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The small energy anomaly in the single-particle density of states of disordered interacting systems is studied
for the zero-dimensional case. This anomaly interpolates between the nonperturbative Coulomb blockade and
the perturbative limit, the latter being an extension of the Altshuler-Aronov zero-bias anomaly atd50.
Coupling of the zero-dimensional system to a dissipative environment leads to effective screening of the
interaction and a modification of the density of states.@S0163-1829~96!04332-9#

I. INTRODUCTION

The density of states~DOS! of disorderedinteracting
electronic systems exhibits singularity near the Fermi en-
ergy. This phenomenon manifests itself in the suppression of
the tunneling conductance at small external bias and is re-
ferred to as zero-bias anomaly~ZBA!. It has been explained
and investigated theoretically by Altshuler and Aronov~AA !
in 1979 ford53, and later extended for lower dimensional-
ity by Altshuler, Aronov, and Lee1 ~for a review see Ref. 2!.
They predicted that for ad-dimensional system with diffu-
sive disorder and weak short-range interactions, the singular
correction to the DOS behaves asdnd;(max$e,T%)d/221,
with the dimensionality d51, 2, and 3. For three-
dimensional (d53) samples the ZBA constitutes a small but
nonanalytic correction to the DOS~as long as the dimension-
less conductanceg is large,g@1). It may be argued subse-
quently that this phenomenon is a precursor of the ‘‘Cou-
lomb gap,’’ which appears in the Anderson insulator regime
g,1. Throughout this paper we shall consider good conduc-
tors, hence we shall not discuss the localized regime here.
But remarkably enough, even for good metals,g@1, there is
a situation where the ZBA is a strong effect. This is the case
with a finite-size system. The original treatment of AA was
given for infinite~quasi!-d-dimensional systems. For a finite-
size system the quantization of the spectrum of the diffusive
modes becomes of crucial importance. For instance, the
electron-electron interaction term in the Hamiltonian takes
the form

H int5
1
2(

Q
V~Q!:rQr2Q :, ~1!

whereQ52pn/L are quantized momenta,rQ is theQ com-
ponent of the electron-density operator, and :. . . : denotes
normal ordering. The quantization of the momentum has two
major consequences for the ZBA.

First, if one accounts for all finiteQ’s, excluding the
Q50mode, in the interaction Hamiltonian, the singularity in
the DOS is rounded off on the scale max$e,T%'Ec , where
Ec is the Thouless correlation energy. As long as the ZBA is
still a small correction to the total DOS on the scaleEc ,
dnd(Ec)!n@0#, the finiteQ modesdo notenhance the sin-
gularity for e,T,Ec . It is easy to see2 that the requirement
dnd(Ec)!n@0# is satisfied forg@1; in this case the finite-

Q contribution to the ZBA is small foranyenergy and tem-
perature. This means that for such systems the finite-Q inter-
action may indeed be treated by perturbation theory, which
produces regular expansion in powers of 1/g. Throughout
this paper we shall assume that the conditiong@1 is satis-
fied, hence the perturbative treatment of the nonzero modes
is applicable.

The second consequence of the spectrum quantization is
the special role played by theQ50 term in the interaction
Hamiltonian. Its contribution to the energy may be written as
V(0):N2:/2, whereN[r0 is the total number of electrons in
a dot. This term in fact corresponds to the classical charging
energy of the dot. It leads to a strong singularity in the DOS.
The first order in the interaction perturbative result is
dn0(e50)52V(0)/(4T) ~for theQ50 contribution,T and
e are not interchangeable!. In the limit T,V(0), thepertur-
bative treatment is not sufficient. Here we present a relatively
simple method which allows us to treat theQ50 contribu-
tion to the ZBA exactly. An exact solution is possible due to
the fact that the zero-mode interaction term commutes with
the total Hamiltonian. As a result the problem is trivial, al-
though the zero-mode interaction has some interesting con-
sequences. The thermodynamical and the response functions
are practically unaffected by the zero-mode interactions
~apart from modifying the statistical ensemble from grand
canonical to canonical!. The single-particle DOS is modified
in an essential way. We use an imaginary time functional
integral to integrate out all fermionic degrees of freedom.
Similar methods were used in the context of Josephson junc-
tions with dissipative environment~for a review, see Ref. 3!.
Nonperturbative treatment reveals the exponential suppres-
sion of the DOS at the Fermi energy. This result reproduces
the classical treatment of the ‘‘orthodox’’ theory of the Cou-
lomb blockade.4 In other words, thed50 generalization of
the AA ZBA, and the Coulomb blockade, are two limiting
cases of the same theory.

This statement is in fact not new. In his original paper,
Ref. 5, Nazarov established a connection between the two
~including a nonperturbative treatment of the finiteQ
modes!. A similar, although more transparent, theory has re-
cently been put forward by Levitov and Shytov.6 To a large
extent, our results can be extracted as thed50 limit of the
expressions found in Refs. 5 and 6. The point is that Refs. 5
and 6 used some uncontrolled~although plausible! approxi-
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mations. These approximations consist of~i! replacing the
average over the ensemble by substituting an ensemble-
averaged kernel in the action, and~ii ! accounting for the
interaction within an effective semiclassical picture which
assumes slow variation of the effective random potential.
These approximations are not needed forQ50, as is shown
below. The fact that the analysis of Refs. 5 and 6 indeed
coincide with ours at zero dimensions lend some support to
those approximations.

One may combine the zero and finite-Q mode interactions
to the ZBA. In doing so we take into account the zero mode
in an exact fashion and add on top of it the perturbative
contribution of theQÞ0 modes. As was mentioned above
the latter can be expressed as a regular expansion in powers
of 1/g, valid at any temperature energy and dimensionality.
To address the insulating regime one should consult Refs. 5
and 6. In the metallic limit theQÞ0 contribution modifies
the DOS at high energies (e>e2/2C), as a precursor to the
Coulomb blockade which dominates at lower energies@cf.
Fig. 4~b!#.

The additional ingredient in our analysis is the inclusion
of the zero-point~and thermal! motion of the electromag-
netic environment in contact with the system. We show that
the influence of the environment may lead to a Debye
screening of the zero-mode interaction, and hence to a soft-
ening of the Coulomb blockade. The physics behind the
zero-mode screening is the following: the total charge on the
dot,eN, interacts with charges in the environment, leading to
their redistribution. The polarized charge of the environment
reduces the energy cost of adding~or removing! an electron
to ~or from! the dot. There is a certain finite time constant
~theRC constant of the circuit!, characterizing this redistri-
bution of the environmental charge, rendering the effective
interaction in the dot noninstantaneous~retarded!. It might
appear that results obtained through this analysis are highly
nonuniversal and depend on the particular choice of the
model for the environment. We stress, however, that our re-
sult expressed by Eqs.~20! and~33! is quite general; the only
model-dependent feature is the concrete form of the screened
zero-mode interaction,V(v). Nonuniversality in this sense is
unavoidable, due to the long-range nature of the Coulomb
interaction: the behavior of the dot depends on numerous
long-distance features.

A particularly interesting case is when the zero-mode in-
teraction is fully screened in the long-time limit. By this we
refer to a situation when on a long-time scale the addition of
an electron to the dot does not cost any energy~for instance
there is a slow continuous leakage of any extra charge from
the dot!. In this case the usual Coulomb gap in the spectrum
is absent and one obtains a power-law ZBA, very similar to
the one known from the physics of the Luttinger liquid. The
exponent is determined by the time scale of the environment
polarization. This result for a quantum dot coincides with
those obtained in Refs. 7 and 8 for a single tunnel junction
connected to a linearRCL circuit.9 For a quantum dot one
may consider a setup with only a partially screened interac-
tion, where the gap in the DOS at low energies crosses over
to a power-law ZBA at larger energies.

Let us list several aspects of the problem, which we do
not consider here. Although we deal with finite-size systems,
we do not consider effects related to the discreteness of the

single-electron spectrum. This means that the mean level
spacingD is assumed to be the smallest energy scale in our
problem. We restrict ourselves to the case of good metals,
where g5Ec /D@1. Thus the energy interval of interest,
D,e,Ec , is wide. Since we are not interested in single-
electron spectrum quantization, one may choose any bound-
ary conditions for the electron wave functions. We prefer to
use periodic boundary conditions, and employ the momen-
tum representation. We also stress that our analysis omits the
underlaying periodicity of the problem as a function of the
charge of the positive background~or of a gate voltage!
which could be manifested as a sequence of Coulomb block-
ade resonances. Instead we restrict ourselves to the case
where the background is such that the dot prefers to have an
integer charge~halfway between resonances!. One can easily
generalize the same treatment for any background charge,
noting that in the close vicinity of a half-integer~near a reso-
nance! a very different treatment, accounting for multiple
tunneling events,10 is required. In fact even far from reso-
nances multiple tunneling may be important~e.g., ‘‘inelastic
cotunneling’’11!. For the sake of clarity we restrict ourselves
to a ‘‘golden rule’’ scenario, where we consider only lowest-
order processes in the tunneling amplitude, postponing the
consideration of multiple tunneling to a further publication.

The outline of the paper is as follows. In Sec. II we recall
the derivation of the ZBA given by AA, and extend it to
d50. The nonperturbative treatment of the zero-mode inter-
action is discussed in Sec. III, where we study in some detail
the case of an instantaneous zero-mode interaction and
rederive the results of the ‘‘orthodox’’ Coulomb blockade.
Section IV is devoted to the study of screened retarded zero-
mode interaction. We show that in one particular case the
ZBA reproduces the results derived for a single junction con-
nected to a linear circuit.

II. ZERO-BIAS ANOMALY

The derivation of the ZBA in the diffusive interacting
systems proceeds as follows.2 One calculates thesingle-
particle ~not to be confused with thethermodynamic,
dn/dm) density of states as function of energy or tempera-
ture. The single-particle DOS is defined as the imaginary
part of the trace of the single-particle Green function

n~e!52
1

p
I TrG~en!u i en→e1 id . ~2!

Following AA,2 we calculate the first-order correction in the
screenedinteraction to the single-particle DOS in a dirty
system. The dominant contribution12 comes from the ex-
change diagram depicted in Fig. 1. After performing the fast
momentum summation, one obtains

dn~e!52
n@0#

p
IT (

vm.en
(
Q

2p iV~Q,vm!

~DQ21uvmu1g in!
2U

i en→e1 id

,

~3!

whereD is the diffusion constant,g in the inelastic relaxation
rate, andV(Q,vm) the screened Coulomb interaction, given
by
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@V~Q,vm!#215@V@0#~Q!#211P~Q,vm!. ~4!

HereV@0#(Q) is the bare~instantaneous! Coulomb interac-
tion andP(Q,vm) is the polarization operator of the system.
For an isolated diffusive system, the polarization is

P~Q,vm!5n@0#
DQ2

DQ21uvmu
; ~5!

n@0# is the DOS of the noninteracting system.
Let us consider a three-dimensional cube with a linear

sizeL with no current flowing through the boundaries. The
slow momentumQ assumes quantized values

Q5
2p

L
n,

where n is a vector with integer components, including
n5(0,0,0). If either the energye or temperatureT is much
larger than the Thouless energyEc[D/L2, one may disre-
gard the discreteness ofQ and perform a slow momentum
integration instead of a summation. We shall refer to such a
case as three dimensional,d53. Substituting Eqs.~4! and
~5! in Eq. ~3! and performing integrations, one readily
obtains2 ~e.g., forT@Ec ;e)

dn3
n@0# 5a3

1

g S TEc
D 1/2, ~6!

wherea3'3.831022, andg[n@0#DLd22@1 is the dimen-
sionless conductance of the sample~the full T ande depen-
dence may be found in Ref. 2!. At small temperature this
correction exhibits singular~nonanalytic! behavior, which is
the ZBA. One cannot, however, employ Eq.~6! for
e;T,Ec . In this case the discreteness of the momentum
spectrum begins to play a crucial role. Performing a momen-
tum summation in Eq.~3!, excluding theQ50 contribution,
one obtains, forg in!e, T!Ec ,

dn3
n@0# 5a0

1

g S TEc
D 2f 0S e

TD , ~7!

wherea05(nÞ0(2punu)26'1.131023, and

f 0~x!5E
0

`

dyyS 22 tanh
y2x

2
2 tanh

y1x

2 D ,
with the asymptotic values f 0(x!1)5p2/3 and
f 0(x@1)5x2. At T'Ec , Eqs.~6! and~7! match parametri-
cally. According to Eq.~7! the small temperature singularity
in the DOS is rounded off due to finite size effects~the finite
value ofEc) ~Fig. 2!.

Equation~7! does not account for theQ50 contribution
to the momentum sum in Eq.~3!. Below we evaluate this
contribution, and argue that it reflects the physics of the Cou-
lomb blockade. The first problem is that the bare Coulomb
interactionV@0#(Q)5L234pe2/Q2 is not well defined for
Q50. We argue that for finite-size samples this expression
should be regularized atQ'1/L ~cf. analogous regulariza-
tion of the bare interaction in thed51 case2!, leading to
V@0#(Q50)'e2/L. More precisely we shall use

V@0#5
e2

C
, ~8!

whereC'L is the self-capacitanceof the sample, which
includes some nonuniversal geometrical factors~hereafter
the interaction potentialV without momentum index refers to
Q50). In other words, one may regard the finite value of
V@0# as the result of fast screening processes, occurring on
the boundary of the sample, which are not included explicitly
in Eq. ~4!. According to Eqs.~4! and ~5!, theQ50 interac-
tion cannot be screened, indeedP(Q50,vm)50. This
amounts to saying that a finite-sizeisolatedsystem cannot
screen its total charge. This is not the case for a system
which is coupled capacitively to the environment. In the lat-
ter case the polarization operator should contain an addi-
tional term arising from the polarization of the environment.
This would lead to an effective screening of theQ50 inter-
action. However, we postpone discussion of the screened
zero-mode interaction until Sec. IV, and proceed with the
interaction given by Eq.~8!.

FIG. 1. First-order interaction correction to the Green function;
wavy line—interaction; dashed lines—impurity dressing~diffu-
sons!.

FIG. 2. Perturbative calculation of the DOS. Full line:QÞ0
modes only. Dashed line:Q50 mode is included. Dotted line: AA
result without account for finite-size effects@d53, cf. Eq.~6!#. The
curves are shifted vertically for clarity.
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Now substituting Eq.~8! into Eq. ~3!, and performing
energy summation and analytical continuation, for the zero-
mode contribution to the DOS one obtains

dn0
n@0# 52

V@0#

2p2T
RC~8 !S 121

g in2 i e

2pT D , ~9!

whereC(x) is the digamma function. Forg in!T this re-
duces to

dn0
n@0# 52

V@0#

4T
cosh22

e

2T
. ~10!

Note that the dependencies on temperature and energy are
very different, whereas for finited energy and temperature
play essentially the same role. The temperature~and diffu-
sive constant! dependence is compatible with the AA result,
dnd;T(d/221)D2d/2, extended tod50. The zero-mode con-
tribution leads to a dramatic singularity;T21 in the single-
particle DOS, Fig. 2. For sufficiently low temperatures,
T!e2/2C, this last expression cannot be correct. Indeed in
this case Eq.~10! predictsdn@n@0#, a result which is cer-
tainly nonperturbative. Moreover, the resulting DOS be-
comes negative. This clearly indicates that the first-order per-
turbation theory is not sufficient to treat the ZBA in finite-
size systems at low temperatures. In Sec. III we shall show
how the zero-mode interaction can be treated nonperturba-
tively. Unlike Eq. ~10!, the exact result is well behaved at
any temperature and, in fact, is well known from the ‘‘ortho-
dox’’ theory of the Coulomb blockade.4

III. ZERO-MODE INTERACTION

A. General formulation

As we have seen in Sec. II, the perturbative treatment of
the zero-mode interactions in a dot at low temperature meets
serious difficulties. On the other hand, the first-order~in the
screened interaction! result forQÞ0 and a not too dirty sys-
tem, g@1 @cf. Eqs. ~6! and ~7!#, is well behaved. Thus we
separate out the dangerous contribution of the zero-mode
interaction and try to treat it nonperturbatively. To this end
consider a Hamiltonian describing electrons moving in a dis-
ordered potential, which interact through the zero-mode
repulsiveinteraction only,

H05(
a

eaaa
1aa1

V@0#

2
:F(

a
aa

1aa2N0G2:, ~11!

where aa
1(aa) is a creation~annihilation! operator of an

electron in an exact single-particle state~which is defined

including disorder potential and spin! with an eigenenergy
ea , V

@0# is the bare zero-mode interaction, Eq.~8!, andN0 is
the charge of the positive background, which we assume to
be an integer.13 Below we shall comment on the case where
the Hamiltonian also includes finite-Q interactions, which
can be treated perturbatively.

Before we proceed we would like to stress the following
fact. One may argue that the interaction term in the Hamil-
tonian, Eq. ~11!, is trivial. Indeed it has the form
H int5V@0#:N2:/2, whereN[(aaa

1aa is a total number of
particles in the system. AsN commutes with the Hamil-
tonian, @H0 ,N#50, it does not have any dynamics,
] tN50. Thus the interaction term is just a constant added to
the Hamiltonian, and seems not to have any nontrivial con-
sequences. This is indeed the case when considering thermo-
dynamical properties or response functions of the isolated
dot. It is, however,not the case with the single-particle
Green function, which correlates the amplitude of the cre-
ation of one additional electron at an initial timet i , and its
subsequent destruction at timet f . Thus any measurement of
the single-particle Green function assumes implicitly the ex-
istence of processes which do not conserve the number of
particles in a dot~e.g., due to tunneling!. Such processes
render the entire Hamiltonian noncommuting with the par-
ticle number. As a result theN2 interaction term has a sig-
nificant impact on the single-particle Green function. After
completing the calculations we shall comment on the relation
of the above arguments to gauge invariance.

The imaginary time single-particle Green function may be
written as14

Ga~t i ,t f ,m!5
1

Z~m!
E D@ca* ~t!ca~t!#e2S@ca* ,ca#

3ca* ~t i !ca~t f !, ~12!

with the fermionic action given by

S@ca* ,ca#5E
0

b

dtH(
a

ca* ~t!~]t1ea2m!ca~t!

1
V@0#

2 F(
a

ca* ~t!ca~t!2N0G2J ; ~13!

hereZ(m) is the partition function andm is the chemical
potential. Splitting the interaction term in the action by
means of the Hubbard-Stratonovich transformation with the
auxiliary Bose fieldf(t), one obtains

Ga~t i2t f !5
1

Z~m!
E D@f~t!#e2*0

bdt@f~t!@2V@0##21f~t!2 iN0f~t!#E D@ca*ca#e2*0
bdt(

a
ca* ~]t1ea2m1 if~t!!caca* ~t i !ca~t f !

5
1

Z~m!
E D@f~t!#e2*0

bdt@f~t!@2V@0##21f~t!2 iN0f~t!#Z@f#~m!Ga
@f#~t i ,t f ,m!, ~14!
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with the same transformations inZ(m). HereZ@f#(m) and
Ga

@f#(t i ,t f ,m) are, respectively, the partition and Green
functions of noninteracting electrons in the time-dependent
~but spatially uniform! potential if(t). To calculate these
quantities one should resolve the spectral problem for the
first-order differential operator@]t2m1ea1 if(t)# with
antiperiodic boundary conditions. This can be easily done
~see, e.g., Chap. 7 in Ref. 14!. For the spectral determinant
~partition function!, one finds

Z@f#~m!5Z@0#~m2 if0!, ~15!

whereZ@0#(m)[exp$2bV@0#(m)% is the partition function of
the noninteracting electron gas. We have introduced the
Matsubara representation for the boson field,f(t):
fm[b21*0

bdtf(t)exp$ivmt%, vm52pmT. The Green
function is given by

Ga
@f#~t i ,t f ,m!5Ga

@0#~t i2t f ,m2 if0!e
i*

t i

t fdt@f~t!2f0#,
~16!

whereGa
@0#(en ,m)5( i en2ea1m)21 is the Green function

of noninteracting fermions. It is convenient to rewrite the
exponent in the last equation in the following form:

expH i E
t i

t f
dt@f~t!2f0#J 5expH b (

mÞ0

fmJ2m
t i ,t f

vm
J ,

~17!

where Jm
t i ,t f is the Matsubara transform of the following

function:

Jt
t i ,t f5d~t2t i !2d~t2t f !. ~18!

Transforming next the functional integral overf(t) to
integrals over the Matsubara componentsfm , we obtain

Ga~t i2t f !5
1

Z~m!
E df0e

2b@f0@2V@0##21f02 if0N01V@0#~m2 if0!#Ga
@0#~t i2t f ,m2 if0!

3E )
mÞ0

dfmexpH b (
mÞ0

F2
fmf2m

2V@0# 1
fmJ2m

t i ,t f

vm
G J , ~19!

again with the analogous modifications inZ(m). The integral
over the static componentf0 describes the smooth transition
between the grand canonical ensemble with the chemical po-
tential m ~at V@0#50) to the canonical ensemble withN0

electrons ~at V@0#5`). For large enough systems
(D21[2]2V@0#/]m2@b) one can neglect differences be-
tween the two statistical ensembles. This means that the in-
tegral overf0 can be calculated in a saddle-point approxi-
mation, leading toGa

@0#(t i2t f ,m), where the stationary point
u is the real solution of the equation (m2m)/V@0#1N0

1]V@0#(m)/]m50. The remaining integrals~over fm for
mÞ0) are purely Gaussian. As a result, one obtains

Ga~t i2t f ,m!5Ga
@0#~t i2t f ,m!e2S~t i2t f !, ~20!

where

S~t!5T(
mÞ0

V@0#

vm
2 ~12eivmt!. ~21!

Equations~20! and ~21! solve the problem of finding the
exact single-particle Green function in the presence of the
zero-mode interaction. This result is depicted diagrammati-
cally in Fig. 3. The dressed Green function of the interacting
problem is given by the bare one~with a renormalized
chemical potential! decorated with the propagator of the aux-
iliary boson fieldD(t)[exp$2S(t)%. We refer to this auxil-
iary field as aCoulomb boson. As D(0)51, the zero-mode
interaction does not influence equal-time Green functions
~apart from the renormalization of the chemical potential!.

As a result thermodynamical quantities are not affected by
the presence of the Coulomb boson. This is not unexpected,
since the interaction term commutes with a total Hamil-
tonian; hence it does not affect quantities defined for the
closed system. By contrast, to measure a two-point Green
function one should perform a tunneling experiment where
the system cannot be considered as completely isolated. In
this case the presence of the interaction term in Eq.~11! ~and
hence of the Coulomb boson! is of crucial importance.

This observation can be related to gauge invariance.15 As
we have seen, the problem with zero-mode interaction is
essentially reducible to that of an electron gas in a spatially
uniform ac potential. Such a potential can be always re-
moved from the problem by a time-dependent gauge trans-

FIG. 3. Diagrammatic representation of the Coulomb boson.
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formation. Thus gauge-invariant physical quantities~e.g.,
thermodynamical quantities! are not affected by the presence
of spatially uniform potential, cf. Eq.~15!. The single-
particle Green function, being anon-gauge-invariantobject,
is affected. By introducing electron tunneling from an exter-
nal source we fix the~time-dependent! phase of the electron
wave function in the system. This point has been discussed
by Finkelstein,15 who argued that, unlike the conductivity or
thermodynamical quantities, the non-gauge-invariant single-
particle DOS may be affected by very smallQ terms, leading
in d<2 to more pronounced singularities.

B. Coulomb boson and DOS

For the instantaneous~frequency-independent! interac-
tion, Eq. ~8!, the sum in Eq.~21! may be easily performed,
yielding

S~t!5
V@0#

2 S utu2
t2

b D . ~22!

Using the Lehmann representation for temperature Green
functions,16 one may write, for the propagator of the Cou-
lomb boson,

D~vm!5E
2`

` dv8

2p

B~v8!

ivm2v8
, ~23!

where the spectral functionB(v) is defined asB(v)
[22IDR(v). Fourier transformingD~t!5exp$2S(t)%, and
analytically continuing, we obtain~see Appendix!

B~v!5S 2p

V@0#TD 1/2~e2~v1V@0#/2!2/2V@0#T2e2~v2V@0#/2!2/2V@0#T!.

~24!

According to Eq.~20! ~cf. also Fig. 3! the electron Green
function is given by Ga(en)5T(vm

Ga
@0#(en2vm)D(vm).

Performing the summation by a standard contour integration
and then analytical continuation (i en→e1 id), for the
one particle ~tunneling! density of states, n(e)
[2p21(aIGa

R(e), one obtains

n~e!52 1
2 E

2`

` dv

2p S tanhe2v

2T
1 coth

v

2TDB~v!n@0#~e2v!,

~25!

wheren@0#(e) is the density of states in the absence of the
zero-mode interaction, andB(v) is given by Eq.~24!. For
noninteracting electrons~with or without disorder! n@0#(e)
may be well approximated by a constant valuen@0#; in this
case the integral in the last expression may be readily evalu-
ated. In the limit of weak interaction (V@0#!T), one obtains

n0
n@0# 512

V@0#

4T
cosh22

e

2T
. ~26!

This is the zero-bias anomaly of AA extrapolated tod50
system, which has been obtained from a diagrammatic ex-
pansion, Eq.~10!. Notice that we did not actually use the fact
that the system is disordered. Note also that the exact lowest-
order result, Eq.~26!, coincides with the one obtained from

the exchange diagram only, Eq.~10!. The first-order Hartree
term with theQ50 interaction leads to a redefinition of the
chemical potential which has been absorbed in the factor
m̄. For strong interaction (V@0#@T), one has@Fig. 4~a!#

n0
n@0# 5H S 2pT

V@0# D 1/2e2
V@0#

8T cosh
e

2T
, e!AV@0#T!V@0#

12e2~e2V@0#!/T, e@V@0#@T.
~27!

The exponential suppression of the tunneling density of
states near the Fermi energy is a direct manifestation of the
Coulomb blockade. The ZBA ind50 systems, being treated
nonperturbatively, leads to results which are well known
from the ‘‘orthodox’’ theory of the Coulomb blockade, cf.
Ref. 4.

One may ask how the finite-Q interactions modify the
standard Coulomb blockade predictions. In the case where
the finite-Q interactions can be treated perturbatively the an-
swer can be read off Eq.~25!: in Eq. ~25! one should substi-
tute the perturbative AA expression for the DOS (nAA) for
n@0#(e). Indeed, one may repeat the derivation given above
in the presence of the finite-Q interactions; the result coin-

FIG. 4. Nonperturbative DOS.~a! As a function of temperature
at the Fermi energy (e50); only theQ50 mode is included.~b!
DOS as a function of energy atT50; finite-Q contributions are
included.
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cides with Eq.~20!, whereG@0# includes the effects of all but
zero-mode interactions. In the limit of zero temperature, one
obtains

n~e!5H 0, ueu,V@0#/2

nAA~ ueu2V@0#/2!, ueu.V@0#/2.
~28!

This result@Fig. 4~b!# implies that for voltages larger than
the Coulomb blockade gap the tunneling current is still
somewhat suppressed due to the presence of the finite-
dimensional ZBA. Although the finite-Q interactions reduce
the jump atueu5V@0#/2 (T50), they do not remove the dis-
continuity. There is, however, important physics which leads
to the rounding off of the threshold atueu5e2/2C even at
zero temperature. This is the screening of the zero-mode in-
teraction due to fluctuations in the electromagnetic environ-
ment. This issue is to be discussed next.

IV. SCREENED ZERO-MODE INTERACTION

In Sec. III we studied the tunneling DOS of a dot which is
perfectly isolated~both electrically and electromagnetically!
from the outside world. In this case the total charge of the
dot cannot be screened. This is why we have employed a
bare ~instantaneous! zero-mode interaction, Eq.~8!. This
scheme, however, is not very satisfactory. First, measure-
ments of some quantities of major interest~such as the
single-particle DOS studied here, or the inelastic broadening
to be discussed elsewhere!, by definition require direct cou-
pling to an external medium. But, more importantly, even in
the absence of external leads the dot interacts~through ca-
pacitive coupling! with external gates, conducting layers, and
external charges, all of which will be referred to as the en-
vironment. The creation of an additional charge in the dot
leads to redistribution of charges in the environment, which
takes a finite time. The redistributed environmental charge
partially screens the initially created charge on the dot, re-
ducing the zero-mode interaction energy. The fact that this
redistribution is not instantaneous implies that the effective
screened interaction is retarded. Equivalently one may notice
that the dot’s capacitance is proportional to the dielectric
constant of the surrounding medium. Unless this medium is a
perfect vacuum, the dielectric constant is a function of fre-
quency. As a result the zero-mode interactione2/C(v) is not
instantaneous, but rather characterized by a finite retardation
time scale.

Phenomenologically it is convenient to consider an
equivalent circuit~Fig. 5!, assigning the self-capacitanceC
~bare interaction! to the dot, which in turn is capacitively
coupled~throughCG) to the gate electrode. The gate is elec-
trically coupled to the ground through the linear impedance
Z(v). The voltage sourceU represents the equilibrium noise
voltage of the entire circuit. We shall model the dot-
environment interaction by assuming that the dot is subjected
to a time-dependent~but spatially uniform! noise potential
due to the environment

Hnoise5h~ t !(
a

aa
1aa . ~29!

At the end of these calculations all physical quantities should
be averaged over realizations of the noise. We shall assume
further that the noise is Gaussian, with a zero mean value.
The averaging procedure thus may be written as

^ . . . &noise5
1

NE D@h~t!#

3e21/2**0
bdtdt8h~t!K21~t2t8!h~t8! . . . , ~30!

where N is a normalization factor, andK(t2t8)
5^h(t)h(t8)& is the noise correlator, which is to be deter-
mined employing the fluctuation-dissipation theorem~FDT!.
An important observation is that the partition function of the
dot,Z(m), is not affected by the noise term. Indeed, we have
already seen@Eq. ~15!#, that the partition function of the
electron gas in a spatially uniform ac field depends on its
mean value only~which is zero in our case!. This can be
understood as a consequence of the gauge invariance of the
partition function—a spatially uniform field may always be
removed by a gauge transformation. As a result, the noise
term in Eq.~12! enters into the numerator only. Averaging
Eq. ~12! over the Gaussian noise@Eq. ~30!# leads to an ef-
fective fermionic action with interaction which is nonlocal in
time,

Sint@ca* ,ca#5 1
2 E E

0

b

dt dt8(
a

ca* ~t!ca~t!

3@V@0#d~t2t8!2K~t2t8!#

3(
a

ca* ~t8!ca~t8!. ~31!

As a result, one obtains an effective renormalization~screen-
ing! of the zero-mode interaction potential

V@0#→V~vm!5V@0#2K~vm!. ~32!

Further calculations follow the same steps outlined in Sec. II.
The final result is given again by Eq.~20!, where now@cf.
Eq. ~21!#

FIG. 5. Equivalent circuit of a dot coupled to the environment.
The grey square represents a dot,C being its self-capacitance.CG is
the mutual capacitance to the environment,Z(v) the linear imped-
ance of the environment. HereU represents the noise voltage. The
black arrow is a tunneling tip through which particles may be in-
jected to the dot, measuring its DOS. This tip may be coupled to the
dot through a large impedance barrier.

5434 54ALEX KAMENEV AND YUVAL GEFEN



S~t!5T(
mÞ0

V~vm!

vm
2 ~12eivmt!. ~33!

We shall next employ the FDT to calculate the noise cor-
relatorK( iv). According to the FDT the equilibrium noise
spectrum (T50) of the total noise voltage generated by the
circuit is ^UU&5e2ivZtot , where the total impedance of the
equivalent circuit is Ztot5( ivC)211( ivCG)

211Z(v).
The corresponding voltage drop on the dot is
h5U( ivC)21/Ztot ; thus the noise correlatorK5^hh& is
given by

K~ iv!5
e2

C

1/~ ivC!

Ztot
. ~34!

Substituting this expression into Eq.~32! and rewriting it in a
finite-temperature form one obtains

V~vm!5
e2

C

C/CG1uvmuZC
11C/CG1uvmuZC

. ~35!

The high-frequency~unscreened! value coincides with that
of Eq. ~8!, whereas at low frequency the interaction is par-
tially screened and is given by the total capacitance
V(0)5e2/(C1CG). The characteristic crossover frequency
is given by the ‘‘RC’’ time of the circuit,v'(ZC)21. As a
result the long-time behavior ofS(t), determined by the
small frequency asymptotic of the screened interaction, is
given byS(t)'utue2/2(C1CG) for ZC!t!b.

A case of particular interest is that of a ‘‘maximally’’
screened interaction, whenV( iv→0)50. In this case the
linear term inS(t) is absent, and the action grows at most
logarithmically at larget. This would immediately imply
that instead of exponential suppression of the DOS at the
Fermi energy, one obtains only a power-law ZBA. Accord-
ing to Eq. ~35! such a case may be realized whenCG→`
~more preciselyZCG@b). This is the case for a dot strongly
connected to the environment. For simplicity we restrict our-
selves to the scenario of a pure Ohmic environmentZ5R, in
which case the interaction potential is given by17

V~vm!5V@0#
uvmu

V1uvmu
, ~36!

where V[(RC)21, and V@0# is given by Eq. ~8!. As
V(v50)50, the addition or subtraction of an electron from
the dot costs no Coulomb energy over long-time scales. On
short-time scales, however, before the environment adjusts to
screen out the added electron, one has to pay some energy
@Eq. ~36!#. Thus the addition of an electron can be consid-
ered as ‘‘tunneling’’ under an energy barrier in the time di-
rection. The very same physics has been discussed in the
context ofd52 systems in Refs. 18 and 6. The related en-
ergy cost on short-time scales suppresses free-particle ex-
change between the dot and the particle reservoir~although
Coulomb blockade in its strict sense is absent!. This leads to
the suppression of the tunneling DOS hence to the ZBA.
Substituting Eq. ~36! into Eq. ~33!, one obtains, for
V21!t!b,19

S~t!'2r ln~11Ṽutu!1O„~Vt!21
…, ~37!

whereṼ[egV, with g50.577 . . . being the Euler constant,
and r[V@0#/(2pV)5Re2/(2p\) the dimensionless resis-
tance of the environment. Performing the Fourier transform
and analytical continuation~see the Appendix!, for the zero-
temperature spectral density of the Coulomb boson one ob-
tains

B~v!52
signv

Ṽ

2p

G~2r ! U v

Ṽ
U2r21

e2uv/Ṽu. ~38!

Finally the zero-temperature DOS may be found from Eq.
~25! with B(v) given by Eq.~38!. Assuming a constant bare
DOS ~i.e., n@0#5 const), one obtains

n0~e!

n@0# 512GS 2r ,U e

Ṽ
U D

'5
1

G~2r11! U e

Ṽ
U2r , ueu!V

12U e

Ṽ
U2r21

e2ue/Ṽu, ueu@ max$V,V@0#%,

~39!

whereG(2r ,x) is the incomplete gamma function. For the
maximally screened zero-mode interaction scenario the ZBA
in d50 has a power-law behavior, rather than the gap given
by Eq. ~28!. For a high-impedance~slow! environment,
r@1, there is a crossover to the ‘‘orthodox’’ Coulomb
blockade in the intervalV,e,V@0#. However, for the low-
impedance,r,1, environment the power-law ZBA@Eq.
~39!# directly crosses over to the finite-dimensional AA re-
sult ate'V.

The straightforward finite temperature generalization of
Eq. ~38! is ~see the Appendix!

B~v!52
sinhv/2T

Ṽ

2

G~2r ! S 2pT

Ṽ
D 2r21UGS r1

iv

2pTD U2.
~40!

Substituting this result into Eq.~25!, one obtains, e.g., for the
DOS at the Fermi energy,e50 andT!V,

n0
n@0# 5a~r !S 2pT

Ṽ
D 2r , ~41!

where

a~r ![
1

pG~2r !
E
0

`

dx
uG~r1 ix !u2

coshpx
5H 12CS 12D2r , r!1

222r /Apr , r@1,
~42!

54 5435ZERO-BIAS ANOMALY IN FINITE-SIZE SYSTEMS



s(1/2)51/p, ands(1)51/8. At T. max$V,V@0#% the DOS
obeys Eq.~26!. Screening of the zero mode interaction con-
verts the exponential suppression of the DOS@cf. Eq. ~27!#
into the power law, Eq.~41!.

Our results in the limit of maximally screened interaction
CG→` are compatible with the results of Refs. 7 and 8,
where tunneling through asingletunnel junction coupled to a
linear impedance was considered. This coincidence is not
surprising at all; indeed a dot coupled to a circuit through
large capacitanceCG can be viewed as an island from which
charge can continuously leak out; this is practically the setup
of Refs. 7 and 8. Our present analysis stresses the physics of
a weakly coupled dot@with a finite CG , Eq. ~35!# and its
relation to the ZBA. AtT50, employing the above given
expressions, one obtains

n0~e!

n@0#

5H 0, ueu<e2/2~C1CG!

12GS 2r̃ , ueu2e2/~C1CG!

Ṽ~C1CG!/CG
D , e2/2~C1CG!,ueu,

~43!

where r̃[r @CG /(C1CG)#
2. At finite temperature and

e50, one has

n0
n@0# 'H exp$2e2/8T~C1CG!%, T<e2/2~C1CG!

~T/Ṽ!2 r̃ , e2/2~C1CG!,T,V

12e2/4TC, max$V,e2/2C%,T
~44!

~the above expressions account for theQ50 contribution
only!. We stress that our results are a particular, d50, case of
a general nonperturbative expression for the ZBA obtained
by Nazarov5 and Levitov and Shytov.6 Our point here is that
for d50 case all calculations can be carried out exactly,
avoiding some of the approximations employed in Refs. 5
and 6@namely, introducing an ensemble averaged kernel in
the action and employing a semiclassical picture which en-
ables one to separate out a phase factor from the Green func-
tion, cf. Eq.~16!#.
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APPENDIX

This appendix is devoted to the calculation of the spectral
density of the Coulomb boson,D(t)5exp$2S(t)%. In the
case of unscreened zero-mode interaction,S(t) is given by
Eq. ~22!. The Fourier transform has a form

D~vm!5E
0

b

dt eivmte2V@0#/2~t2b21t2!. ~A1!

Deforming the contour of integration as it shown in Fig. 6,
and making the obvious redefinition of variables one, obtains

D~vm!5 i E
0

`

dt e2vmt2~V@0#t2/2b!~e2 iV@0#t/22eiV
@0#t/2!.

~A2!

In this expression one can perform analytical continuation,
resulting inDR(v)5D(vm→2 iv1d). The imaginary part
of DR(v) may be easily evaluated, extending the region of
integration up to2`. As a result,B(v)522IDR(v) is
given by Eq.~24!.

Next we discuss the maximally screened zero-mode inter-
action. For 0,t!b/2 the action is given by Eq.~37!. Peri-
odicity and symmetry requires that, forb/2!t,b, the ac-
tion has the formS(t)'2r ln@11Ṽ(b2t)#. Performing the
Fourier transform by deforming the contour of integration
and analytical continuation exactly as for the nonscreened
interaction, one obtainsB(v)52F(v)1F(2v), where

F~v!52RE
0

`

dt
eivt

~11 i Ṽt !2r

5
u~v!

Ṽ

2p

G~2r ! S v

Ṽ
D 2r21

e2v/Ṽ. ~A3!

This leads to the zero-temperature expression Eq.~38!. To
generalize the above expressions to finite temperatures, we
use the conformal transformationt→sinpTt/(pT) ~cf. Ref.
20!, yielding

F~v! →
T!V

2RFe2 ipr

Ṽ2r E0
`

dteivtS pT
sinhpTtD 2r G

5
ev/2T

Ṽ

2p

G~2r ! S 2pT

Ṽ
D 2r21UGS r1

iv

2pTD U2.
~A4!

FIG. 6. Contour of the integration in Eq.~A1!.
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