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We use analytic techniques and the dynamical mean-field method to study the crossover from Fermi liquid
to polaron behavior in models of electrons interacting with dispersionless classical phonons.
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I. INTRODUCTION

In this paper we present results of a study of the crossover
from Fermi liquid to polaron behavior in several related
models of electrons interacting with dispersionless classical
phonons. We use analytic techniques valid in weak and
strong coupling limits, and we use the ‘‘dynamical mean-
field’’ method1 to obtain results at intermediate couplings. In
the following paper2 we present a detailed study of a more
complicated model believed to be relevant to the ‘‘colossal
magnetoresistance’’ manganites.

The electron-phonon problem has been extensively stud-
ied. The ‘‘polaron problem’’ of a single electron coupled to a
deformable medium has been understood in detail.3 The
problem of a degenerate Fermi gas coupled to phonons has
been solved perturbatively in a weak coupling limit.4 There
has also been fairly extensive work aimed at going beyond
the original perturbative solution,5–9 but this work has been
aimed mostly at understanding superconducting transition
temperatures and charge-density-wave instabilities. The self-
trapping or polaron physics has received less attention.

There are several experimental motivations for our work.
One is the ‘‘colossal magnetoresistance’’ materials
Re12xAxMnO3,

10,11where Re is a rare earth such as lantha-
num andA is a divalent metal ion such as Ca or Sr. For
0.2&x&0.5 these are metals at low temperatures and ‘‘insu-
lators’’ ~in the sense that the resistivity is high, and rises as
T is lowered! at high temperatures. The insulating behavior
has been argued to be due to a self-trapping of carriers in
local lattice distortions.12,13 The physics of this material is
complicated by the existence of an additional ‘‘double-
exchange’’ carrier spin interaction, and will be discussed in
the following paper.2 La22xSrxNiO4 is another compound in
which carrier localization by lattice distortions has been
discussed.14 Previous work on La22xSrxNiO4 has focused
on density-wave order at particular, commensurate,x but the
effects discussed here are likely to be relevant also. We also
mention the many semiconducting compounds that display
polaron effects when very lightly doped.3 At higher dopings,
electron degeneracy effects will become important, but the
electron-phonon interaction will remain strong.

We study models of electrons interacting with phonons.
The electrons may or may not have spin and orbital degen-
eracy and are coupled to one or two independent local oscil-
lators. The motivation for studying these different but closely
related models is as follows. The interplay of polaron and
Fermi liquid physics is controlled by energy and entropy.

The competing energies are the electron delocalization or
kinetic energyEkin and the lattice energyElatt gained by
localizing an electron. The entropy of a localized electron
depends upon the number of spin and orbital states available
for it to localize into, while the entropy of the phonons de-
pends on the phase space of the oscillators. Because the dif-
ferent models have different entropies, we expect them to
behave differently at nonzero temperatures.

Our study has several limitations. First, the numerical re-
sults are obtained via the dynamical mean-field approxima-
tion. This is a controlled approximation, which, however,
becomes exact only in a limit in which the spatial dimension
d→`.1 Studies of other models have indicated that for
d53 the results are qualitatively correct and indeed in good
numerical agreement with those obtained by other methods
and by experiment.1,15 The quantitative accuracy for quasi-
two-dimensional materials such as La22xSrxNiO4 is not
clear. Further, the dynamical mean-field approximation is es-
sentially local, so intersite information~e.g., about polaron
size! is difficult to obtain. We have not considered density-
wave instabilities, which have been recently studied via the
dynamical mean-field method.9,16 We have also assumed
classical phonons. This approximation is known in the
single-electron case not to affect the physics significantly3

~although it does lead to a few easily diagnosed low-
temperature pathologies!, and it dramatically simplifies the
computations. However, it does mean that we are unable to
study superconductivity. A third limitation is that we study
models in which the only interaction is the electron-phonon
interaction. In particular, we omit the on-site ‘‘Hubbard-U’’
Coulomb interaction, which is undoubtedly important in at
least some oxide materials.14,17

While the approximations we have made limit the direct
applicability of some of our results to experimental data on
these materials, many of our results are experimentally rel-
evant and we believe it is useful to have a detailed account of
the behavior of a well-defined model in the literature. At
various places in the text we will qualitatively discuss the
effects of nonclassical phonons and of the on-site Coulomb
interactions, but a quantitative treatment will be left to a
future publication.

The remainder of this paper is organized as follows. Sec-
tion II defines the models, the parameters, and the approxi-
mations. Section III discusses the numerical methods used.
Section IV presents the results of a detailed solution of the
simplest model, a nondegenerate band of spinless electrons
interacting with a single oscillator. We give phase diagrams,
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electron spectral functions, frequency, and temperature-
dependent conductivities and phonon probability distribu-
tions. Section V discusses the changes that occur if electron
spin and orbital degeneracy, and multiple oscillators are in-
cluded. Section VI is a conclusion. Appendix A clarifies the
relation between the results presented here and those of the
conventional Migdal-Eliashberg treatment of the electron-
phonon problem. The other Appendices present details of
various calculations.

II. MODELS AND FORMALISM

A. Hamiltonian

In this section we define the models we study and present
the approximations we use. We consider electrons coupled to
phonons; the HamiltonianH may be written as the sum of an
electronic partHel , a phonon partHph, and an interaction
partHel-ph as

H5Hel1Hph1Hel-ph. ~1!

ForHel we take electrons moving on a lattice. An electron on
a given sitei may be in one ofnorbital orbital states~we will
considernorbital51 and norbital52) and one ofnspin spin
states~we will considernspin51 andnspin52). The operator
creating an electron of spina in orbital statea on site i is
diaa
† and

Hel52(
i j

t i j
abdiaa

† djbb2m(
iaa

diaa
† diaa . ~2!

Here we have introduced the hopping matrix elementt i j
ab and

the chemical potentialm.
We model the phonons as localized classical oscillators.

We write the displacement of the oscillator from some ref-
erence position asr . We consider two cases: ‘‘one-
dimensional phonons,’’ wherer is a scalar quantity with
2`,r,`, and ‘‘two-dimensional phonons’’ whererW is a
two-component vector, which we parametrize by a magni-
tuder and an anglef via rW5r (cosf,sinf). We assume that
in the absence of the electron-phonon interaction the equilib-
rium position of the oscillator isr50, and that there is an
elastic restoring force with force constantk. We measurer in
units of lattice constant sor is dimensionless andk has the
dimension of energy. We write

Hph5
1
2kr

2. ~3!

The form of the electron-phonon coupling depends on the
physics. One possible coupling is of the phonon to the charge
of the electron, i.e.,

Hel-ph
charge5g(

iaa
r i~diaa

† diaa2n!. ~4!

Here we have introduced the mean densityn5
(1/N)^( iaadiaa

† diaa& and have definedr50 to be the equi-
librium phonon state for a uniform distribution of electrons.
N is the number of sites in the crystal. The electron-phonon
coupling isg. If both the electrons and the phonons are de-
generate, then one may have a coupling between the orbital
state of the electron and the direction of the local phonon.

Such coupling may be expected to occur in materials such as
La12xAxMnO3 in which the Jahn-Teller effect is
important.12,18,19In such materials there are in the absence of
lattice distortions two degenerate electronic states on each
site, transforming as a two-dimensional representation of the
cubic group. The degeneracy may be split by interaction with
an appropriate phonon mode. The interaction expressing this
physics is prescribed by group theory19 to be

Hel-ph
JT 5g(

iaba
diaa
† tWabdiba•rW i . ~5!

Here tW5(tz ,tx) is a vector of Pauli matrices acting in the
orbital subspace andr z5rcosf, r x5rsinf.

B. Parameters and limits

One important energy scale is the electron banding or
kinetic energy. This depends upon the band fillingn and the
details of the hopping matrix elementst i j

ab but it is roughly
of order t, wheret is a typical value oft i j

ab

Another important energy is that obtained by localizing an
electron on a site. By minimizing Eqs.~4! or ~5! and~3! one
finds this energy to be of orderg2/k. The ratio of these scales
is the important dimensionless parameterl5g2/kt; l,1
corresponds to weak coupling andl.1 to strong coupling.
This l is shown in Appendix A to be related to the usual
coupling constant of the Migdal-Eliashberg theory by a fac-
tor of nspinnorb/p.

A final important scale is the phonon frequencyvD . In
the weak electron-phonon coupling limit it is known that for
T*vD/3, phonons behave classically while for lowerT
quantum effects are important.3 In the strong coupling limit,
polarons are formed and large lattice distortions occur. From
studies of a single electron coupled to a deformable medium3

one finds that quantum effects are important only at a very
low scale vD /n, where n@1 is roughly the number of
quanta involved in the formation of the polaron.3 Throughout
this paper we assume thatT is sufficiently high that quantum
effects in the phonons may be neglected.

C. Formalism

Physical quantities may be calculated from the partition
function Z, which may be written as a functional integral
over the electron and phonon fields. Because we have as-
sumed classical phonons, we may solve the electron problem
for given values of the phonon coordinate and then average
over the phonon coordinates. Because the phonon is classi-
cal, we may rescale the phonon coordinate tor5Ak/tr . The
partition function becomes

Z5E DphononexpF2
1

2

t

T (
i
r i
21Trln@Geff

21#G . ~6!

Here T is the temperature,Dphonon is the phonon measure
appropriate to the choice of phonon, andGeff is the electron
Green function appropriate to Eq.~1! with fixed staticr i .
Note also thatr has been rescaled in such a way that in
Hel-ph the coupling constantg5Al.

Starting from Eq.~6! one may make perturbative dia-
grammatic calculations using standard methods. In the weak
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coupling limit the starting point isr i50 ~corresponding to
uncoupled electrons and phonons! and it may be seen from
the first term in the exponent of Eq.~6! that fluctuations in
r are small, of orderAT/t. This is the classical analogue of
the Migdal expansion parameterAvD /t. In the strong cou-
pling limit the starting point has somer iÞ0 but fluctuations
are still of orderAT, so that at low-T an analytic treatment is
possible, if the ground-state configuration of ther i can be
determined. The connection to the conventional treatment of
the electron-phonon problem is discussed in more detail in
Appendix A.

At intermediate coupling we have not succeeded in con-
structing the ground state about which to expand. We have
therefore resorted to the ‘‘dynamical mean-field’’
approximation1 in which it is assumed that the electron self-
energy is local ~i.e., momentum independent!. In the
electron-phonon problem in three spatial dimensions the self-
energy is known to have only a weak momentum depen-
dence in the various solvable limits,4,21 so the dynamical
mean-field approximation, which formally becomes exact in
a limit in which spatial dimensionalityd→`, seems likely to
be reliable.

The electron Green functionG in general depends upon
orbital indices (a,b), spin indices (a,b), momentumkW , and
Matsubara frequencyivn . The dynamical mean-field ansatz
is

Gab
ab ~k,ivn!5@ ivn2Sab

ab ~ ivn!2ek
ab1m#21. ~7!

Hereek
ab is the Fourier transform oft i j

ab All of the quantities
in Eq. ~7! are tensors in the direct product of spin and orbital
space, and quantities without roman (a,b) or greek (a,b)
indices are proportional to the unit matrix in orbital and spin
space, respectively.

Throughout this paper we shall assume that there is no
long-range order in either orbital space or spin space, so we
may takeSab

ab;dabdab . Generalizing the formalism to in-
clude orbital ordering would be straightforward and quite
interesting. The generalization to ferromagnetic spin order-
ing was given by Furukawa22 and is discussed further in the
following paper.2 BecauseS is taken to bek independent all
interaction effects are derivable from the local
(k-integrated! Green function,Gloc . Because we have as-
sumed that there is no long-range order in orbital space,
Gloc
ab;dab . We may therefore write

Gloc~ ivn!5
1

2
TrE ddk

~2p!d
Gab~k,ivn!. ~8!

The k integral may be simplified by introducing at eachk
point the ab space rotationRk , which diagonalizesGab,
writing Gab(k)5RkGdiagRk

21 and exploiting the cyclic in-
variance of the trace. Thek integrals of the two components
of Gdiag must be identical, so we may finally write

Gloc~ ivn!5E dekD~ek!

ivn2S~ ivn!2m2ek
, ~9!

with D(ek) the density of states.

Because all interactions are local,Gloc may be derived
from a partition function identical in form to Eq.~6! but with
spatial indexi suppressed and the quantityGeff

21 replaced by

GMF
2152adaa

† daa1Hel-ph ~10!

at fixed phonon coordinate. The free energy corresponding to
a given value of phonon coordinate may be found as usual
from GMF , and from this one may construct the phonon
probability distribution

P~r !5
1

Zloc
expF2

r 2

2T
1(

n
Tr lnGMF

21G , ~11!

where the local-approximation partition functionZloc is de-
fined by

Zloc5E DphononP~r !. ~12!

Herea is a frequency-dependent effective field~analogous to
the magnetization in the usual Weiss mean-field method! de-
termined by the condition

Gloc~ ivn!5
] lnZloc

]a~ ivn!
. ~13!

This condition may be implemented by observing that

S~ ivn!5a~ ivn!2Gloc
21. ~14!

The precise form of the resulting equation depends on the
density of states. We shall consider two forms, the Lorentz-
ian,

DLor~ek!5
t/p

ek
21t2

~15!

and the semicircular,

Dsemi~ek!5A4t22ek
2/~2pt2!. ~16!

The Lorentzian density of states has the advantage that the
self consistency equation may be analytically solved to yield

aLor~ ivn!5 ivn1m1 i tsgnvn . ~17!

It has, however, two unphysical features:DLor(ek) is un-
bounded and*2`

m dekekDLor(ek)5` so the kinetic energy is
infinite for finite m.

For the semicircular density of states theek integral may
also be performed analytically, leading to

asemi~ ivn!5 ivn1m2t2Gloc~ ivn!. ~18!

This equation must be solved numerically, except in certain
limits.

The semicircular density of states corresponds to a Bethe
lattice and the dynamical mean-field theory together with the
self-consistency condition Eq.~18! can be derived in this
case by a more physically transparent argument. We take for
concreteness the case of orbitally degenerate electrons with a
Jahn-Teller coupling to orbitally degenerate classical
phonons. On a Bethe lattice the local Green functionGii on
a sitei with phonon amplituder i is
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Gii
ab21~ ivn ,r i !5 ivn1m1grW•tW ab

2(
jcd

t i j
acGj j

cd~ ivn ,r j !t j i
db . ~19!

One may diagonalize the Jahn-Teller coupling by a local
rotationRi in orbital space, withRi5cosfi/2tz1sinfi/2tx ,
and one may absorbRi into the hopping matrix
t̂ i j5Rit i j Rj , which thus acquires a dependence on the rela-
tive orientation of the phonon distortions. The mean-field
theory for the disordered phonon state follows~in the limit of
large coordination numberZcoord) from the assumptions that
thef j ’s andr j are statistically independent and the hopping
t i j scales ast/AZcoord. The sum onj can then be replaced by
an average overf ’s andr ’s, the latter with a nontrivial dis-
tribution P(r ) defined by Eq.~11!. The hopping self-energy
then reduces todabGloc with Gloc51/2Tr̂ Gii & r i and the self-
consistent equation forGloc is obtained by averagingGii
given by Eq.~19! over r i . Equation~19! may be helpful as a
starting point for mean-field theories with nontrivial spatial
correlations of the phonons.

We will be interested in three physical quantities: the
momentum-integrated electron spectral functionA(v), the
phonon probability distributionP(r ), and the conductivity
s. The spectral function is

A~v!52
ImGloc~ ivn→v1 i e!

p
. ~20!

In the dynamical mean-field method the conductivity
sab5sMFdab ~herea,b are coordinates axesx, y, z! with

sMF~ iV!5
e2t2

iV
TrE depD~ep!T

3(
iv

G~p,iv!G~p,iv1 iV!. ~21!

In particular, the dc conductivity is

sdc~T!5e2t2TrE dedv

p
D~ep!

3@ ImG~ep ,v!#2/4T cosh~v/2T!2, ~22!

with G(ep ,v)
215v1m2(ep

ab)2S(v).
As T→0, two possibilities arise: eitherS9(v50)→0 or

it tends to a finite nonzero value. In the former case,

sdc→e2t2nspinnorbD~e* !E dv

4T

1

~cosh2v/2T!

1

S9~v,T!
,

~23!

with e* satisfyinge*5m2S8(0). In thelatter case

sdc→
e2t2

p
nspinnorbE depD~ep!

3F S9~0!

@ep1m2S8~0!#21S9~0!2G
2

. ~24!

III. NUMERICAL METHODS

In this section we outline the numerical methods used to
solve Eq.~18! and compute physical quantities. To aid in the
discussion we write this equation explicitly for the simplest
case of nondegenerate electrons coupled to nondegenerate
phonons. We have, settingt51,

a~v!5 iv1m2E
2`

`

dr
P~r !

a~v!1gr
, ~25!

with

P~r !5
1

Zloc
expF2

r 2

2T
1(

n
lnS an1gr

ivn
D G ~26!

andZloc given by Eq.~12!. Herean5a( ivn) with vn a ferm-
ion Matsubara frequencyvn5(2n11)pT.

For most physical quantities we requirea(v) for real fre-
quency. It is possible to expressP(r ) in terms ofa(v), but
this involves performing numerically an integral over a con-
tinuous frequency. We have found it more convenient to find
P(r ) by solving Eq.~25! on the Matsubara points and then
using thisP(r ) to solve fora(v) on the real axis. In what
follows we first discuss the solution on the Matsubara axis
and then mention the additional issues arising for the real
axis case.

We solve Eq.~25! on the Matsubara axis by direct itera-
tion, so thatan at stepN11 is determined by evaluating the
right-hand side of Eq.~25! usingan from stepN. If a solu-
tion at the same coupling and a nearby temperature is avail-
able we use this as the starting point; if not we use the
g50 solution. Convergence is usually rapid; typically 10
iterations are required for convergence from theg50 solu-
tion to a solution with rms error of 1025 ~averaged over all
retained Matsubara frequencies! and using the solution from
a nearbyT saves about 2 iterations. However, away from
half filling, in the strong coupling limit, the straightforward
iteration procedure does not converge, but instead goes to a
two-step limit cycle in which evaluating the right-hand side
of Eq. ~25! using the valuesan

(1) yields a different set of
valuesan

(2) which, when put back in Eq.~25!, generate again
an
(1) . This limit cycle may be avoided by making the itera-
tion proceed in smaller steps by definingan at stepN11 to
be an appropriate linear combination of the right-hand side
of Eq. ~25! and the solution at stepN; however, asT gets
lower or coupling gets stronger the required admixture of the
newly computeda gets smaller, and at some point the com-
putations become too time consuming.

Away from half filling it is necessary at each temperature
and coupling to find the chemical potentialm(T,g), which
gives the desiredn. We do this by computing at several
values ofm and interpolating. At strong coupling and low-
T, n is a very sensitive function ofm, and it is necessary to
choose at least threem values all of which yieldn’s, which
are within 10 % of the desired value and to use a cubic
interpolation. In the calculations presentedn varies by less
than 631024 over the range ofT and g considered. We
found it convenient to evaluaten via
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n5 lim
t→0

T(
n

TrGloc~ ivn!e
2 ivnt. ~27!

Gloc may be expressed in terms of a via the mean-field equa-
tions.

The next issue is the number of Matsubara points needed
to computeP(r ) accurately. We note from Eq.~25! that at
largevn

an5 ivn1m2
1

ivn
2

1

vn
2E drP~r !~m1gr !1OS 1v3D .

~28!

Analogous but slightly different formulas apply in the case
of Jahn-Teller coupling. We determine the maximum re-
tained Matsubara frequencynmax by requiring that the
O(1/vn

3) terms are less than 1025 and in the expression for
P(r ) we evaluate the terms withunu.nmax analytically, us-
ing the an given in Eq.~28!; the errors are of ordernmax

22 .
Equation~28! is also useful for improving the accuracy of
the computation of the densityn from Eq. ~27! away from
half filling. To achieve the stated accuracy we found it nec-
essary to choosenmax so that vnmax

52pT(nmax11/2) is
about 5 times the full width of the real-axis electron spectral
function. The 1/T growth ofnmax asT→0 limits our ability
to calculate at very low-temperatures. For example, at
g51.29 andT50.02,nmax>250.

The remaining numerical issue for the Matsubara-axis so-
lution is the integral over the phonon coordinate, which is
done using the numerical quadrature routine ‘‘quad’’ from
the ‘‘Port’’ library. Gaussian quadrature routines are faster at
weak coupling, but fail at strong coupling and low-T where
P(r ) has a large narrow peak at ana priori unknown loca-
tion far from the origin.

We now turn to the real axis calculations, which we also
do by direct iteration of Eq.~25! with analytically continued
frequencyv1 i e, usingP(r ), which has already been com-
puted. The limit cycles that plagued the Matsubara calcula-
tions do not occur, but other numerical problems arise. Be-
causeP(r ) is held fixed, different frequencies decouple and
the mean-field equation does not come from minimizing a
free energy. Nearby frequencies are also sometimes found to
converge at different rates. In parameter regimes in which
the T50 spectral function has a gap, the imaginarya9(v)
part ofa(v) is small and very temperature-dependent at low
T for frequencies in the gap. Our procedure fails to find a
nonzero value ofa9 if this quantity becomes less than
1023, and we are not sure of the accuracy fora9&1022.
Physical properties in such regimes depend crucially on the
tailing of the spectral function into the gap, so our ability to
calculate the lowT properties of regimes with gaps is lim-
ited.

To calculate conductivities we solve the real axis mean-
field equations for a discrete set of frequencies spaced by
0.01. Then at these frequencies we evaluate

u~v!5E depD~ep!@ ImG~ep ,v!#2 ~29!

using the Port routine ‘‘quad’’ and then obtain

s.nspinnorbE dvu~v!cosh22
v

2T
~30!

using the quad routine and evaluatingu(v) by spline inter-
polation from the known values. In the computation we set
the factorse2/p51.

We note finally that especially in the crossover region
where there is a frozen-in lattice distortion that is not large
enough to open a gap in the spectral function, physical prop-
erties are quite sensitive to the precise value of the coupling
constant. A change ing by 2% can lead to more than factor
of three changes in, e.g., the low-T conductivity; also small
numerical errors in the computation of the Fermion contri-
bution to the action can mimic a small change ing. An
example can be found in the curve labeledg51.60 in Fig. 2.
The analytically calculatedT50 resistivity for thisg is 3.75.
The actual numerically calculated low-T spectral function is
found to be essentially identical to that calculated analyti-
cally at T50 for g51.57; the corresponding analytical
T50 resistivity is found to be 1.004, in good agreement with
the numerical calculation.

IV. NONDEGENERATE SPINLESS ELECTRONS

A. Introduction

In this section we present results of a detailed study of a
model of spinless, orbitally nondegenerate Fermions coupled
to classical nondegenerate oscillators. This section is orga-
nized as follows. In this section, we outline the qualitative
physics. In Sec. IV B we solve the original model, Eqs.~1!–
~4! in simple limits, obtaining results that clarify the inter-
pretation of thed5` results. In Sec. IV D we solve the
d5` model with the Lorentzian density of states@Eqs.~12!
and~17!#, and in Sec. IV D thed5` model with semicircu-
lar density of states@Eqs.~12! and ~18!#.

In the model defined by Eqs.~1!–~4! we may distinguish
three phases according to theT→0 limits of the oscillator
coordinater and the electron spectral function. Inweak cou-
pling, limT→0^r &50 and the spectral function takes the non-
interacting form. The low-T resistivity is then linear inT,
and extrapolates to 0 asT→0, being due to the thermal
fluctuations of r about r50. In intermediate coupling,
limT→0^r &Þ0, implying that some frozen-in lattice distor-
tions exist. However, the amplitude of these distortions is too
small to localize states near the Fermi level. The low-T re-
sistivity is still linear in T, but extrapolates to a nonzero
value atT50. The spectral function is perturbed from its
noninteracting form. Instrong couplingthe amplitude of the
frozen-in lattice distortions is large enough to localize elec-
trons at the Fermi level, leading to a gap in theT50 spectral
function and an activated resistivity.

All three regimes are found in the calculations discussed
below. None of the regimes involves long-range order—the
localization should be thought of as being due to polaron
formation. At commensurate filling or in low dimensions,
effects of long-range order~i.e., charge-density-wave forma-
tion or polaron ordering! will be important but at general
incommensurate fillings these effects will be important only
at low T and for our purposes may be neglected. Further
discussion may be found, e.g., in Refs. 9 and 16.
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Quantum effects will also be important: at sufficiently low
T and in the absence of long-range order, quantum tunneling
will restore translational invariance. In the strong coupling
limit the quantum effects may be thought of as leading to the
formation of a polaron band, with a bandwidth exponentially
small in l; at scales greater than the polaron bandwidth the
results presented here will apply. The effect of quantum fluc-
tuations on the intermediate coupling regime is less clear, but
must be left for future work.

B. Full model, solvable limits

The crucial issue is performing the integral over the pho-
non coordinates in Eq.~6!. At low T the integral is sharply
peaked about particular values$r i* % and a steepest-descent
approximation is possible. Two solvable cases occur:

~1! Weak coupling. For l,lc andT→0 (lc will be es-
timated below! r i*[0 and one may expand the logarithm in
Eq. ~6! obtaining

Z}exp@Tr lnG0
21#E Dr kexp2F t@12lB~k!#r kr2k

2T G . ~31!

HereG0
215 ivn2ek1m and

B~k!5tE d3p

~2p!3
f ~ep1k!2 f ~ep!

ep2ep1k
. ~32!

It is evident from Eq.~31! that the expansion in powers of
r aboutr i>0 is controlled at low-T if l,lc with

lc
215maxkB~k!. ~33!

In particular, asT→0 at fixedl, r k;AT is small, so the
leading-order perturbation expression for the Fermion self-
energyS applies.4,21 This expression is

S~p,iv,T!5lTE d3k

~2p!3
1

12lB~k!

t

iv2ep1k
. ~34!

For smallv, we may restrict thek integral to wave vectors
such thatp85p1k is on the Fermi surface. The leading
contribution to thev dependence ofS is then

S~p,iv,T!5 ipTlsign~ iv!

3E dVp8

4p
D~ep8!/@12lB~p2p8!# ~35!

and if alsol!lc

S~p,iv,T!5 ipTlD̄~eF!sgnv ~36!

with D̄(eF) the angle averaged density of states at the Fermi
surface.

Equation~36! is shown in Appendix A to be precisely the
usual Migdal expression for the self-energy. If (lc2l)/lc is
not too small, the quantity lT*(dVp8/4p)
D(ep8)/@12lB(p2p8)# depends only weakly onp; if it is
averaged overp on the Fermi surface it becomes the classi-
cal limit of the usual ‘‘a2F ’’ function. Here T/t plays the
role of the usual Migdal parametervD /EF . As l→lc , the
phonon propagator becomes large and also acquires a singu-
lar momentum dependence because the phonon propagator

diverges at a particular wave vector, so one may expect the
Migdal approximation to fail. A discussion of corrections to
the Migdal approximation is beyond the scope of this paper.
Note also thatl,lc is the condition for the linear stability
of the r i[0 state. AT50 first-order transition atl*,lc to
a state withr iÞ0 is possible and indeed will be demon-
strated using the dynamical mean-field approximation.

The resistivity may also be computed. Ifl'lc , the mo-
mentum dependence of the phonons may be important and
vertex corrections must be considered. Ifl!lc the momen-
tum dependence of the phonons, and therefore the vertex
corrections, may be neglected and the conductivity on the
Matsubara axis is

sab~ iVn!5
e2

iVn
E d3p

~2p!3
T(
ivn

]ep
]pa

]ep
]pb

3G~p,ivn1 iVn!G~p,ivn!. ~37!

Substituting Eq.~35! into Eq. ~37!, performing the inte-
grals, and analytically continuing gives

s~T!5
e2

2plTE dVp

4p
~vF

a !2D~Vp!. ~38!

In a simple tight binding model,vx(p)52tsinpx and evalu-
ating Eq.~38! yields

r~T!5
plT

t2e2D̄~eF!
. ~39!

~2! Full model, strong coupling. In the limit l@lc an
analytic solution is possible because we may treat the elec-
tron kinetic energy as a perturbation. If it is neglected then to
solve Eqs.~1!–~4! we note that if the mean density isn and
the number of lattice sites isN then there arenN sites with
one electron, and (12n)N sites with no electron. On the
nN occupied sites there is a lattice distortion of amplitude

r occ* 52~g/k!~12n! ~40!

and on the (12n)N unoccupied sites

r unocc* 5~g/k!n. ~41!

The energy density gained may be found from Eqs~1!– ~4!
by neglecting the electron hopping term and evaluating the
on-site energy of occupied and unoccupied sites. The result
is

Egained52 1
2 tln~12n!. ~42!

Perturbative corrections~in powers of the kinetic energy!
may be calculated.9 These involve processes in which elec-
trons make virtual hops to unoccupied neighboring sites, and
lead to a repulsive short-ranged interaction of ordert/l be-
tween polarons. This interaction will lead to polaron order-
ing, at a scale generically much lower thant/l. In this limit
transport is thermally activated; the prefactor ist and the gap
is Egained.

5394 54A. J. MILLIS, R. MUELLER, AND BORIS I. SHRAIMAN



C. Dynamical mean field method: Lorentzian density of states

In this section we discuss the solution of the dynamical
mean-field equations for spinless Fermions with Lorentzian
density of states coupled to a single scalar oscillator. We
begin with theT→0 limit, where one may use a steepest-
descent approximation. The details are given in Appendix B.
We find that forl,lc(n), r *5 limT→0^r &50, while for
l.lc there are two extrema, atr 1*,0 and r 2*.0. For
n51/2, r 1*52r 2* , the transition atlc is second order: the
second derivative of the energyE(l) has a discontinuity and
r * grows smoothly withl. For nÞ1/2, r 1*Þ2r 2* and the
transition is first order: the first derivative ofE(l) has a
discontinuity andr * jumps discontinuously.

The physical content of ther *Þ0 states is most clearly
seen from the electron Green function, which atT50 is

Gloc~ iv!5
Z1

iv1m1 i t sgnv1gr1*
1

Z2
iv1m1 i t sgnv1gr2*

~43!

with Z15ur 2* u/(ur 1* u1ur 2* u) andZ25ur 1* u/(ur 1* u1ur 2* u). Thus
if r *Þ0 the spectral function consists of two resonances. In
the largel limit, these are well separated. One, of weight
n, is at the negative energym2g(12n) and corresponds to
the sites on which the electron-phonon interaction has local-
ized an electron. The other, of weight 12n, is at the positive
energym1gn and corresponds to the empty sites. The split-
ting, DE}l as expected, while the energy gainedEgained
~relative to the undistorted state! is

Egained52 1
2ltn~12n!, ~44!

consistent with Eq.~42!. The Lorentzian density of states is
pathological in that, as may be seen from Eq.~43!, at any
value of g the T50 spectral function is nonzero atv5m;
thus the ground state is always metallic. This pathology may
be traced back to the nonintegrability of the first moment of
density of states, which implies that some carriers have arbi-
trarily large velocities and cannot be localized by any lattice
distortion.

D. Dynamical mean-field method:
Semicircular density of states

In this section we present results obtained using the dy-
namical mean-field method with semicircular density of
states. Our analysis is based on Eqs.~12! and~18!. The tech-
nical differences from the previously discussed Lorentzian
case are that the mean-field functiona(v) satisfies a non-
trivial self-consistency equation, and the moments of the
density of states are finite, so the spectral function may de-
velop a gap.

As in Sec. IV C, one may use steepest-descent arguments
for T near zero. The details of the analysis are given in
Appendix C. Forg,g* the energy minimum is atr *50;
for g.g* there are two minima, atr5r 1.0 and
r5r 2,0. Forn51/2 the transition is second order and oc-
curs atg*5gc*5A3p/2>1.535; fornÞ1/2 the transition is
first-order and occurs at ag*.gc .

As in Sec. IV C, the physical content of ther *Þ0 solu-
tions is the existence of frozen-in lattice distortions. The ef-
fect of these may be seen from the local Green function,
which, atT50, is

Gloc5S Z1
a~v!1gr1

1
Z2

a~v!1gr2
D Y ~Z11Z2!. ~45!

HereZ1.0 andZ2.0 are the relative weights of the free
energy minima corresponding tor5r 1 and r5r 2, respec-
tively.

Figure 1 showsA(v)52ImGloc for n51/2, T50, and
different values ofr 15r 25r . Our interpretation of these re-
sults is that for 0,r,1/2 the potential fluctuations due to
the frozen-in phonons are very weak, and merely localize a
few states at the band tails. This accounts for the slight
broadening ofA and the slight decrease nearv52m. For
1.r.1/2 the potential is strong enough to create a mini-
mum inA atv52m; for r.1 it is strong enough to localize
all of the electrons and create a gap in the spectral function.
Note also that as shown in the inset to Fig. 1,r is a rapid
function of l in the regionr,1. This rapid growth ofr
means that the transition is very nearly first order even for
n51/2. Figure 2 shows the temperature-dependence of the
resistivity for the same coupling constants used to construct
Fig. 1. The two lowest resistivities are calculated for weak
couplingsg,gc andg5gc , for which limT→0r * (T)50 ~so
the T50 spectral functions are identical!. For g,gc , r(T)
at low T is linear in T with a g dependent prefactor and
limT→0r(T)50. Forg5gc the quadratic term in the phonon
energy vanishes andr;T1/2 at low-T. For g slightly greater
thangc , limT→0 r(T)Þ0 but is finite. Forg large enough
that the spectral function has a minimum atv50, the resis-
tivity initially drops asT is increased fromT50. Forg large
enough that theT50 spectral function has a gap,r rises
rapidly, and ultimately exponentially asT→0. The tempera-
ture at whichr begins to rise rapidly is somewhat less than

FIG. 1. Momentum-integrated electron spectral functionA(v)
plotted against frequencyv for nondegenerate electrons coupled to
nondegenerate phonons at densityn51/2, temperatureT50, and
several different values of frozen-in lattice distortionsr50 ~heavy
dashed line!, 0.87 ~heavy dotted line!, 1.0 ~light solid line!, 1.17
~light dashed line! and 1.49~light dotted line! corresponding to
g51.53, 1.60, 1.63, 1.69, and 1.83, respectively. Inset: coupling
constant (l) dependence ofr .
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the T50 gap. Note that for A3p/2,g,1.63
limT→0r(T)5r(0) is neither zero nor infinite.

Some insight into the process of gap formation can be
gained from Figs. 3 and 4, which show the temperature evo-
lution of the spectral function and phonon probability distri-
bution for couplingg51.69. One sees from Fig. 2 that the
rise in resistivity asT is decreased begins atT50.07 at
which, one sees from Fig. 3, the spectral function first devel-
ops a minimum. A weak maximum inP(x) is visible in Fig.
4 even at higher-temperatures, but the maximum becomes an
obvious feature at the temperature at which the resistivity
begins to turn up. The initial rapid rise in the resistivity is
associated with the development of the minimum in the spec-
tral function; the asymptotic low-T behaviorr;eD/T occurs

at or below the lowest-temperatures available numerically.
The numerical calculations in this section have all been per-
formed at n51/2, where particle-hole symmetry implies
m50, simplifying the computation. Results for the particle-
hole asymmetric case in other models will be presented be-
low. In our computations to date we have found thatn
Þ1/2 has qualitatively similar behavior ton51/2 with me-
tallic and insulating regimes according to whether or not the
T50 spectral function has a gap. As shown by the explicit
calculations of Appendix C, somewhat stronger couplings
are required to obtain insulating behavior atnÞ1 than at
n51. In the numerical calculations atT.0, we have seen no
evidence of the first-order transitions found atT50.

E. Effect of electron and phonon degeneracy

Nondegenerate phonons. The effect of electron spin and
orbital degeneracy on models with scalar phonons is straight-
forward, if there is no long-range order. One multiplies the
quantity Tr ln@Geff

21# in Eq. ~6! by the factornspinnorb. This
factor may be absorbed intoT and g by defining
T5Tnspinnorb, andg5g/Anspinnorb and the model reduces to
the previous case, apart from small differences coming from
the T dependence of the Fermion action. This is shown in
Fig. 5, which depictsr(T) for a model with a twofold elec-
tron degeneracy (nspinnorb52). The couplings are chosen to
differ by a factor ofA2 from those used to construct Fig. 3,
so as to produce the sameT50 behavior. The resistivity is
smaller by a factor of 2, because it is proportional to
1/norbnspin. If the temperature axis is rescaled by a factor of
two, the various curves lie almost on top of each other, with
agreement being best for low-T and weak coupling. For ex-
ample, the temperatures at which the resistivity turns up for
g51.83 and 1.69 in the nondegenerate case are almost ex-
actly one-half of the temperatures at whichr turns up for
g51.30 and 1.20. Some deviations from this scaling become
apparent at higherT; these are due to theT dependence of
the Fermion action~i.e., to the electron entropy!. For ex-
ample, the scaled weak coupling resistivities differ by an
amount proportional toT2. Similarly, the upturn for the
strongest coupling occurs at a slightly lower rescaled tem-
perature in the degenerate case. Again forg@gc the model is

FIG. 2. Temperature (T) dependence of resistivityr calculated
for nondegenerate electrons coupled to nondegenerate phonons at
density n51/2 for the coupling constants used to create Fig. 1:
g51.29 ~heavy solid line!, 1.53 ~heavy dashed line!, 1.60 ~heavy
dotted line!, 1.63 ~light solid line!, 1.69 ~light dashed line!, and
1.83 ~light dotted line!. Note thatg51.29 and 1.53 have the same
lattice distortionr50 atT50 and therefore the same spectral func-
tion.

FIG. 3. Temperature (T) dependence of electron spectral func-
tion A(v) for g51.69, n51/2, andT50 ~light solid line!, 0.01
~light dashed line!, 0.02 ~light dotted line!, 0.07 ~heavy solid! and
0.15 ~heavy dashed line!. Inset: spectral function plotted over a
wider range of frequency for parameters used in main figure. The
higher theT the longer the high frequency tail. Comparison to the
appropriate curve in Fig. 2 shows that the rise in the resistivity
begins at theT50.07 at whichA first begins to develop a minimum
at v50.

FIG. 4. Temperature-dependence of phonon probability distribu-
tion P(r ) for g51.69,n51/2, andT50.01~light dashed line!, 0.02
~light dotted line!, 0.07 ~heavy solid line!, and 0.15~heavy dashed
line!.
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insulating asT→0. The approach to theT→0 limit for this
model is shown in the middle panel of Fig. 6. It is seen that
in this model our calculations can access more of the low
T limit because of the rescaling of the temperature.

Degenerate phonons Jahn-Teller coupled to orbitally de-
generate electrons. The theory is based on Eq.~5!; signifi-

cant differences from the previous cases occur because the
electron spectral function may have a more complicated
structure and the phonon measure suppresses the probability
of small amplitude lattice distortions and increases the prob-
ability of large amplitude distortions.

We begin with the effect of the phonon measure. For this
discussion we restrict our attention ton51, so the only dif-
ference in the model is the factor ofrdr in the phonon mea-
sure. Figure 7 shows the resistivity of this model forn51 at
the same coupling constants used to construct Fig. 5. One
sees immediately that all resistivities are larger in the Jahn-
Teller case; also for parameters such that there is aT50 gap,
up-turns occur at higher-temperatures. The origin of these
differences may be seen most easily in the phonon probabil-
ity distribution P(x), shown in Fig. 8 for both degenerate
and nondegenerate phonons using in both cases degenerate
electrons. We have choseng5gc51.085 ~the critical value
at which theT50 lattice distortion vanishes! andT50.15.
The results are representative of allg andT. One sees im-
mediately that the mean square value of the lattice displace-
ment is larger in the Jahn-Teller case than in the nondegen-
erate case and more importantly the smallr fluctuations are
suppressed. The larger mean square displacement means
more scattering and hence more resistivity. The suppression
of small r fluctuations means thatP(r ) is reasonably sharply
peaked at a nonzero value,r5r peak. The temperature-
dependence ofr peak in the degenerate-phonon case is deter-
mined by the coupling; forg,gc r peak(T);T1/2, for g5gc
r peak(T);T1/4 and forg.gc r peak tends to a constant.

For nondegenerate phonons andT50, P(r ) has a maxi-
mum atr50 if g,gc and maxima atrÞ0 if g@gc . Even
for g,gc P(r ) at TÞ0 may have a weak maximum atr
Þ0, but this does not seem to have any consequences for
physical properties. In the degenerate-phonon case the peak
structure ofP(r ) actually can lead to a minimum in the
spectral function at zero frequency ifgrpeakexceeds a critical
value somewhat larger than the 0.5 value found in Appendix

FIG. 5. Temperature (T) dependence of resistivity (r) for
model of degenerate electrons and nondegenerate phonons with
n51 and g50.91 ~heavy solid line!, 1.09 ~heavy dashed line!,
1.13 ~heavy dotted line!, 1.15 ~light solid line!, 1.20 ~light dashed
line! and 1.30~light dotted line!. These couplings produce the same
T50 gaps as in Fig. 2. The factor ofA2 in the couplings and the
factor of 2 in the resistivity relative to Fig. 2 come from orbital
degeneracy.

FIG. 7. Temperature (T) dependence of resistivity (r) for
model of degenerate electrons and degenerate phonons withn51
and g50.91 ~heavy solid line!, 1.09 ~heavy dashed line!, 1.13
~heavy dotted line!, 1.15 ~light solid line!, g51.20 ~light dashed
line!, and 1.30~light dotted line!. These couplings produce the same
T50 gaps as in Figs. 2 and 5. Noter is much larger than that
shown in Fig. 5 for the nondegenerate electrons model, reflecting
the stronger scattering.

FIG. 6. Low-temperature behavior of resistivity~r! for the three
models considered in the text for parameters such that the spectral
function has a gap atT50: lower panel: nondegenerate phonons
and nondegenerate electrons, middle panel: nondegenerate phonons
and degenerate electrons, upper panel: degenerate phonons and de-
generate electrons. The expected low-T behavior isr;TxeD/T with
D the low-T gap in the spectral function. The heavy dots mark
values ofD obtained from an analyticT50 calculation as described
in the text.
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C. Of course ifg&gc , this minimum will vanish asT is
decreased. This behavior is illustrated in Fig. 9, which shows
the temperature evolution of the spectral functions for the
two models. Only the degenerate phonon case has a mini-
mum atv50; the minimum vanishes belowT;0.045, at
which temperaturegrpeak;0.5. This may be understood by
reference to theT50 limit, in which P(r ) may be approxi-
mated by ad function at a coupling dependent valuer 0. If
gr0.0.5 theT50 spectral function develops a minimum at
v50; if gr0.1 it develops a gap. Similarly, atT.0 the

peak in the degenerate-phononP(r ) leads to a minimum in
A(v) if this peak occurs at anr peak such thatgrpeak.0.5.
This tendency to open or increase a gap in the electron spec-
tral function asT is raised acts to increase the resistivity of
the degenerate model above that of the nondegenerate one.

Finally, the approach to theT→0 limit for the insulating
regime is shown in the upper panel of Fig. 6. It is interesting
that the result approaches theT→0 limit more smoothly than
in the two previous cases, and also thatTlnr is larger at
T.0 than atT50, unlike the other two cases. We speculate
that the origin of this difference is the larger rms value of
r , which would imply an effectively larger gap.

Away from n51 a more important difference in physics
occurs, which is most easily seen for spinless electrons in the
very strong coupling limit. Supposen,1 and neglect hop-
ping completely. Then by analogy with the steps leading to
Eq. ~42! one expectsn sites occupied by a single electron
and 12n unoccupied. The spectral function associated to the
singly occupied sites has two peaks, one below the chemical
potential corresponding to the occupied orbital and one
above corresponding to the unoccupied orbital. The spectral
function associated with the unoccupied sites has only one
peak, because in the absence of any electrons there is no
lattice distortion and therefore no splitting of the orbitals.
The spectral function thus has a three-peak structure in the
strong coupling limit.

Consider now the first perturbative correction due to the
hopping. This will lead to a charge-densitydn;n/l on pre-
viously unoccupied sites. If~as assumed in our application of
the dynamical mean-field method! there are no intersite cor-
relations in orbital occupancy or phonon fluctuations, this
extra charge will be randomly distributed over the two on-
site orbitals. Thus in the presence of a small amplitude pho-
non distortiondr the charge fluctuation will lead to an en-
ergy gain of at mostdn(dr )2, which will be too weak to
compete with the phonon stiffness in the strong coupling
limit. The three-peaked spectral function is therefore stable
in the strong coupling limit. Appendices D and E derive
these results from an asymptotic analysis of the dynamical
mean-field equations. It is clear from the above arguments
that the structure of the midgap states may be affected by
intersite correlations, which could lead to a charge fluctua-
tion favoring one particular orbital, and therefore to an en-
ergy gain proportional todr rather thandr 2. Incorporating
intersite correlations is an important open problem. Of
course, asl is decreased, the possible energy gain increases
and at some point the midgap states split and the two pieces
join the upper and lower bands. The resulting intermediate
coupling regime corresponds to a uniform electron density
and a uniform nonzero lattice distortion. The electron spec-
tral function consists of two bands, with the Fermi level in
the lower one~for n,1). The rigid bandlike state gains ki-
netic energy;12n relative to the three-band state, because
one band is not fully filled, but is shown in Appendices D
and E to be more costly in Jahn-Teller energy because the
lattice distortion is not as large.

Thus, as the coupling is increased atT50 three phases
are in principle possible: a weak coupling phase with a
single-peaked spectral function, a ‘‘rigid band’’ phase with a
two-peaked spectral function and the Fermi level in the
lower band, and an insulating three-peaked spectral function.

FIG. 8. Lower panel: phonon probability distributionP(r ) for
g51.085,n51, T50.05 ~heavy solid line!, 0.1 ~light solid line!,
and 0.15~light dashed line! and nondegenerate phonons. Upper
panel: phonon probability distributionP(r ) for same parameters
and degenerate phonons.

FIG. 9. Comparison of temperature evolution of electron spec-
tral functions for degenerate~upper panel! and nondegenerate
~lower panel! phonons and orbitally degenerate electrons forn51
andg51.085,T50.05~heavy solid line!, 0.1 ~light solid line!, and
0.15 ~light dashed line! as used in Fig. 8.
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Determining the couplings at which the system goes from
one phase to another in general requires numerical solution
of the coupled mean-field equations, along with comparison
of the energies of different locally stable solutions. However,
in the limit (12n)→0 the equations simplify and a straight-
forward physical argument may be used. Consider then51
problem in the insulating regime in which the spectral func-
tion has two peaks separated by a gap and calculate the elec-
tron removal spectrum allowing the on-site lattice distortion
to adjust.~Thev,0 part of the spectral function previously
computed for this problem represents the lowest-energy way
to remove an electron from the system at fixed lattice distor-
tion.! This energy may be computed from the quantity
Gii
ab(v,r ) defined in Eq.~19!, with theG on the right-hand

side of the equation given by then51 solution of the dy-
namical mean-field equations. Performing this computation
and optimizing overr shows that there are two extrema—
one atr50 and one atr5r * ~with r * the optimumr found
for n51). If g.1.308, . . . ~i.e., r *.1.527,. . . ) then the
energy of ther50 extremum is lower, showing that the
three-peaked spectral function is favored, while for
g,1.308, . . . the ‘‘rigid band’’ solution is favored.~Note
that at g51.308 the two peaks of the rigid band spectral
function are separated by a gap.! For this reason we believe
that for 12n!1 there is asg is increased a second-order
transition to the rigid band two-peaked spectral function. As
g is increased further, the peaks separate and eventually a
gap develops between them~although the ground state re-
mains conducting!. This is followed by a first-order transi-
tion at a largerg to an insulating state with a three-peaked
spectral function. This sequence of spectral functions is
shown in Fig. 10. On the other hand, forn→0 the results of
Appendix E show that the weak coupling one-peak spectral
function proceeds directly to the three-peaked one via a first-
order transition.

One important consequence of the central feature appear-
ing in the three-peak regime is that it acts to fill in the gap
created by the lattice distortion, so that one must go to stron-
ger couplings and lower temperatures to see insulating be-
havior in the Jahn-Teller case than in the nondegenerate case.
This may be seen directly from the strong coupling calcula-
tions of Appendices C and E. In the nondegenerate case the

spectral function has two features, at6g2 and physical
quantities are controlled by the energy gap between them,
which is of about the same size. In the Jahn-Teller case the
highest and lowest of the three peaks are still separated by an
energy of 2g2, but physical processes are controlled by the
gap separating the lowest and middle peaks, which is much
less. This may also be seen in numerical calculations of the
low-T spectral functions and phonon probability distribu-
tions. The upper panel of Fig. 11 compares the spectral func-
tions for the nondegenerate and Jahn-Teller cases at
T50.03, g51.58, andn50.75. Although the trueg.1
strong coupling limit has not been reached, the two-peaked
and three-peaked structures expected for the nondegenerate
and Jahn-Teller cases are clearly visible and the gap in the
Jahn-Teller case is much less. Similarly, the lower panel
compares the spectral functions forn51 andn50.75, for
g51.58,T50.03, and Jahn-Teller coupling. Again one sees
the effect of the midgap states. Figure 12 similarly compares
the phonon probability distributions in the two cases. Figure
13 compares the resistivities of the two models for the
weaker couplingg51.29; the nondegenerate phonon model
displays insulating behavior belowT;0.13, while the Jahn-
Teller model remains metallic. The resistivities cross at
higher T because of the larger fluctuations of^r 2& in the
Jahn-Teller case.

V. CONCLUSIONS

We have used the dynamical mean-field method to study
the crossover from Fermi liquid to polaron behavior in mod-
els of electrons coupled to localized classical phonons. The
models we studied involved electrons with and without spin
and orbital degeneracy coupled to degenerate and nondegen-
erate phonons. We considered two forms of electron-phonon

FIG. 10. Evolution ofT50 spectral function with coupling
strength. Model with degenerate electrons, degenerate phonons, and
n50.75 for coupling constantsg51.53~light solid line!, 1.58~light
dashed line!, and the strong coupling limit solution evaluated at
g52.47 ~heavy solid line!.

FIG. 11. Comparison of low-T spectral functions. Upper panel
Jahn-Teller~heavy line, shifted bym521.23) and nondegenerate
phonons ~light line! at T50.03, g51.58, andn50.75. Lower
panel:n51 ~light! andn50.75 ~heavy! with Jahn-Teller phonons,
T50.03 and g51.58. n50.75 curve ~heavy line! shifted by
m521.23.

54 5399FERMI-LIQUID-TO-POLARON CROSSOVER. I. . . .



coupling: conventional, in which the phonon displacement
couples to the electron charge-density, and Jahn-Teller, in
which the phonon displacement couples to the splitting of the
electronic levels. We showed that asT→0 three regimes
may be distinguished. Inweak couplingthe mean square
displacement of the oscillator coordinate from its noninter-
acting reference position vanishes and the momentum-
integrated electron spectral function assumes the noninteract-
ing form. Corrections lead to the usual linearT resistivity. In
intermediate couplingthe mean square displacement of the
oscillator coordinate is nonvanishing and the spectral func-
tion is changed from its noninteracting form, but the density
of states at the Fermi level is nonzero so theT→0 resistivity
is neither zero nor infinite. Instrong couplingthe mean
square displacement is nonvanishing and is sufficiently large
that a gap appears in the spectral function and the resistivity
diverges asT→0. Examples of the evolution of theT50
momentum-integrated spectral function with coupling
strength are shown in Figs. 1 and 10. Figure 1 is calculated

for the simplest model at half filling, but the results at any
filling for any model involving coupling of the oscillator to
the charge-density of the electrons are similar. The only im-
portant effects are that away from half filling in the strong
coupling limit the relative weights of the two peaks are dif-
ferent and that there is atT50 a discontinuous, rather than
continuous, change in the spectral function and^r 2& as the
coupling is increased. We believe, but have not proven, that
at anyT.0 the change is continuous. The evolution of the
spectral function for the case of Jahn-Teller coupling is
shown in Fig. 10. The significant difference is the presence
of the midgap feature in the strong coupling limit. This has
relative weightu222nu and corresponds physically to sites
unoccupied by electrons. This midgap feature means that for
Jahn-Teller couplings andnÞ1 the gap controlling physical
properties is much smaller at given coupling than it is in
models in which the phonon is coupled to the charge-density,
and the midgap state is absent.

Three physical effects have been left out of our calcula-
tion. One is the on-site Coulomb repulsion, which is cer-
tainly important in transition metal oxides. The Coulomb in-
teraction tends to localize electrons, with the effect being
strongest at commensurate fillings and so will tend to rein-
force the localizing effect of the electron-phonon interaction.
Because the localizing effect of the Coulomb interaction is
strongest at commensurate fillings, this will also lead to an
interesting doping dependence: the effective electron-phonon
coupling will weaken asn is varied from 1. The Coulomb
interaction will also change the form of the spectral function,
because it raises the energy of states with two electrons on
the same site. For example, the uppermost peak of the strong
coupling spectral function shown in Fig. 10 corresponds
physically to the density of states for adding an electron to a
site with one electron already present, at fixed phonon con-
figuration. Coulomb effects will shift this energy upwards. A
quantitative treatment of these effects within the present for-
malism will be left to a future paper.

A second important piece of physics is quantum fluctua-
tions of the phonons. At low-temperatures and in the absence
of long-range order, these will allow electrons to move from
site to site even in the strong coupling regime, thus cutting
off the strong-coupling divergence in the resistivity. One
mathematical consequence is the appearance of Gaussian
tails to the spectral functions in the gap regions.

A third omitted piece of physics is long-range order. It
has been assumed throughout that the lattice distortions are
random from site to site; thus the localization is due purely to
polaronic effects. Near commensurate densities, charge-
density-wave effects will be important as well.
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APPENDIX A: RELATION TO MIGDAL-ELIASHBERG
THEORY

In this Appendix we derive the relationship between the
formalism we have used and the conventional Migdal-
Eliashberg theory of the weakly coupled electron-phonon

FIG. 12. Comparison of low-T phonon probability distribution
P(r ) for Jahn-Teller~heavy line! and nondegenerate~light line!
phonons forT50.03, g51, and n50.75. Note that the larger
peaks occur at almost exactly the samer . Note also that the Jahn-
TellerP(r ) is defined only forr.0. The asymmetry inP(r ) in the
nondegenerate case is a consequence of particle hole assymmetry
due tonÞ1.

FIG. 13. Comparison of temperature-dependent resistivities for
Jahn-Teller~heavy line! and nondegenerate phonons~light line!,
g51.29 andn50.75.
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system. The essential parameter of the conventional treat-
ment is a dimensionless coupling constantlconv, which is
defined in terms of the electron self-energyS(v,T) via

lim
v→0

]S~v,T50!

]v
5lconv. ~A1!

To establish the relationship we introduce a finite phonon
massMph. This implies a Debye frequencyvD given by

vD
2 5k/Mpha

2 ~A2!

with a the lattice constant.~We use units in which\51.!
We then introduce phonon creation and annihilation opera-
torsb†,b via

r5~b†1b!/~2MphvD!1/2. ~A3!

Comparison to Eq.~4! yields

Hel-ph
conv5S g2

2MphvD
D 1/2(

iaa
~diaa

† diaa2n!~bi
†1bi !.

~A4!

The standard electron-phonon calculation gives

]S~v,T50!

]v
5norbnspin

g2

k
D~eF!, ~A5!

whereD~eF! is the single-spin density of states at the Fermi
surface. Thus

lconv5tD~eF!l. ~A6!

Elsewhere in this paper it has been shown that in the
dynamical mean-field calculations polaron effects occur at
l;1, implying lconv;1. For example, in the model with
norb5nspin51 and a semicircular density of states atm50,
frozen phonon distortions begin to occur atl5p
(lconv51). The critical values ofl found here are artifically
small because of neglect of quantum fluctuations and inter-
site interactions. In models with quantum phonons, some-
what largerl values will be required to produce insulating
behavior, but the general conclusion that metallic behavior
breaks down at alconv not too much larger than 1 will still
hold. Now Migdal showed, using phase-space arguments,
that the parameter that controls perturbation theory about the
zero electron-phonon coupling limit is notl but lvD /t ~or
if T.vD , lT/t).4 Therefore, one might expect to be able to
use the Migdal-Eliashberg equation to study the crossover
from Fermi liquid to polaron physics. The difficulty with this
argument, however, is that the ground state about which to
perform the expansion is not known forl.1. In fact, in the
limit considered in this paper, the Migdal-Eliashberg equa-
tions are identical to those obtained by expanding Eq.~6! to
order r 2 and solving self-consistently. Corrections to this
self-consistent solution are indeed small, iflT/t is small, but
the starting point is seen to be wrong ifl.lc'1. That the
Migdal approximation breaks down atl;1 has been noted
by other workers; see, e.g., Alexandrov, Kabanov, and Ray.3

APPENDIX B: NONDEGENERATE FERMIONS
WITH LORENTZIAN DENSITY OF STATES

In this Appendix we use steepest-descent techniques to
analyze theT→0 limit of the dynamical mean-field theory of
spinless Fermions with a Lorentzian density of states
coupled to a scalar classical oscillator. A similar technique
was used in Ref. 5. The partition function is

Z~g,n!5E dre2E~r ,g,n!/T. ~B1!

The energyE52TlnP(r) with P(r ) defined in Eq.~11!; it
may be evaluated by inserting Eqs.~17! and ~10! into Eq.
~11!. One finds

E~r ,g,n!5
1

2
r 22grn2@m2gr#F121

1

p
tan21~m2gr !G

1
1

2p
ln@11~m2gr !2#1mn1OT2. ~B2!

with the chemical potentialm chosen so that

dZ/dm50. ~B3!

As T→0, the r integral is dominated by the valuesr *
minimizing E. We have

Z~g,n!→(
a

Zaexp2E~r a* ,g,n!/T. ~B4!

Herea labels the extrema,r a* is a solution of

r5gS n2
1

2
2
1

p
tan21~m2gr ! D , ~B5!

andZa>0 is the weight associated with extremuma. Each
Za is a product of two contributions, one from integrating
over the quadratic fluctuations inr about r5r a* and one
from the leadingT dependence ofm. In the present problem
we have, at lowT, m5m01AT; the T-linear term contrib-
utes toZa .

Equation ~B5! may have one or three solutions. In the
latter case, either one has the lowest energy or two are de-
generate. If there is one dominant extremum then Eq.~B3!
implies

m5gr1tanp~n21/2!, ~B6!

so Eq.~B5! implies r50.
Now consider the case of two degenerate extrema, at

r5r 1 and r2r 2. From Eq. ~B3! and Eq. ~B5! one finds
Z1r 11Z2r 250; asZ1,2>0, r 1 and r 2 must have opposite
signs. It is convenient to define

R5g~r 11r 2!/2, D5g~r 12r 2!/2. ~B7!

In terms of these variables Eq.~B5! become

R5g2~n21/2!2
g2

2p
tan21

2m22R

12~m2R!21D2 , ~B8!

D5
g2

2p
tan21

2D

11~m2R!22D2 . ~B9!
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These equations must be solved subject to the constraint
E(r 1 ,g,n)5E(r 2 ,g,n), which by use of Eqs.~B8! and~B2!
may be written

~R2m!D5
g2

4p
ln
11~R2m1D!2

11~R2m2D!2
. ~B10!

At smallR andD, Eqs.~B10! and~B9! are only consistent if
R5m5g2(n21/2), so ~B10! is trivial. This may be most
easily seen by expanding the two equations inD at fixed
m2R and comparing theD3 coefficients. This immediately
implies that ifnÞ1/2 the transition is first order.

In the strong coupling limit,r 152g(12n), r 25gn and
m5 1

2g
2(n21/2). One may obtain Eq.~44! by substituting

the value for, e.g.,r 2 andm into Eq. ~B2!.

APPENDIX C: NONDEGENERATE FERMIONS
WITH SEMICIRCULAR DENSITY OF STATES

In this Appendix we analyze theT→0 limit of the dy-
namical mean-field theory of nondegenerate Fermions with a
semicircular density of states coupled to a classical oscilla-
tor. The technical differences from the Lorentzian case
treated in Appendix B are that the mean-field parameter sat-
isfies the self-consistency equation~18! and that the energy
is given by

E~r ,g,n!52
1

2
T(

n
@an2~ ivn1m!#21

r 2

2
2grn

2T(
n

ln@an2gr#1mn , ~C1!

with r given by a solution of

r5gS n1(
n

1

an1gr D . ~C2!

If there is one dominant extremum then Eqs.~B4! and ~18!
imply n52(n(an1gr)21 so Eq.~C2! implies r50. In this
case

a~ ivn!5 1
2 @~ ivn1m!2sgnvnA~ ivn1m!224#. ~C3!

If there are two degenerate extrema, Eqs.~B4!, ~B7! ap-
ply, as do the relations Z1r 11Z2r 250 and
E(r 1 ,g,n)5E(r 2 ,g,n) used in Appendix B. It is convenient
to rewrite the equations in terms ofR,D, bn5an1R, and
zn5 ivn1m1R as

R5g2n1g2T(
n

b

~b22D2!
, ~C4!

D52g2T(
n

D

~b22D2!
, ~C5!

2RD52g2nD1g2T(
n

ln
b1D

b2D
, ~C6!

b5z2
b1R

b22D2 . ~C7!

For nÞ1/2, the transition may be shown to be first-order
by the argument used in Appendix B: one expands Eqs.~C5!
and~C6! to orderD3 at fixedb andR and observes that the
equations are not compatible.

For n51/2,m5R andb is odd in ivn , so Eqs.~C4! and
~C6! are satisfied trivially. The other two equations may be
easily solved by viewing them as equations forb andg2 at
givenD. Because Eq.~C7! is only cubic, the solution may be
written down immediately. It is easiest to find the proper
branch of the solution ifz is continued to the real axis. Once
b is found,g2 may easily be computed from Eq.~C5!. From
Eq. ~C7! one sees immediately that the imaginary part of
b, b9, vanishes atv50 forD251. The coupling correspond-
ing to this,g51.63, is the one at which a gap first appears in
the spectrum. Similarly, one may show that the leading
(v2) correction to thev50 value of b9 vanishes at
D251/4.

The strong coupling limit is analytically tractable at all
n. b9 is nonzero only forZ near6D. Defining b65b6D
andZ65Z6D and neglecting terms of order 1/D one finds
from Eq. ~C7!

b6>Z62
1

2b6
~16R/D!. ~C8!

This equation may be solved and the results inserted into the
other equations. One finds

r 152g~12n!, r 25gn, m5g2~n21/2!. ~C9!

The physical content of these solutions is one band, of

width A2n centered atv52g2 representing occupied states
and another atv5g2 of width A2(12n) representing unoc-
cupied states.

APPENDIX D: ORBITALLY DEGENERATE ELECTRONS
WITH LORENTZIAN DENSITY OF STATES

In this Appendix we analyze theT→0 limit of the dy-
namical mean-field theory of orbitally degenerate electrons
with a Lorentzian density of states coupled to a classical
Jahn-Teller oscillator whose displacement has magnituder .
The treatment parallels Appendix B but the details are dif-
ferent. Instead of~B2! we have

E~r ,g,n!5
1

2
r 22~m1gr !S 121

1

p
tan21~m1gr ! D

2~m2gr !S 121
1

p
tan21~m2gr ! D

1
1

2p
ln@11~m1gr !2#

1
1

2p
ln@11~m2gr !2#1mn

with m chosen so~B3! holds. Instead of Eq.~B5! we have

r5
g

p
@ tan21~m1gr !2tan21~m2gr !#. ~D1!
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Suppose first there is only one dominant extremum. Ifg is
small this is atr50 and

m5tan
p

2
~n21! ~D2!

and

E~r50,n!52
2

p
lnS cosp2 ~n21! D . ~D3!

At g5gc(m)52/@p(11m2)#, there is a second-order transi-
tion to a state withrÞ0. In this state, the chemical potential
is fixed by

n511
1

p
@ tan21~m1gr !1tan21~m2gr !#. ~D4!

As g→` at n<1, this solution tends tor56gn,
m5tanp(n21/2)2g2n, E52 1

2g
2n21(1/p)lng2n.

At largeg andnÞ1, Eq.~D1! has an alternative solution,
r5g. This is incompatible with Eq.~D4!, so the solution
must be degenerate with another extremum, which, by sym-
metry, must be atr50. These requirements imply thatm5
1
2g

2sgn (n21) andE→2 1
2g

2n1(4/p)lng. If n is near 1 the
two-extremum solution becomes lower in energy at
g;1/A12n@gc ; if n is near 0, the two-extremum solution
is lower in energy at allg.gc .

APPENDIX E: JAHN-TELLER COUPLED ELECTRONS
WITH SEMICIRCULAR DENSITY OF STATES

In this Appendix we analyze theT→0 limit of the dy-
namical mean-field theory of orbitally degenerate electrons
with a semicircular density of states coupled to a classical
Jahn-Teller oscillator whose displacement has magnituder .
The treatment follows Appendix C but with technical differ-
ences analogous to those found in Appendix D. Instead of
Eq. ~C1! we have

E~r ,g,n!5T(
n

@an2~ ivn1m!#21
1

2
r 2

2T(
n

ln@an
22g2r 2#1mn. ~E1!

Instead of Eq.~C2! we have

r522g2rT(
n

1

an
22g2r 2

. ~E2!

If there is one dominant extremum thena satisfies

an5 ivn1m2
an

an
22g2r 2

~E3!

while m is given by

n52T(
n

an
an
22g2r 2

. ~E4!

For smallg, the only possible solution isr50, soan is
given by Eq.~18! andm may be found numerically from Eq.
~E4!. The r50 solution becomes linearly unstable at

gc
2~m!53p/~42m2!3/2 ~E5!

to a solution withrÞ0. This solution implies a frozen in
Jahn-Teller splitting randomly oriented from site to site but
of the same magnitude on all sites, and therefore a two-
peaked spectral function. Again the equations simplify in the
strong coupling limit, where the reasoning that led to Eq.
~C8! shows that the single-extremum solution tends to one
with a spectral function consisting of two semicircular fea-
tures of half-widthA2 ~versus half-width 2 atg,gc), cen-
tered atv52m6g2. Forn,1 m is such that the lower band
is partly filled, thusm52g2n1O(1), and theenergy is
2 1

2g
2n21O(12n). TheO(12n) term comes from carrier

kinetic energy in the partly filled band.
As in Appendix D, an alternate two-extremum solution

exists, with one extremum atr50 and the other atrÞ0. As
g→`, the nonzeror→g. The spectral function consists of
three well separated peaks; two each of weight
min(n,22n), at v2m56g corresponding to sites with an
electron and one, of weight 2u12nu, centered atv52m and
corresponding to the empty sites ifn,1 and the doubly
occupied sites atn.1. The chemical potential is2 1

2g
2 and

the energy is2 1
2g

2n1O1/g. As g→` the two extremum
solution is lower in energy. Forn→0, m→22 in the undis-
torted state and the divergence ofgc shown in Eq.~E5! im-
plies that the undistorted state proceeds directly to the three-
peaked one via a first-order transition. Forn near 1 the
calculation sketched in the text shows that the two-peaked
solution, with a gap between the two peaks, exists for a finite
range ofg.
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