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Effective medium theory of hopping transport
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An effective medium theory for the calculation of the conductivity in the presence of inelastic scattering has
been developed. Our approach turns out to be quite universal and applicable to arbitrary types of disorder. In
contrast to other effective medium theories, our method does not rely on the introduction of an ordered lattice
but focuses on the diffusion processes in the disordered media. We obtain a quantum diffusion equation in the
presence of inelastic scattering which takes into account the Fermi correlation. The form of this equation shows
the inapplicability of the concept of a spectral density for the conductivity used in earlier effective medium
treatments. Furthermore, we apply our formalism to the calculation of the conductivity in the variable range
hopping regime. For the dc conductivity we obtain Mott’s law. In addition, we derive a simple formula for the
frequency dependence of the ac conductiVi§0163-1826)00132-4

[. INTRODUCTION tected in Ref. 5, where the standard effective medium theory
was used. In this approach the conductances were considered
So far, numerous papers have been devoted to the studg be random quantities in ad{ 1)-dimensional space,
of hopping transport in disordered med&ee Refs. 1 and 2 whered is its spatial dimension. Accordingly, an indepen-
and references thergirOne of the most intricate problems in dent averaging over the initial and the final sites was per-
this field is the calculation of the impurity-averaged conduc-formed.
tivity. To tackle this problem several methods have been The reasons for the deviation of the effective medium
applied. Among them, the percolative approach and the efresult from the percolative one were discussed in Ref. 6 and
fective medium theory have proved to be particularly usefulRef. 7. To achieve correspondence, the authors of Ref. 6
Both methods rely on an interpretation of the system ofsuggest restriction of the averaging procedure to sites having
transport equations as a random resistor network. While thgnergies of ordek TIna/o, near the Fermi level, where is
percolative approach takes advantage of the fact that the aghe conductivity ando, a normalization factor. In conse-
mittances of the network vary by many orders of magnitude,,ence of this restriction the site density becomes tempera-
and therefore the current mainly follows the path of least, ¢ dependent and the conductivity obeys Mott's law. How-

resistance, the standard effective medium théfaguses on ever, it is not clear how to incorporate this restriction into the

a typical admittance of the network. This admittance is CONiondard effective medium theory.

sidered to be placed in a network with equal admittances The aim of the present paper is the development of an
forming an ordered lattice. The ordered network is chosen toﬁc " di h hich ith the above-
imitate the average surroundings as well as possible, which ccive medium heory which copes wi e above
is done by requiring that the electric field around the typicalment'oned difficulties. Moreover, the theory should also be

admittance is equal to the homogeneous field of the effectiv@PPlicable to the study of the influence of a magnetic field on
medium. the transport properties in the hopping regime. To do so, we
For nearest neighbor hoppitiyNH), where the spread of generaI!ze an effective medlum treatment Whlch was sug-
the energy levels is neglected, both methods lead to similagested in Ref. 8 for the calcqlatlon pf the corjductlwty in the
results, which fully agree with the experimental situation. INNNH regime to the case of inelastic scattering. The advan-
the case of variable range hoppifMRH), where the transi- tage of this method lies in the fact that it does not rely on the
tions are inelastic, the situation is more intricate. In this caséntroduction of an ordered lattice, which implies the defini-

the application of percolation theory to the calculation of thetion of nearest neighbors, but focuses on the diffusion pro-
conductivity leads to Mott’s law. cesses in disordered media. In particular, in the case of VRH,
In Ref. 4 Mott's law was found by means of a modified where the transitions do not occur between nearest neighbors
effective medium theory, which is based on the Kubo-in the d-dimensional configuration space, but between near-
Greenwood formula. However, the weakness of this apest neighbors in ad+ 1)-dimensional space, this fact is cer-
proach is that the conductivity is expressed through the spegainly advantageous.
tral density, which ignores the inelastic character of the Below we represent an effective medium approach that is
transitions. Accordingly, only an averaging over the differ- based on a transition from discrete to continuous coordinates
ence of the site energies was performed. in a (d+1)-dimensional space. The method turns out to be
On the other hand, a deviation from Mott's law was de-quite universal and applicable to arbitrary types of disorder.
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In our approach the diffusion in alf- 1)-dimensional space Here w, is the frequency of a phonon with wave vectpr

turns out to be most important. The diffusion process, whichy, the electron-phonon coupling constar®, =R

also implies the diffusion of energy between environments-R,,, N is the number of sites of the sytem under consid-

with different energies, leads to integral equations with re-eration, and

spect to the energy. Owing to the Fermi correlation the ker- L

nel of these integral equations not only depends on differ- _ 2 Wq

ence coordinates but also on sum variables. The character of ST_ﬁzq Yol 1~cosq- Rm’m)]COt*(m

these integral equations shows clearly the inapplicability of )

notions like the spectral density for the conductivity in the TNe resonance integral, ,, are supposed to have the form

VRH regime. Moreover, we obtain the quantum diffusion _

equatior? in the presence of inelastic scacitering, which fully I m = JoeXpl = 2a| Ry m), ®

takes into account the Fermi correlation reproducing thevherea ! is the localization length. Expressi¢4) is valid

characteristics of VRH. for arbitrary electron-phonon coupling strength. Owing to
Furthermore, we demonstrate the applicability of ourtheir definition the quantitiey,, ,, are symmetric with re-

method to the investigation of the frequency dependence ddpect to their indices. Furthermore, they depend only on dif-

the conductivity in the VRH regime. Here, the advantages oference coordinates, i.e., they have the form

our method show up in the emergence of a natural restriction

of the electronic transport processes to a small region near Ymrm= Y| R/ ml| €mrml)- (7)

the Fermi surface, as suggested in Ref. 6.

. 5

To solve Eq.(2) we use the Green’s function method. In
reminiscence of the NNH problem we require the Green’s

Il. THE CONDITIONAL PROBABILITY FUNCTION function P to satisfy an equation of the type

In order to establish a theory for the conductivity we start
with an expression for the current. In the linear approxima- SPmm= 6m’m+2” (P Vewrm= ProvmVenne) . (8)
tion with respect to the external electric fidld the current m
can be written in the form To achieve correspondence we choose the coefficiepts

and the potential¥,, , in accordance with the rate equations
- e’Bs (2). Doing so, we obtain the following equation for the
1= % RnCm(UntE-Rpy). (1)  Green’s functionP:

. . . . C C u
HereC,,=f(1—f,), wheref,,=f(e,) is the Fermi distri- SPym= 5m,m+2 ym,,m< \/C—um,mH— \/C—um,m)
mH m” m

bution function with site energy,,, R, is the position vec-
tor of sitem, Q) is the volume,3 the inverse temperature, ©)
e the unit charge, and= —iw, wherew is the frequency of  Using the solution of Eq(9) the electrochemical potentials
the applied external electric field. The quantil, has the  are determined according to
interpretation of the electrochemical potential at sitelt is
related to the chemical potential u,, through
Up,=—E-R,+umn/e. To obtain the dc current the limit CmUm=—2 SCn (B R/ )Prmrm- (10
s—0 has to be taken in Edql). "

In Order to Calcu'ate the quantitym we use the rate equa_ OW|ng to the pl’inciple of detailed balance and the law of
tions linearized with respect to the external electric ffeld. Probability conservation, the Green’s functiBnsatisfies the

They are given by sum rules
> SCPrmvm=C, (1D)
SCr(Un+tE R =3 Tryn(Up=Up). (2) 2 SCmPrim=Crm
The quantitied",,,,, which are related to the two site tran- > sPym=1. (12
sition probabilities entering the rate equations in the absence m
of the field, can be represented in the form Both properties can be easily derived from E®). Using the
sum rules the current can be represented in the form
I'ivm= Yo mVCmCrrs ©) 62,882
where y,,, is defined by 1=50 mz'm R mCm' Pmrm(E- Rirm) - (13
32 . . The introduction of the Green’s functidd reminds one of
Yo m= ;T;Zmefstf dt exr{%(em,—em)t the diffusion function in a four-dimensional space with co-
—w ordinatesp,,={Rn.en}. However, as the transition prob-

2 abilities  between the sites, ie., the quantities
S Vq[l__COS(CI' Rm’m)]cos(w t)|=1!. @  YmmVCa/Cp, are nonsymmetric and moreover do not only
g Nsinh(7wy/2kT) d depend on difference coordinates but also on sum variables,
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the nature of this diffusion process is rather strange. This fact
is obviously related to the Fermi correlation acting differ-
ently for NNH and for VRH. In the latter case the transitions

inelastic. Theref . | d with dif FIG. 1. Diagrams contributing to the Green'’s functibn All
are' lne. astic. Therefore, or.]e IS. not.on y concerned with di “points are numbered consecutively. The empty point denotes the
fusion in space but also with diffusion of energy.

single structural factor;. A solid line starting at the point and
ending atj represents a facta®(p; — p;)/s. Every full dot is asso-
lIl. THE CONTINUOUS REPRESENTATION ciated with a potentiaV/(p; ,p;).

= O— + O—&— + O—o—— + -

In order to proceed further it is expedient to convert to x N
continous coordinates. This can be achieved by defining the p— E 2 ( ) (22)
new Green’s function Sn=0

The series expansiof22) can be represented diagrammati-
P(p’,p)= 2 S(p" =P )Pmrmd(p—pm), (14 cally in the customary way depicted in Fig. 1. As the lowest-
m’m order term in(22) contains the functior, the diagrammatic
where p=(R,€). Using the definition(14) the equation of representation differs slightly from those considered in the

motion for the Green’s functiori9) can be written in the theory of impurity scattering. o
form In this representation the requirements of the principle of

detailed balance and the law of probability conservation read

sP(p",p)=n(p")é(p"'—p)+ f dpiP(p",p1)V(p1,p),

s f dpsP(p’,p)=7(p"), (23

wheren(p) =2,,0(p— pm)- In three dimensions the function

7n(R) represents the well known structural factor describing f dp’sC(e")P(p",p)=C(€)7(p). (24)

the atomic structure of materials. The potenWalwhich is

linear in the functiony containing the disorder, is given by Using the new Green'’s functioR the conductivity can be
represented as

V(p’,p)=f dpw, (p".p) 7(p1), (16) e?ps?
Tap= 50 | dp'dp(R'=R)(R'=R);C(e")P(p’,p).

where (25

W, (p",p)=W(p",p1)[d(p1=p) = 8(p'=p)], (17) IV. A DIAGRAMMATIC THEORY FOR THE

CONFIGURATIONAL AVERAGED

W' p)= (' ) g((:,))_ 19 GREEN'S FUNCTION

In order to calculate the configurational averaged Green’s
Here y(p',p)= ym’m|pmr:p',pm:p' Owing to their structure, function we apply the methods of standard perturbation

the quantitieg17) have the properties theory. To do so, we first define a proper averaging proce-
dure. In order to calculate the configurational average we

W, (p',p)=0, (19) assume the sites to be statistically independently and uni-

P formly distributed in space. Furthermore, we suppose the
probability distribution of site energies to be given by some
J dpwpl(p’,p)zo_ (200 function p({en}). Therefore, the configurational average of
an arbitrary quantityA depending on the random variables

In addition, the transition probabilitied8) satisfy the rela- {Rm} and{ep} is calculated according to
tion
C(ﬁl)W(p,,p):C(€)W(p,p,). (21) <A> f H demp({fm})A({Rmifm} (26)

Equations20) and(21) represent the law of probability con- In particular, the application of the averaging procedure to
servation and the principle of detailed balance on the level othe function# serves as definition for the density of states
transition probabilities. Due to properf{l9) double occu- N(e) of the configurational averaged system, i.e.,,
pacy of points in the configuration space is prevented. (n7(p)Y=N(e).

Equation(15) has the advantage that all random quantities In order to calculate the configurational averaged Green’s
are comprised in the Green'’s functiéhand in the function function we average the seri¢®2) term by term. Further-
7. Furthermore, the expression for the Green’s funcBois  more, we represent the resulting expansion in the customary
guite close to the Green'’s function equation usually considway depicted in Fig. 2.
ered in the theory of impurity scattering. Reiterating Eq. It can be seen from Fig. 2 that the set of all diagrams can
(15), we obtain the following equation for the Green'’s func- be decomposed into two subsets, the Setontaining all
tion P: diagrams connected with the empty point and the ckss
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FIG. 4. Diagrams contributing to the irreducible p&kt Every
solid line is associated with a functida(p; ,p;).

O——t—t— + C——— + I, (p",p)=0, (30)

, ) f dpll5(p’,p)=0. (32)
C)—‘/—\O— + O;b—b— + By means ofll; the irrducible parl is obtained from the
equation
H(p’.p)=f dpN(e)II5(p’,p). (32)

———

Furthermore, the diagrammatic expansion for the function

i in Fig. 4 can into the form
FIG. 2. Diagrams contributing to the configurational averagedS depicted g- 4 can be cast into the fo

Green'’s function. The performance of the averaging procedure is
symbolized by dashed lines. Correlated averaging is denoted b)S(p’,p):N(e')(ﬁ(p'—p)—l—f dplF(p’,pl)Hp,(pl,p)).
joint lines. (33)

containing all other diagrams. Owing to this decompositionThe relationg23) and (24) result in additional requirements
the configurational averaged Green’s function can be writteyn the functionsS and F. Using the sum rules they can be

as shown to satisfy the relations

P_(p’,p)=f dp1S(p’,p1)F(p1,p)- (27) sf dpF(p'.p)=1, (34)
Furthermore, the clasB can be divided into the class of
irreducible diagram$l and the class of reducible diagrams. f dp'C(€)S(p’,p)=C(e)N(e). (35)
Owing to this procedure the functioR can be shown to '

satisfy the Dyson equation In order to obtain an expression for the conductivity we in-

sert P in Eq. (25). Furthermore, we take into account the

SF(p',p)=5(p',p)+f dp1II(p’,p1)F(p1.p). (28  translational invariance and isotropy of the impurity aver-
aged system. Doing so, we obtain

To obtain the functional dependence of the functibrwith

respect toF we have to perform a summation of diagrams

contributing toll. However, as the consideration of all dia-

grams is impossible we are forced to use an approximation.

To perform a partial summation we neglect all interference 2 _ ,

diagrams. In consequence of this neglect the functidrend S f dp1dS(r—ryle ’61)F(r1|61'6)]’ (36)

S can be represented by the diagrams depicted in Fig. 3 and

Fig. 4. where

The set of diagrams depicted in Fig. 3 can be generated by
means of the propagatdi, being a solution of the equa- 5s(r|€',€):f dpiF(r—rq|€’ eIl o (ry,€1|0€).

tion 37

e’s )
o= Ef drde’'der C(e’)N(e’)[H(r|e',e)

5 =w5+w;FII5. (29
. . : . V. THE EFFECTIVE MEDIUM
Here we have used a matrix notation for brevity. Owing to

the relations(19) and (20) the propagatofly satisfies Despite the neglect of interference diagrams the system of

equations(28), (29), and (32) is still complicated and non-
AN linear. To solve it approximately we generalize the effective

M = 6 4 6t | G - o - - medium theory suggested in Ref. 8 to the case of VRH.
To introduce the effective medium we decompéseto

FIG. 3. Diagrams contributing to the functid® Here every WO parts, one part containing the effective medium and a
solid line connecting the pointsandj is associated with a function partF describing the deviations from the effective medium
F(pi.pj)- solution, according to
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F(p',p)=F(p',p)+a(p")d(p'—p). (39) Equation(42) has just the well known structure that one

) _ ) would expect to encounter in an effective medium theory. Its
In order to investigate the consequences of this decomposgpntribution to the conductivity is proportional to the square
tion we insert Eq(38) into (29). Doing so, the effect is a of the hopping length multiplied by an effective transition
partial summation of diagrams. Owing to this partial summaxprobability. Furthermore, the characteristics of the inelastic
tion the unrenormalized transition probabiliti€k) are re-  transitions result in integrations over the initial and the final

placed by renormalized ones according to energy. The occurrence of two integrations prevents the in-
w(p' .p) troduction of a spectral density for the conductivity or the
Wp',p)= ’f P R— (39) usage of the Kubo-Greenwood formula, suggested in Ref. 4.
1+o(p")W(p’,p) The contribution ofo, to the conductivity is proportional
Furthermore, the series for the propagdtby can be repre- to the fluctuationd=, i.e., it vanishes for vanishing fluctua-
sented in the form tions. In order to fixf we require that
H;=\TV7;+V~V75FH;;, (40 02=0. (46)

Doing so, we obtain a self-consistency equation for the ef-
fective mediumf. Furthermore, the frequency dependence of
the parto, results in a frequency dependence of the effective

where the quantityv; is the transition probability17) with
w(p',p1) replaced byw(p’,p,).

Let us now elaborate the structure of the functiofp) di
further. Due to the fact that the functié like the functions ~MEaUM-

F and S, has to meet the requirements of detailed balanceffASt. Eq. (43.) :Tsfathcognpillcatgd t!mp“ﬂ) equation foL{Gthe
and of probability conservation, the choice of the function®''cCUve mediunt, the determination of by means of46)

o(p) is not arbitrary. As on the level of transition probabil- seems to be hopeless. Therefore, a further approximation is

ties the fulfillment of these requirements is guaranteed by th eeded. Ass_ummg the fluptuatlons to be small, we linearize
relations (20) and (21), we demand that the renormalized . € self-c_on5|stency equatuﬁﬂ;G) with respect to the fl_uctua-
transition probabilities satisfy these relations too. This re_t|ons. This procedure is analoguous to the calculation of the

guirement can be incorporated if the functiefp) is chosen effeptlve medium on the baS|_s of the vanlshlng .Of thea-
according to trix in the standard perturbation theory. Retaining only the

first order contribution of Eq(46) with respect to the fluc-
a(p)=fC(e), (41 tuations, we obtain

wheref is a parameter depending neither on position nor on
energy.
To fix f we investigate the formul&36) for the conduc-

OZJ drde’deC(e’)N(e’)r?

tivity further. After the insertion of E¢(40) into Eq.(36) the « J dp N(e )TV (r €'|0,€)+s5SV(r|€’€)
conductivity can be represented as o+ 0. The contri- PSR 2 T )
butionso; ando, are given by (47)
e’B where
1= drde’'der®N(e')N(e)W(r|e',e), (42

, 5H%1)(r,6’|0,6)=J dp1dp,Wi(r,€'[p1)F(p1,p2)
_e B 12 ’ ’
Uz_ﬁf dpdp,de’'r“C(e')N(€") X(VVE(PZ|O7E)1 (48)

X{N ST, (r,€'|0, ~ —
(NCea) oL, (1, €’[0.€) as<1><r|e',e>=Jde(r—r1|s',el>wr,5,<p1|o.e>.

+5255(r—I’1|6',61)F(I’1|61,6)}, (43) (49)
where To eliminate the fluctuations we replacéz by F according
to Eg. (38). However, as the full functiorF is calculated
5H;(p/'p):f dpdpaW(p’,p1)F(p1.p2)115(p2.p), from t.ht_-:‘ Dyson eguat|0628) thls_, procedure results again in
an infinite series in the fluctuations. As we have already ne-
(44) glected higher-order terms in the fluctuations retaining these
W(r|e',e)=C(e)T(r|e e). (45) contributions is not justified. Therefore, we have to use the

the lowest order approximation of the functiéhwith re-
Owing to the relation21) the quantityW(r|e’,€) is sym-  spect to the fluctuations. Doing so, the self-consistency equa-
metric with respect to its arguments. tion takes the form

ZJ dkde’dedEN('E)N(e')VW(kE6’)<I)(k|e',e)VW(k|e,?)=ff dkde’'deN(e')N(e)[VW(k|e',€)]?,  (50)
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where W(k|e',€) is the Fourier transform of the quantity T'(p',p)
(45). The functiond, defined by W(p',p)= T (" p)’ (53
O (k|e',e)=F(K|e',e)C*(e), (51 Wwhere
contains the functiofir only to lowest order with respect to
the fluctuations. Accordingly, it satisfies the equation T'(p',p)= vexp{ —2a|R—R’|
’ ' ’ |E,_€f|+|6_6F|+h|6,_6|
sC(e')D(k|e',e)=6(e'—€)+ | de;N(e) - (54)
2kT
X{W(k|€',e)) D (K|€y,€) The functionI'(p’,p) is the continuous analog of the quan-

, , tity I' v,y defined by Eq(3). The parameteh entering Eq.
~W(Ole"e)@(k|e"e)}. (52 (54) is equal to 1 for weak and 0 for strong coupling with
To complete the approximation scheme we elaborate thphonons. Whereas in the first case the factois only
transition probabilities further. Using E@45) the effective  weakly temperature dependent, it is of activation type in the
transition probabilities take the form latter case. Using Eq$53) and (54) we obtain

eik~r

1+exd —pc+2aR+(|e' —ep|+|e—€g|+hle' —€])/2kT]’

W(k|e’,e)=veX|:(—pc)J dR (55

where p.=Infr is a dimensionless parameter, which mea-states within this range has no peculiarities we can replace
sures the critical length of a hop. As we are interested in théhe density of states by the density of states at the Fermi
region of largep, we approximate the integrand in EG5) level. Doing so, we obtain

by a step function, which is zero for

p>2aR+[|€ —ep|+|e—eg|+h|e —€]1/2kT. Doing so, B am¥? ve?N22kTpd**
we obtain o) T3 dr HT(2+d2)  (2a)72

2mu)\ 92 p )\ X expl—pe), (58
W(k|6’,6)=VeXp(—Pc)(T) (z) Ja(qu)®(un), whereI'(x) is the Gamma function and is a numerical

(56) coefficient, Whi_ch is_equal to 4 for strong coupling and 3/2
for weak coupling with phonons. The frequency dependence
whereJ,(x) is the Bessel function® (x) the step function, of the conductivity is entirely contained in the frequency
g=pk/(2a), andy=€/(2kTp.) . The quantityw entering dependence of the effective medium.
Eq. (56) is defined by To elaborate the dependence of the conductivity on the
frequency and on the temperature further we have to solve
1 vl —Tu—v | Rl — the self-consistency equatigq®0). However, as mentioned
p=1=ly =yel=ly=yel=hly" =yl ©7 above, the calculation of the effective meditimelies on the
Approximation(56), which relies on the properties of Fermi solution of the integral equatio(62). Only in the case of
integrals, is strongly related to the ideas of percolationNNH, whereN(e)=nd(e), does the integral equatioi®2)
theory! This description corresponds to a transition to thereduce to an algebraic equation which can be solved easily.
picture of a hypersphere in a4 2)-dimensional space with In this case, Eq(52) describes diffusion in an effective ho-
coordinateRR, €', ande. The parametep, has the interpre- mogeneous coordinate space. As for NNH our results agree
tation of the critical diameter at which hopping conductionfully with those obtained in Ref. 8, we do not pursue this
occurs. However, rather often only jumps across the Fermproblem further.
surface are taken into account, which permits the consider- In the case of VRH Eq52) takes into account the inelas-
ation of the percolation problem in al{ 1)-dimensional tic character of the transitions and describes diffusion in a

space with coordinateR and e’ — €.° four-dimensional space with coordinatesande. In particu-

lar, for homogenuous particle distributiong-{¢0) it de-

VI. TEMPERATURE AND FREQUENCY DEPENDENCE scnbeg the dlffuspn_ of energy without mass transport.
OF THE CONDUCTIVITY IN THE VRH REGIME Owing to the difficult structure of the integral equation

(52) further progress seems to be impossible. However, it
In order to calculate the conductivity we insert the effec-turns out that for low frequencies a lot of physical informa-
tive transition probability(56) into Eqg. (42). Owing to the tion can be extracted from the structure of the functibn
step function the range of integration is restricted to a smalUsing the dimensionless coordinates introduced above, the
region of widthkT/p. near the Fermi level. If the density of integral equation52) can be rewritten in the form
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(2a)%exp(pc)C(2pcy’ kT B(aly’.y) NE(KT)%pg "2
s R AV Y= gy PKI€hel (60
d/2
=5(y'—y)+Jdyl[v(qu’,y1)¢(q|y1,y) v(q|y’,y)=(2%) JarAp) O (). (61)
—v(0ly’,y))¢(aly’.y)], (59)

Furthermore, the self-consistency equati@®) takes the
where form

Z(ZQ)df , _,do(qlys.y") , du(alyyn) [ _1(dv(q|y’,y))2
NekTpd T dy’dydy,dgof d—q¢(Q|y ,Y)d—q— dy’dydqd “dq |- (62

In the dc case the left hand side of E§9) vanishes. Therefore the functiab{?= ¢|._, is determined from the equation

fdyl{v(OIy’,y1)¢<°)(QIy’,y)—v(qu’,y1)¢(°>(q|y1,y)}=5(y’—y)- (63

As the functiong(®) depends only on the coordinatgs y’, andy its further calculation leads only to a determination of a
numerical coefficient entering the self-consistency equab@h Comprising this contribution into a parameterwe obtain

To 1U(d+1)

whereTo=2A(2a)%Ngk. The coefficientA is determined from the equation

Al Jdy'dydy,dag® [dv(qlys,y’)/dql¢@(aly’,y)dv(aly,y1)/dq
Jdy’dydad Y[ dv(qly’,y)/dq]? '

(65

Inserting the expressiof64) into Eq. (58) we obtain d)(l):SToqupC)f dy100(aly’ I C(2pkTye)
A Ny T S+ Wﬁ Y1 aly .y PcK 1YL
p— F —
7O= G 3 dr AT 2+ dR) o (T) X ¢ O(qly1,y)- (67)

xex;{— (66) For largep. the quantityC(2p:kTy,), which is given by
C(2pkTy;)=[2coshp.y;)] 2 is a strongly peaked function

The exponential factor occurring in E¢66) obeys Mott's ~centered ay,=0. As the func_tiongb(o)_is slowly varying as
law. The preexponential factor is proportionalo@*1, |t~ compared taC(2pckTy;), the integration in Eq(67) can be
is to be mentioned that the preexponential factor has beefPProximately performed and yields
investigated by a numbers of authdrdowever, as all those
investigations are based on the notion of the correlation STeexp(po)
length of a critical cluster and therefore rely on the critical d)(l):ﬁ »9qly",006%(ql0y). (68
index, the results differ from our result. vTpe

Let us now investigate the frequency dependence of the

conductivity. This dependence is entirely contained in theraying into account the first order contributié88) the self-
frequency dependence of the paramedgr In the frame- consistency equatiof62) reads
work of percolation theory it corresponds to a decrease of the

critical cluster size with increasing.° Below we restrict

the calculation to a range of small frequencies, which is de- dr1 To sBT,

termined ag p.(0)— pc(®)]/pc(0)<1. pe = | 1F mﬁexp(pc) : (69
To calculate the frequency dependence of the effective ¢

medium we expand the functio$ up to the first order with

respect to the parametsr Doing so, we obtain The numerical coefficierB is given by

To) 1d+1
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5 Jdy'dydydad’ *{dv(qlys,y")/dql¢©(aly’,0¢*(al0y)dv(aly.y2)/dg

- = - . 70
7dy'dydad1[do(qly’ y)/dq]? (70

|
To obtain the frequency dependence we replty —iw. it does not rely on the introduction of the nearest neighbor
Furthermore, we use E8) for the conductivity to cast Eq. conception but leads to an automatic determination of the
(69) into the form critical hopping length. Thus it leads to a temperature depen-

dent hopping length for VRH and to transitions between
L“’) L“)):i i (72 nearest neighbors in the configuration space for NNH. More-
a(0) a(0) g’ over, the applicability of the method is not restricted to either
of these limiting cases but covers the whole range of cross-
over between them. Furthermore, it is applicable to arbitrary
types of disorder. To do so, it is only nessecary to modify the
averaging procedure and its application to the structural fac-
tor . If one performed these modifications the method

a,2 T 3 . .
~(0) (_) (d+1). (72) would permit the study of systems with short range order
e’Ne | Tg too. To do so, the dependence of the structural fagtan

wherewy is given by

2A%(d+1) To| M+t
(.UOZTVGX - ?

. the wave vector could be taken from neutron scattering ex-
To obtain Eq.(71) we have neglected the frequency depen periments(e.g., on amourphous materials or liquidghich

dence of the preexponential of the conductivity. I
The equation§71) and(72) for the frequency dependence reproduce the characteristics of the short range order.
of the conductivity and the characteristic frequengy rep- Furthermore, we have employed our formalism to calcu-
late the conductivity in the VRH regime. In that case a natu-

resent the main concrete result of our work. e i
ral restriction of the transport processes to a region near the
Fermi surface appears. For vanishing frequencies of the driv-
ing field we obtain Mott's law. However, the preexponential
VIl. RESULTS factqr obtained by means of our m.e.thod differs from 'those
_ _ obtained by other methods. In addition, we have derived a
In the present article we have developed an effective mesimple formula for the frequency dependence of the conduc-
dium theory which takes into account the effect of inelaStiCtivity for low frequencies_ A|th0ugh Eq(?_’]_) has not been
scattering. In contrast to other effective medium theories oUgerived so far on the basis of a microscopic foundation for

approach does not focus on a particular admittance of a CeyRH, but only for NNH8 it has been frequently used for the
tain random resistor network but on the diffusion processegiscussion of the experimental datd

in a disordered medium. Within our theory the characteristics It is to be mentioned that the derivation of Eg2) pre-

of inelastic scattering are reflected by integral equa_tions Wiﬂ%umes the convergence of the integrals in Eg). In the
respect to the energy. The struc_ture qf these equations sho H regime the nominator of Eq70) diverges logorithmi-
clearly the inapplicability of notions like a spectral density v Ik In thi th i to EG9)
for the conductivity used in earlier effective medium treat-C&Y 10r sSmatik- n this case the corrections to 9 can
ments. Only for NNH, where the transitions occur on a sur-b_e shqwn to be propo_rt|onal to_ (/wq). For three-
face with fixed energy, do the integral equations reduce t§imensional systems the integrals in Eg0) converge. In
algebraic ones and the introduction of a spectral density fof'at case a further con3|derat|02 of the corrections td&3).
the conductivity becomes admissible. In the presence of inféveals that they are of order’”. In the VRH regime the
elastic scattering the diffusion process is described by théituation is obscured py the absence of an exph_qt solution of
quantum diffusion equatiof52), which takes into account Ed.(52). However, owing to Eq(34) and Eq.(52) itis to be
the Fermi correlation reproducing the characteristics ofxpected that the same statement holds also in the VRH re-
VRH. For NNH or for hopping motion of small polarons in gime.
crystals this equation reduces to the standard diffusion equa- However, the investigation of the temperature dependence
tion in configuration space. In that case the features of thef the conductivity in the range of crossover obviously re-
disorder show up in a strong dependence of the diffusiomjuires further numerical calculations or the usage of addi-
coefficient on the frequency for small frequencies. In thetional approximations. Such an approximation could be the
time dependent representation this dependence corresponaisage of the concept of quasielastic scattering, which permits
to a non-Markovian behavior of the diffusion process, a facthe diffusion equation52) to be written as a differential
which is strongly related to the theory of dispersive equation. Owing to the universal charcter of the method pre-
transportt! The fact that in the presence of inelastic scattersented above we hope that it proves to be useful in studying
ing the diffusion equation is an integral equation should behe influence of a magnetic field on hopping conduction. As
reproduced by the theory of dispersive transport. Howeverthe latter problem requires at least the consideration of three
this problem has not been tackled in the literature so far. site probabilities, further modifications have to be performed.
One of the main advantages of the method is the fact thaurther work in this direction is in progress.
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