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Magnetic-electric two-dimensional Euclidean group
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The Galilean covariance and the symmetry group for a charged patrticle in planar motion is investigated. The
well-known magnetic translation symmetry is extended into a magnetic two-dimensional Euclidean symmetry.
We establish that the symmetry holds more generally in the presence of homogeneous magnetic and electric
fields. The symmetry can have useful applications in solid-state phySi6$63-18286)07532-1

I. INTRODUCTION cations and conclude, in Sec. VI, with a short discussion of
the results.
It is well known' that Galilean symmetry can be realized
in the Schrdinger equation only through projectiveay) Il. (2+1)-GALILEAN GROUP

representations. Bargmann, in his monumental workuni-

tary ray representations of continuous groups, considered Li The elements of thé2+1)-Galilean group are given by

X . the matrices
groups which are relevant to quantum mechanics. He treate
Abelian groups, the homogeneous and inhomogeneous cosp sing u; a
pseudo-orthogonal groups, and tk&+1)-Galilean group. o
He proved that, besides the Abelian, the only groups that G(hu,a,7)= sing cosp Uz & , 1)
have genuine, nontrivial, projective representations are the 0 0 1 9
inhomogeneous two-dimensional Euclidean gr&i(g), the 0 0 0o 1

inhomogeneous§l,)-Lorentz group, and thé8+1)-Galilean

group. However, he was not interested in their realizationd/here (,u.a,7) are the group parameters, the angleof
except for the projective representation of tifg+1)- rotation on the plane, the velocity=(uy,u,) of a pure Gal-

Galilean that he spelled out explicithy Later, ZaR realized ilean - transformation, and the translations in space,

the translation symmetry on a plane perpendicular to a ho§=(al,a2), and time,». The corresponding generators are

mogeneous magnetic field (magnetic translation grouip denoted byL, b, 7, andH. They satisfy the following Lie

This corresponds to the projective representatioB (@ that algebra:

Bargmann had foreseen. Zak had one central extension pa- [L,7]=i€qm, 2)
rameter (one infinitesimal exponent in Bargmann’s lan-

guage, the productB, whereq is the charge of the particle, [L,b]=ieyb, 3
and opened the way for applications to the quantum theory

of solids31° [bx,H]=i7, (4)

In the present paper, we consider the.projective represefgherek, = 1,2, ande,, is the antisymmetric symbol in two
tations of(2+1)-Galilean group in the Schdinger equation  gimensions €1= — €51= 1,e1,= €2,=0). All other commu-
for a charged particle. In the absence of electromagnetigyiors vanish.
fields we have the usual ray representation of the Galilean |, the Hilbert space of the wave functions for a free par-

symmetry group. The Galilean mass of the particle serves agje moving on the plane, these generators are realized by
an extension parameter. In the presence of a homogeneoys, following operators:

magnetic field the Galilean group is no longer a symmetry

group. We are left with a magnetic translation symmetry =p=-iV, (5)
which, by appropriately defining the “rotation” operator, we

extend into a magneti€(2) [ME(2)] symmetry group. b=mx—tp, (6)
Furthermore, the boosts automatically induce an electric

field. We can use it to extend tHdE(2) symmetry group L= €xXkP ()

into a magnetic-electri€(2) [MEE(2)] symmetry group. 4,4
The generators of “translation” and “rotation” that we give

for MEE(2) are conserved and gauge invariant. p?

In Sec. Il we briefly review the projective representation H= om’ (8)
of the (2+1)-Galilean group for a free particle in the Schro
dinger equation. In Sec. Ill, we introduce a homogeneousvhere x is the position operator ang the corresponding

magnetic field and establish the magnéi@) symmetry. In  canonical momentum of the particle,its angular momen-
Sec. IV, we generalize th®E(2) symmetry group into a tum, andH the Hamiltonian. The constant is the particle
MEE(2) symmetry group. In Sec. V, we exhibit some appli- mass and the time coordinate. The Lie algebra of these
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generators is a projective extension of the Galilean Lie algeand the Coulomb fieldE of the point chargey produce,
bra, with one extension parameter the mass. The commutghrough the Poynting vectdEx B, a field angular momen-
tion relations between translations and boosts do not vanisfum density which is a function of the position of the charge,
now, but gain ac-number commutator proportional to the x. Integrating appropriately in all space, we find exactly this
mass, term. The second term also corrects for the additional phase
that the wave function ires upon rotation by sweepin
1=, 9 g L e e roaten b sveznng
characteristic of projective representations. All other com- The generatoLq, together with the magnetic translation
mutation relations remain unchanged. In this way the Hamiloperatorsrg and the Hamiltoniari g close the following Lie
tonian and the Schdinger equation retain Galilean symme- algebra:
try. To be precise, if

[ 78k, T81]= —10Be€y, (15
VZ
oW (xt) == P (x1) (10) [78k,Hg]=0, (16)
is the equation of Schdinger in an initial frame, after a [Le,He]=0, 17
boostu of the particle,x—x’=x+ut, the wave function _
W(x,t) transforms into¥ ,(x’,t), with an additional phase, [Lo.7ail=i€aTsi- (18
, s muZ2) The Lie commutator§l5) and(16) are the well-known com-
Py(x', 1) =e"" W(x,t) mutators of the magnetic translation symmetry group. In-
_ (K 4T (! ) (1) cluding the generatadrq, in the algebra, we established that

the symmetry group for a charged particle in homogeneous
and satisfies the Schiimger equation in the boosted frame, magnetic field is theME(2) which contains the magnetic

9P, (x',t)=—(V'22m)¥ (X' ,1). translation group as an invariant subgroup. ME(2) group
is the semidirect product of magnetic translations and rota-
lll. PROJECTIVE REPRESENTATION SYMMETRY tions, ME(2)=MT(2)®SQ(2). ,
FOR A CHARGED PARTICLE IN (2+1) DIMENSIONS We remark that our angular momenturg , which gen-
IN THE PRESENCE OF A HOMOGENEOUS erates a symmetry of the Hamiltonian, is, as it should be,
MAGNETIC FIELD gauge invariant. It coincides with the uslia+ —id,, angular

momentum in the symmetric gauge= (—By/2,Bx/2), and
Let us now consider the presence of a homogeneous magaves us from the awkward statement that the angular mo-
netic field. OurE(2) plane can be thought of as either im- mentum is conserved only in the symmetric gauge. Physical
bedded into three-dimensional space, in the presence of gquantities should be gauge independent. Commutét8yr
homogeneous magnetic field perpendicular to it, simply expresses the fact that translators are vectors. With
x=(x,y,0), and B=(0,0B), or as a genuine two- the usual definition of angular momentusrp,—ypy, even
dimensional space. In terms of the two-dimensional vectothe vector character of translators was lost in the arbitrary
potential A= (A, ,Ay), the magnetic field will be then a  gauge.

(rotation scalar,B=d,A,— d A, . Let us now consider the boost operators in the presence of
The HamiltonianH is replaced byHg, a magnetic field. Although the Galilean group is no longer
5 symmetry of the Hamiltonian, the Galilean covariance will
H._ (P~ 9A) (12  be useful
B 2m The boost operators must change the velogitpf the
of . . eparticle into
course, the Galilean group is no longer symmetry of th

Hamiltonian. However, since the magnetic field is homoge- g b Uyeibu—y 4, (19

neous, our system should exhibit a translational symmetry.

This is established by the well-known representation of thé! in commutator form,

. . -6 . . .

gsggeg;g translation group® with the translation operators [be,v,]1=i18y . (20)

From the boost generators for the free-particle Galilean
m=p—gA+qgBXX. (13 group, Eq.(6), the generators for the magnetic translations,

Eq. (16), and condition(20), we easily guess that the boost

Actually, the symmetry group is a wider one. Indeed, wegeneratorshg in the presence of magnetic fieBl must be
can immediately construct a conserved angular momenturgiven by

operator
bg=mx—t(p—gA+gBXxXx). (21
Le=[xX(p—gA)]- ng ngz. (14) The boost operators become now honcommutative:
[bgk.bei]=—iqBt?ey . (22

The first term xX (p—qA)]- B/B is the kinetic angular mo-
mentum of the particle, and the second tegBx?/2 ex- This commutation relation is characteristic of the ray rep-
presses the field angular momentum. The magnetic field resentations of thé+ 1)-dimensional Galilean group. Other
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authord’~recently showed interest in the projective repre- E,

sentations of thé2+1)-dimensional Galilean group from the [Loe.Heel =i 5 7BEK: (33
group-theoretical point of view; Eq22) offers a physical

realization of such projective representations. In the limitwhereE, are the Cartesian components of the electric field.

B—0, bg—b, and the boosts commute. The Lie algebra of Eq9.30) and(31) is a projective exten-
The new boosts are vectors sion of theE(2) group, theM EE(2) group. It is a symmetry
. group for our HamiltonianHgg. Indeed, using expressions
[Lo,bgi]=ie€xbg, (23 (27) and (28) and the commutatoré32) and (33), we find

and transform the Schdinger equation covariantly. If thatzsg andLge are conserved in time,
W (x,t) satisfies the Schdinger equation

dTBE 1
. (p—qgA)2 gt %7eet i_[TBErHBE]:Ov (34
i 0, P(x,t)= ————V(x1), (29
2m
the boosted wave function dloe _ X ! =
gt %lee i_[l-q)ExHBE]_O- (39
Wy(x,0) =€ (x,1) (29 . .
Our generatorsrge differ slightly from the corresponding
satisfies electric magnetic translatdrss given by Ashby and Miller.
(p—gA)? In their gauge, we havegg=7—m(EX B)/B?; 7gg is, of
mtq,u(xlt):[—Jqu.(ux B) | ,(x,t) course, gauge invariant. Botfe and 77 are conserved, but
2m 7ge IS needed for the correct closure of the Euclidean alge-
(p—gA)2 bra, Egs.(30) and (31). Our translators are vectors. The re-
= ————qgx-E|¥ (x,1). (26) cent very interesting work of Zakis concerned with homo-
2m geneous constant and/or time-periodic electric fields. In our

The physical meaning of this equation is apparent. The finitéanguage, sugh a case is in the electric-type electromagnetic
booste'PsU has induced the electric fiel=BXu, in agree-  field sector E2—B“>0). In the present work, we remained

. : , : L ; 2_ g2
ment with Lorentz transformations to first order in velocity in the magnetic secto5"—E*>0).

u.l This fact opens additional possibilities. Finally, we remark that the boosts can also be defined for
a givenB and E as the operators which tangentially add
IV. GENERALIZING THE E(2) SYMMETRY IN THE velocity v—v+u to the particle, leavinge unchanged as
PRESENCE OF A HOMOGENEOUS MAGNETIC AND u—0,

ELECTRIC FIELD ibo- —ibg-
bge=e'’s UV e~ 'Ps Yl u=[(ExB)B]

Starting with the problem of a charged patrticle in homo-
geneous magnetic fieldB¢ 0,E=0), we are led to a prob- = mx+ gEtz—t(p—qA+qB><x). (36)
lem of a charged particle in homogeneous magnetic and elec- 2

tric field (B#0,E=Bxu). The termqEt?/2 expresses the “fall” of the particle inside

The dynamical system should again exhibit translatloqhe electric field. The commutator between the boosts re-

5,16 :
symmetry:®™® Indeed, We_ can define the generators of themains unchanged, Eq22), but their commutator with the
MEE(2) symmetry group:

“rotation” operator is modified:

EXB
Te=P—qA—m——+qBXx—qEt, (27 . q
Be=PA B a q [L(DEbeEk]:'EkI(bBEI+ §E|t2)- (37)
B E
Loe=[xX(p=0A—QED)]- g +[mx—t(p—aA)]- 5 V. APPLICATIONS
q E2 The above symmetries may find useful applications. For
+ EB X2+ ¥t2>. (28 example, using the boost operatdys, out of the Green’s
function for a charged particle in homogeneous magnetic
Together with the Hamiltonian field"’
(p—gA)? qB@(t_tr)efiqB-(xxx’)/z
Hge=——— —gx-E, (29 Tt )=
T e X ) = S B =ty /2m]
these operators form the following Lie algebra: gB - qB(t—t')
) Xexp i —(x—x")°co “m ||
[Teek: TBEI] = —10Be€YK), (30 4 m
. (38)
[Loe,Teex] =i €xTaEl (31)

where ® (x) is the Heaviside unit step function, we obtain
[ Teex.Heel=19Ex, (320  the Green’s function
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. qBO(t—t/)elaB 0t B2 o [mE? (x+x)
Gee(x X itt)= B tyam] & exp it 5 —gE
B ExB]? B(t—t’
Xexp{iqT X—x'—(t—t") 52 cot{q (Zm )H (39

for a charged paticle in the presence of both magnetic anghentumk, andLg, to the rotational elements of the point
perpendicular electric fields. Expressi@9) is derived from  group of the crystal. Their conservation, we hope, will have

(38), through the transformation useful applications. The conservation ef leads immedi-
ately to the well-known acceleration theorem in the presence
Ge(X,X';1,t') = g 1aUXB)- (A-X't')2g—imu(t—t")/2 of a magnetic field. In our scheme the proof is simple and
_ , straightforward. Consider first the case without an external
X M NG (x—ut,x’ —ut’;t,t"), magnetic field. LefT(a) be the translation operator along a

(40) lattice vectora, T(a)=€'P2 As we can easily verify for an
eigenstate off (a), a Bloch state, the operator which corre-
as a consequence of the transformation of the wavefunctiongponds to the crystal momentukm is
Eqg. (25). The expressions of Eq$38) and (39) have been
calculated for simplicity in the symmetric gauge. The corre- k=—iln[T(a)]a , (42
sponding expressions for any gauge are easily derived - . :
tr?roughgche g%uge transformati)(/)ngforgche Green’s f)l/mction. whereg, ,_ai* are the primitive vectors of the direct and recip-
Of special interest is the time-independent partial wavd©cal lattices,
Green's functionGge(E, ) characterized by the enerdy
. : . ! axB
diagonalized simultaneously with one component of the a=e————=.
translation operatotze. This Green’s function may be ap- a-(82%XB)

propriate for Hall-effect applications. The electric fididis  The operator k commutes with the Hamiltonian
perpendicular toB, and the time-independent conservedp2/pm+V/(x), and gives rise to a conserved quantity, the
component ofrgg, which we chose to diagonalize together crystal momentum or quasimomentum. In the presence of a
with the Hamiltonian, is perpendicular to bathandE. We  homogeneous electric fiel, a term—qE- x is added to the

denote byK the eigenvalue Of thIS Component Of the tranS'Ham"tonian' and'r(a) no |Onger commutes W|th |t,
lation operator. Conveniently in the Landau gauge,

A=(—By,0), we have p?
T(a),ﬁ+V(x)—qE~x =—qE-aT(a). (44)

(43

Gge(E,k)=- m ['(3+a)[0(y—y )U(a,W)U(a,—W'") The Heisenberg equation of motion then gives:
iVmqB
d
+O(y' —y)U(a,w)U(a,—wW)], (41) gi (@ =iqE-aT(a), (45)

where the electric field was taken along the axis,
E=(0Ey) and U(a,w) are the parabolic cylinder
functions!® a=—m[E-«E,/B—m/2(E,/B)?]/qB, T(a)=gl(@E-a+p-a) (46)
w=+2qB(y+ «/qB), andw’' = \2gqB(y' + x/qB). ) ) ) .

The ME(2) or MEE(2) symmetries may also find appli- Taking the logarithm off (a) and using the definition of the
cations in solid-state physics. Let us add a periodic potentigffystal momentum, Eq42), we obtain
V(x)=V(x+a) wherea is a lattice vector, to the Hamil- _
tonian for a charged particle in homogeneous magnetic k(t)=qEt+k(0). (47
and/or electric field. Then, out of the previously studied con-Thus we have the acceleration theorem. The time derivative
tinuous symmetry, there remains a discrete symmetry typicadf the crystal momentum operator equals the electric force
for crystals. This certainly contains the overlap symmetryapplied to the particle,
between theM EE(2) and the discrete translation symmetry

and integrating, we obtain

of the crystaft>® Since MEE(2), besides translations, con- d

tains rotations the symmetry is a wider one, it is the overlap ak—qE. (48)

of MEE(2) with the space-group symmetry of the crystal.

This extended discrete symmetry, in the cas®&(2), may We now proceed to the proof of the acceleration theorem

be applied to simplify the construction of the band structurén the presence of a homogeneous magnetic field. The
of solids in the presence of an external homogeneous madfamiltonian isHg+V(x), and we define the appropriate
netic field. magnetic quasimomentum operator by

Our symmetry group generators are related to fundamen- )
tal physical quantities: the generateg to the crystal mo- kg=—iln[Tg(a)]a", (49
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where —aA)2 A2
o= P 7 V0
Ta(a)=expli7a- &) (50
is a primitive magnetic translation. The operatgy corre- _q(p—qA)~Ap+Ap-(p—qA). (57)
sponds to the magnetic wave vectdgnd is conserved: m
g The sum of the first three terms is of the type already con-
1 _ sidered, and therefore commutes witg(a); A is a vector
akB_i—[kB Hg+V(X)]=0. (51) potential for the homogeneous magnetic fiBlénd the sum

q2A2/2m+V(x) acts as a periodic potential. The last term of
. . . . . p
If, in addition to B, there is an external electric field, the Eq. (57) also commutes witfg(a). We have

Hamiltonian becomeblzg+ V(x), and the magnetic transla-

tion operatorTg(a) is again nonconserved [Ap. Te(a)]=0, (58
q L sinceA,, is periodic, and
gi Te(@=~[Te(a),Heet V(X)]=iqE-aTg(a). (52) [(P—aA), Te(a)]=0, (59
from the well-knowr® commutators
Integrating Eq.(52), we obtain
[(P—aA)k,Te1]=0. (60)
Te(a)=exdi(qE-at+7z-a)], (53 The Bloch theorem in theg)resence of magnetic periodicity
has been considered recerflpy other authors.

and, taking the logarithm, we find the evolution of the mag-

X Finally, in the presence of an additional external electric
netic wave vector

field, we again establish the acceleration theorem (E5),
since
_ _ , , [Te(a),Hg—qE-X]=—qE-aTg(a). (61)
This establishes the acceleration theorem in the presence of a

magnetic field, VI. CONCLUSIONS

We have investigated the Galilean covariance, the sym-
akB=qE. (55 metry group, and the corresponding projective representa-
tions for a charged particle in planar motion in the presence

Using the operator instead ofrg, one could of course ©f & homogeneous magnetic field. We thus offered physical
arrive at the same result, through the conservation of th&ealization for the projective representations of the Euclidean
magnetic-electric translationSgg(a) = exp(rag- a). group. The WeII-_known magnetic trans_lann_symmetry_ has

The previous results also hold for the more general casB€€n €xtended into a magnetic two-dimensional Euclidean
of simultaneous electric and magnetic periodicity. Let us asSYmmetry, and more generally into a magnetic-eled(e)
sume for simplicity that we have a periodic magnetic fieldSymmetry. All generators, rotations, and translations were
B, in addition to thg homogeneous magnetic fi@ld The gaugle mt\_/an?rr]]t and conserved. Their conservation leads to
vector potential is A+A,, where VXA=B and acceieration theorems.

VXA,=B,. Without loss of generalityA, is considered Our scheme is useful for applications to solid-state phys-
p P p ; :
periodic. The Hamiltonian becomes ics. We proved that the acceleration theorem holds more
generally in the presence of electric and/or magnetic period-
(P—gA—QgA,)?2 icity. The ME(2) group together with the space group of the
Hg= o P +V(X). (56) crystal may also be useful for finding a band structure in the

presence of homogeneous magnetic fields.
We easily verify thafTg(a) commutes withHg and conse-

guently we have the conservation of the magnetic wave vec-
tor and the corresponding Bloch theorem. Indeed, according N.V.S. was supported by a grant of the National Scholar-
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