass transport.

Owing to the difficult structure of the integral equation
~52! further progress seems to be impossible. However, it
turns out that for low frequencies a lot of physical informa-
tion can be extracted from the structure of the functionF.
Using the dimensionless coordinates introduced above, the
integral equation~52! can be rewritten in the form
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s
~2a!dexp~rc!C~2rcy8kT!f~quy8,y!

nNFkTrc
d11

5d~y82y!1E dy1@v~quy8,y1!f~quy1 ,y!

2v~0uy8,y1!f~quy8,y!#, ~59!

where

f~quy8,y!5
nNF~kT!2rc

d12

~2a!dexp~rc!
F~kue8,e!, ~60!

v~quy8,y!5S 2pm

q D d/2Jd/2~qm!Q~m!. ~61!

Furthermore, the self-consistency equation~50! takes the
form

2~2a!d

NFkTrc
d11E dy8dydy1dqq

d21
dv~quy1 ,y8!

dq
f~quy8,y!

dv~quy,y1!
dq

5E dy8dydqqd21S dv~quy8,y!

dq D 2. ~62!

In the dc case the left hand side of Eq.~59! vanishes. Therefore the functionf (0)5fus50 is determined from the equation

E dy1$v~0uy8,y1!f
~0!~quy8,y!2v~quy8,y1!f

~0!~quy1 ,y!%5d~y82y!. ~63!

As the functionf (0) depends only on the coordinatesq, y8, andy its further calculation leads only to a determination of a
numerical coefficient entering the self-consistency equation~62!. Comprising this contribution into a parameterA, we obtain

rc5S T0T D 1/~d11!

, ~64!

whereT052A(2a)d/NFk. The coefficientA is determined from the equation

A5
*dy8dydy1dqq

d21@dv~quy1 ,y8!/dq#f~0!~quy8,y!dv~quy,y1!/dq
*dy8dydqqd21@dv~quy8,y!/dq#2

. ~65!

Inserting the expression~64! into Eq. ~58! we obtain

s~0!5
aApd/2

~d13!~d14!G~21d/2!

e2NFn

a2 S T0T D 3/~d11!

3expF2S T0T D 1/d11G . ~66!

The exponential factor occurring in Eq.~66! obeys Mott’s
law. The preexponential factor is proportional toT23/d11. It
is to be mentioned that the preexponential factor has been
investigated by a numbers of authors.1 However, as all those
investigations are based on the notion of the correlation
length of a critical cluster and therefore rely on the critical
index, the results differ from our result.

Let us now investigate the frequency dependence of the
conductivity. This dependence is entirely contained in the
frequency dependence of the parameterrc . In the frame-
work of percolation theory it corresponds to a decrease of the
critical cluster size with increasingv.10 Below we restrict
the calculation to a range of small frequencies, which is de-
termined as@rc(0)2rc(v)#/rc(0)!1.

To calculate the frequency dependence of the effective
medium we expand the functionf up to the first order with
respect to the parameters. Doing so, we obtain

f~1!5
sT0exp~rc!

2AnTrc
d11E dy1f

~0!~quy8,y1!C~2rckTy1!

3f~0!~quy1 ,y!. ~67!

For largerc the quantityC(2rckTy1), which is given by
C(2rckTy1)5@2cosh(rcy1)#

22, is a strongly peaked function
centered aty150. As the functionf (0) is slowly varying as
compared toC(2rckTy1), the integration in Eq.~67! can be
approximately performed and yields

f~1!5
sT0exp~rc!

4AnTrc
d11 f~0!~quy8,0!f~0!~qu0,y!. ~68!

Taking into account the first order contribution~68! the self-
consistency equation~62! reads

rc
d115

T0
T S 11

sBT0
2nA2Trc

d12 exp~rc! D . ~69!

The numerical coefficientB is given by
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B5
*dy8dydy1dqq

d21@dv~quy1 ,y8!/dq#f~0!~quy8,0!f~0!~qu0,y!dv~quy,y1!/dq
*dy8dydqqd21@dv~quy8,y!/dq#2

. ~70!

To obtain the frequency dependence we replaces by 2 iv.
Furthermore, we use Eq.~58! for the conductivity to cast Eq.
~69! into the form

s~v!

s~0!
ln

s~v!

s~0!
5 i

v

v0
, ~71!

wherev0 is given by

v05
2A2~d11!

B
nexpF2S T0T D 1/d11G

;s~0!
a2

e2NF
S TT0D

3Y ~d11!. ~72!

To obtain Eq.~71! we have neglected the frequency depen-
dence of the preexponential of the conductivity.

The equations~71! and~72! for the frequency dependence
of the conductivity and the characteristic frequencyv0 rep-
resent the main concrete result of our work.

VII. RESULTS

In the present article we have developed an effective me-
dium theory which takes into account the effect of inelastic
scattering. In contrast to other effective medium theories our
approach does not focus on a particular admittance of a cer-
tain random resistor network but on the diffusion processes
in a disordered medium. Within our theory the characteristics
of inelastic scattering are reflected by integral equations with
respect to the energy. The structure of these equations shows
clearly the inapplicability of notions like a spectral density
for the conductivity used in earlier effective medium treat-
ments. Only for NNH, where the transitions occur on a sur-
face with fixed energy, do the integral equations reduce to
algebraic ones and the introduction of a spectral density for
the conductivity becomes admissible. In the presence of in-
elastic scattering the diffusion process is described by the
quantum diffusion equation~52!, which takes into account
the Fermi correlation reproducing the characteristics of
VRH. For NNH or for hopping motion of small polarons in
crystals this equation reduces to the standard diffusion equa-
tion in configuration space. In that case the features of the
disorder show up in a strong dependence of the diffusion
coefficient on the frequency for small frequencies. In the
time dependent representation this dependence corresponds
to a non-Markovian behavior of the diffusion process, a fact
which is strongly related to the theory of dispersive
transport.11 The fact that in the presence of inelastic scatter-
ing the diffusion equation is an integral equation should be
reproduced by the theory of dispersive transport. However,
this problem has not been tackled in the literature so far.

One of the main advantages of the method is the fact that

it does not rely on the introduction of the nearest neighbor
conception but leads to an automatic determination of the
critical hopping length. Thus it leads to a temperature depen-
dent hopping length for VRH and to transitions between
nearest neighbors in the configuration space for NNH. More-
over, the applicability of the method is not restricted to either
of these limiting cases but covers the whole range of cross-
over between them. Furthermore, it is applicable to arbitrary
types of disorder. To do so, it is only nessecary to modify the
averaging procedure and its application to the structural fac-
tor h. If one performed these modifications the method
would permit the study of systems with short range order
too. To do so, the dependence of the structural factorh on
the wave vector could be taken from neutron scattering ex-
periments~e.g., on amourphous materials or liquids! which
reproduce the characteristics of the short range order.

Furthermore, we have employed our formalism to calcu-
late the conductivity in the VRH regime. In that case a natu-
ral restriction of the transport processes to a region near the
Fermi surface appears. For vanishing frequencies of the driv-
ing field we obtain Mott’s law. However, the preexponential
factor obtained by means of our method differs from those
obtained by other methods. In addition, we have derived a
simple formula for the frequency dependence of the conduc-
tivity for low frequencies. Although Eq.~71! has not been
derived so far on the basis of a microscopic foundation for
VRH, but only for NNH,8 it has been frequently used for the
discussion of the experimental data.12,13

It is to be mentioned that the derivation of Eq.~71! pre-
sumes the convergence of the integrals in Eq.~70!. In the
NNH regime the nominator of Eq.~70! diverges logorithmi-
cally for smallk. In this case the corrections to Eq.~69! can
be shown to be proportional to ln~v/v0!. For three-
dimensional systems the integrals in Eq.~70! converge. In
that case a further consideration of the corrections to Eq.~69!
reveals that they are of orderv3/2. In the VRH regime the
situation is obscured by the absence of an explicit solution of
Eq. ~52!. However, owing to Eq.~34! and Eq.~52! it is to be
expected that the same statement holds also in the VRH re-
gime.

However, the investigation of the temperature dependence
of the conductivity in the range of crossover obviously re-
quires further numerical calculations or the usage of addi-
tional approximations. Such an approximation could be the
usage of the concept of quasielastic scattering, which permits
the diffusion equation~52! to be written as a differential
equation. Owing to the universal charcter of the method pre-
sented above we hope that it proves to be useful in studying
the influence of a magnetic field on hopping conduction. As
the latter problem requires at least the consideration of three
site probabilities, further modifications have to be performed.
Further work in this direction is in progress.
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