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Cohesive energy of 8 transition metals: Density functional theory atomic and bulk calculations
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We report generalized gradient approximati@®GA) cohesive energies ford3metals. The problem of
obtaining atomic reference energies in density-functional theory is considered. The effect of going to non-
spherical atomic charge distributions is much larger at the GGA than at the local-density approx{i249n
level, but allowing fractional occupations ofiaand 4s shells has negligible effect. When nonsphericity effects
are taken into account in the atomic reference energies, the average absolute error of 0.3 eV in the GGA
cohesive energies is much smaller than the LDA error of 1.3 eV. The working of the GGA is analyzed in terms
of the cohesive energy density and the charge inhomogeneity division of the exchange energy. The low-
gradient limit in the GGA functionals is not important as regions with charge inhomogeseily2 have
negligible contributions[S0163-182606)10531-2

I. INTRODUCTION is now widely accepted that the GGA'’s are, in the molecular
case, an improvement over the LDA and in general afford
The cohesive energies of the third-row elements Sc-Zbond energies of nearly chemical accurd®yt is now be-
are a severe test for any method to solve—approximately—eoming apparent that the GGA is able to describe larger parts
the Schrdinger equation. The delocalized conduction elec-of the potential-energy surface and can be a useful tool to
trons as well as the tight states in the bulk crystals have to calculate reaction barriers. Whereas the LDA quite often se-
be described accurately. It should be emphasized that, at thverely underestimates activation energies the GGA tends to
same time, accurate energies are required for the free atonmeduce this underestimatidfi;*°and a recent study on acti-
which may have a highly open shell charadierthe begin-  vation energies of several elementary processes with formal-
ning and middle of the transition serjem have almostCu) dehyde has shown that the GGA can compete with the best
or completely(Zn) closed shells. This clearly is a formidable ab initio calculations that are feasable for such a system.
task for approximate density functionals for the energy, and With the encouragement provided by this promising de-
one wonders if the currently popular model exchangevelopment it is becoming increasingly fashionable to utilize
correlation(XC) energy densities, which depend on the localgradient-corrected functionals for extended systems as well.
density and its gradient only, can achieve sufficient accuracyRecent GGA results for molecule-surface interactions show
However, the result of this paper is that the energy differencelramatic improvement upon the LDA, repairing the threefold
can be reasonably described by functionals of the GG/overbinding of the LDA in the case of CO on a Cu surfate,
type =3 without resorting to any empirical corrections. and similarly reducing the interaction energy of CO with
Density-functional theoryDFT) has progressed beyond Pdl’ As in the molecular case the improvement does not
the level of a qualitative method since the introduction of theseem to be limited to just the chemisorption energies but
gradient corrections to the local-density approximationapparently holds for a wider domain on the potential-energy
(LDA). Perdew and co-workers have shdwhat the GGA  surface, since the GGA’s correctly predict a barrier for dis-
affords atomization energies of seven hydrocarbon molsociation of molecular hydrogen over the (CQ0)
ecules with an accuracy of 3 kcal/mol. Calculations on thesurface!®=?°whereas the LDA predicts barrierless dissocia-
larger Gaussian-1G1) database® that consist of 55 mol- tion. The GGA’s seem to afford a semiquantitative descrip-
ecules reveal similarly that the GGA predicts atomizationtion also for metal(slab -molecule interactions, although
energies that deviate on the average only 3.7 kcal(Refs. = many more calculations should be carried out to investigate
7 and 8 from experiment, quite independent of whether orthis further.
not the nonlocal correction to the correlation is included, as Also, in bulk calculations GGA’s reduce the overbinding
long as the exchange is being gradient corrected. The mobf the LDA, and for a fairly large number ofp-bonded
ecules in the G1 database, however, do not contain transiticsolids the accuracy achieved is typically 0.3 8v?® For
metal complexes, where correlation is known to be of utmostransition metals the situation is not so clear. The GGA's
importance, as the error of the Hartree-Fock approximatiorpredict the correct antiferromagnetic fcc ground state for Mn
is large for such systenidn this respect it is noteworthy that at room temperatufé and the ferromagnetic bcc structure
also first bond dissociation energies in transition-metal carfor iron.2>2° The cohesive energy of Fe is better than the
bonyl complexes are being reasonably described by theDA outcome but nevertheless far too large; according to
GGA'’s, as has been reviewed in Ref. 10. Not surprisingly,Ref. 25 the error is 2.0 eV with the 1986 functional of Per-
the relative simplicity of the method gives rise to limitations, dew and WandPW86, Refs. 2 and 2&nd according to Ref.
as is exemplified by the increasing overestimation of bon®6 it is 1.4 eV with the 1991 functional of Perdew and Wang
energies for cationic first-row transition-metal hydrides as(PW, Refs. 3 and ¥ Korling and Haylund?® have reported
one goes to the right in the periodic syst€hNonetheless, it improved cohesive energies for all first-row transition met-
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als, albeit with unsatisfactory large error bars, up to 0.8 eVwould be strictly degenerate in spherical symmeéirypar-
The uncertainty of Ref. 28 resides in the ground-state energticular the 3l orbitals in the transition metalsExtensive

of the free atom that was estimated by adding an experimersearching has been performed, using progressively lower
tal correctior® to the calculated energy of the atom in dif- point group symmetries, to identify the lowest energy obtain-
ferent spherical configurations, i.ed! %s®> or d""!s, the  able. In Table | the energies are reported for all atonB n
correction being the difference of the statistical multiplet av-symmetry, with a specification of the lowest-energy elec-
erage of that configuration and the ground-state energyronic configuration in that symmetry. Going to lower point
However, it has been pointed out by Ziegktral*° that the  group symmetry yields insignificant further lowering of the
the average-of-configuration energy cannot be calculated ianergy. For instance, in the case of Co we find a solution in
this way since the exchange hole of this energy expressio@3;, symmetry that is only 0.02 eV lower than the lowest
does not satisfy certain requirements on which the justificastate inC,, symmetry. For other atoms with an experimental
tion of the LDA and GGA approximations are based. TheyF ground state, i.e., Ti, V, and Ni this effect is even smaller.
therefore advocate the exclusive use of energies from densi- For the atomic corrections we have lifted as much as pos-
ties corresponding to single determinants. Most atomic andible symmetry restrictions on the density, but we have lim-
molecular multiplet energies may be obtained in this way,ted ourselves to integer occupation numbers per irreducible
although the method is not without drawbacks. Strictlyrepresentation. If, as has been pointed out by Averill and
speaking, the multiplet procedure of Ref. 30 requires orbital$ainter’® a SCF solution does not satisfy the aufbau prin-
that transform according to the irreducible representations ofiple, the energy can be lowered by allowing for fractional
the point group of the systefusually referred to as symme- electron transfer from the highest occupied orbital to the one
try and equivalence restrictiong=or atoms this implies the or more lower-lying unoccupied states up to the point where
use of central-field orbitals. However, it is sometimes posthey become degenerate. Starting from the optimal occupa-
sible to lower the energy considerably by lifting these restric-tions from Table |, we have determined the most optimal
tions, and a possible strategy to determine the ground-statéharge transfer for all nonaufbau atoms, the result of which
energy would be a search for the lowest energy over altan be found in Table IlI.

self-consistently optimized determinantalKohn-Sham As pointed out before, another approach to calculate de-
states without any constraitdf. Ref. 31). This procedure is generate ground states is the multiplet method due to Ziegler
adopted in this paper. et al®° that is applicable straightforwardly by identifying for

In this work we focus mainly on two GGA'’s. The first, all ground states of the transition-metal atoms a determinant
BP, employs the 1988 exchange expression of Beekel that is a pure state function. Since according to Hund’s rules
the 1986 correlation correction of PerdéWhe Becke ex- the lowest-energy term of a configuration is the term with
change form produces the correct energy density in the agspaximumL selected from all terms of maximum spin mul-
ymptotic tail of any finite atomic or molecular system, and attiplicity, one can always find a Slater determinant, con-
the same time leads to a correct lowest-order gradient cosstructed from central-field orbitals, that corresponds uniquely
rection, only with a coefficient that is too large. The otherto the lowest-energy term, namely, the one with maximum
functional, PW, has been introduced by Perdew and coM, andMg. The corresponding densities habg;, symme-
workers in 199F the exchange part of which has been mod-try, and the energies thus obtained will in general be higher
eled closely to the Becke form. Care has been taken, howhan the result of the global minimization method, which
ever, that it has the right coefficient in the low gradient limit, does not restrict densities B,,,, symmetry. In the case of Fe
since correct low-gradient behavior is expected to play a vithe difference between the methods is as large as 0.4 eV
tal role in the description of solidf&. when calculated with a GGAthe effect is particularly large

The two exchange functionals mentioned thus far producevith GGA'’s that favor charge inhomogeneity more than the
excellent atomic exchange energies, but do not equally imtDA does. This difference underlines the problem of
prove the corresponding potentidt>* One would like to  present day approximate energy functionals, that the energy
avoid the situation that a different GGA would have to beis not a constant on the domain of densities that correspond
used in the calculation of local properties than in the calcuto a certain degenerate ground state. Consider the example of
lation of integral properties. Therefore we will briefly discussthe degenerat@ electron as in boron; the, and thep_
the Engel-VoskdEV) exchange functionaf which was in-  orbitals generate a density that is invariant under rotations
tended to lead to a more balanced quality improvement ofvith respect to the axis. With a superposition of the, and
both energy and potential. This functional, without a nonlo-the p_ orbital the p, orbital can be constructed that has a
cal correlation correction, improves the band structure of thelensity lacking this property, and the calculated energy will
transition-metal oxides FeO and CoO, but predicts latticen general not be equal to that for the, and p_ orbital
parameters that are far too largeWe combine the EV ex- densities. We note that the same degeneracy problem already
change with the PW correlation, and examine the ability ofexists if there is no spatial but only spin degeneracy, since
the resulting functional to predict energy differences. the spin unrestricted density functionals are not invariant un-

der rotation in spin space.

IIl. METHODOLOGICAL DETAILS

. . . . IIl. COMPUTATIONAL DETAILS
Carrying out self-consistent fiel/SCH calculations on

atoms without the central-field constraint introduces the tech- The free-atom calculations have been performed with
nical problem of difficult convergence. The reason is simplythe molecular Amsterdam density functionalADF)
the near degeneracy of the orbitals belonging to sets thatrogram®’~° The orbitals up to p were kept frozen and a
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TABLE I. Energy lowering(El in eV) when going from a spherically-symmetric spin-restricted reference
configuration toC,4, and spherical spin unrestricted configurations.

C,, (spin polarized Spherical(spin polarizeg

El ref. config. occupatiods  LDA BP PW config. LDA BP PW

Sc d's? 1100 022 047 0.46 0.16 0.18  0.17
1000

Ti d?s? 1102 1.18 158 161 d3s? 1.02 1.14  1.16
0000

\Y d3s? 1112 2.87 323 326 d%! 2.93 313 3.5
0000

Cr dSst spherical 5.12 547 5.46

Mn d°s? 2112 529 563 557 5.30 561 5.54
1000

Fe dbs? 2112 387 441 436 3.54 374 370
1100

Co d’s? 2112 296 352 351 d! 2.79 2.84 286
0102

Ni d8s? 2112 2.43 271 272  d%! 2.52 253 256
0112

Cu d%?t spherical 020 026 0.24

Zn d10%s? spherical no correction

#The occupations of thesdand 3 electrons specifying th€,, determinantal state that gives the lowest
energy are described by two rows, one for eac spin, each row containing the occupatidp$3dy. and
4s), By (3d,2_y2), B, (3dyy), andE (3d,,3d,,) symmetry respectively. Occupation 2 means that either
two consecutive spin orbitals are occupi@d), or two degenerated spin orbitalE).

triple-zeta Slater basis set was used with thrpea#dd three  higher d count. Finally both technically different methods
4f polarization functions. We have repeated all these calcuagreed within 0.05 eV on the contents of Table I.

lations with theADF-BAND program, which can include nu-  The bulk calculations were performed at the experimental
merical atomic orbital§NAO's) in the basis, and calculates geometry, as the energy gained by optimizing the lattice con-
the energy with respect to the numerical spherical atom. Istant or crystal structure is fairly small fod3netals?®>*?and
appeared to be necessary to add ch Slater-type orbital the Pw functional predicts lattice constants very well in the
(STO to the single 8 NAO in the Ni basis for a reliable transition-metal serie®. The experimental crystal structure
estimate of the energy difference between the spherical Nit mp is fairly complicated and for this element we have
atom in the experimental configuration and the calculateqyen the geometry from Ref. 28. We have used the first-

grclnur}dtséa:e. Ihhls IS dge tot;tléezfact fthat tthé ﬁot :rS] principles linear combination of atomic orbitals program
cajculated Tor In€ experimental s= configuration, but In€ - b\ (Ref. 44 with a basis set of the double-zeta

GGA's predict ad®s! ground-state configuration. The basis - :
M : - . . +NAO-type for the & and 4s orbitals, replacing one Slater
set flexibility provided by the additionaldtSTO is required of the triple-zeta STO basis set by a numerical orbital. The

to describe the more diffused3A0 in the configuration with 3s and 3 orbitals were represented by a single NAO. Tests
) ) on Ni showed no effect of addition ofs3and 3 STO’s to
TABLE II. The extra energy gainekV) by allowing for frac- e pasis. As polarization functions we used twoahd one
tional occupation numbers in spherical a@d, symmetry. These 4t ST Since we use quadratictetrahedron methdd for
numbers can be added to the atomic corrections of Table I. Entrieﬁ,|e k-space integration, we are able to attain high accuracy
smaller than 0.01 eV are left out of the table. The fractionally 0C\ hile keeping the numk’)er of points within reasonable lim-

cupied states in spherical symmetry are T$,8d7; Fe and Co, . . . .
4s]3d|. In C,, symmetry the fractionally occupied states are V, its. To test the convergence with respect to the integration in

. ; k space, we have done all calculations with two different
A1lBzl, Co. ALl | and NL AL Byl accﬂracy settings for integration over the Brillouin zone. The
Cay spherical grid accor(_jing to the more accurate sgtting gave rise to more
than two times as many symmetry-unigue points as the less
El LDA BP PW LDA BP PW accurate setting. In case of an fcc lattice the sparser of the
Ti 0.01 0.01 0.01 grids consisted of 65 points and the more dense one of 175
\% 0.09 symmetry-unique points. The effect of more than doubling
Fe 0.17 0.12 0.14  thek-space sampling on the cohesive energy never exceeded
Co 0.01 0.02 0.02 0.01 the 0.05 eV. Given the fairly large basis set and the high
Ni 0.15 0.01 values for the parameters that control the accuracy of the

integration in both real and reciprocal space, we estimate the
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precision of the energies to be at least 0.1 eV. TABLE Ill. Absolute values of the cohesive energi@s/) of

In most calculations, we have employed LDA densitiesfirst-row transition metals, as calculated with the LDA, and the
with the parametrization of Vosko and co-workBref the  gradient corrected functionals BP and PW. The energies are with
calculated® correlation energy of the electron gas. Also, for respect to thec,, atoms of Table I.
the PW functional we have used this parametrization, instead

of their own proposal, to ensure that the differences betweef! LDA BP PW exp.
the functionals are not influenced by the way of parametrizg, 4.87 3.84 411 3.90
ing the homogeneous electron gas result. Explicit spin-; 6.29 4.87 5.09 4.85
unrestricted calculations were done for the ferromagneti 6.49 4.90 512 531
crystals Fe, Co, and Ni, and for the single atoms. Only for 522 358 3.80 410
the optimization of the fractional occupation numbers for the 5'19 3'44 3'73 2'92
GGA, see Table Il, we have done fully self-consistent calcu- § ’ ‘ ‘
lations, and hence used GGA densities instead of LDA den-. 6.25 4.52 4.78 4.28
sities. This was required as the energy minimum only truly ~° 6.51 4.67 4.88 4.39
coincides with the point where the fractionally occupied or-"" 5.98 4.33 4.52 4.44
bitals become degenerate if the calculations are fully selfCu 4.29 3.12 3.30 349
consistent. Zn 1.91 0.98 1.17 1.35

For the analysis of the GGA'’s in Sec. V we split up the
exchange-correlation energy into contributions from differ-
ent regions in space, and this involves the integration of ste
like integrands. As Gauss-Legendre quadrature, which is e
ployed throughout the integration schefié° requiresN

where the enhancement factéfs) starts at 1 when the den-
ps'ity gradient and thereforg is zero and increases with in-
rr1:'reasing inhomogeneity, thus leading to a more negative
exchange energy. The more stabilizing effect of GGA when
the density gradients are larger also qualitatively explains
: . *hat the GGA correctly predicts Fe to have a bcc lattice,
mated by a .pollynom|al. We have solve'd this problem by, o hereas the LDA predicts fcc, as one may expect a smoother
one hand, I|_m|t|ng _the number of subln_tervals_, and on thedensity for the highly coordinated fcc atoms. The GGA also
other hand, increasing the _number of pqlnts until an accurac¥orrectly predicts top site adsorption for CO on (Ref. 16
of 10% was reached for Figs. 3 and 5 in Sec. V. whereas the LDA prefers the fourfold coordinated hollow
site.

IV. RESULTS The effects of lifting the restriction of integer occupation

numbers are summarized in Table II. In spherical symmetry

In Table | we have listed the optimized energies of the gjgnificant lowering~0.1 eV of the energy is obtained for
free atoms, in botiC,, and spherical symmetry, with respect 4 iron atom, and irC,, symmetry a similar amount is

to the spherical _spin—r_estricted atom in the experimentabained by the LDA for the V and Ni atoms. In the GGA,
ground-state configuration. In spherical symmetry the energjq\ever, the nonspherical atoms profit not more than 0.01
lowering is primarily due to spin polarization, although in gy from the extra freedom: for the GGA the lifting of the
some cases there s also a change of CO”f'%“rﬁ'"‘DI"'l’ Y symmetry restriction has a much larger impact than allowing
Co, and Ni the configuration changes frai?s to d"~*s™). noninteger occupations.

The spin-polarization energy can be several eV, and of |, Taple Il and in Fig. 1, the cohesive energy is presented

course is largestca. 5.5 eV for Cr with six parallel spins. ¢, the DA and the two GGA’s. We see that the PW func-
When the symmetry is lowered 16,, the largest effects iqnq)| gives a slightly smaller correction to the LDA than BP,

occur for Fe and Co where the effect of going to a nonspherip ; yoth clearly improve very much upon the LDA, the av-

cal charge distribution is as much as 0.7 e_V for the GGA'S'erage absolute error dropping from 1.3 eV in the LDA case
Our result for Fe agrees reasonably well with the 0.8 eV thaf, 7 3 eV for both GGA’s. The large overbinding for iron

we infer from Ref. 47 for the PW functional. Unfortunately reported by Refs. 25 and 26 can partly be ascribed to the
Ref. 47 does not specify the determinantal wave function, sQnphysical spherical restriction on the density of the iron
the cause of this small discrepancy remains u.nll<nown. tom. The remaining discrepancy of 0.3 eV with the PW
general the LDA shows much smaller nonsphericity effect§egyt of Ref. 26 can be related to the approximate nature of
than the GGA's. This is in agreement with the geféneral NOthe linear-muffin-tin-orbital—atomic-spheres approximation
tion, as explained clearly by Perdew and co-worketisat (| \jTO-ASA) method that these authors used. The result of
the exchange correction of the GGA favors densities tha; ef. 25 is a bit puzzling, since if we calculate the BP86
have on the average a hlgbll\slalue gg the dimensionless €xgg it with a spherical reference atom we arrive at a cohesive
pansion parametes=(247°) 4Vpllp*" that describes the energy that is 1.2 eV lower than that of Ref. 25. In the cases
inhomogeneity of the system, an effect which is only partly,\here the reference atoms are spheri@, Cu, Zn PW
opposed by the nonlocal correlation correction. Stated SOM&aems to outperform the BP functional.

what more loosely: GGA's favor less smooth densities The resylts of the EV functional, which are not included

more than the LDA does. This can be seen immediately fromy, e taple, lead to an average absolute error of 1.1 eV, and
the GGA expression for the exchange energy, the severe overbinding of the LDA is replaced by an almost
equally severe underbinding. This is consistent with the pre-
GG _ 413 diction of lattice constants that are much too large for a va-

B el= ij prUE(S)d, (1) riety of metals® confirming the conclusion that this func-
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5 £ 2 8 5 38 8§ LDA, however, predicts a bonding exchange contribution for
© = u = N Mn to Zn, a result that defies our expectations for the middle
transition metals. Apparently, the well-known LDA underes-
timation of the exchange energy in atoms is not fully carried
over to the bulk. It is clear that the GGA exchange curve
resembles its LDA equivalent, but it is shifted upwards by
~2 eV. The bonding role of the exchange energy for Sc and
Zn (also for the GGA may be related to the atomic configu-
ration: in Sc the interaction between the alignetl and 4s'
electrons is very weak since thes4s much more diffuse
than the 8, and in Zn the number of aligned electrons is the
same for the atom as in the bulk. The loss of spin-
polarization energy when going to the bulk will thus be small
(or zerg and the argument given above for a repulsive ex-
.74 change contribution to the cohesive energy does not apply.
LDA This, of course, does not explain the fact that, actually, there
is a bonding contribution of the exchange energy for Sc and

FIG. 1. Cohesive energies from Table Ill according to experi-zn'
ment, and as calculated with the functionals LDA, BP, and PW. Thélith respect to the correlation energy we note that the ex-
cohesive energies are defined here&Eésrysta) —E(atoms. pected bonding correlation contribution to the cohesive en-

ergy is reproduced by both the LDA and the GGA, as shown

tional is unsatisfactory for energies, as well as for for thein Fig. 2. The GGA correlation curve is very much like the
energydifferencebetween atom and bulk. LDA result shifted downwards-1 eV. Since the GGA re-

The crucial quantity in DFT calculations for which ap- sults for both exchange and correlation exhibit approxi-
proximations are required is the XC part of the energy. Oufmately uniform shifts with respect to LDA through the
results suggest that the GGA approximation to this quantitfransition-metal series, the GGA’s do not effectively im-
is quite good as far as energy differences are concerned. It Rfove the trend of the cohesive energy through the series, cf.
interesting to analyze the influence of this energy term on th&ig. 1, although they do improve substantially the absolute
results. What can be expected for the XC contribution to thevalues.
cohesive energy? Roughly speaking, the exchange energy
becomes more negativg with the number of spin-aligned va- V. ANALYSIS OF THE GGA's
lence electrons, and since usually there are more parallel
spins in the atom than in the bulk, a repulsive exchange We will now study the effect of the GGA’s on the bond-
contribution may be expected that rises from Sc to Cr andng energy in more detail by first examining what regions in
drops for later transition metals. The correlation endedgo  real space contribute to the XC energy. We will subsequently
stabilizing is roughly proportional to the number of electron investigate the relative importance of regions where the den-
pairs. As the valence electron pairing increases going fronsity gradient is highlow), in order to better understand the
the atom to the bulk, correlation should increase the bondindifferences between the BP and PW functionals. All data in
energy, again with a maximum for Cr. In Fig. 2 it is seen thatthis section refer to the Cu example.
the GGA (PW) yields a repulsive exchange contribution to  In Fig. 3 we see how the XC part of the cohesive energy
the cohesive energy, in accordance with the foregoing argus built up in various spatial regions. For the construction of
ment, except for the fringe elements Sc and Zn. The shape &his figure we first note that the cohesive energy can be cal-
the curve is also in agreement with our expectations. Theulated as the integral over the unit cell of the energy density
of the crystal minus the sum of the energy densities of the
free atoms, located at the bulk positions, i.e., as a unit-cell
integral over what could be called the cohesive energy den-
sity. To gain some insight into what regions are important for
this integral, we divide the unit celthe standard Wigner-
Seitz cel) in spherical shells around the Cu atom at the cen-
ter of the cell. These spherical shells will eventually be trun-
cated by the unit-cell boundaries and only the part within the
unit cell is taken into account. The largest distance from Cu
to the unit-cell boundary is 3.4 bohr. The total integral is
split up into contributions from the different regions con-
structed in this way. In the figure we show the contributions
of a few XC energy terms to what is conceptually the spheri-
cally integrated cohesive energy density. A point &tands
for the contribution of the spherical shell surroundimgith

FIG. 2. ExchangdX) and correlation(C) contributions to the thicknessAr=0.34. First we see that the LDA exchange and
cohesive energy in both the LDA arfthe BP form of the GGA.  correlation curves have a similar shape, starting with a repul-
(Positive contributions arantibonding) sive part in the atomic region followed by an attractive part

Sc
+ Ti
\Y

cohesive energy (eV)

coh. energy contr. (a.u.)
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0.08

LDA(X)

0.04 1

0.001 9

-0.04

coh. energy contr. (a.u.)

-0.08

0.0 101 (au) 20 3.0 FIG. 4. Enhancement factdt(s) [see Eq(1)] of the exchange

energy for the gradient-corrected functionals under study.

FIG. 3. Contributions from spherical shells, see text, to some
cohesive energy terms for Cu: LDA exchange, LDA correlation,exChange energy, Eql), an enhancement factéi(s) ap

and the NL part of the exchange and correlation of the BP func-pears which is plotted in Fig. 4 for the three exchange func-

tional. The bond midpoint is at 2.4 a.u., the largest distance fro ionals of BeCk?SS’ EngelVosko93, anq Perdenganggl, the
the cell center to the boundary is 3.4 bohr. A point atands for =1 case leading t_o the LDA reSL_”t' Singe>F"" for _aII

the integral over a shell with thickneds =0.34a,. s, the Becke functional always gives a more negative ex-
change energy than PWES<EXW. We also haveFB=1

in the bond region. In view of the proportionality jo(the  and consequenthe?<ELP*. For very large inhomogene-
LDA exchange energy density is for instance simplyities s>8, FP" becomes smaller than one, going asymptoti-
—Cxp4/3), this must reflect a charge flow from the atomic to cally to zero, which could lead to a less negative exchange
the bonding region. The gradient correctiofiepresenting energy than the LDA. However this is not the case, even in
the change from LDA to GGAare close to zero in the atoms wheres diverges in the tails one findgg<EL"
atomic region, but in the bonding regid¢the bond midpoint  <gLPA 49 The PW functional was constructed in such a way
is at 2.4 bohr there is a repulsive gradient correction to thethat it reverts for smalb to the gradient expansion approxi-
exchange, compensated partly by an attractive correlatiomation(GEA) form F®EA(s) =1+ c,s?, with ¢,=0.1234 a.u.
correction. It is interesting to observe that the curves of therhe Becke functional has a gradient coefficiepthat is 2.2
gradient corrections for exchange and for correlation retimes too large. The deviation & from F& due to this
semble each other, the correlation correction having an ofiow gradient limit is only significant fos<0.232 The Becke
posite sign and being smaller in magnitude than the exexchange functionilwas tailored such that it creates the
Change correction. The gradient corrections in the figur%xact asymptotic energy density for an electron far away
pertain to the BP functional, but the result is virtually indis- from the molecule, by choosing a specific lagyfsrm for F.
tingUiShable in the case where the PW functional was used. ¢|ear|y PW Spo"s this exact |0ng_range behavior, as it goes
is to be noted that the gradient corrections come from thgo zero to satisfy nonuniform scaling relations. So we have
bonding region, a result that may be understood as followgne functional with the correct low gradient limit and an-
(cf. the analysis of Ref. 48The gradient corrections depend, other describing the atomic tails better. Which part of the
apart from the magnitude of the density and the volume concorrection factor is important for the gradient correction to
sidered(in this case spherical shells with volume propor-the exchange energy? To answer this question we write the

tional to 52), on the inhomogeneity parametes  nonlocal(NL, i.e., gradient-correctionpart of the GGA ex-
(32(24’772)713|Vp|/p43), which is relathEly small in the Change as an integra| over

atomic region, but increases exponentially in the outer region
of atoms where the density decays exponentially. In the
bonding region we are dealing with points that fall in the NL
outer regions of the constituting atoms, with concomitant Ex :J W(s)(F(s)—1)ds, 2
high s’s, but in the crystal the density gradients are very low
around the bond midplanften exactly zero at the bond with the weight functionN(s) being the integral of the LDA
midpoint by symmetry The gradient corrections will thus in exchange energy density over the subvolume where the den-
the bonding region be much larger for the atomic energysity has the inhomogeneity. To get an impression of the
densities than for the crystal energy density. The positivéntegrand in Eq.(2), we split the integral up into different
sign (repulsive charactgiof the exchange correction and the ranges ofs. (We note that a similar analysis for atoms has
negative sign of the correlation correction follow immedi- recently been made by Zupat al®>®) The ranges are chosen
ately from the stabilizing(destabilizing nature of the ex- logarithmically betweers=0.1 ands=8, the contributions
change(correlation gradient corrections. from others being negligible in our examplgCu crystal. In

The difference between the functionals BP and PW igFig. 5 the integral over aaregion is given by a point in the
mainly due to the exchange expression. For Cu the differeenter of that region and these points add up to the total
ence in cohesive energy is for 0.2 eV due to exchange aniitegral. In Fig. %a) we see that the weight functioW(s)
only for 0.03 eV due to correlation. In the expression for thehas an extremum fa~0.5, in both the atomic and the bulk
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case. Although in the atoms high values ©obccur in the
atomic tails, the value diV(s) is negligible fors>2.5 since
there is negligible charge with such a high gradient. Figure
5(b) shows the splitting up, according to density inhomoge-
neity, of the PW exchange correction for the atomic and the
bulk calculation. The important conclusion is that the low
gradient regions<<0.2 does not contribute to the nonlocal
correction at all: even in the bulk the total contribution from
A s$<0.2 is less than 0.02 eV per atom. This is a combined
effect of the small value ofV(s) (there is not much charge
with such a small gradieptand the small deviation df(s)

from one in that region. In Fig.(6) the difference between

4 the Becke and PW exchange functional is plotted, and since
FB>FPWthe result is always negative. The difference in the
bulk between the two functionals comes almost entirely from
the s<1 region. Both exchange functionals lower the bulk
total energy,B more than PW, but the difference is deter-
mined by the value of at intermediates values. In the
atomic calculation the Becke exchange energy density is also
more negative at highes values. So the result that Becke
gives smaller cohesive energies than PW comes from the fact
that Becke gets more energy lowering out of the atomic tails.
It now is also understandable that the EV exchange correc-
tion is much larger, sinc&F’ has a steeper slope in the
B important s~1 region, thus favoring nonsmooth densities
more than the other functionals.

energy contr. (a.u.)

energy contr. (a.u.)

0 2 4 VI. SUMMARY

s In conclusion, we have shown that the GGA’s BP and PW
are clearly an improvement over the LDA for predicting co-
hesive energies of first-row transition metals. This result is
only obtained if the lowest-energy determinantal state for the
atoms, without symmetry restrictions, is used to obtain the
atomic reference energy. The effect of symmetry lowering is
large as the GGA’s are sensitive to density gradients and
therefore to the choice of atomic reference determinant. The
restriction to integer occupation numbers proves to have neg-
ligible influence on the GGA atomic energies. The overbind-
C ing of the LDA appears to be related to a not sufficiently
repulsive exchange contribution to the cohesive enéeggn
negative, i.e., bonding for elements to the right of.Crhe
GGA demonstrates, much more in line with qualitative ex-
. ' pectations, a repulsive role of the exchange energy in the
0 2 4 formation of these metals except Sc and Zn. Analysis of the
XC contribution to the cohesive energy density shows that
s the repulsive nonlocal corrections to the cohesive energy
originate from the bonding region. In contrast, the LDA
FIG. 5. Subdivision of the exchange energy according to charg€xchange-correlation cohesive energy density is bonding in
inhomogeneitys, see Eq.(2), in the Cu atomigdrawn liné and  the bonding region and derives its overall repulsive character
bulk case(broken ling. The exchange energy can be written as anfrom a significant antibonding contribution from the atomic
integral overs and data points in this set of figures represent theregion. The splitting up of the exchange energy integral into
integral over such a range and hence give an impression of theubvolumes with a certain charge inhomogenaitseveals
integrand itself. The ranges are chosen logarithmically as is exthat the GGA exchange energy is very sensitive to the value
plained in the text(a) Weight factorwW(s) of Eq. (2) that is thes  of the enhancement fact&i(s) for s somewhat smaller than
distribution of the LDA exchange energgh) W(s)[F™"(s)—1],  one, whereas the precise form l6fs) for others is not as
the s distribution of the nonlocal PW correction to the eXChangeimportant. Therefore the fact that the PW functional has a
energy.(c) W(s)[F®(s)—F""(s)], thess distribution of the differ-  correct low gradient limit is not important for its perfor-

ence between the BP and PW exchange energies. mance. The result that the EV nonlocal correction for the

0.00

-0.01 A

energy contr. (a.u.)

-0.02
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