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The Galilean covariance and the symmetry group for a charged particle in planar motion is investigated. The
well-known magnetic translation symmetry is extended into a magnetic two-dimensional Euclidean symmetry.
We establish that the symmetry holds more generally in the presence of homogeneous magnetic and electric
fields. The symmetry can have useful applications in solid-state physics.@S0163-1829~96!07532-7#

I. INTRODUCTION

It is well known1 that Galilean symmetry can be realized
in the Schro¨dinger equation only through projective~ray!
representations. Bargmann, in his monumental work2 on uni-
tary ray representations of continuous groups, considered Lie
groups which are relevant to quantum mechanics. He treated
Abelian groups, the homogeneous and inhomogeneous
pseudo-orthogonal groups, and the~311!-Galilean group.
He proved that, besides the Abelian, the only groups that
have genuine, nontrivial, projective representations are the
inhomogeneous two-dimensional Euclidean groupE~2!, the
inhomogeneous~1,1!-Lorentz group, and the~311!-Galilean
group. However, he was not interested in their realizations
except for the projective representation of the~311!-
Galilean that he spelled out explicitly.1,2 Later, Zak3 realized
the translation symmetry on a plane perpendicular to a ho-
mogeneous magnetic fieldB ~magnetic translation group!.
This corresponds to the projective representation ofE~2! that
Bargmann had foreseen. Zak had one central extension pa-
rameter ~one infinitesimal exponent in Bargmann’s lan-
guage!, the productqB, whereq is the charge of the particle,
and opened the way for applications to the quantum theory
of solids.3–10

In the present paper, we consider the projective represen-
tations of~211!-Galilean group in the Schro¨dinger equation
for a charged particle. In the absence of electromagnetic
fields we have the usual ray representation of the Galilean
symmetry group. The Galilean mass of the particle serves as
an extension parameter. In the presence of a homogeneous
magnetic field the Galilean group is no longer a symmetry
group. We are left with a magnetic translation symmetry3

which, by appropriately defining the ‘‘rotation’’ operator, we
extend into a magneticE(2) @ME(2)# symmetry group.
Furthermore, the boosts automatically induce an electric
field. We can use it to extend theME~2! symmetry group
into a magnetic-electricE(2) @MEE~2!# symmetry group.
The generators of ‘‘translation’’ and ‘‘rotation’’ that we give
for MEE~2! are conserved and gauge invariant.

In Sec. II we briefly review the projective representation
of the ~211!-Galilean group for a free particle in the Schro¨-
dinger equation. In Sec. III, we introduce a homogeneous
magnetic field and establish the magneticE~2! symmetry. In
Sec. IV, we generalize theME~2! symmetry group into a
MEE~2! symmetry group. In Sec. V, we exhibit some appli-

cations and conclude, in Sec. VI, with a short discussion of
the results.

II. „211…-GALILEAN GROUP

The elements of the~211!-Galilean group are given by
the matrices

G~f,u,a,h!5S cosf sinf u1 a1

2sinf cosf u2 a2

0 0 1 h

0 0 0 1

D , ~1!

where (f,u,a,h) are the group parameters, the anglef of
rotation on the plane, the velocityu5(u1 ,u2) of a pure Gal-
ilean transformation, and the translations in space,
a5(a1 ,a2), and time,h. The corresponding generators are
denoted byL, b, t, andH. They satisfy the following Lie
algebra:

@L,tk#5 i eklt l , ~2!

@L,bk#5 i eklbl , ~3!

@bk ,H#5 i tk , ~4!

wherek,l51,2, andekl is the antisymmetric symbol in two
dimensions (e1252e2151,e115e2250). All other commu-
tators vanish.

In the Hilbert space of the wave functions for a free par-
ticle moving on the plane, these generators are realized by
the following operators:

t5p52 i¹, ~5!

b5mx2tp, ~6!

L5eklxkpl , ~7!

and

H5
p2

2m
, ~8!

where x is the position operator andp the corresponding
canonical momentum of the particle,L its angular momen-
tum, andH the Hamiltonian. The constantm is the particle
mass andt the time coordinate. The Lie algebra of these
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generators is a projective extension of the Galilean Lie alge-
bra, with one extension parameter the mass. The commuta-
tion relations between translations and boosts do not vanish
now, but gain ac-number commutator proportional to the
mass,

@tk ,bl #52 imdkl , ~9!

characteristic of projective representations. All other com-
mutation relations remain unchanged. In this way the Hamil-
tonian and the Schro¨dinger equation retain Galilean symme-
try. To be precise, if

i ] tC~x,t !52
¹2

2m
C~x,t ! ~10!

is the equation of Schro¨dinger in an initial frame, after a
boost u of the particle,x→x85x1ut, the wave function
C(x,t) transforms intoCu(x8,t), with an additional phase,

Cu~x8,t !5ei ~mu–x1mu2t/2!C~x,t !

5ei ~mx81 i t¹8!•uC~x8,t !, ~11!

and satisfies the Schro¨dinger equation in the boosted frame,
i ] tCu(x8,t)52(¹82/2m)Cu(x8,t).

III. PROJECTIVE REPRESENTATION SYMMETRY
FOR A CHARGED PARTICLE IN „211… DIMENSIONS

IN THE PRESENCE OF A HOMOGENEOUS
MAGNETIC FIELD

Let us now consider the presence of a homogeneous mag-
netic field. OurE~2! plane can be thought of as either im-
bedded into three-dimensional space, in the presence of a
homogeneous magnetic fieldB perpendicular to it,
x5(x,y,0), and B5(0,0,B), or as a genuine two-
dimensional space. In terms of the two-dimensional vector
potentialA5(Ax ,Ay), the magnetic fieldB will be then a
~rotation! scalar,B5]xAy2]yAx .

The HamiltonianH is replaced byHB ,

HB5
~p2qA!2

2m
. ~12!

Of course, the Galilean group is no longer symmetry of the
Hamiltonian. However, since the magnetic field is homoge-
neous, our system should exhibit a translational symmetry.
This is established by the well-known representation of the
magnetic translation group,3–6 with the translation operators
given by6

tB5p2qA1qB3x. ~13!

Actually, the symmetry group is a wider one. Indeed, we
can immediately construct a conserved angular momentum
operator

LF5@x3~p2qA!#•
B

B
1
q

2
Bx2. ~14!

The first term@x3(p2qA)#•B/B is the kinetic angular mo-
mentum of the particle, and the second termqBx2/2 ex-
presses the field angular momentum. The magnetic fieldB

and the Coulomb fieldE of the point chargeq produce,
through the Poynting vectorE3B, a field angular momen-
tum density which is a function of the position of the charge,
x. Integrating appropriately in all space, we find exactly this
term. The second term also corrects for the additional phase
that the wave function acquires upon rotation by sweeping
magnetic flux.

The generatorLF together with the magnetic translation
operatorstB and the HamiltonianHB close the following Lie
algebra:

@tBk ,tBl#52 iqBekl , ~15!

@tBk ,HB#50, ~16!

@LF ,HB#50, ~17!

@LF ,tBk#5 i ekltBl . ~18!

The Lie commutators~15! and~16! are the well-known com-
mutators of the magnetic translation symmetry group. In-
cluding the generatorLF in the algebra, we established that
the symmetry group for a charged particle in homogeneous
magnetic field is theME~2! which contains the magnetic
translation group as an invariant subgroup. TheME~2! group
is the semidirect product of magnetic translations and rota-
tions,ME~2!5MT~2!^ sSO~2!.

We remark that our angular momentumLF , which gen-
erates a symmetry of the Hamiltonian, is, as it should be,
gauge invariant. It coincides with the usualL52 i ]f angular
momentum in the symmetric gaugeA5(2By/2,Bx/2), and
saves us from the awkward statement that the angular mo-
mentum is conserved only in the symmetric gauge. Physical
quantities should be gauge independent. Commutator~18!
simply expresses the fact that translators are vectors. With
the usual definition of angular momentum,xpy2ypx , even
the vector character of translators was lost in the arbitrary
gauge.

Let us now consider the boost operators in the presence of
a magnetic field. Although the Galilean group is no longer
symmetry of the Hamiltonian, the Galilean covariance will
be useful.

The boost operators must change the velocityv of the
particle into

e2 ib–uveib–u5v1u, ~19!

or, in commutator form,

@bk ,v l #5 idkl . ~20!

From the boost generators for the free-particle Galilean
group, Eq.~6!, the generators for the magnetic translations,
Eq. ~16!, and condition~20!, we easily guess that the boost
generatorsbB in the presence of magnetic fieldB must be
given by

bB5mx2t~p2qA1qB3x!. ~21!

The boost operators become now noncommutative:

@bBk ,bBl#52 iqBt2ekl . ~22!

This commutation relation is characteristic of the ray rep-
resentations of the~211!-dimensional Galilean group. Other
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authors11–13 recently showed interest in the projective repre-
sentations of the~211!-dimensional Galilean group from the
group-theoretical point of view; Eq.~22! offers a physical
realization of such projective representations. In the limit
B→0, bB→b, and the boosts commute.

The new boosts are vectors

@LF ,bBk#5 i eklbBl , ~23!

and transform the Schro¨dinger equation covariantly. If
C(x,t) satisfies the Schro¨dinger equation

i ] tC~x,t !5
~p2qA!2

2m
C~x,t !, ~24!

the boosted wave function

Cu~x,t !5eibB•uC~x,t ! ~25!

satisfies

i ] tCu~x,t !5F ~p2qA!2

2m
1qx•~u3B!GCu~x,t !

5F ~p2qA!2

2m
2qx•EGCu~x,t !. ~26!

The physical meaning of this equation is apparent. The finite
boosteibB•u has induced the electric fieldE5B3u, in agree-
ment with Lorentz transformations to first order in velocity
u.14 This fact opens additional possibilities.

IV. GENERALIZING THE E„2… SYMMETRY IN THE
PRESENCE OF A HOMOGENEOUS MAGNETIC AND

ELECTRIC FIELD

Starting with the problem of a charged particle in homo-
geneous magnetic field (BÞ0,E50), we are led to a prob-
lem of a charged particle in homogeneous magnetic and elec-
tric field (BÞ0,E5B3u).

The dynamical system should again exhibit translation
symmetry.15,16 Indeed, we can define the generators of the
MEE~2! symmetry group:

tBE5p2qA2m
E3B

B2 1qB3x2qEt, ~27!

LFE5@x3~p2qA2qEt !#•
B

B
1@mx2t~p2qA!#•

E

B

1
q

2
BS x21 E2

B2 t
2D . ~28!

Together with the Hamiltonian

HBE5
~p2qA!2

2m
2qx•E, ~29!

these operators form the following Lie algebra:

@tBEk ,tBEl#52 iqBekl , ~30!

@LFE ,tBEk#5 i ekltBEl , ~31!

@tBEk ,HBE#5 iqEk , ~32!

@LFE ,HBE#5 i
Ek

B
tBEk , ~33!

whereEk are the Cartesian components of the electric field.
The Lie algebra of Eqs.~30! and ~31! is a projective exten-
sion of theE~2! group, theMEE~2! group. It is a symmetry
group for our Hamiltonian,HBE . Indeed, using expressions
~27! and ~28! and the commutators~32! and ~33!, we find
that tBE andLFE are conserved in time,

dtBE
dt

5] ttBE1
1

i
@tBE ,HBE#50, ~34!

dLFE

dt
5] tLFE1

1

i
@LFE ,HBE#50. ~35!

Our generatorstBE differ slightly from the corresponding
electric magnetic translators15 p given by Ashby and Miller.
In their gauge, we havetBE5p2m(E3B)/B2; tBE is, of
course, gauge invariant. BothtBE andp are conserved, but
tBE is needed for the correct closure of the Euclidean alge-
bra, Eqs.~30! and ~31!. Our translators are vectors. The re-
cent very interesting work of Zak16 is concerned with homo-
geneous constant and/or time-periodic electric fields. In our
language, such a case is in the electric-type electromagnetic
field sector (E22B2.0). In the present work, we remained
in the magnetic sector (B22E2.0).

Finally, we remark that the boosts can also be defined for
a givenB and E as the operators which tangentially add
velocity v→v1u to the particle, leavingE unchanged as
u→0,

bBE5eibB•u¹ue
2 ibB•uuu5@~E3B!/B2#

5mx1
q

2
Et22t~p2qA1qB3x!. ~36!

The termqEt2/2 expresses the ‘‘fall’’ of the particle inside
the electric field. The commutator between the boosts re-
mains unchanged, Eq.~22!, but their commutator with the
‘‘rotation’’ operator is modified:

@LFE ,bBEk#5 i eklS bBEl1 q

2
Elt

2D . ~37!

V. APPLICATIONS

The above symmetries may find useful applications. For
example, using the boost operatorsbB , out of the Green’s
function for a charged particle in homogeneous magnetic
field17

GB~x,x8;t,t8!5
qBQ~ t2t8!e2 iqB•~x3x8!/2

4p isin@qB~ t2t8!/2m#

3expH i qB4 ~x2x8!2cotFqB~ t2t8!

2m G J ,
~38!

whereQ(x) is the Heaviside unit step function, we obtain
the Green’s function
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GBE~x,x8;t,t8!5
qBQ~ t2t8!e2 iqB•~x3x8!/2

4p i sin@qB~ t2t8!/2m#
eim~E3B!•~x2x8!/B2expH 2 i ~ t2t8!Fm2 E2

B2 2qE•
~x1x8!

2 G J
3expH i qB4 Fx2x82~ t2t8!

E3B

B2 G2cotFqB~ t2t8!

2m G J , ~39!

for a charged paticle in the presence of both magnetic and
perpendicular electric fields. Expression~39! is derived from
~38!, through the transformation

GBE~x,x8;t,t8!5e2 iq~u3B!•~xt2x8t8!/2e2 imu2~ t2t8!/2

3eimu•~x2x8!GB~x2ut,x82ut8;t,t8!,

~40!

as a consequence of the transformation of the wavefunctions,
Eq. ~25!. The expressions of Eqs.~38! and ~39! have been
calculated for simplicity in the symmetric gauge. The corre-
sponding expressions for any gauge are easily derived
through the gauge transformation for the Green’s function.

Of special interest is the time-independent partial wave
Green’s functionGBE(E,k) characterized by the energyE
diagonalized simultaneously with one component of the
translation operatortBE . This Green’s function may be ap-
propriate for Hall-effect applications. The electric fieldE is
perpendicular toB, and the time-independent conserved
component oftBE , which we chose to diagonalize together
with the Hamiltonian, is perpendicular to bothB andE. We
denote byk the eigenvalue of this component of the trans-
lation operator. Conveniently in the Landau gauge,
A5(2By,0), we have

GBE~E,k!5
m

iApqB
G~ 1

21a!@Q~y2y8!U~a,w!U~a,2w8!

1Q~y82y!U~a,w8!U~a,2w!#, ~41!

where the electric field was taken along they axis,
E5(0,Ey) and U(a,w) are the parabolic cylinder
functions,18 a52m@E2kEy /B2m/2(Ey /B)

2#/qB,
w5A2qB(y1k/qB), andw85A2qB(y81k/qB).

TheME~2! or MEE~2! symmetries may also find appli-
cations in solid-state physics. Let us add a periodic potential
V(x)5V(x1a) where a is a lattice vector, to the Hamil-
tonian for a charged particle in homogeneous magnetic
and/or electric field. Then, out of the previously studied con-
tinuous symmetry, there remains a discrete symmetry typical
for crystals. This certainly contains the overlap symmetry
between theMEE~2! and the discrete translation symmetry
of the crystal.15,16 SinceMEE~2!, besides translations, con-
tains rotations the symmetry is a wider one, it is the overlap
of MEE~2! with the space-group symmetry of the crystal.
This extended discrete symmetry, in the case ofME~2!, may
be applied to simplify the construction of the band structure
of solids in the presence of an external homogeneous mag-
netic field.

Our symmetry group generators are related to fundamen-
tal physical quantities: the generatortB to the crystal mo-

mentumk, and LF to the rotational elements of the point
group of the crystal. Their conservation, we hope, will have
useful applications. The conservation oftB leads immedi-
ately to the well-known acceleration theorem in the presence
of a magnetic field. In our scheme the proof is simple and
straightforward. Consider first the case without an external
magnetic field. LetT(a) be the translation operator along a
lattice vectora, T(a)5eip•a. As we can easily verify for an
eigenstate ofT(a), a Bloch state, the operator which corre-
sponds to the crystal momentumk, is

k52 i ln@T~al !#al* , ~42!

whereal ,al* are the primitive vectors of the direct and recip-
rocal lattices,

al*5e lk
ak3B

a1•~a23B!
. ~43!

The operator k commutes with the Hamiltonian
p2/2m1V(x), and gives rise to a conserved quantity, the
crystal momentum or quasimomentum. In the presence of a
homogeneous electric fieldE, a term2qE•x is added to the
Hamiltonian, andT(a) no longer commutes with it,

FT~a!,
p2

2m
1V~x!2qE•xG52qE•aT~a!. ~44!

The Heisenberg equation of motion then gives:

d

dt
T~a!5 iqE•aT~a!, ~45!

and integrating, we obtain

T~a!5ei ~qE•at1p•a!. ~46!

Taking the logarithm ofT(a) and using the definition of the
crystal momentum, Eq.~42!, we obtain

k~ t !5qEt1k~0!. ~47!

Thus we have the acceleration theorem. The time derivative
of the crystal momentum operator equals the electric force
applied to the particle,

d

dt
k5qE. ~48!

We now proceed to the proof of the acceleration theorem
in the presence of a homogeneous magnetic field. The
Hamiltonian isHB1V(x), and we define the appropriate
magnetic quasimomentum operator by

kB52 i ln@TB~al !#al* , ~49!
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where

TB~al !5exp~ itB•al ! ~50!

is a primitive magnetic translation. The operatorkB corre-
sponds to the magnetic wave vector,19 and is conserved:

d

dt
kB5

1

i
@kB ,HB1V~x!#50. ~51!

If, in addition to B, there is an external electric field, the
Hamiltonian becomesHBE1V(x), and the magnetic transla-
tion operatorTB(a) is again nonconserved

d

dt
TB~a!5

1

i
@TB~a!,HBE1V~x!#5 iqE•aTB~a!. ~52!

Integrating Eq.~52!, we obtain

TB~a!5exp@ i ~qE•at1tB•a!#, ~53!

and, taking the logarithm, we find the evolution of the mag-
netic wave vector

kB~ t !5qEt1kB~0!. ~54!

This establishes the acceleration theorem in the presence of a
magnetic field,

d

dt
kB5qE. ~55!

Using the operatortBE instead oftB , one could of course
arrive at the same result, through the conservation of the
magnetic-electric translations,TBE(a)5exp(itBE•a).

The previous results also hold for the more general case
of simultaneous electric and magnetic periodicity. Let us as-
sume for simplicity that we have a periodic magnetic field
Bp in addition to the homogeneous magnetic fieldB. The
vector potential is A1Ap , where ¹3A5B and
¹3Ap5Bp . Without loss of generality,Ap is considered
periodic. The Hamiltonian becomes

HB85
~p2qA2qAp!

2

2m
1V~x!. ~56!

We easily verify thatTB(a) commutes withHB8 and conse-
quently we have the conservation of the magnetic wave vec-
tor and the corresponding Bloch theorem. Indeed, according
to Eq. ~56!, HB8 can be written as

HB85
~p2qA!2

2m
1q2

Ap
2

2m
1V~x!

2q
~p2qA!•Ap1Ap•~p2qA!

m
. ~57!

The sum of the first three terms is of the type already con-
sidered, and therefore commutes withTB(a); A is a vector
potential for the homogeneous magnetic fieldB and the sum
q2Ap

2/2m1V(x) acts as a periodic potential. The last term of
Eq. ~57! also commutes withTB(a). We have

@Ap ,TB~a!#50, ~58!

sinceAp is periodic, and

@~p2qA!k ,TB~a!#50, ~59!

from the well-known3,5 commutators

@~p2qA!k ,tBl#50. ~60!

The Bloch theorem in the presence of magnetic periodicity
has been considered recently20 by other authors.

Finally, in the presence of an additional external electric
field, we again establish the acceleration theorem Eq.~55!,
since

@TB~a!,HB82qE•x#52qE•aTB~a!. ~61!

VI. CONCLUSIONS

We have investigated the Galilean covariance, the sym-
metry group, and the corresponding projective representa-
tions for a charged particle in planar motion in the presence
of a homogeneous magnetic field. We thus offered physical
realization for the projective representations of the Euclidean
group. The well-known magnetic translation symmetry has
been extended into a magnetic two-dimensional Euclidean
symmetry, and more generally into a magnetic-electricE~2!
symmetry. All generators, rotations, and translations were
gauge invariant and conserved. Their conservation leads to
acceleration theorems.

Our scheme is useful for applications to solid-state phys-
ics. We proved that the acceleration theorem holds more
generally in the presence of electric and/or magnetic period-
icity. TheME~2! group together with the space group of the
crystal may also be useful for finding a band structure in the
presence of homogeneous magnetic fields.
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