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We study statistical characterization of the many-body states in exactly solvable models with internal
degrees of freedom. The models under consideration include the isotropic and anisotropic Heisenberg spin
chains, the Hubbard chain, and a model in higher dimensions which exhibits the Mott metal-insulator transi-
tion. It is shown that the ground states of these systems are all described by that of a generalized ideal gas of
particles(called exclusonswhich have mutual-exclusion statistics, either between different rapidities or be-
tween different species. For the Bethe ansatz solvable models, the low-temperature properties are well de-
scribed by the excluson description if the degeneracies due to string solutions with complex rapidities are taken
into account correctly. For the Hubbard chain with strong but finite coupling, charge-spin separation is shown
for thermodynamics at low temperatures. Moreover, we present an exactly solvable model in arbitrary dimen-
sions which, in addition to giving a perspective view of spin-charge separation, constitutes an explicit example
of mutual-exclusion statistics in more than two dimensi¢8€.163-18206)00332-3

[. INTRODUCTION statistical interactions or mutual exclusion between different
species of particles. Haldane has recogrizédt quasipar-
Elementary particles or excitations are usually classifiedicles in fractional quantum Hall fluids are exclusons with
either as bosons or as fermions. In recent years, however, fihutual statistics between quasielectrons and quasiholes.
has been recognized that particles with “fractional statis- Thus the concepts of fractional anyon statistics and exclu-
tics” intermediate between bosons and fermions can exist ision statistics constitute generalizations of two different as-
two-dimensiondl or one-dimensionaf systems. In two di- pects(exchange phase and exclusiai the usual quantum
mensions, a type of fractional statistics can be defined on thstatistics. An essential difference between the two concepts
basis of the phase factor exg@), with 6 allowed to be arbi- is that anyons can exist only in two spatial dimensions, while
trary, associated with an exchange of identical particles. Onin principle exclusons may exist in any dimensions.
has6=0 for bosons and=  for fermions. A particle obey- Recently, one of Usintroduced the concept of a general-
ing such fractional statisticevith §+0 or =) is called as ized ideal gas of exclusorisee Sec. Il for definition and
“anyon.”* It is believed that the quasiparticles and quasi-showed that its thermodynamic properties can be easily un-
holes in fractional quantum Hall liquids are anydnsnyons  derstood through a statistical distribution that interpolates be-
can exist only in two spatial dimensions due to the braidtiween bosons and fermions. Later, Bernard and® Wave
group structure associated with th8m. shown that the Bethe ansatz solvable models in one dimen-
Another aspect of quantum statistics involves state countsion can be described as an idéai noninteracting exclu-
ing, or the exclusive nature of the particles. Any number ofson gas. This exemplifies that in certain circumstances
bosons can be in a single-particle quantum state. Therefoigarticle-particle interactions can be totally absorbed by the
there is no exclusion between bosons. On the other hand, tistatistical interactions(A possible relation to a conformal
exclusion is perfect for fermions in the sense that a singlefield theory was discussed by Fukui and Kawakanihus
particle state can accommodate at most one fermion. Thithe concept of exclusion statistics may become a powerful
aspect of quantum statistics can be generalized, as noticed byol in understanding certain interacting many-body prob-
Haldane® who proposed a definite generalization of the Pauliems. For example, recently it has been shtwhat the
principle such that one can consider particles with nonperfeatssential features of low-temperature physics of Luttinger
exclusion. He pointed out that a spinon in a one-dimensiondiquids in one dimension can be approximately described by
long-range interacting quantum spin chain can exclude, oa system of noninteracting exclusons. This may provide a
average, half of the other spinons in occupying a singlenew approach to interacting many-body systems.
particle state. We shall call such a generalization “exclusion The examples considered by Bernard and Wu are the re-
statistics” and a particle obeying it an “excluson.” In con- pulsive §-function boson gdg and the Calogero-Sutherland
trast to the usual bosons and fermions, the general concept ofodel*? Both of them contain only a single species. The
exclusons allows mutual statistics; namely, there may exigpresent paper is a followup to study statistical interactions or
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mutual statistics in exactly solvable models with internal ID({N})
guantum numbers. We will discuss one-dimensional Bethe T=—g{j”, (2.3
ansatz solvable models such as the isotropixX) and an- ]
isotropic (XX2) Heisenberg chains, and the Hubbard chain.agreeing with the original definition for statistical interac-
In addition, we will consider an exactly solvable model in tions’ proposed by Haldand.When the pair i, ) differs
arbitrary dimensions proposed by two of dsyhich has the  from (j, ), we call g/t” mutual statistics between particles
Mott metal-insulator transition. A common feature in all |apeled by (,x) and those by j( v).
these models is that there exists mutual exclusion either be- \we further assume that the total energy of the system with
tween particles of different rapidities or between different{NfL} particles is always simply given by
species.

In this paper we are going to address the following two
questions. First, many Bethe ansatz solvable models with E=2 Nt (2.4
internal degrees of freedom allow solutions of the Bethe an- b
satz equations with complex rapidities, while a naive analywith constantef‘. Equationg2.1), (2.2), and(2.4) define the
sis of the Yang-Yang thermodynamic Bethe ansatz in termgeneralized ideal gas of exclusohk.is known that(2.4) is
of exclusons deals only with excitations which correspond taot satisfied for free anyors.One of ug has derived the
solutions withreal rapidities. The question is whether these statistical distribution for the generalized ideal gas and the
excitations are sufficient to give correct thermodynamicthermodynamics following from it. The equilibrium statisti-
propertiesat low temperature®r not. Previously, in Ref. 9 ¢al distribution for{N#} is determined by
the same topic of thermodynamics in terms of exclusons with
multiple species was discussed without addressing this prob-
lem in the Bethe ansatz solvable models. For the Heisenberg
spin chain, we explicitly show that at the isotropic antiferro-
magnetic point(with the anisotropy parametex=1), the wherew!* satisfy the equations
generalized ideal excluson gas of excitations with real rapidi- )
ties does give correct low-temperature behavior if a double 9ji el'—at
degeneracy of the excitations induced by complex rapidities (1+Wi”)H =ex T
is taken into account. The second question deals with the by
excluson description for the physically interesting phenom-where a* is the chemical potential for particles of species
enon of charge-spin separation. Both the Hubbard chain and. The thermodynamic potential is given by
the exactly solvable model in higher dimensions exhibit this
phenomenon under certain conditions. We will show that =-TInZ (2.7)
when this happens indeed the two models can be described
by two speciegspin and chargeof exclusonic excitations G-"+N-“—2 T
with nontrivial mutual statistics. In particular, the latter ! b5 9 N
model provides an example é¢fmutualjexclusion statistics =-T>, GIn , (2.9
in more than two dimensions. We note that our treatment of ! Giﬂ_E gi’f”NjV
the models differs from that presented in Ref. 14. i

W{‘N{‘+JE gi'N/ =G, (2.5

v
1

1+ij

. (26

whereZ is the grand partition function.
Il. EXCLUSON DESCRIPTION

We consider a system with a total numidér=; Nt* of lll. THERMODYNAMIC BETHE ANSATZ

particles or quasiparticles, wheMN* is the number of par- A large class of models which can be interpreted as the
ticles of speciesu with a set ofgood quantum numbers, generalized ideal gas is the Bethe ansatz solvable models in

collectively denoted byj, specifying the states. Following one dimension. It is well known that the generalized ideal
Ref. 7, we assume that the total number of states witlyas actually represents a system of interacting particles. The
{N#}is Bethe ansatz method can be applied to systems with the spe-

cial property that all the scattering amplitudes for many qua-

[DF({N/}) + N —1]! siparticles can be written in terms of two-body scattering

=l arpraNnm =1 (2.1)  amplitudes® As a result, the eigenvalue prot_JIem of a Bethe

iu NFIDE( J}) ik ansatz solvable system is reduced to solving the so-called

Bethe ansatz equations.

In general, the Bethe ansatz equations may be rewritten as

where Df({N;}) is the number of available single-particle
states(counted as bosopswhich by definition is given by

Lp (N =214+ 2 6,,(N A1), (3.
DEND+ 2 glf"N/ =G, (22 m.v
M with 6,,(N%,\p) being the two-body scattering phase shift
with statistical interactiong;” Here G{* is the number of between the quasiparticles with rapidities and\,. Here
available single-particle states when there is no particle i is the size of the systenp,(\) is a function of the
the system, namely{=D#({0}). The derivative 0f2.2) is  rapidity A (or the quasimomentumand{l”}, , is a set of
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integers or half-odd integers. We assume that the integers N“=Lp, (MYANE, D“({N S Lp# (N ANE,

{I%} satisfyl#, ,>1%. We restrict ourselves to the solutions (3.9
of EqQ. (3.1) with rapidities A\ all real. It is known that and

solutions with complex rapidities do exist for many Bethe

ansatz solvable systems, but we have not been able to deal 1

with the problem of state counting for such solutions. Below 91" =00t 5~ 0, (NN AN (3.10
we will address, in several concrete examples, the question

of how important are the contributions of solutions with In the thermodynan“c ||m|t the Bethe ansatz equanons
complex rapidities to low-temperature properties of the sys¢3.6) hecome

tem.
Subtracting the Bethe ansatz equati¢®d) for adjacent 1 | h v , o
rapidities\# gives ZDM(MZP,,,(K)JFEV g“" (NN )p,(N)dN (3.11)
Llp, NSy —p. (ND)I=27(17,1—1%) with the statistical interactions
+ 2 [0, (M ) RPN N)=68,,8(A—\' Ly AN (31
oy prA/+1%m g ( ’ )_ 3% ( )+Z6MV( ’ ) ( . 2
=0, (\F N (3.2  The key point is that the Bethe ansatz equati4l) are

equivalent to the equationi2.2) of the statistical interactions
in the excluson formalism.
Here we stress once more that in the above we have con-

Following Refs. 18 and 2, we introduce a particle density

pL(N)= (3.3 sidered only solutions with real rapidities. Equatih12
LN 1= N)) for statistical interactions refers only to such excitations. But
and a hole density its validity is obviously independent of whether or not these
solutions of Bethe ansatz equations are complete. Though
N M4 right now we do not know how to do state counting for
pu(N))= OV ) (3.4  solutions with complex rapidities, we feel it plausible that a
/s slightly more complicated excluson picture may still apply.
whereM#%=0 is the number of the holes in the branches of
the Bethe ansatz equatiori8.1), i.e., the numbeM% is IV. THERMODYNAMIC FORMALISM
given by AT FINITE TEMPERATURES
14, —IE=1+M~, (3.5 The thermodynamic formalism for Bethe ansatz solvable

- N _ models at finite temperatures was first developed by Yang
In terms of these densitigs, and p,,, we can rewrite the and Yang for the cases without internal degrees of freedom.

Bethe ansatz equatior8.2) as This formalism has been justified, e.g., for a one-dimensional
L Bose gas with repulsive point interactibhin this section,
Z—PL()\i’L)A)\"L:LPﬂ(’\i“)A)\i””LLPZ(ML)AW we briefly review a straightforward generalization of the

Yang-Yang thermodynamic formalism in a general setting
1 with internal degrees of freedom, and show that it is actually
+ > [0 (M ND)ANELp,(AN)ANY,  the same as the generalized ideal gas with the identification
o P (3.9(3.10.
(3.6) In the thermodynamic limit, the number of particles of

speciesu per volume is given by
where we denote the derivative of a functibrby f’. Here

Lp, (N)AN and LpZ()\{‘)A)\{‘ are, respectively, the num- N,
ber of quasiparticles and the number of quasiholes in the T dX p,, (4.2)
interval AN The total number of possible choices of states B
with densities{p,} and{pZ} is given by From (3.7), we have the entrop$=InWg, as
h S
W H {L[p#(h")er,L()\”)]AM}' @7 E=E f dM{[p,(N) +ph(N)TIN[p, (M) +ph(N)]
AT Lo N)ANT Lo (M) AN .
h h
This numbeW;g, of states, obtained from the Bethe ansatz = PuMInp, (M) = pu(M)Inpy, (M)} (4.2)

equations(3.6), is of exactly the same form as E@.1) for e assume that the total energy per volume is expressed as
the numbeW of states in a generalized ideal gas of exclu-

sons with the statistical interactions given by Eg.2). In E 0
fact, we get the equivalence by setting [:g d\ pu(N)€,(N) (4.3
G,L:L INY: 3.8 in terms of an energy densigﬁ. As a rule, this assumption
: pr# : b ' is always satisfied in Bethe ansatz solvable models.
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The thermodynamic potenti& at equilibrium with tem-
peratureT can be evaluated by minimizing

Q=E-2 a,N,~TS (4.4)
y3

with respect to the variation of the densitjes andpz. Here
a, is the chemical potential.
As a result, we have

9 T -
L= 22 f dAp,(VIN[1+w, (V)] (45

where the functionsv,, are determined by the equations
In[1+w,(\)]—2 fd)\’g”‘()\’,A)In[l+w;1()\’)]

_aM-a, (4.6)
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Cloizeaux—Pearson—Faddeev—Takhtajan fiode in the
excluson description. On the other hand, we will show that
for the isotropic antiferromagnetic chain, the low-
temperature behavior obtained from a generalized ideal gas
of doubly degenerate or spin-1/2 excitations with real rapidi-
ties does agree with the known exact regdité which are
obtained in other ways without invoking the completeness
assumption of string solutiorfS.Here we stress that for get-
ting the correct results, it is necessary to take into account a
double degeneracy of the excitations induced by complex
rapidities. Strictly speaking, the solutions of the Bethe An-
satz equations excitations with only real rapidities generally
do not properly account for the low-temperature behavior, so
other solutions with complex rapidities have to be included.
This problem has not been addressed in the previous
treatmentt of multicomponent systems in one dimension.

A. Spin-1/2 isotropic (XXX) Heisenberg chain

T ' The Hamiltonian of the spin-1/XXZ chain is given by

The particle densitiep,, at equilibrium are determined by

. L
the Bethe ansatz equations H:zfl [S'S', 1+ SIS+ A(SISE, ,— 18] (5.0)

1
=P =, 0w, 0+ 3 | GO e A
4.7

with the periodic boundary conditio | ;=S,, wheresS; is
the spin-1/2 operator at site and A is the anisotropy pa-
rameter.

The hole densities are given WL.:’JMW#' _ First consider the isotropicA(=1) Heisenberg chain. As
F(_)r the thermF’dY”am'CS reviewed here, the fOIIOW'ngis well known, for this model, BetHé first reduced the ei-
cautious remark is in order. We have followed the Bethe

hod d h ; | bl _—genvalue problem of the Hamiltonian to solving the so-called
ansatz metl to reduce the energy eigenvalue problem iNgaiha ansatz equations

the models to solving the so-called Bethe ansatz equations.

However, it has not yet been generally proved that all the M
solutions to the Bethe ansatz equations provide the complete 2Ltan 12\, ) =271 ,+2 >, tan Y(\,— )
set of energy eigenstat&sIn particular, it is known in a B=1

number of cases that there are solutions with complex rapidi-
ties to the Bethe ansatz equations in addition to those with
real rapidities. Though exact thermodynamics must deal with i _ )
all eigenstates in a complete basis, low-temperature propefthereM is the number of down spins. The energy eigenval-
ties of a system, which are the main focus of interest in many€S are given by

situations and in the present paper, might involve only a set "

of solutions that are not necessarily complete. It has been 2

shown that the ground state at absolute zero always corre- E= _azl 1+4)\2" (5.3
sponds to a solution with all rapidities real. A sensible ques- ¢

tion is thus whether the solutions with real rapidities are  comparing(5.2) with (3.1), we have

enough for accounting for low-temperature properties of the

(a=1,2,... M), (5.2)

system. A way of investigating this problem is to apply the P(\,)=2tanm (2\,) (5.4)
thermodynamics reviewed above to some cases where the

exact thermodynamics has been studied by ways that avomhd

the completeness assumption, and then compare the results

to the exact ones. One well-known example of such cases is 0Ny Ng)=2 tanfl()\a—)\ﬁ). (5.5

the Heisenberg spin chain, which we are going to study in o ) i
the next section. Further, from(3.12, we get the statistical interactions be-

tween magnons as

V. ISOTROPIC AND ANISOTROPIC

HEISENBERG SPIN CHAINS

g()\,)\’)=5()\—)\’)+% (5.6)

1+(A—\")%"
In this section, we apply the formalism reviewed in the

last section to the isotropic and anisotropic quantum spin-1/¥ang and Yang provéd that the ground state &t=0 in-

chains. On one hand, for the spin-1/2 isotropic Heisenbergleed corresponds to a solution with all rapidities real, so that

antiferromagnetic chain at low temperatures, we are able ti is the same as the ground state of a generalized ideal gas

explicity demonstrate the magnon excitation&es  with the above statistical interactions.
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B. Spin-1/2 isotropic Heisenberg chain at low temperatures

By substituting the results in Sec. V A int@.5 and
(4.6), we get the thermodynamic potenti@l as

9=—lf d)\—z4 In[1+e <M/T] (5.7
L 2= 1+4\ ' '

wheree=Inw is determined by the equation
N)= 2 + fo d\’
“M="Trmet T T+ (A —N")2

XIn[1+e €AY, (5.9

Further, from(4.7), we have

(>\)[1+ef<WT]:i 2 - an (\)
p m1+aN2 w) P

1

First consider the zero temperature limit. Th@&n8) and
(5.9 become

2 1= 1
M=o o) 640
and

)\—1—22 1jwd)\’ N)yr——
PN=T e o) LN PN TR
(5.1
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p()\)d)\—gw. (517}
Equation (5.16 implies that holelike excitations have the
dressed energy|= |sink|/2, which is nothing but the des
Cloizeaux—Pearson—Faddeev—Takhtajan nfode. It is
knowrf? that the momentum of this modg,e (— , 7], is
related to the variabl& by

for 0<g<r,
for —7<g<0.

7—K
a=|_, (5.18
This double degeneracy is induced by complex rapidftfes,
whose net effect is to give spin 1/2 to the excitatiéhs
particular explanation of this degeneracy will be given in the
case of the spin-1/XY chain below. Equatiofb.17) implies
that in terms of the dressed ener{fy.16, these holelike
excitations obey Fermi statistics at low temperatures. In fact,
by combining(5.17) with (4.2) andpl,=p,w,=p,e", we
have the expression of the entropy at low temperatures as

S 1 (=

=~ Efiﬁdq{f(sq)lnf(sq)-l—[l— f(eq)]IN[1—f(eq) ]}
(5.19

with the Fermi distribution function

This result agrees with the free fermion descriptions of the
XXX chain?’ The entropy(5.19 gives the specific heat
C=2T/3 per volume at low temperatures. The resulting spe-
cific heat is just the known exact specific h&&t? Although

Since these equations are, respectively, linear with respect {9e have droppedstring solutions with complex rapidities
the unknown functions and p, one can easily obtain the to the Bethe ansatz equations, we have been able to get the

solutions as

e(\)= (5.12

ar
2 coshrA

and

P()\)Zm- (5.13

By substituting(5.13 into the right-hand side of5.9),
i.e., by iteration, we get the expression

1 1
2 coshr\ 1+e<M/T

p(N)= (5.14
at low temperatures.

To clarify the physical meaning db6.12 and (5.14), we
introduce a new variablke[0,7] by

sinharA = — cotk. (5.15
In terms ofk, we can rewritg5.12 and(5.14) as
o
e()\)=sk=—5|sink| (5.19

and

correct low-temperature behavior by taking into account the
double degeneracy of the magnon excitations induced by
complex rapidities. Strictly speaking, the contributions to the
specific heat from the string solutions cannot be ignored at
low temperatures. But the total contributférappears to be
just doubled, due to the spin-1/2 charattef the magnon
excitations. This implies that the low-energy excitations such
as quasiparticle’s can be indeed described by the generalized
ideal gas of exclusons with real rapidities only.

C. Spin-1/2 anisotropic(XXZ and XY) chains

Next consider the spin-1/2 chairf§.1) with anisotropy
—1<A<1. Then the Bethe ansatz equations are givefi by

M
Lp()\/)=27-rl/—mz:1 O\, \m) (5.2
for the states witiVl down spins. Here
eip<h>=;::—fhl (5.22
and
O\, \y)=—2tan ! (cotn)tanl'()\/;)\m” (5.23
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with A =cosy (0< n<r). The energy eigenvalues are given A. General considerations
by The Hamiltonian of the Hubbard chain is given by

M L

E=- 2 [A-cop(r)]. (5.24 H=3 3 (] Cerotcin i)

T ji=lo=1,1 " ’ o
Comparing(5.21) with (3.1), and using(3.12, we get the L
statistical interactions between magnons as + UE CJ-TTCJ- Tc;rlcj | (6.1

=1
"N N i sin27 with on-site Coulomb energy and periodic boundary con-
gN N )=8(N—N\")+ — . " a . ¢
27 cosiiA —\") —cos2y diionsc, ,;,=c¢;, (0=1,]), wherec] , andc; , are, re-

(5.29  spectively, the creation and annihilation operators for an

electron with spino at the sitej.

tAiS:'?é;ES gcr,o?hn;g ?ttaégiii:dgslsvatﬁomgonr\cl)vgg da!t;atgldc; o Forthe Hubbard chain, Lieb and Whobtained the Bethe
i 9 ansatz equations

generalized ideal gas with the above statistical interactions.
In the special case of theXY model, i.e., A=0 M

2
(»=wl2), we have Lki°=27-rlic+ﬁ§=:1 G(Usinkic—)\Z) (i=1,2,...,N)
g N )=8(N—\"). (5.26 (6.2
This implies that quasiparticldsnagnong obey Fermi statis- and
tics. Of course, this is consistent with the well-known fact N M NS A
that the spin-1/XY chain can be transformed into a system _ 2 0( AS — Esinkp) —27]S— E 0(_a_ _B)
. . . . . . p a j a
of free spinless fermions in one dimension by using the =1 u =1 \2 2

Jordan-Wigner transformatidfi.

Note that —(7m— n)<p(\)<(7m— 7)) —0o<A<+®© (a=1,2,...,M) (6.3
from (5.22. In particular, we have- 7w/2<p(\)<mw/2 for ) . N o -
the XY chain. Combining this with(5.24), (4.6), and (4.5,  With quasimomenta{ki};_, and rapidities{\;},—, for

we have the thermodynamic potential (N—M) electrons with up spin anli¥l electrons with down
spin. Here
Q T (=2 -1
= 32 dpin{l1+exdcop/T]} (5.29 0(x)=—2tan (2x). (6.4
— 2

The energy eigenvalues are given by
for the XY chain. However, thigloes notcoincide with the
known exact thermodynamic potentfdlwhich is given by
replacing the range of integr#b.27) with [—r,7]. One EZ—ZZ Cok; . (6.5
possible reason for this discrepancy is that we have not taken =1
into account solutions with complex rapidities, to the
Bethe ansatz equatiors.21).1’ But, as is well known, there
is no complex rapidity in theXY chain?® Where does this Do(K®) = k¢ 6.6
inconsistency come from? The answer is the following. In o v '
the procedure to take thXY limit A—O0, we missed a
double degeneracy of the magnon excitations. Actually, a
more careful treatment taking into account complex rapidi- c e
ties shows this double degeneracy in ¥¥ limit.?° A simi- fecki' k) =0, (6.8
lar situation occurs also in theXXX chain at low

N

Comparing(6.2) and (6.3 with (3.1), we get

Ps(A3)=0, (6.7)

temperature$? Of course, a much simpler way to get the ¢ vy ol CeinC S
exact result for the&XY chain is to use the variable instead Ocski' N p) = 0| GSInki = Mg |, ©.9
of the rapidity\. Then one can easily obtain the exact result.
NS )\%
S Sy _ _a __P
VI. THE HUBBARD CHAIN Osd(N o Np) = 9( 5 2 ) (6.10

In this section we turn to the Hubbard chain. Our inten-gng
tion is to present an exclusonic description for spin-charge
separation, which is known to occur in this model with infi- 2
nite coupling at zero temperatui®We will demonstrate Bsc(?\z,kfF@(?\Z— Usink]?). (6.11
spin-charge separation under the following troadercon-
ditions: (i) the on-site Coulomb energy is large but finite;  Further, from(3.12), we have
(i) the temperaturd is finite but sufficiently low compared
to the order of the effective exchangedJ1/ g°c(k,k")=68(k—k"), (6.12
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gcs(k )\):_i cosk (6.13 E()\)_IJ'OO d\’ 1 |n[1+e—es()\')/T]
’ 7U 1+4(2sirk/lU—N\)2’ ' s 7). IF(A—N)2
AT (= cok
, no L 1 +—f dk . In[1+e™ /T
955(7\,)\ )=0(A—\ )+; 1+()\_)\,)2 (6.19 wU) . 1+4[(2 swk)/U—)\]Z [ ]
=0. (6.18

and

Now we proceed to the W/ expansion. When we neglect

2 (6.15 higher orders than W, Egs.(6.17 and(6.18 become

1
SC, = — —
g K== T a2 S0

2T (= 1
Since in the ground state & and\}, are reaf?the ground ~ €c(k)=—2 cok—a.— 7ffwd)\m|n[l+efes(“”],
state is the same as that for a generalized ideal gas with the

two species with above statistical interactions. In Ref. 31 it 6.19
has been shown that solutions with complex quasimomenta 2] T
and rapidities in the Hubbard model correspond to gapful esN)=—7——+ —f d\' ———
excitations. Therefore at low temperatures we can ignore 1+4\° 7)o 1+ =17
thermal activations of such excitations and concentrate on )

XIn[1+e MM (6.20

solutions with only real quasimomenta and rapidities.
We note that our results for the Hubbard chain disagregyith the effective exchange integral

with those in a previous papéron the same subject. The

disagreement comes from the incorrect procedure taken in 2T (= eI

Ref. 14. In the second equation of E4) in Ref. 14, the first J= mjﬁwdkCOSf('n[lJre O] (6.2

and fourth terms cancel each other exactly, namely, the

fourth term in the right-hand side (RHS), Equation(6.20 for € corresponds to Eq5.8) of the spin-

_EhﬁAzlA@Aa,Aﬁ: —A,, cancels the first term. Therefore 1/2 isotropic Heisenberg chain, althoughand €. couple to

if one proceeds correctly, the first and fourth terms on theeach other.

RHS of the second equation ) must also cancel. For the ~ Similarly, we have the equations for the charge density

same reason, the first and fourth terms on the RH$9pf pc and the spin density as

should cancel as well. But surprisingly it is not the case in 1 1 4

Ref. 14: Two originally canceling terms become eventuall m_ ~  ~ [”

noncanceling. o ’ Y e[ e = 277U ﬁwd)\p*‘()\)1+4}\200Sk

(6.22

B. Strong coupling expansion for the Hubbard chain and

It is well known that spin and charge degrees of freedom
are separated in the strong coupling Hubbard chain at zerg )\ eim AN_4 )
temperaturé® To explore the possibility of a similar spin- s 27 L 1+4N2 ) _, " Ps
charge separation at finite temperatures, we first perform the
1/U expansion for the thermodynamic potential of the Hub- % 1
bard chain. 1+(N—\")?
To begin with, we will write down the explicit form of the ]
thermodynamic potentid® of the Hubbard chain. Substitut- from (4.7), whereN is the number of electrons. Here we
ing the results of the statistical interactions in Sec. VI A intohave neglected higher orders thar 1/Comparing(6.23
the thermodynamic formulagt.5) and (4.6) in Sec. IV, we with (5.9 of the spin-1/2 isotropic Heisenberg chain, we

(6.23

have the thermodynamic potential obtain that the numbesg of down spins per volume in the
Hubbard chain is proportional to the number of electrons per
0 volume.
T (7 _ Clearly, from(6.19—(6.23), we conclude that the degrees
i e(KIT ) ,
L 27Tj_ wdkln[1+e ] (6.16 of freedom of spin and charge parts still couple to each other

at finite temperatures.
for the Hubbard chain, where,=Inw, are determined by
the equations C. Spin-charge separation in the Hubbard chain
at low temperatures

2T (= 1 In this section, we will demonstrate that spin-charge sepa-
€c(k)+ T ﬂcd)‘ 1+ 4[N — (2 sirk)/U]? ration occurs in the strong coupling Hubbard chain at low
temperatures.
XIn[1+e~sM)T]= -2 cok—a, (6.17 Consider the case with low temperatufles 1/U. That is

to say, temperatures are sufficiently low compared to the
and effective exchangd (6.21) which behaves as
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2
J=meidkcod<[—sC(k)] (6.29
at low temperatures. Hei2__ ={k| e.(k) <0}. Then we have

=0(1/J) from (6.20.
Note thate. (6.19 can be rewritten as

ec(k)=€P (k) + e (6.2
with
e?(k)=—2cok—a, (6.26
and
2T dx
el=— 1+4)\2In[1+e MM (6.27)

Here e(cl)ZO(llu) due to the above,=O0O(1/U).
From this observation, we divide the integral .16
into two parts as

r:|+—|—|7’ (6.2&
where
|,=— lf dkIn[1+e«<®/T] (6.29
* 2 D. , .
and the ranges of integration ard, ={k|e{”(k)
+eM>01  and D_={klePk)+e<0}. Since

€O N=0(1U) and T<1/U, . (6.29 are given up to
the order U as

T (0)
__ —e) (K)IT
|, = 27JD+den[1+e ] (6.30

and

1
_=EL dk{eV(k)+ e}
T
T f dkIn[1+efec 0+
TJD_

N
~__ (0)
L f dke

T (0)
_ DT
271_fDiden[l—l-ec ]

N

.
=fe(c”—5fD dkin[1+e~ < ®/T] (6.31)

where we have used the relatigg dk/2w=N/L which is
derived from(6.22 at low temperatures and for lardé.
Thus we have
Q T N
f;—z—f dkIn[1+e e (T] 4 = el

0, N2T d\ Lte ST (6.3
UL L araeiiite S 632
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for the thermodynamic potentidl (6.16) up to the order
1/U, where we have use(b.27), and the thermodynamic
potential(). of the charge part is given by

Qc T T (0)
= —e. (KT
3 27Tf_ﬁdkln[lJre c 1.

(6.33
Thus the thermodynamic potenti& of the Hubbard
chain can be written as the sum of the charge and the spin

parts,

Q Q;. NQOg
=TI 634
where
Q T (>
N 3m ) O prgeiniite VT, (639

which is identical to the thermodynamic potential?) of the
spin-1/2 isotropic Heisenberg chain. Equati@34) is an
indication of charge-spin separation.

VII. EXACTLY SOLVABLE MODEL
IN HIGHER DIMENSIONS

So far we have discussed models in one dimension to
which the Bethe ansatz approach is applicable. In two di-
mensions, it is known that the quasiparticles of the fractional
quantum Hall liquid are anyons. They can also be considered
to be exclusons.In this section we present an example of
mutual exclusion between different species in an exactly
solvable model irhigher dimensionawhich exhibits charge-
spin separation under certain circumstances. This clearly
shows that exclusion statistics is conceptually different from
anyon statistics, whose existence requires tajatia) di-
mensions.

Recently two of u¥ and Baskarai? have proposed a
model of interacting electrons that can be solved exactly in
any dimensions. The Hamiltonian is

2 cI +Cj.oTH.C.
(i)

U
L IJE 5I+J /+mc| TCJ TC/ lcml

=2 (utough)cl,Ci,, (7.9
where (i,j) represents nearest neighborsdndimensions,
and LY is the total number of lattice siteg, the chemical
potential,uy the magnetic moment, aridthe external mag-
netic field.

This model is unrealistic in the sense that the interaction
term with coefficientU is of infinite range in real space and
of strength independent of distan¢Blote that the noninter-
acting electron models are even more unrealistic since they
neglect the long-range Coulomb forcét, however, has the
attractive feature of being exactly solvable. In fact, it can be
easily diagonalized for eadk in momentum space. All the
properties, including the thermodynamic quantities, were ob-
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TABLE I. Electronic states and spin-charge labels.

o Electronic state Label N.: Charge Ns: Magnon
1.0
0 0 0 0
1 1 1 0
! 2 1 1
)
3 Metal and
0.5 . MottInsulator B
[gcc gcs} [1 0 73
Osc Uss -1 1] .
Metal . . " .
It is easy to verify that the condition for the ideal excluson
A gas(2.4) is satisfied, so that the system with doubly occupied
0 states suppressed can be described as a generalized ideal gas
0 1 . X . o
with two (charge and magngrspecies with the statistical
band width / U

interaction given by7.3). Note the nontrivial value-1 for
mutual statisticgs.; i.e., the presence of a charge can create
_ FIG._ 1. Phase diagram of the exactly solvable model in highery magnon state, though there is no bare available single-
dimensions aff =0. magnon stateG,=0) when there is no charge. It is straight-
forward to check that the thermodynamics of the generalized

taindedl inth?f' 13. Fut:thern”!ore, it is remarkable thatlthis'deal excluson gas obtained from E¢®.6) and(2.8) is iden-
model exhibits a number of important features of correlatedjq| (4 the result of Ref. 13 in the low-temperature limit.

electron problems in spite of its simplicity and unrealistic Indeed, in the present case, the species ingdex,s, and

Fatur%. Ittre]xplblts, f[or exgrgplﬁ, theﬁﬁMOt:j getﬁl—mstlljlatorthe state index is the momentunk in d-dimensional space.
ransition that was stressed by two of'iand Continentino £, ation(2.8) now takes the form

and Coutinho-Filhd?
The zero-temperature phase diagram of this model in any

dimensions is shown in Fig. 1. It has both the fixed-density q

and density-driven Mott transitions. These transitions in geng, _ —TE f dk In

eral may be in different universality class&s® The critical =~ ] (2m)¢

exponents of the two types of transitions are, however, the 1_2V 9urNu(K)

same in the present model and they seem to be in the same

universality clas$? In the zero-temperature phase diagramwherenﬂ(k) is the occupation number distribution function

Fig. 1, the regiorOBC is a Mott insulator phase with half- of the charge g=c) or spin (u=s) excitations ink space.

filled band. The rest are metallic phases. In the regiorFrom Egs.(2.5) and(2.6), we have

OABUC, a double occupancy is prohibited and, as we will

show, the system can be described by an excluson picture. n (K)[1+w.(k)]=1, ng(K)[1+wg(k)]=n.(k),

There is a Fermi surface of the excluson gas in the region (7.5

OAB, and on the phase transition lif@B is a quantum

phase transition of the excluson gas. On the other hand, t

excluson description breaks down on the phase transitio

line BC. The region outsideDABC is a metallic phase

which is described by two species of fermiafspin up and )

spin down electrons as it should be. ¢
Let us concentrate on the regi@AB. Assume thatJ is

large andT is low, so thatJ is much larger than botf and wg(k) = eles=us)/T, (7.7

the bandwidth’ Under these conditions, there is no activa-

tion of doubly occupied states; therefore there are only threwhere e.(k)=—23_;cosk,), es=2uoh (the energy of

stateq0, 1, and 2 for each momenturk. In the state O there spin excitation, which is actually measured relative to the

is no electron, the state 1 there is an electron with spin upgnergy of spin-up electronsand

and in the state 2 an electron with spin down. Let us denote

the number of charges d$. and the number of magnons me=m+uoh,  us=0. (7.9

(number with spin downas Ngs. We regardN. and N as

independent variablegspin-charge separationBy defini- Thus

tion, the state 0 had,=0 andN¢=0, the state N.,=1 and

Ns=0 and the state Rl.=1 andNs=1 (see Table)l Then

from (2.2), we easily derive

1-n,(k)— 2 9,,n,(K)

, (7.9

H/ghere the statistics matri7.3 has been used, ana;(k)
gndwg(k) satisfy

1+wg(k)

e(fc(k)—,uc)/T’ 7.6
wo(k) (7.9

e[ 5c<k> - Mc]/T

we(k)= 1Tre (-l

(7.9

G.=1, G4=0, (7.2 Substituting Eqs(7.9), (7.7), and(7.5) into (7.4), we obtain
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d% care of by the statistical interaction or mutual statistics be-
0= —Tf (2—7T)d|n[1+(e“°h”+ e HoT)glue™<)/T] tween them in the present formulation. It seems to us that
similar situations may happen in other strongly correlated
systems that exhibit charge-spin separation in higher dimen-
sions. We finally note that our treatment for the exactly solv-
able models in higher dimensions disagrees with that in a

(7.10  previous papéf on the same subject.

where €4(k) = e.(K) — uoh and e,(k) = e.(k) + uoh are the
energies of spin-up and spin-down electrons, respectively.
Equation(7.10 is nothing but the result of Ref. 13 in the
low-temperature limit(Remember that here we consider the This work was supported by a Grant-in-Aid from the
case with largeJ and lowT, so that doubly occupied states Ministry of Education, Science and Culture of Japan. The
are suppressed. work of Y.S. Wu was also supported in part by U.S. NSF

Here we emphasize that the concept of spin-charge sep&rant No. PHY-9309458. He is also grateful for warm hos-
ration is crucial. The effect that spin and charge excitationgitality of the Institute for Solid State Physics, University of
are not actually independent of each other have been takéfokyo, during his visits.

ddk
=— —(e(K =T L o= (e2(K)=u)IT
TJ Wln[1+e +e 1,
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