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Fermi-liquid-to-polaron crossover. I. General results
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We use analytic techniques and the dynamical mean-field method to study the crossover from Fermi liquid
to polaron behavior in models of electrons interacting with dispersionless classical phonons.
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I. INTRODUCTION The competing energies are the electron delocalization or

In this paper we present results of a study of the crossov kr|net|c energyEy;, and the lattice energf,y gained by

T o ocalizing an electron. The entropy of a localized electron
from Fermi liquid to polaron behavior in several related 9 Py

: : o : .~ depends upon the number of spin and orbital states available
models of electrons interacting with dispersionless classic

h W tic techni lid i K or it to localize into, while the entropy of the phonons de-
phonons. We use analylic techniques valid in weak antyenqg on the phase space of the oscillators. Because the dif-
strong coupling limits, and we use the

tron , _ “dynamical mean-torent models have different entropies, we expect them to
field method1 to obtain results at |ntermed|ate couplings. In hanave differently at nonzero temperatures.

the following papet we present a detailed study of a more  oyr study has several limitations. First, the numerical re-
compllcated_ model believed _to be relevant to the “colossakyjts are obtained via the dynamical mean-field approxima-
magnetoresistance” manganites. tion. This is a controlled approximation, which, however,

The electron-phonon problem has been extensively stuchecomes exact only in a limit in which the spatial dimension
ied. The “polaron problem” of a single electron coupled to ad—«.! Studies of other models have indicated that for
deformable medium has been understood in d&tdihe  d=3 the results are qualitatively correct and indeed in good
problem of a degenerate Fermi gas coupled to phonons hasimerical agreement with those obtained by other methods
been solved perturbatively in a weak coupling lithithere  and by experiment!® The quantitative accuracy for quasi-
has also been fairly extensive work aimed at going beyondwo-dimensional materials such as 413Sr,NiO, is not
the original perturbative solutiotr? but this work has been clear. Further, the dynamical mean-field approximation is es-
aimed mostly at understanding superconducting transitiogentially local, so intersite informatio¢e.g., about polaron
temperatures and charge-density-wave instabilities. The seléize is difficult to obtain. We have not considered density-
trapping or polaron physics has received less attention.  wave instabilities, which have been recently studied via the

There are several experimental motivations for our workdynamical mean-field methdd® We have also assumed
One is the “colossal magnetoresistance” materialsclassical phonons. This approximation is known in the
Re; ,A,MnO,,>where Re is a rare earth such as lantha-=single-electron case not to affect the physics significantly
num andA is a divalent metal ion such as Ca or Sr. For(although it does lead to a few easily diagnosed low-
0.2=x=<0.5 these are metals at low temperatures and “insutemperature pathologigsand it dramatically simplifies the
lators” (in the sense that the resistivity is high, and rises acomputations. However, it does mean that we are unable to
T is lowered at high temperatures. The insulating behaviorstudy superconductivity. A third limitation is that we study
has been argued to be due to a self-trapping of carriers imodels in which the only interaction is the electron-phonon
local lattice distortions?*2 The physics of this material is interaction. In particular, we omit the on-site “Hubbard-U”
complicated by the existence of an additional “double-Coulomb interaction, which is undoubtedly important in at
exchange” carrier spin interaction, and will be discussed ineast some oxide material$’
the following paperf.La,_,Sr,NiO, is another compound in While the approximations we have made limit the direct
which carrier localization by lattice distortions has beenapplicability of some of our results to experimental data on
discussed? Previous work on La_,Sr,NiO, has focused these materials, many of our results are experimentally rel-
on density-wave order at particular, commensuratet the  evant and we believe it is useful to have a detailed account of
effects discussed here are likely to be relevant also. We alshe behavior of a well-defined model in the literature. At
mention the many semiconducting compounds that displayarious places in the text we will qualitatively discuss the
polaron effects when very lightly dopédat higher dopings, effects of nonclassical phonons and of the on-site Coulomb
electron degeneracy effects will become important, but thénteractions, but a quantitative treatment will be left to a
electron-phonon interaction will remain strong. future publication.

We study models of electrons interacting with phonons. The remainder of this paper is organized as follows. Sec-
The electrons may or may not have spin and orbital degertion 1l defines the models, the parameters, and the approxi-
eracy and are coupled to one or two independent local oscimations. Section Il discusses the numerical methods used.
lators. The motivation for studying these different but closelySection IV presents the results of a detailed solution of the
related models is as follows. The interplay of polaron andsimplest model, a nondegenerate band of spinless electrons
Fermi liquid physics is controlled by energy and entropy.interacting with a single oscillator. We give phase diagrams,
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electron spectral functions, frequency, and temperatureSuch coupling may be expected to occur in materials such as
dependent conductivities and phonon probability distribuLa;_,A,MnO; in which the Jahn-Teller effect is
tions. Section V discusses the changes that occur if electramportant'>819n such materials there are in the absence of
spin and orbital degeneracy, and multiple oscillators are intattice distortions two degenerate electronic states on each
cluded. Section VI is a conclusion. Appendix A clarifies thesite, transforming as a two-dimensional representation of the
relation between the results presented here and those of tleebic group. The degeneracy may be split by interaction with
conventional Migdal-Eliashberg treatment of the electron-an appropriate phonon mode. The interaction expressing this
phonon problem. The other Appendices present details gfhysics is prescribed by group thebtyo be

various calculations.

HY = s M 5
Il. MODELS AND FORMALISM ekph gig‘a laa Hiba T ©
A. Hamiltonian Here r=(r,,7,) is a vector of Pauli matrices acting in the

In this section we define the models we study and preserirbital subspace and,=rcosp, r,=rsing.
the approximations we use. We consider electrons coupled to
phonons; the HamiltoniaH may be written as the sum of an B. Parameters and limits
electronic partH,, a phonon part,, and an interaction

partH as One important energy scale is the electron banding or
el-ph

kinetic energy. This depends upon the band fillmgnd the
H=He+Hppt Heppn- (1) details of the hopping mqtrix elemer'[%:b but it is roughly

of ordert, wheret is a typical value ot}
ForHg we take electrons moving on a lattice. An electron on  Another important energy is that obtained by localizing an
a given sitel may be in one oy, Orbital stategwe will  electron on a site. By minimizing Eqgl) or (5) and(3) one
consider Noig=1 and Noitg=2) and one ofngpn Spin - finds this energy to be of ordgf/k. The ratio of these scales
states(we will considerng,i,=1 andng,,=2). The operator is the important dimensionless parameker g?/kt; A<1
creating an electron of spiar in orbital statea on sitei is  corresponds to weak coupling and>1 to strong coupling.

d,, and This \ is shown in Appendix A to be related to the usual
coupling constant of the Migdal-Eliashberg theory by a fac-
Ho=-— t&3q7 4. — df d. . 2 tor of NgiNorn/ 7.
o ; ij TiaaTibA ’u% aatiae @ A final important scale is the phonon frequeney . In

h introduced the hoppi i ol hand the weak electron-phonon coupling limit it is known that for
Here we have introduced the hopping matrix elentgnan T=wp/3, phonons behave classically while for low&r

the chemical potentigi. . ) , quantum effects are importahtn the strong coupling limit,
We model the phonons as localized classical oscillators,g|arons are formed and large lattice distortions occur. From

We write the displacement of the oscillator from Some ref-studies of a single electron coupled to a deformable medium
erence position as. We consider two cases: “One- gne finds that quantum effects are important only at a very
dimensional phonons,” where is a scalar quantlty with oW scale wp/n, wheren>1 is roughly the number of
—oo<r<, and “two-dimensional phonons” whereis a  quanta involved in the formation of the polardfthroughout
two-component vector, which we parametrize by a magnithis paper we assume thatis sufficiently high that quantum
tuder and an anglep via r =r(cosp,sing). We assume that effects in the phonons may be neglected.

in the absence of the electron-phonon interaction the equilib-

rium position of the oscillator is =0, and that there is an C. Formalism

elastic restoring force with force constdntWe measure in
units of lattice constant sp is dimensionless anll has the
dimension of energy. We write

Physical quantities may be calculated from the partition
function Z, which may be written as a functional integral
over the electron and phonon fields. Because we have as-

H.,=1kr2 3) sumed classical phonons, we may solve the electron problem
ph™ 2 . . .
for given values of the phonon coordinate and then average

The form of the electron-phonon coupling depends on thé@ver the phonon coordinates. Because the phonon is classi-

physics. One possible coupling is of the phonon to the chargeal, we may rescale the phonon coordinate toyk/tr. The

of the electron, i.e., partition function becomes
charge_ T 1t 2 -1
Hel—ph _g% ri(diaadiaa_n)- (4) Z= Dphonolex - E f ZI fi +Tr|n[Geff] . (6)
Here we have introduced the mean density= Here T is the temperaturéDynonon is the phonon measure

(IIN)(Zip,0% diae)y @nd have defined=0 to be the equi- appropriate to the choice of phonon, a@gy is the electron
librium phonon state for a uniform distribution of electrons. Green function appropriate to E¢l) with fixed staticr; .

N is the number of sites in the crystal. The electron-phonoriNote also thatr has been rescaled in such a way that in
coupling isg. If both the electrons and the phonons are deHg.,n the coupling constarg = JX.

generate, then one may have a coupling between the orbital Starting from Eq.(6) one may make perturbative dia-

state of the electron and the direction of the local phonongrammatic calculations using standard methods. In the weak
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coupling limit the starting point is;=0 (corresponding to Because all interactions are loc&,,. may be derived
uncoupled electrons and phonoprasd it may be seen from from a partition function identical in form to E¢6) but with
the first term in the exponent of E¢) that fluctuations in  spatial indexi suppressed and the quantﬁggff1 replaced by
r are small, of order/T/t. This is the classical analogue of

the Migdal expansion parametgiwp /t. In the strong cou- Gui=—ad],das+Heppn (10

pling limit the starting point has somg#0 but fluctuations 4 fiyeq phonon coordinate. The free energy corresponding to
are still of orderyT, so that at lowF an analytic treatment is a given value of phonon coordinate may be found as usual

possibl_e, if the ground-st_ate configuration _of thecan be  fom Gy, and from this one may construct the phonon
determined. The connection to the conventional treatment O[Srobability distribution

the electron-phonon problem is discussed in more detail in

Appendix A. 1 r2
At intermediate coupling we have not succeeded in con- P(r)= Z—exﬁ{ - 2—+2 Tr INGy¢ |, (13)

structing the ground state about which to expand. We have loc :

therefore resorted to the ‘“dynamical mean-field” where the local-approximation partition functi@h,. is de-

approximatioft in which it is assumed that the electron self- fined by

energy is local (i.,e., momentum independentin the

electron-phonon problem in three spatial dimensions the self- 2 —|p 12

energy is known to have only a weak momentum depen- loc phonor (). (12

dence in the various solvable limit$! so the dynamical H s af d dent effective figkhal .
mean-field approximation, which formally becomes exact in erea s a Irequency-adependent etiective figthalogous to

a limit in which spatial dimensionalitg— o, seems likely to the magnetlzatlon n th_e usual Weiss mean-field metied
termined by the condition

be reliable.
The electron Green functio® in general depends upon aINZ,.
orbital indices @,b), spin indices &, 3), momentunk, and Giocliwp) = aliwn) (13
Matsubara frequenciw, . The dynamical mean-field ansatz "
is This condition may be implemented by observing that
S(iwp)=a(ion) ~ Gigg. (14

Gipkiw)=llo,~353(w) — e +u]l ™" (7)
The precise form of the resulting equation depends on the
Hereeﬁlb is the Fourier transform dff}b All of the quantities  density of states. We shall consider two forms, the Lorentz-
in Eq. (7) are tensors in the direct product of spin and orbitalian,
space, and quantities without romaa,lf) or greek ,B)
indices are proportional to the unit matrix in orbital and spin _ Um
S ! Dol €)= Y
pace, respectively. €+t
Throughout this paper we shall assume that there is no .
long-range %rder in either orbital space or spin space, so wand the semicircular,
may takeX 2%~ 8.,8,.5. Generalizing the formalism to in- o3 2 2
clude orbitalﬁ ordering would be straightforward and quite Dseml €)= VAU~ €id (2t5). (16)
interesting. The generalization to ferromagnetic spin orderThe Lorentzian density of states has the advantage that the
ing was given by Furukawfaand is discussed further in the self consistency equation may be analytically solved to yield
following paper? Because, is taken to bek independent all
interaction effects are derivable from the local a o) =iw,+utitsgn,. 17
(k-integrated Green function,G|,.. Because we have as- ] .
sumed that there is no long-range order in orbital space, It has, however, two unphysical featuré;,(e) is un-
G20~ 5,,. We may therefore write bounded and* . deye Do €) = so the kinetic energy is
infinite for finite w.

(19

1 ddk For the semicircular density of states thgintegral may
Giodliwp) = ETrJ’ WGab(k,iwn)- (8)  also be performed analytically, leading to
asem(iwn):iwn"'ﬂ_tzeloc(iwn)- (18)

The k integral may be simplified by introducing at eakh _ ) . . .
point the ab space rotatiorR,, which diagonalizesz?®, ;Ii'giisequatlon must be solved numerically, except in certain
writing G?°(k) =RGgiadRy © and exploiting the cyclic in- ' . .

variance of the trace. Theintegrals of the two components Iatt-ircheeasnecjn?[ltilar?julr?;rﬂ?cgsl‘Izeo;nsi}%ﬁjstﬁggfs&one?ﬁef?vatﬁ?\hee
of Ggiag must be identical, so we may finally write y y g

self-consistency condition Eq18) can be derived in this
case by a more physically transparent argument. We take for
Giodliwy) = f deD(e) 9) concreteness the case of orbitally degenerate electrons with a
och N iop—2(lw,)—u—¢’ Jahn-Teller coupling to orbitally degenerate classical
phonons. On a Bethe lattice the local Green funct&gnon
with D(e,) the density of states. a sitei with phonon amplitude; is
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G2 Yiw, 1) =iwy+ u+gr- 720 IIl. NUMERICAL METHODS
I nsti n

In this section we outline the numerical methods used to
solve Eq.(18) and compute physical quantities. To aid in the
discussion we write this equation explicitly for the simplest
case of nondegenerate electrons coupled to nondegenerate

One may diagonalize the Jahn-Teller coupling by a locabhonons. We have, settirig-1,
rotation R; in orbital space, withR;=cosg/27,+ sing,/27,,
and one may absorbR; into the hopping matrix
tjj=Rjt;;R;, which thus acquires a dependence on the rela-
tive orientation of the phonon distortions. The mean-field
theory for the disordered phonon state follofivsthe limit of
large coordination numbéet.,,,9 from the assumptions that wjith
the ¢;’s andr; are statistically independent and the hopping
tj; scales as$/\Zgqo¢ The sum orj can then be replaced by
an average oved’s andr’s, the latter with a nontrivial dis-
tribution P(r) defined by Eq(11). The hopping self-energy
then reduces t62°G,,. with Goc= 1/2TKG;;),, and the self-

consistent equation fo6G,,. is obtained by averaging;;
given by Eq.(19) overr; . Equation(19) may be helpful as a
starting point for mean-field theories with nontrivial spatial  For most physical quantities we requaéw) for real fre-
correlations of the phonons. guency. It is possible to expre8Xr) in terms ofa(w), but
We will be interested in three physical quantities: thethis involves performing numerically an integral over a con-
momentum-integrated electron spectral functidfw), the  tinuous frequency. We have found it more convenient to find
phonon probability distributiorP(r), and the conductivity P(r) by solving Eq.(25) on the Matsubara points and then

— % G (iwy rtP. (19

” P(r)

a(w)=iw+u—f_wdrm, (25)

a,+gr
w

o)

andZ,.. given by Eq.(12). Herea,=a(i w,) with o, a ferm-
ion Matsubara frequency,=(2n+1)=xT.

P(r)= — r2+E|
(I‘)—EGX ﬁ - n

o. The spectral function is

Alw)= IMG o (iwy,—wtie) .

(20

v

In the dynamical mean-field method the conductivity

0a.p= 0meSap (herea,b are coordinates axes y, z) with

e’t?
GMF(IQ):WTI’ dEpD(Ep)T

XY, G(pio)G(pintiQ).  (21)

In particular, the dc conductivity is

o4 T)=€22Tr f @D(ep)
X[IMG( €y, »)]?/4T cosl w/2T)?, (22
with G(ep, ) '=w+u—(€3) —3(v).

As T—0, two possibilities arise: eith&”(w=0)—0 or
it tends to a finite nonzero value. In the former case,

9.2 . dw 1 1
ogc— et nSpil‘InorbD(E ) E (COSH(L}/ZT) E"(w,T)’

(23)

with €* satisfyinge* = u—2"(0). In thelatter case

et?
Odc— Tnspinnorbf dpr( Ep)
X >"(9) i (29
[epTu—2"(0)]*+2"(0)%]

using thisP(r) to solve fora(w) on the real axis. In what
follows we first discuss the solution on the Matsubara axis
and then mention the additional issues arising for the real
axis case.

We solve Eq.(25) on the Matsubara axis by direct itera-
tion, so thata, at stepN+1 is determined by evaluating the
right-hand side of Eq(25) usinga,, from stepN. If a solu-
tion at the same coupling and a nearby temperature is avail-
able we use this as the starting point; if not we use the
g=0 solution. Convergence is usually rapid; typically 10
iterations are required for convergence from the0 solu-
tion to a solution with rms error of I (averaged over all
retained Matsubara frequenciemd using the solution from
a nearbyT saves about 2 iterations. However, away from
half filling, in the strong coupling limit, the straightforward
iteration procedure does not converge, but instead goes to a
two-step limit cycle in which evaluating the right-hand side
of Eq. (25) using the valuesa'" yields a different set of
valuesagz) which, when put back in E425), generate again
all). This limit cycle may be avoided by making the itera-
tion proceed in smaller steps by definiag at stepN+1 to
be an appropriate linear combination of the right-hand side
of Eqg. (25) and the solution at steN; however, asl gets
lower or coupling gets stronger the required admixture of the
newly computeda gets smaller, and at some point the com-
putations become too time consuming.

Away from half filling it is necessary at each temperature
and coupling to find the chemical potentia(T,g), which
gives the desiredh. We do this by computing at several
values ofu and interpolating. At strong coupling and low-
T, n is a very sensitive function ok, and it is necessary to
choose at least threg values all of which yieldh’s, which
are within 10 % of the desired value and to use a cubic
interpolation. In the calculations presentedsaries by less
than 610 * over the range off and g considered. We
found it convenient to evaluate via
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N=lmTY, TrGiw,)e . (27 o= NgpiNorb f dwa(w)cosh‘z% (30
7—0 N
Gioc may be expressed in terms of a via the mean-field equaising the quad routine and evaluatififw) by spline inter-
tions. polation from the known values. In the computation we set
The next issue is the number of Matsubara points needetthe factorse?/ 7=1.
to computeP(r) accurately. We note from E¢25) that at We note finally that especially in the crossover region
large w,, where there is a frozen-in lattice distortion that is not large
enough to open a gap in the spectral function, physical prop-

1 erties are quite sensitive to the precise value of the coupling
?) constant. A change ig by 2% can lead to more than factor
(28) of three changes in, e.g., the Idlweonductivity; also small
numerical errors in the computation of the Fermion contri-
Analogous but slightly different formulas apply in the casebution to the action can mimic a small changegn An
of Jahn-Teller coupling. We determine the maximum re-example can be found in the curve labeted 1.60 in Fig. 2.
tained Matsubara frequency,.x by requiring that the The analytically calculated@=0 resistivity for thisg is 3.75.
O(1/w?) terms are less than 10 and in the expression for The actual numerically calculated loWspectral function is
P(r) we evaluate the terms witl| > n,,,, analytically, us- found to be essentially identical to that calculated analyti-
ing the a, given in Eq.(28); the errors are of ordem_ 2.  cally at T=0 for g=1.57; the corresponding analytical
Equation(28) is also useful for improving the accuracy of T=0 resistivity is found to be 1.004, in good agreement with
the computation of the density from Eq. (27) away from  the numerical calculation.
half filling. To achieve the stated accuracy we found it nec-
essary to choos@,,, SO thatwnmax=27-rT(nmaX+ 1/2) is

about 5 times the full width of the real-axis electron spectral

, 1 1
an=|wn+,u,—ﬁ—?f drP(r)(u+gr)+0
n n

IV. NONDEGENERATE SPINLESS ELECTRONS

function. The 1T growth of ., asT—0 limits our ability A. Introduction
to calculate at very low-temperatures. For example, at |In this section we present results of a detailed study of a
g=1.29 andT=0.02,n .= 250. model of spinless, orbitally nondegenerate Fermions coupled

The remaining numerical issue for the Matsubara-axis soto classical nondegenerate oscillators. This section is orga-
lution is the integral over the phonon coordinate, which isnized as follows. In this section, we outline the qualitative
done using the numerical quadrature routine “quad” fromphysics. In Sec. IV B we solve the original model, E¢9—
the “Port” library. Gaussian quadrature routines are faster at4) in simple limits, obtaining results that clarify the inter-
weak coupling, but fail at strong coupling and Idwwhere  pretation of thed= results. In Sec. IV D we solve the
P(r) has a large narrow peak at anpriori unknown loca-  d=c« model with the Lorentzian density of stati&gs. (12)

tion far from the origin. and(17)], and in Sec. IV D thal=% model with semicircu-
We now turn to the real axis calculations, which we alsolar density of statefEqgs.(12) and(18)].
do by direct iteration of Eq(25) with analytically continued In the model defined by Eq$l)—(4) we may distinguish

frequencyo +ie, usingP(r), which has already been com- three phases according to tiie-0 limits of the oscillator
puted. The limit cycles that plagued the Matsubara calculacoordinater and the electron spectral function. weak cou-
tions do not occur, but other numerical problems arise. Bepling, lim_o(r)=0 and the spectral function takes the non-
causeP(r) is held fixed, different frequencies decouple andinteracting form. The lowF resistivity is then linear irfT,
the mean-field equation does not come from minimizing @and extrapolates to 0 @—0, being due to the thermal
free energy. Nearby frequencies are also sometimes found ffictuations of r about r=0. In intermediate coupling
converge at different rates. In parameter regimes in whichtho<r>¢o' implying that some frozen-in lattice distor-
the T=0 spectral function has a gap, the imaginaf’yw) tions exist. However, the amplitude of these distortions is too
part ofa(w) is small and very temperature-dependent at lowsmall to localize states near the Fermi level. The bwe-
T for frequencies in the gap. Our procedure fails to find asistivity is still linear in T, but extrapolates to a nonzero
nonzero value ofa” if this quantity becomes less than value atT=0. The spectral function is perturbed from its
103, and we are not sure of the accuracy #<10 2.  noninteracting form. Irstrong couplingthe amplitude of the
Physical properties in such regimes depend crucially on th&ozen-in lattice distortions is large enough to localize elec-
tailing of the spectral function into the gap, so our ability to trons at the Fermi level, leading to a gap in ¥ 0 spectral
calculate the lowT properties of regimes with gaps is lim- function and an activated resistivity.
ited. All three regimes are found in the calculations discussed
To calculate conductivities we solve the real axis meanbelow. None of the regimes involves long-range order—the
field equations for a discrete set of frequencies spaced blpcalization should be thought of as being due to polaron
0.01. Then at these frequencies we evaluate formation. At commensurate filling or in low dimensions,
effects of long-range ordér.e., charge-density-wave forma-
tion or polaron orderingwill be important but at general
H(w)=f depD(€p)[IMG(€p, )] (29 incommensurate fillings these effects will be important only
at low T and for our purposes may be neglected. Further
using the Port routine “quad” and then obtain discussion may be found, e.g., in Refs. 9 and 16.
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Quantum effects will also be important: at sufficiently low diverges at a particular wave vector, so one may expect the
T and in the absence of long-range order, quantum tunnelinlyligdal approximation to fail. A discussion of corrections to
will restore translational invariance. In the strong couplingthe Migdal approximation is beyond the scope of this paper.
limit the quantum effects may be thought of as leading to theNote also that <)\ is the condition for the linear stability
formation of a polaron band, with a bandwidth exponentiallyof ther;=0 state. AT=0 first-order transition ax* <\ to
small in\; at scales greater than the polaron bandwidth thex state withr;#0 is possible and indeed will be demon-
results presented here will apply. The effect of quantum flucstrated using the dynamical mean-field approximation.
tuations on the intermediate coupling regime is less clear, but The resistivity may also be computed Nf)\ ., the mo-

must be left for future work. mentum dependence of the phonons may be important and
vertex corrections must be considered\ ¥\ . the momen-
B. Full model, solvable limits tum dependence of the phonons, and therefore the vertex

The crucial issue is performing the integral over the pho_correctlons, may be neglected and the conductivity on the

non coordinates in Eq6). At low T the integral is sharply Matsubara axis is
peaked about particular valu¢s} and a steepest-descent

2 3
approximation is possible. Two solvable cases occur: Tan(iQp)= e_f d_ps_l_z 9€p 9&p
(1) Weak couplingFor A<\, andT—0 (\. will be es- iQn) (2m)° i@, 9Pa IPp
timated below r*=0 and one may expand the logarithm in XG(D.iw+i0NG(D.i 3
Eq (6) Obtaining (py“l’n | n) (palwn)' ( 7)
) t[1—=AB(K)]rr Substituting Eq.(35) into.Eq_. (37), performing the inte-
Zxexd TrinG, ]j Drexp— >T . (3D grals, and analytically continuing gives
—1_: e? dQ
HereG, =iw,— e+ u and o(T)= ZWATJ 47Tp(vg)2D(Qp)- (38)

*p f(ep)—flep)

B(k)=t .
=t 2 e e

(32 In a simple tight binding model (p) = 2tsinp, and evalu-
ating Eq.(38) yields
It is evident from Eq.(31) that the expansion in powers of

r aboutr;=0 is controlled at lowF if N <<\ with
a\NT

Ao 1= maxB(K). 33 P e pien) 39
In particular, asT—0 at fixed\, r,~ /T is small, so the
Ieading-order_pe4rt21irba'tion expression for the Fermion selfynayiic solution is possible because we may treat the elec-
energy= applies: This expression is tron kinetic energy as a perturbation. If it is neglected then to
d3k 1 t solve Eqgs(1)—(4) we note that if the mean density msand
E(p,iw,T)z)\Tf 3 _ . (34  the number of lattice sites ¥ then there ar@N sites with
(2m)° 1=AB(K) o~ €p 1 one electron, and (&n)N sites with no electron. On the
For smallw, we may restrict thé integral to wave vectors NN occupied sites there is a lattice distortion of amplitude
such thatp’=p+k is on the Fermi surface. The leading

(2) Full model, strong couplingln the limit A>X. an

contribution to thew dependence ot is then r&.=—1(g/k)(1—n) (40
2(p,iw, T)=iaTAsignio) and on the (n)N unoccupied sites
dQg *  _
XJED(Gpr)/[l—KB(p—p')] (35 runocc_(g/k)n- (41)
and if alson <\, The energy density gained may_be found from Ebs- (_4)
by neglecting the electron hopping term and evaluating the
E(p,iw,T)zin)\ZT(eF)sgrm (36)  on-site energy of occupied and unoccupied sites. The result
_ is
with D(eg) the angle averaged density of states at the Fermi
surface. Egainec — 3tAn(1—n). (42)

Equation(36) is shown in Appendix A to be precisely the
usual Migdal expression for the self-energy. A\t \)/\.is  Perturbative correctiong§in powers of the kinetic energy
not too small, the quantity A\T[(dQ/4m7) may be calculated.These involve processes in which elec-
D(e,)/[1—AB(p—p’)] depends only weakly op; if it is trons make virtual hops to unoccupied neighboring sites, and
averaged ovep on the Fermi surface it becomes the classi-lead to a repulsive short-ranged interaction of ordar be-
cal limit of the usual ‘a?F” function. Here T/t plays the tween polarons. This interaction will lead to polaron order-
role of the usual Migdal parameter, /Ex. As A—\., the ing, at a scale generically much lower thiix. In this limit
phonon propagator becomes large and also acquires a singuansport is thermally activated; the prefactot end the gap
lar momentum dependence because the phonon propagatert ine-
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C. Dynamical mean field method: Lorentzian density of states T T T

In this section we discuss the solution of the dynamical 041 )_2'0 ]
mean-field equations for spinless Fermions with Lorentzian c
density of states coupled to a single scalar oscillator. We 2 0.3 |
begin with theT—0 limit, where one may use a steepest- e 15
descent approximation. The details are given in Appendix B. T ]
We find that forA<\ (n), r* =lim;_q(r)=0, while for ® O .
N>\, there are two extrema, atf <O andr3>0. For ‘g
n=1/2,r7 =—r%, the transition ak. is second order: the & o i
second derivative of the ener@(\) has a discontinuity and
r* grows smoothly with\. For n#1/2, ry # —r3 and the
transition is first order: the first derivative &(\) has a 0.0 4.0

discontinuity and* jumps discontinuously.
The physical content of the* #0 states is most clearly

seen from the electron Green function, whichTatO0 is FIG. 1. Momentum-integrated electron spectral functffw)
plotted against frequenay for nondegenerate electrons coupled to

nondegenerate phonons at density 1/2, temperaturd =0, and
Zy n Z; several different values of frozen-in lattice distortians0 (heavy
iw+ u+it sgrw+gr’{ iw+ u+it sgrh)+gr’2* dashed ling 0.87 (heavy dotted ling 1.0 (light solid line), 1.17
(43) (light dashed ling and 1.49(light dotted ling corresponding to
g=1.53, 1.60, 1.63, 1.69, and 1.83, respectively. Inset: coupling

with Zy=|r3|/(Ir 3| +[r3]) andZ,=|r$|/(|r 3] +|r3)). Thus ~ constant ) dependence af
if r*#0 the spectral function consists of two resonances. In . .
the large\ limit, these are well separated. One, of weight AS in Sec. IV C, the physical content of th& #0 solu-
n, is at the negative energy—g(1—n) and corresponds to tions is the existence of frozen-in lattice distortions. The_ef-
the sites on which the electron-phonon interaction has locaif€ct of these may be seen from the local Green function,
ized an electron. The other, of weight-h, is at the positive ~ Which, atT=0, is
energyu +gn and corresponds to the empty sites. The split-
ting, AEx\ as expected, while the energy gainBg,ieq Z; Z,
(relative to the undistorted statis g Gioc= a(w) for; + a(®)tar, / (Z,+2Z5). (49
Egained™ —iNtn(1—n), (44) HereZ,>0 andZ,>0 are the relative weights of the free
energy minima corresponding to=r; and r=r,, respec-
consistent with Eq(42). The Lorentzian density of states is tively.
pathological in that, as may be seen from E4p), at any Figure 1 showsA(w)=—ImGy, for n=1/2, T=0, and
value of g the T=0 spectral function is nonzero at=pu; different values of ;=r,=r. Our interpretation of these re-
thus the ground state is always metallic. This pathology ma§u|t8 is that for G<r<1/2 the potential fluctuations due to
be traced back to the nonintegrability of the first moment ofthe frozen-in phonons are very weak, and merely localize a
density of states, which implies that some carriers have arbfew states at the band tails. This accounts for the slight
trarily large velocities and cannot be localized by any latticebroadening ofA and the slight decrease near= — . For
distortion. 1>r>1/2 the potential is strong enough to create a mini-
mum inA atw= — u; for r>1 it is strong enough to localize
all of the electrons and create a gap in the spectral function.
Note also that as shown in the inset to Fig.rlis a rapid
function of A in the regionr<1. This rapid growth ofr
In this section we present results obtained using the dymeans that the transition is very nearly first order even for
namical mean-field method with semicircular density ofn=1/2. Figure 2 shows the temperature-dependence of the
states. Our analysis is based on E42) and(18). The tech- resistivity for the same coupling constants used to construct
nical differences from the previously discussed LorentziarFig. 1. The two lowest resistivities are calculated for weak
case are that the mean-field functiafw) satisfies a non- couplingsg<g. andg=g., for which limy_,r*(T)=0 (so
trivial self-consistency equation, and the moments of thehe T=0 spectral functions are identi¢aFor g<g., p(T)
density of states are finite, so the spectral function may deat low T is linear in T with a g dependent prefactor and
velop a gap. limr_op(T)=0. Forg=g, the quadratic term in the phonon
As in Sec. IV C, one may use steepest-descent argumenghergy vanishes ane~ T2 at low-T. For g slightly greater
for T near zero. The details of the analysis are given inthang., lim_, p(T)#0 but is finite. Forg large enough
Appendix C. Forg<g* the energy minimum is at*=0; that the spectral function has a minimumeat 0, the resis-
for g>g* there are two minima, atr=r;>0 and tivity initially drops asT is increased fronT =0. Forg large
r=r,<<0. Forn=1/2 the transition is second order and oc-enough that thefr=0 spectral function has a gap, rises
curs atg* =g = J3m/2=1.535; forn# 1/2 the transition is rapidly, and ultimately exponentially 85— 0. The tempera-
first-order and occurs at@* >g.. ture at whichp begins to rise rapidly is somewhat less than

Gioliw)=

D. Dynamical mean-field method:
Semicircular density of states
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Resistivity
»
[en]

2.0

FIG. 4. Temperature-dependence of phonon probability distribu-

FIG. 2. TemperatureT) dependence of resistivity calculated ~ tion P(r) for g=1.69,n=1/2, andT=0.01(light dashed ling 0.02
for nondegenerate electrons coupled to nondegenerate phonons(ight dotted ling, 0.07 (heavy solid ling, and 0.15(heavy dashed
density n=1/2 for the coupling constants used to create Fig. 1:ine)-
g=1.29 (heavy solid ling, 1.53 (heavy dashed line 1.60 (heavy
dotted ling, 1.63 (light solid ling), 1.69 (light dashed ling and  at or below the lowest-temperatures available numerically.
1.83 (light dotted ling. Note thatg=1.29 and 1.53 have the same The numerical calculations in this section have all been per-
lattice distortionr =0 atT=0 and therefore the same spectral func- formed atn=1/2, where particle-hole symmetry implies
tion. n=0, simplifying the computation. Results for the particle-
hole asymmetric case in other models will be presented be-
the T=0 gap. Note that for 37/2<g<1.63 low. In our computations to date we have found tmat
limr_op(T)=p(0) is neither zero nor infinite. #1/2 has qualitatively similar behavior to=1/2 with me-
Some insight into the process of gap formation can beallic and insulating regimes according to whether or not the
gained from Figs. 3 and 4, which show the temperature evoT=0 spectral function has a gap. As shown by the explicit
lution of the spectral function and phonon probability distri- calculations of Appendix C, somewhat stronger couplings
bution for couplingg=1.69. One sees from Fig. 2 that the are required to obtain insulating behaviorre¢ 1 than at
rise in resistivity asT is decreased begins d&t=0.07 at n=1. In the numerical calculations @t>0, we have seen no
which, one sees from Fig. 3, the spectral function first develevidence of the first-order transitions foundTat 0.
ops a minimum. A weak maximum iR(x) is visible in Fig.
4 even at higher-temperatures, but the maximum becomes an
obvious feature at the temperature at which the resistivity
begins to turn up. The initial rapid rise in the resistivity is  Nondegenerate phonanghe effect of electron spin and
associated with the development of the minimum in the specerbital degeneracy on models with scalar phonons is straight-
tral function; the asymptotic low- behaviorp~e*'T occurs  forward, if there is no long-range order. One multiplies the
quantity Tr IfG_] in Eq. (6) by the factorng,iNgm. This
, factor may be absorbed intdf and g by defining
- T=TngsiNorn, andg=g/ Vg, and the model reduces to
the previous case, apart from small differences coming from
the T dependence of the Fermion action. This is shown in
Fig. 5, which depicte(T) for a model with a twofold elec-
tron degeneracyn,iNom=2). The couplings are chosen to
differ by a factor ofy2 from those used to construct Fig. 3,
S0 as to produce the sariie=0 behavior. The resistivity is
smaller by a factor of 2, because it is proportional to
Ingnspin- If the temperature axis is rescaled by a factor of

E. Effect of electron and phonon degeneracy

o
o

Spectral Function
[=)

0'0 . . .
00 10 20 30 40 two, the various curves lie almost on top of each other, with

'00.0 0.5 1.0 agreement being best for low-and weak coupling. For ex-
w ample, the temperatures at which the resistivity turns up for

FIG. 3. TemperatureT) dependence of electron spectral func- g=1.83 and 1.69 in the nondegenerate Qase are almost ex-
tion A(w) for g=1.69, n=1/2, andT=0 (light solid line), 0.01 actly one-half of the temper_atl_Jres at Whlp_hturns_ up for
(light dashed ling 0.02 (light dotted ling, 0.07 (heavy solid and 9~ 1.30 and ;.20. Some deviations from this scaling become
0.15 (heavy dashed life Inset: spectral function plotted over a aPparent at highef; these are due to the dependence of
wider range of frequency for parameters used in main figure. Théhe Fermion actior(i.e., to the electron entropyFor ex-
higher theT the longer the high frequency tail. Comparison to the @mple, the scaled weak coupling resistivities differ by an
appropriate curve in Fig. 2 shows that the rise in the resistivityamount proportional tor®. Similarly, the upturn for the
begins at thd = 0.07 at whichA first begins to develop a minimum Strongest coupling occurs at a slightly lower rescaled tem-
atw=0. perature in the degenerate case. Agairngierg,. the model is

0
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FIG. 5. Temperature T) dependence of resistivityp} for FIG. 7. Temperature T) dependence of resistivitypf for

model of degenerate electrons and nondegenerate phonons witidel of degenerate electrons and degenerate phononsiwith
n=1 and g=0.91 (heavy solid ling, 1.09 (heavy dashed line and g=0.91 (heavy solid ling, 1.09 (heavy dashed line 1.13
1.13 (heavy dotted ling 1.15 (light solid line), 1.20 (light dashed ~ (heavy dotted ling 1.15 (light solid line), g=1.20 (light dashed
line) and 1.30(light dotted ling. These couplings produce the same line), and 1.3Qlight dotted ling. These couplings produce the same
T=0 gaps as in Fig. 2. The factor gf2 in the couplings and the T—0 9aps as in Figs. 2 and 5. Nogeis much larger than that

factor of 2 in the resistivity relative to Fig. 2 come from orbital ShOWn in Fig. 5 for the nondegenerate electrons model, reflecting
degeneracy. the stronger scattering.

insulating asT— 0. The approach to th€—0 limit for this  cant differences from the previous cases occur because the
model is shown in the middle panel of Fig. 6. It is seen thatelectron spectral function may have a more complicated
in this model our calculations can access more of the lowstructure and the phonon measure suppresses the probability

T limit because of the rescaling of the temperature. of small amplitude lattice distortions and increases the prob-
Degenerate phonons Jahn-Teller coupled to orbitally de-ability of large amplitude distortions.
generate electronsThe theory is based on E); signifi- We begin with the effect of the phonon measure. For this

discussion we restrict our attentionne=1, so the only dif-

, . ference in the model is the factor dr in the phonon mea-

03 B sure. Figure 7 shows the resistivity of this model figr 1 at

the same coupling constants used to construct Fig. 5. One
sees immediately that all resistivities are larger in the Jahn-

0.1 // Teller case; also for parameters such that thereTis@ gap,

. 8 up-turns occur at higher-temperatures. The origin of these
0.0 , , : differences may be seen most easily in the phonon probabil-
03k | ity distribution P(x), shown in Fig. 8 for both degenerate
= \ and nondegenerate phonons using in both cases degenerate
< ! | electrons. We have chosen=g.=1.085(the critical value
— or N at which theT=0 lattice distortion vanish¢sand T=0.15.
] ] The results are representative of gliand T. One sees im-
0.0 - ] : mediately that the mean square value of the lattice displace-
03k i ment is larger in the Jahn-Teller case than in the nondegen-

| | erate case and more importantly the smafluctuations are
o1 \/ suppressed. The larger mean square displacement means

more scattering and hence more resistivity. The suppression

§F - of smallr fluctuations means th&(r) is reasonably sharply
0.000 - 0‘05 . o peaked at a nonzero valug=r,.,. The temperature-
: ' T ' dependence of ¢, in the degenerate-phonon case is deter-

mined by the coupling; fog<g. rpeal T)~T2 for g=g.

1/4

FIG. 6. Low-temperature behavior of resistivify) for the three Fpead T)~T " and forg=>ge rpeactends to a constant. .
models considered in the text for parameters such that the spectral For nondegenerate phonon; dhe 0, P(.r) has a maxi-
function has a gap af=0: lower panel: nondegenerate phononsmum atr=0 if g<g. and maxima at #0 if g>gp' Even
and nondegenerate electrons, middle panel: nondegenerate phondfs 9<9c P(r) at T#0 may have a weak maximum at
and degenerate electrons, upper panel: degenerate phonons and @ _bUt this do_es not seem to have any consequences for
generate electrons. The expected Bvoehavior isp~T*e*/T with ~ Physical properties. In the degenerate-phonon case the peak
A the lowT gap in the spectral function. The heavy dots markStructure of P(r) actually can lead to a minimum in the
values ofA obtained from an analyti€=0 calculation as described spectral function at zero frequencygf .., exceeds a critical
in the text. value somewhat larger than the 0.5 value found in Appendix
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15 . . peak in the degenerate-phonBir) leads to a minimum in
A(w) if this peak occurs at anyey such thatgrpeqae0.5.
This tendency to open or increase a gap in the electron spec-

1.0 A ] tral function asT is raised acts to increase the resistivity of
N\ ] the degenerate model above that of the nondegenerate one.
o5 L A Finally, the approach to th€—0 limit for the insulating
' regime is shown in the upper panel of Fig. 6. It is interesting
/ 1 that the result approaches the-0 limit more smoothly than
= o0 , , , in the two previous cases, and also tfahp is larger at

T>0 than afT=0, unlike the other two cases. We speculate
] that the origin of this difference is the larger rms value of
r, which would imply an effectively larger gap.
Away fromn=1 a more important difference in physics
_ occurs, which is most easily seen for spinless electrons in the
very strong coupling limit. Suppose<1 and neglect hop-
ping completely. Then by analogy with the steps leading to
Eqg. (42) one expectsh sites occupied by a single electron
and 1—-n unoccupied. The spectral function associated to the
r singly occupied sites has two peaks, one below the chemical
potential corresponding to the occupied orbital and one
FIG. 8. Lower panel: phonon probability distributid?(r) for ~ above corresponding to the unoccupied orbital. The spectral
g=1.085,n=1, T=0.05 (heavy solid ling, 0.1 (light solid line), function associated with the unoccupied sites has only one
and 0.15(light dashed ling and nondegenerate phonons. Upper peak, because in the absence of any electrons there is no
panel: phonon probability distributioR(r) for same parameters lattice distortion and therefore no splitting of the orbitals.

and degenerate phonons. The spectral function thus has a three-peak structure in the
strong coupling limit.
C. Of course ifg=g,, this minimum will vanish asT is Consider now the first perturbative correction due to the

decreased. This behavior is illustrated in Fig. 9, which showiopping. This will lead to a charge-densifp~n/\ on pre-

the temperature evolution of the spectral functions for theviously unoccupied sites. (fis assumed in our application of
two models. Only the degenerate phonon case has a minihe dynamical mean-field methpthere are no intersite cor-
mum atw=0; the minimum vanishes beloi~0.045, at relations in orbital occupancy or phonon fluctuations, this
which temperatur@r e, 0.5. This may be understood by extra charge will be randomly distributed over the two on-
reference to th@ =0 limit, in which P(r) may be approxi- site orbitals. Thus in the presence of a small amplitude pho-
mated by ad function at a coupling dependent valug If non distortiondr the charge fluctuation will lead to an en-
gro>0.5 theT=0 spectral function develops a minimum at €rgy gain of at moswn(4r)?, which will be too weak to
w=0; if gro>1 it develops a gap. Similarly, & >0 the = compete with the phonon stiffness in the strong coupling
limit. The three-peaked spectral function is therefore stable
in the strong coupling limit. Appendices D and E derive
these results from an asymptotic analysis of the dynamical
mean-field equations. It is clear from the above arguments
that the structure of the midgap states may be affected by
intersite correlations, which could lead to a charge fluctua-
tion favoring one particular orbital, and therefore to an en-
ergy gain proportional taSr rather thandr?. Incorporating
intersite correlations is an important open problem. Of
course, a9\ is decreased, the possible energy gain increases
and at some point the midgap states split and the two pieces
join the upper and lower bands. The resulting intermediate
coupling regime corresponds to a uniform electron density
and a uniform nonzero lattice distortion. The electron spec-
tral function consists of two bands, with the Fermi level in
the lower ong(for n<<1). The rigid bandlike state gains ki-
netic energy~1—n relative to the three-band state, because
one band is not fully filled, but is shown in Appendices D
and E to be more costly in Jahn-Teller energy because the
lattice distortion is not as large.

FIG. 9. Comparison of temperature evolution of electron spec- Thus, as the coupling is increasedTat O three phases
tral functions for degeneratéupper panél and nondegenerate are in principle possible: a weak coupling phase with a
(lower panel phonons and orbitally degenerate electronsrferl ~ Single-peaked spectral function, a “rigid band” phase with a
andg=1.085,T=0.05(heavy solid ling, 0.1(light solid line), and  two-peaked spectral function and the Fermi level in the
0.15 (light dashed lingas used in Fig. 8. lower band, and an insulating three-peaked spectral function.

Spectral Function
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FIG. 10. Evolution of T=0 spectral function with coupling 02 ]
strength. Model with degenerate electrons, degenerate phonons, and
n=0.75 for coupling constantg= 1.53(light solid line), 1.58(light
dashed ling and the strong coupling limit solution evaluated at 00 ’ [ . ‘ .
g=2.47 (heavy solid ling. 5.0 2.5 0.0 25 5.0
(0}

Determining the couplings at which the system goes from

one phase to another in general requires numerical solution FIG. 11. Comparison of loW- spectral functions. Upper panel

of the coupled mean-field equations, along with comparisodahn-Teller(heavy line, shifted by.=—1.23) and nondegenerate
of the energies of different locally stable solutions. However phonons (light line) at T=0.03, g=1.58, andn=0.75. Lower

in the limit (1—n)—0 the equations simplify and a straight- panel:n=1 (light) andn=0.75 (heavy with Jahn'-TeIIer .phonons,
forward physical argument may be used. Considemtsd ~ 1-0-03 andg=1.58. n=0.75 curve (heavy ling shifted by
problem in the insulating regime in which the spectral func-#~ —1.23.

tion has two peaks separated by a gap and calculate the elec-

tron removal spectrum allowing the on-site lattice distortionspectral function has two features, atg® and physical

to adjust.(The w<0 part of the spectral function previously dquantities are controlled by the energy gap between them,
computed for this problem represents the lowest-energy wayhich is of about the same size. In the Jahn-Teller case the
to remove an electron from the system at fixed lattice distorhighest and lowest of the three peaks are still separated by an
tion) This energy may be computed from the quantityenergy of 2%, but physical processes are controlled by the
G2(w,r) defined in Eq(19), with the G on the right-hand ~9ap separating the lowest and middle peaks, which is much
side of the equation given by the=1 solution of the dy- '€ss. This may also k_)e seen in numerical calcg!atlons of the
namical mean-field equations. Performing this computatiolow-T spectral functions and phonon probability distribu-
and optimizing over shows that there are two extrema— t!ons. The upper panel of Fig. 11 compares the spectral func-
one atr=0 and one at=r* (with r* the optimumr found tions for the nondegenerate and Jahn-Teller cases at
for n=1). If g>1.308, ... (i.e., r*>1527,...) then the T=0.03,g=1.58, andn=0.75. Although the trueg>1
energy of ther=0 extremum is lower, showing that the strong coupling limit has not been reached, the two-peaked
three-peaked spectral function is favored, while forand three-peaked structures expectgq for the nondeggnerate
g<1.308, ... the “rigid band” solution is favoredNote and Jahn-Teller cases are clearly YIS.Ib|e and the gap in the
that atg=1.308 the two peaks of the rigid band SpeCtrtfjd\]ahn—TeIIer case is much Igss. Similarly, the lower panel
function are separated by a gapor this reason we believe compares the spectral functions for=1 andn=0.75, for

that for 1-n<1 there is ag is increased a second-order 9=1.58,T=0.03, and Jahn-Teller coupling. Again one sees
transition to the rigid band two-peaked spectral function. Adhe effect of the midgap states. Figure 12 similarly compares
g is increased further, the peaks separate and eventuallytﬁe phonon probablhty_dl_st_rl_butlons in the two cases. Figure
gap develops between thefalthough the ground state re- 13 compares the resistivities of the two models for the
mains conducting This is followed by a first-order transi- Weaker couplingg=1.29; the nondegenerate phonon model
tion at a largerg to an insulating state with a three-peaked displays insulating behavior belo#~0.13, while the Jahn-
spectral function. This sequence of spectral functions iST_eIIer model remains metallic. The I‘E_'SIS'[IVI'[IeS. cross at
shown in Fig. 10. On the other hand, for-0 the results of ~higher T because of the larger fluctuations @) in the
Appendix E show that the weak coupling one-peak spectraf@hn-Teller case.
function proceeds directly to the three-peaked one via a first-

order transition.

One important consequence of the central feature appear-

ing in the three-peak regime is that it acts to fill in the gap We have used the dynamical mean-field method to study
created by the lattice distortion, so that one must go to strorthe crossover from Fermi liquid to polaron behavior in mod-
ger couplings and lower temperatures to see insulating beels of electrons coupled to localized classical phonons. The
havior in the Jahn-Teller case than in the nondegenerate caseodels we studied involved electrons with and without spin
This may be seen directly from the strong coupling calcula-and orbital degeneracy coupled to degenerate and nondegen-
tions of Appendices C and E. In the nondegenerate case thegate phonons. We considered two forms of electron-phonon

V. CONCLUSIONS
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1.00 . . , , for the simplest model at half filling, but the results at any
filling for any model involving coupling of the oscillator to
r the charge-density of the electrons are similar. The only im-
0.75 L portant effects are that away from half filling in the strong
coupling limit the relative weights of the two peaks are dif-
r ferent and that there is 8t=0 a discontinuous, rather than
0.50 continuous, change in the spectral function n#) as the
coupling is increased. We believe, but have not proven, that
r at anyT>0 the change is continuous. The evolution of the
0.25 - spectral function for the case of Jahn-Teller coupling is
shown in Fig. 10. The significant difference is the presence
of the midgap feature in the strong coupling limit. This has
0.00 AN ‘ - relative weight|2—2n| and corresponds physically to sites
-4.0 2.0 0.0 ; 2.0 4.0 unoccupied by electrons. This midgap feature means that for
Jahn-Teller couplings anal# 1 the gap controlling physical

FIG. 12. Comparison of low- phonon probability distribution propertlgs |s'much smaller .at given coupling than it is In
P(r) for Jahn-Teller(heavy ling and nondegeneratdight line) models in WhICh the ph_onon is coupled to the charge-density,
phonons forT=0.03, g=1, andn=0.75. Note that the large  @nd the midgap state is absent.
peaks occur at almost exactly the sameote also that the Jahn- _ Three physical effects have been left out of our calcula-
Teller P(r) is defined only for >0. The asymmetry ifP(r) inthe ~ tion. One is the on-site Coulomb repulsion, which is cer-

nondegenerate case is a consequence of particle hole assymmel@jnly important in transition metal oxides. The Coulomb in-
due ton#1. teraction tends to localize electrons, with the effect being

strongest at commensurate fillings and so will tend to rein-

orce the localizing effect of the electron-phonon interaction.
couples to the electron charge-density, and Jahn-Teller, i ecause the localizing effect of the Coulomb interaction is
which the phonon displacement couples to the splitting of the@trongegt at cqmmensurate fillings, this V.V'” also lead to an
electronic levels. We showed that @s-0 three regimes interesting doping dependence: the effective electron-phonon
may be distinguished. Inveak couplingthe mean square _couplmg W|Il_weaken as is varied from 1. The Coulom.b
displacement of the oscillator coordinate from its noninter-nteraction will also change the form of the spectral function,

acting reference position vanishes and the momentumbecause it raises the energy of states with two electrons on

integrated electron spectral function assumes the noninteracthe s?me site. tFolr (faxar?ple, tﬂe upp'errrllpst g%ak of the stré)ng
ing form. Corrections lead to the usual lindaresistivity. In coupling spectral function shown in #ig. corresponds

intermediate couplinghe mean square displacement of thephysically to the density of states for adding an electron to a

oscillator coordinate is nonvanishing and the spectral funcSte with one electron already present, at fixed phonon con-

tion is changed from its noninteracting form, but the densi,[yfiguration. Coulomb effects will shift this energy upwards. A

of states at the Fermi level is nonzero so The 0 resistivity guantitative treatment of these effects within the present for-
is neither zero nor infinite. Irstrong couplingthe mean malism will be left to a future paper.

square displacement is nonvanishing and is sufficiently larg A S?iﬁnd rllmportan;tp“ecet of phystlcs IS qléa.ntl#]n ﬂLk’)Ctua'
that a gap appears in the spectral function and the resistivit@ons orthe phonons. At low-témperatures and In the absence

diverges asT—0. Examples of the evolution of th€=0 iftIoPg—rﬁmg?/orr]diir,t;hesi V;'” aIIow”(:]Iecrtro?ni to twove frt(t)inm
momentum-integrated spectral function with couplingS € lo site eve € strong coupiing regime, thus cutiing

strength are shown in Figs. 1 and 10. Figure 1 is calculate8ﬁc the str_ong-coupllng dlver_gence in the resistivity. One_
mathematical consequence is the appearance of Gaussian

tails to the spectral functions in the gap regions.

A third omitted piece of physics is long-range order. It
has been assumed throughout that the lattice distortions are
random from site to site; thus the localization is due purely to
polaronic effects. Near commensurate densities, charge-
density-wave effects will be important as well.

P(r)

coupling: conventional, in which the phonon displacemen

»
o
T
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0.0 0.1 0.2 0.3 APPENDIX A: RELATION TO MIGDAL-ELIASHBERG
T THEORY

FIG. 13. Comparison of temperature-dependent resistivities for In this Appendix we derive the relationship between the
Jahn-Teller(heavy liné and nondegenerate phonofight line), = formalism we have used and the conventional Migdal-
g=1.29 andn=0.75. Eliashberg theory of the weakly coupled electron-phonon
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system. The essential parameter of the conventional treat-  APPENDIX B: NONDEGENERATE FERMIONS
ment is a dimensionless coupling constagg,,, which is WITH LORENTZIAN DENSITY OF STATES

defined in terms of the electron self-enedjfw, T) via In this Appendix we use steepest-descent techniques to

95 (0. T=0) an_alyze theTHQ limit 01_‘ the dynamica! mean-fie_ld theory of
lim —————— =\ cony- (A1) spinless Fermions with a Lorentzian density of states
0—0 Jw coupled to a scalar classical oscillator. A similar technique
was used in Ref. 5. The partition function is
To establish the relationship we introduce a finite phonon
massM,. This implies a Debye frequenayp given by Z(g,n)zf dre E.a.n/T (B1)

w5 =KIM A’ (A2)  The energyE=—TInP(r) with P(r) defined in Eq.(11); it

, ) o ) may be evaluated by inserting Eq4.7) and (10) into Eq.
with a the lattice constant\We use units in whicth=1.) (11). One finds

We then introduce phonon creation and annihilation opera-
torsb’,b via 11

— + J— B —

5 71_tan (u—gr)

1
E(r,g.n)=35r*-grn—{u—gr]
r=(b"™+b)/(2M yrwp) Y2 (A3)

1
. . _ 2 2
Comparison to Eq(4) yields + 5[+ (p=gr)7]+un+OT" (B2

o 9° 12 R ; with the chemical potentigk chosen so that
= o] S (Atas (0] by

2M i _
ph®D/ iaa dzZ/du=0. (B3)
(A4) g
As T—0, ther integral is dominated by the value$
The standard electron-phonon calculation gives minimizing E. We have
02 (w, T=0) g? _ *
T:norbnspinrp(e ), (A5) Z(g,n) Ea: Zexp—E(r3 ,9,n)/T. (B4)

* :
whereD(ey) is the single-spin density of states at the FermiHerea labels the extrema,, is a solution of

surface. Thus 1 1
r=g n—z——tanfl(,u—gr) ) (B5)
Nconv=tD(€p)N. (A6) m
andZ,=0 is the weight associated with extremwamEach
Elsewhere in this paper it has been shown that in th&, is a product of two contributions, one from integrating
dynamical mean-field calculations polaron effects occur abver the quadratic fluctuations in aboutr=r} and one
A~1, implying \¢on~1. For example, in the model with from the leadingT dependence of.. In the present problem
Norb=Ngpin=1 and a semicircular density of statesia+0,  we have, at lowT, u=uy+AT,; the T-linear term contrib-
frozen phonon distortions begin to occur a= utes toZ,.
(A com=1). The critical values ok found here are artifically Equation (B5) may have one or three solutions. In the
small because of neglect of quantum fluctuations and intettatter case, either one has the lowest energy or two are de-
site interactions. In models with quantum phonons, somegenerate. If there is one dominant extremum then (B§)
what larger\ values will be required to produce insulating implies
behavior, but the general conclusion that metallic behavior
breaks down at & ., Not too much larger than 1 will still p=gr+tanm(n—1/2), (B6)
hold. Now Migdal showed, using phase-space argumentg, Eq.(B5) impliesr =0.

that the parameter that controls perturbation theory about the Now consider the case of two degenerate extrema, at
zero electron—phfnon coupling limit is natbut Awp /t (or r=r, andr—r,. From Eq.(B3) and Eq.(B5) one finds’

if T>wp, AT/t).” Therefore, one might expect to be able to —n- - ;

use the Migdal-Eliashberg equation to study the crossovefilgrrgr |Zt2irsz Coon’\,:éﬁtz?ooa(;ﬁnaend f2 must have opposite
from Fermi liquid to polaron physics. The difficulty with this '

argument, however, is that the ground state about which to R=g(r{+r,)/2, A=g(r{—r,)/2. (B7)
perform the expansion is not known fae>1. In fact, in the )

limit considered in this paper, the Migdal-Eliashberg equaln terms of these variables E(BS) become

tions are identical to those obtained by expanding (Byto 2 24— 2R
order r? and solving self-consistently. Corrections to this R=gz(n—1/2)—g—tan‘1—'uﬁ, (B8)
self-consistent solution are indeed small ¥/t is small, but 2m 1-(p—R)"+A

the starting point is seen to be wronghit-\.~1. That the )
Migdal approximation breaks down at-1 has been noted A= 9 tan 1 24 (BY)

by other workers; see, e.g., Alexandrov, Kabanov, andRay. s 1+ (u—R)?— A%
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These equations must be solved subject to the constraint For n# 1/2, the transition may be shown to be first-order

E(ry,9,n)=E(r,,g,n), which by use of EqsB8) and(B2)
may be written

2 2
g% 1+(R-p+A)
(R A= M R =a)

At smallR andA, Eqgs.(B10) and(B9) are only consistent if
R=pu=g%(n—1/2), so(B10) is trivial. This may be most
easily seen by expanding the two equationsAimat fixed
w—R and comparing the\® coefficients. This immediately
implies that ifn#+ 1/2 the transition is first order.

In the strong coupling limitr;=—g(1—n), r,=gn and
w=13g%(n—1/2). One may obtain Eq44) by substituting
the value for, e.g.r, and u into Eq. (B2).

(B10)

APPENDIX C: NONDEGENERATE FERMIONS
WITH SEMICIRCULAR DENSITY OF STATES

In this Appendix we analyze th&—0 limit of the dy-

by the argument used in Appendix B: one expands EgS).
and(C6) to orderA?® at fixedb andR and observes that the
equations are not compatible.

Forn=1/2, u=R andb is odd iniw,, so Eqs(C4) and
(C6) are satisfied trivially. The other two equations may be
easily solved by viewing them as equations foandg? at
givenA. Because Eq.C7) is only cubic, the solution may be
written down immediately. It is easiest to find the proper
branch of the solution iz is continued to the real axis. Once
b is found,g? may easily be computed from E¢C5). From
Eq. (C7) one sees immediately that the imaginary part of

b, b, vanishes ab=0 for A2=1. The coupling correspond-
ing to this,g=1.63, is the one at which a gap first appears in
the spectrum. Similarly, one may show that the leading
(w?) correction to thew=0 value of b’ vanishes at
A?=1/4.

The strong coupling limit is analytically tractable at all
n. b’ is nonzero only forZ near =A. Definingb.=b=+A

namical mean-field theory of nondegenerate Fermions with andz, =z+ A and neglecting terms of orderAl/one finds
semicircular density of states coupled to a classical oscillafrom Eq. (C7)

tor. The technical differences from the Lorentzian case
treated in Appendix B are that the mean-field parameter sat-

isfies the self-consistency equati@tB) and that the energy

is given by

1 _ , TP
E(r,gm==35T2 [ay~(iwg+ ) ?+ 5 —grn

~T2 Infa,—gr]+pn, (D
n
with r given by a solution of
=gl n+> ! c2
=g+ < a,+gr)’ (€2

If there is one dominant extremum then E¢B4) and (18)
imply n=—3,(a,+gr) ! so Eq.(C2) impliesr =0. In this
case

a(iwy) =3[ (iwn+u)—sgnw,(iw,+u)?—4]. (C3

If there are two degenerate extrema, E@4), (B7) ap-
ply, as do the relations Z;r;+Z,r,=0 and

E(r,,9,n)=E(r,,9,n) used in Appendix B. It is convenient

to rewrite the equations in terms &,A, b,=a,+R, and
Z,=iw,+u+R as

b
— N2 2
R_g n+g T; (bZ_AZ)! (C4)
A——gTS (C5)
w (b*—A%)’

b+A
2RA=2g%nA+g?T2, In , (C6)

n b_A

b+R

] ()

b2_A2'

1
(1=R/A).

b-=Z.= 55"

(C8)

This equation may be solved and the results inserted into the
other equations. One finds
w=g%(n—1/2). (C9

ri=—g(1—n), rp=gn,

The physical content of these solutions is one band, of

width \/2n centered ato= —g? representing occupied states
and another ab=g? of width y2(1—n) representing unoc-
cupied states.

APPENDIX D: ORBITALLY DEGENERATE ELECTRONS
WITH LORENTZIAN DENSITY OF STATES

In this Appendix we analyze th&—0 limit of the dy-
namical mean-field theory of orbitally degenerate electrons
with a Lorentzian density of states coupled to a classical
Jahn-Teller oscillator whose displacement has magnitude
The treatment parallels Appendix B but the details are dif-
ferent. Instead ofB2) we have

1+1 Y w+
>+ tan (utgr)

1 2
E(r,g,n)=§r —(utgr)

—(pn—gr)

11 )

§+;tan (m—gr)
1| 1 2

+ o1+ (k+9n)7]

1
il Cqr)2
+2ﬂ_|n[1+(,u, gr)<]+un

with . chosen sdB3) holds. Instead of EqB5) we have

r=%[tan_l(/ﬁrgr)—tan_l(u—gf)]- (D1)
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Suppose first there is only one dominant extremurg.iff ) 1
small this is atr =0 and r=-2g rT; P (E2)
n
- , . .
,u=tan§(n— 1) (D2) If there is one dominant extremum tharsatisfies
) a
and an=lo,+u— az_—gzrz (Eg)
n
2 T while u is given by
E(r=0,n)=—;|n<cos§(n—1)). (D3)
an
At g=g.(u) =21 7(1+ 1?)], there is a second-order transi- n= ZT; a2—gi?’ &4

tion to a state witlr #0. In this state, the chemical potential ) o )
is fixed by For smallg, the only possible solution is=0, soa, is

given by Eq.(18) andu may be found numerically from Eq.
(E4). Ther=0 solution becomes linearly unstable at

92(p) =3/ (4— u?)>? (E5)

As g— at nslz, this S?“Z‘t'g” tends 2t0r=tgn, to a solution withr #0. This solution implies a frozen in
u=tanm(n—1/2)—g°n, E=—3g°n“+(1/m)Ingn. _Jahn-Teller splitting randomly oriented from site to site but
Atlargeg andn+1, Eq.(D1) has an alternative solution, of the same magnitude on all sites, and therefore a two-
r=g. This is incompatible with Eq(D4), so the solution peaked spectral function. Again the equations simplify in the
must be degenerate with another extremum, which, by symstrong coupling limit, where the reasoning that led to Eq.
rlncgtry, must be at=0. TPezse requirements imply that=" (cg) shows that the single-extremum solution tends to one
39°sgn (0—1) andE— —3g°n+ (4/m)Ing. If nis near 1 the  ith a spectral function consisting of two semicircular fea-
two-extremum s_olutl_on becomes lower in energy atyyres of half-width V2 (versus half-width 2 ag<g,), cen-
g~1/J1—n>gc; if nis near 0, the two-extremum solution tered atw= — u+g2 Forn<1 u is such that the lower band
is lower in energy at aly>g.. is partly filled, thusu=—g?n+0(1), and theenergy is
—3g°n?+0(1—n). The O(1—n) term comes from carrier
APPENDIX E: JAHN-TELLER COUPLED ELECTRONS kinetic energy in the partly filled band.
WITH SEMICIRCULAR DENSITY OF STATES As in Appendix D, an alternate two-extremum solution
exists, with one extremum at=0 and the other at#0. As

namical mean-field theory of orbitally degenerate electron h_’oo’ the“nonzerd—>gd. The skpgctral funCt'OE CO?S'SB .th
with a semicircular density of states coupled to a classica ree we separat_e+ peaxs, tW(.) each ot weig t
Jahn-Teller oscillator whose displacement has magnitude min(n.2—n), at o —p= -9 corresponding to sites with an
The treatment follows Appendix C but with technical differ- electron and one, of weigh{2—n|, centered ai>=— x and

ences analogous to those found in Appendix D. Instead O(I‘.orres_pond_ing to the empty S‘“?S <1 ar_1d _thel §°“b'y
Eq. (C1) we have occupied sites ab>1. The chemical potential is 39 and

the energy is— 3g°n+01/g. As g— the two extremum

1 solution is lower in energy. Far—0, u— —2 in the undis-
E(r.g.n)=T2> [a,— (iwy+u)]?+ Erz torted state and the divergencegyf shown in Eq.(E5) im-
" plies that the undistorted state proceeds directly to the three-
peaked one via a first-order transition. Fornear 1 the

n=1+ %[tanfl(,mgr)+tan*1(,u—gr)]. (D4)

In this Appendix we analyze th&—0 limit of the dy-

—T; In[a%—g?r?]+ un. (ED)  calculation sketched in the text shows that the two-peaked
solution, with a gap between the two peaks, exists for a finite
Instead of Eq(C2) we have range ofg.
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