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We report generalized gradient approximation~GGA! cohesive energies for 3d metals. The problem of
obtaining atomic reference energies in density-functional theory is considered. The effect of going to non-
spherical atomic charge distributions is much larger at the GGA than at the local-density approximation~LDA !
level, but allowing fractional occupations of 3d and 4s shells has negligible effect. When nonsphericity effects
are taken into account in the atomic reference energies, the average absolute error of 0.3 eV in the GGA
cohesive energies is much smaller than the LDA error of 1.3 eV. The working of the GGA is analyzed in terms
of the cohesive energy density and the charge inhomogeneity division of the exchange energy. The low-
gradient limit in the GGA functionals is not important as regions with charge inhomogeneitys,0.2 have
negligible contributions.@S0163-1829~96!10531-2#

I. INTRODUCTION

The cohesive energies of the third-row elements Sc-Zn
are a severe test for any method to solve—approximately—
the Schro¨dinger equation. The delocalized conduction elec-
trons as well as the tightd states in the bulk crystals have to
be described accurately. It should be emphasized that, at the
same time, accurate energies are required for the free atoms,
which may have a highly open shell character~in the begin-
ning and middle of the transition series! or have almost~Cu!
or completely~Zn! closed shells. This clearly is a formidable
task for approximate density functionals for the energy, and
one wonders if the currently popular model exchange-
correlation~XC! energy densities, which depend on the local
density and its gradient only, can achieve sufficient accuracy.
However, the result of this paper is that the energy difference
can be reasonably described by functionals of the GGA
type,1–3 without resorting to any empirical corrections.

Density-functional theory~DFT! has progressed beyond
the level of a qualitative method since the introduction of the
gradient corrections to the local-density approximation
~LDA !. Perdew and co-workers have shown4 that the GGA
affords atomization energies of seven hydrocarbon mol-
ecules with an accuracy of 3 kcal/mol. Calculations on the
larger Gaussian-1~G1! database5,6 that consist of 55 mol-
ecules reveal similarly that the GGA predicts atomization
energies that deviate on the average only 3.7 kcal/mol~Refs.
7 and 8! from experiment, quite independent of whether or
not the nonlocal correction to the correlation is included, as
long as the exchange is being gradient corrected. The mol-
ecules in the G1 database, however, do not contain transition
metal complexes, where correlation is known to be of utmost
importance, as the error of the Hartree-Fock approximation
is large for such systems.9 In this respect it is noteworthy that
also first bond dissociation energies in transition-metal car-
bonyl complexes are being reasonably described by the
GGA’s, as has been reviewed in Ref. 10. Not surprisingly,
the relative simplicity of the method gives rise to limitations,
as is exemplified by the increasing overestimation of bond
energies for cationic first-row transition-metal hydrides as
one goes to the right in the periodic system.11 Nonetheless, it

is now widely accepted that the GGA’s are, in the molecular
case, an improvement over the LDA and in general afford
bond energies of nearly chemical accuracy.10 It is now be-
coming apparent that the GGA is able to describe larger parts
of the potential-energy surface and can be a useful tool to
calculate reaction barriers. Whereas the LDA quite often se-
verely underestimates activation energies the GGA tends to
reduce this underestimation,12–15and a recent study on acti-
vation energies of several elementary processes with formal-
dehyde has shown that the GGA can compete with the best
ab initio calculations that are feasable for such a system.

With the encouragement provided by this promising de-
velopment it is becoming increasingly fashionable to utilize
gradient-corrected functionals for extended systems as well.
Recent GGA results for molecule-surface interactions show
dramatic improvement upon the LDA, repairing the threefold
overbinding of the LDA in the case of CO on a Cu surface,16

and similarly reducing the interaction energy of CO with
Pd.17 As in the molecular case the improvement does not
seem to be limited to just the chemisorption energies but
apparently holds for a wider domain on the potential-energy
surface, since the GGA’s correctly predict a barrier for dis-
sociation of molecular hydrogen over the Cu~100!
surface,18–20 whereas the LDA predicts barrierless dissocia-
tion. The GGA’s seem to afford a semiquantitative descrip-
tion also for metal~slab! -molecule interactions, although
many more calculations should be carried out to investigate
this further.

Also, in bulk calculations GGA’s reduce the overbinding
of the LDA, and for a fairly large number ofsp-bonded
solids the accuracy achieved is typically 0.3 eV.21–23 For
transition metals the situation is not so clear. The GGA’s
predict the correct antiferromagnetic fcc ground state for Mn
at room temperature24 and the ferromagnetic bcc structure
for iron.25,26 The cohesive energy of Fe is better than the
LDA outcome but nevertheless far too large; according to
Ref. 25 the error is 2.0 eV with the 1986 functional of Per-
dew and Wang~PW86, Refs. 2 and 27! and according to Ref.
26 it is 1.4 eV with the 1991 functional of Perdew and Wang
~PW, Refs. 3 and 4!. Körling and Häglund28 have reported
improved cohesive energies for all first-row transition met-
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als, albeit with unsatisfactory large error bars, up to 0.8 eV.
The uncertainty of Ref. 28 resides in the ground-state energy
of the free atom that was estimated by adding an experimen-
tal correction29 to the calculated energy of the atom in dif-
ferent spherical configurations, i.e.,dn22s2 or dn21s, the
correction being the difference of the statistical multiplet av-
erage of that configuration and the ground-state energy.
However, it has been pointed out by Ziegleret al.30 that the
the average-of-configuration energy cannot be calculated in
this way since the exchange hole of this energy expression
does not satisfy certain requirements on which the justifica-
tion of the LDA and GGA approximations are based. They
therefore advocate the exclusive use of energies from densi-
ties corresponding to single determinants. Most atomic and
molecular multiplet energies may be obtained in this way,
although the method is not without drawbacks. Strictly
speaking, the multiplet procedure of Ref. 30 requires orbitals
that transform according to the irreducible representations of
the point group of the system~usually referred to as symme-
try and equivalence restrictions!. For atoms this implies the
use of central-field orbitals. However, it is sometimes pos-
sible to lower the energy considerably by lifting these restric-
tions, and a possible strategy to determine the ground-state
energy would be a search for the lowest energy over all
self-consistently optimized determinantal~Kohn-Sham!
states without any constraint~cf. Ref. 31!. This procedure is
adopted in this paper.

In this work we focus mainly on two GGA’s. The first,
BP, employs the 1988 exchange expression of Becke1 and
the 1986 correlation correction of Perdew.2 The Becke ex-
change form produces the correct energy density in the as-
ymptotic tail of any finite atomic or molecular system, and at
the same time leads to a correct lowest-order gradient cor-
rection, only with a coefficient that is too large. The other
functional, PW, has been introduced by Perdew and co-
workers in 1991,3 the exchange part of which has been mod-
eled closely to the Becke form. Care has been taken, how-
ever, that it has the right coefficient in the low gradient limit,
since correct low-gradient behavior is expected to play a vi-
tal role in the description of solids.32

The two exchange functionals mentioned thus far produce
excellent atomic exchange energies, but do not equally im-
prove the corresponding potential.33,34 One would like to
avoid the situation that a different GGA would have to be
used in the calculation of local properties than in the calcu-
lation of integral properties. Therefore we will briefly discuss
the Engel-Vosko~EV! exchange functional,32 which was in-
tended to lead to a more balanced quality improvement of
both energy and potential. This functional, without a nonlo-
cal correlation correction, improves the band structure of the
transition-metal oxides FeO and CoO, but predicts lattice
parameters that are far too large.35 We combine the EV ex-
change with the PW correlation, and examine the ability of
the resulting functional to predict energy differences.

II. METHODOLOGICAL DETAILS

Carrying out self-consistent field~SCF! calculations on
atoms without the central-field constraint introduces the tech-
nical problem of difficult convergence. The reason is simply
the near degeneracy of the orbitals belonging to sets that

would be strictly degenerate in spherical symmetry~in par-
ticular the 3d orbitals in the transition metals!. Extensive
searching has been performed, using progressively lower
point group symmetries, to identify the lowest energy obtain-
able. In Table I the energies are reported for all atoms inC4v
symmetry, with a specification of the lowest-energy elec-
tronic configuration in that symmetry. Going to lower point
group symmetry yields insignificant further lowering of the
energy. For instance, in the case of Co we find a solution in
C3v symmetry that is only 0.02 eV lower than the lowest
state inC4v symmetry. For other atoms with an experimental
F ground state, i.e., Ti, V, and Ni this effect is even smaller.

For the atomic corrections we have lifted as much as pos-
sible symmetry restrictions on the density, but we have lim-
ited ourselves to integer occupation numbers per irreducible
representation. If, as has been pointed out by Averill and
Painter,36 a SCF solution does not satisfy the aufbau prin-
ciple, the energy can be lowered by allowing for fractional
electron transfer from the highest occupied orbital to the one
or more lower-lying unoccupied states up to the point where
they become degenerate. Starting from the optimal occupa-
tions from Table I, we have determined the most optimal
charge transfer for all nonaufbau atoms, the result of which
can be found in Table II.

As pointed out before, another approach to calculate de-
generate ground states is the multiplet method due to Ziegler
et al.30 that is applicable straightforwardly by identifying for
all ground states of the transition-metal atoms a determinant
that is a pure state function. Since according to Hund’s rules
the lowest-energy term of a configuration is the term with
maximumL selected from all terms of maximum spin mul-
tiplicity, one can always find a Slater determinant, con-
structed from central-field orbitals, that corresponds uniquely
to the lowest-energy term, namely, the one with maximum
ML andMS . The corresponding densities haveD`h symme-
try, and the energies thus obtained will in general be higher
than the result of the global minimization method, which
does not restrict densities toD`h symmetry. In the case of Fe
the difference between the methods is as large as 0.4 eV
when calculated with a GGA~the effect is particularly large
with GGA’s that favor charge inhomogeneity more than the
LDA does!. This difference underlines the problem of
present day approximate energy functionals, that the energy
is not a constant on the domain of densities that correspond
to a certain degenerate ground state. Consider the example of
the degeneratep electron as in boron; thep1 and thep2

orbitals generate a density that is invariant under rotations
with respect to thez axis. With a superposition of thep1 and
the p2 orbital thepx orbital can be constructed that has a
density lacking this property, and the calculated energy will
in general not be equal to that for thep1 and p2 orbital
densities. We note that the same degeneracy problem already
exists if there is no spatial but only spin degeneracy, since
the spin unrestricted density functionals are not invariant un-
der rotation in spin space.

III. COMPUTATIONAL DETAILS

The free-atom calculations have been performed with
the molecular Amsterdam density functional~ADF!
program.37–40 The orbitals up to 2p were kept frozen and a
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triple-zeta Slater basis set was used with three 4p and three
4 f polarization functions. We have repeated all these calcu-
lations with theADF-BAND program, which can include nu-
merical atomic orbitals~NAO’s! in the basis, and calculates
the energy with respect to the numerical spherical atom. It
appeared to be necessary to add a 4d Slater-type orbital
~STO! to the single 3d NAO in the Ni basis for a reliable
estimate of the energy difference between the spherical Ni
atom in the experimental configuration and the calculated
ground state. This is due to the fact that the 3d NAO is
calculated for the experimentald8s2 configuration, but the
GGA’s predict ad9s1 ground-state configuration. The basis
set flexibility provided by the additional 4d STO is required
to describe the more diffuse 3d AO in the configuration with

higher d count. Finally both technically different methods
agreed within 0.05 eV on the contents of Table I.

The bulk calculations were performed at the experimental
geometry, as the energy gained by optimizing the lattice con-
stant or crystal structure is fairly small for 3d metals,25,42and
the PW functional predicts lattice constants very well in the
transition-metal series.43 The experimental crystal structure
of Mn is fairly complicated and for this element we have
taken the geometry from Ref. 28. We have used the first-
principles linear combination of atomic orbitals program
ADF-BAND ~Ref. 44! with a basis set of the double-zeta
1NAO–type for the 3d and 4s orbitals, replacing one Slater
of the triple-zeta STO basis set by a numerical orbital. The
3s and 3p orbitals were represented by a single NAO. Tests
on Ni showed no effect of addition of 3s and 3p STO’s to
the basis. As polarization functions we used two 4p and one
4 f STO. Since we use aquadratic tetrahedron method41 for
the k-space integration, we are able to attain high accuracy
while keeping the number ofk points within reasonable lim-
its. To test the convergence with respect to the integration in
k space, we have done all calculations with two different
accuracy settings for integration over the Brillouin zone. The
grid according to the more accurate setting gave rise to more
than two times as many symmetry-unique points as the less
accurate setting. In case of an fcc lattice the sparser of the
grids consisted of 65 points and the more dense one of 175
symmetry-unique points. The effect of more than doubling
thek-space sampling on the cohesive energy never exceeded
the 0.05 eV. Given the fairly large basis set and the high
values for the parameters that control the accuracy of the
integration in both real and reciprocal space, we estimate the

TABLE I. Energy lowering~El in eV! when going from a spherically-symmetric spin-restricted reference
configuration toC4v and spherical spin unrestricted configurations.

C4v ~spin polarized! Spherical~spin polarized!

El ref. config. occupationsa LDA BP PW config. LDA BP PW
Sc d1s2 1100 0.22 0.47 0.46 0.16 0.18 0.17

1000
Ti d2s2 1102 1.18 1.58 1.61 d3s1 1.02 1.14 1.16

0000
V d3s2 1112 2.87 3.23 3.26 d4s1 2.93 3.13 3.15

0000
Cr d5s1 spherical 5.12 5.47 5.46
Mn d5s2 2112 5.29 5.63 5.57 5.30 5.61 5.54

1000
Fe d6s2 2112 3.87 4.41 4.36 3.54 3.74 3.70

1100
Co d7s2 2112 2.96 3.52 3.51 d8s1 2.79 2.84 2.86

0102
Ni d8s2 2112 2.43 2.71 2.72 d9s1 2.52 2.53 2.56

0112
Cu d10s1 spherical 0.20 0.26 0.24
Zn d10s2 spherical no correction

aThe occupations of the 4s and 3d electrons specifying theC4v determinantal state that gives the lowest
energy are described by two rows, one for eac spin, each row containing the occupations forA1 ~3dz2 and
4s!, B1 (3dx22y2), B2 (3dxy), andE (3dxz,3dyz) symmetry respectively. Occupation 2 means that either
two consecutive spin orbitals are occupied~A1!, or two degenerated spin orbitals (E).

TABLE II. The extra energy gained~eV! by allowing for frac-
tional occupation numbers in spherical andC4v symmetry. These
numbers can be added to the atomic corrections of Table I. Entries
smaller than 0.01 eV are left out of the table. The fractionally oc-
cupied states in spherical symmetry are Ti, 4s↓3d↑; Fe and Co,
4s↓3d↓. In C4v symmetry the fractionally occupied states are V,
A1↑B2↓, Co,A1↓E1↓; and Ni,A1↓B1↓.

C4v spherical

El LDA BP PW LDA BP PW
Ti 0.01 0.01 0.01
V 0.09
Fe 0.17 0.12 0.14
Co 0.01 0.02 0.02 0.01
Ni 0.15 0.01

5328 54P. H. T. PHILIPSEN AND E. J. BAERENDS



precision of the energies to be at least 0.1 eV.
In most calculations, we have employed LDA densities,

with the parametrization of Vosko and co-workers45 of the
calculated46 correlation energy of the electron gas. Also, for
the PW functional we have used this parametrization, instead
of their own proposal, to ensure that the differences between
the functionals are not influenced by the way of parametriz-
ing the homogeneous electron gas result. Explicit spin-
unrestricted calculations were done for the ferromagnetic
crystals Fe, Co, and Ni, and for the single atoms. Only for
the optimization of the fractional occupation numbers for the
GGA, see Table II, we have done fully self-consistent calcu-
lations, and hence used GGA densities instead of LDA den-
sities. This was required as the energy minimum only truly
coincides with the point where the fractionally occupied or-
bitals become degenerate if the calculations are fully self-
consistent.

For the analysis of the GGA’s in Sec. V we split up the
exchange-correlation energy into contributions from differ-
ent regions in space, and this involves the integration of step-
like integrands. As Gauss-Legendre quadrature, which is em-
ployed throughout the integration scheme,39,40 requiresN
points to integrate a polynomial of the order 2N21, many
points are needed, since a step function is not easily approxi-
mated by a polynomial. We have solved this problem by, on
one hand, limiting the number of subintervals, and on the
other hand, increasing the number of points until an accuracy
of 10% was reached for Figs. 3 and 5 in Sec. V.

IV. RESULTS

In Table I we have listed the optimized energies of the
free atoms, in bothC4v and spherical symmetry, with respect
to the spherical spin-restricted atom in the experimental
ground-state configuration. In spherical symmetry the energy
lowering is primarily due to spin polarization, although in
some cases there is also a change of configuration~in Ti, V,
Co, and Ni the configuration changes fromdns2 to dn21s1!.
The spin-polarization energy can be several eV, and of
course is largest~ca. 5.5 eV! for Cr with six parallel spins.
When the symmetry is lowered toC4v the largest effects
occur for Fe and Co where the effect of going to a nonspheri-
cal charge distribution is as much as 0.7 eV for the GGA’s.
Our result for Fe agrees reasonably well with the 0.8 eV that
we infer from Ref. 47 for the PW functional. Unfortunately
Ref. 47 does not specify the determinantal wave function, so
the cause of this small discrepancy remains unknown. In
general the LDA shows much smaller nonsphericity effects
than the GGA’s. This is in agreement with the general no-
tion, as explained clearly by Perdew and co-workers,4 that
the exchange correction of the GGA favors densities that
have on the average a high value of the dimensionless ex-
pansion parameters5~24p2!21/3u¹ru/r4/3 that describes the
inhomogeneity of the system, an effect which is only partly
opposed by the nonlocal correlation correction. Stated some-
what more loosely: GGA’s favor less smooth densities
more than the LDA does. This can be seen immediately from
the GGA expression for the exchange energy,

Ex
GGA@r#52CXE r4/3F~s!dr , ~1!

where the enhancement factorF(s) starts at 1 when the den-
sity gradient and therefores is zero and increases with in-
creasing inhomogeneitys, thus leading to a more negative
exchange energy. The more stabilizing effect of GGA when
the density gradients are larger also qualitatively explains
that the GGA correctly predicts Fe to have a bcc lattice,25

whereas the LDA predicts fcc, as one may expect a smoother
density for the highly coordinated fcc atoms. The GGA also
correctly predicts top site adsorption for CO on Cu~Ref. 16!
whereas the LDA prefers the fourfold coordinated hollow
site.

The effects of lifting the restriction of integer occupation
numbers are summarized in Table II. In spherical symmetry
a significant lowering;0.1 eV of the energy is obtained for
the iron atom, and inC4v symmetry a similar amount is
gained by the LDA for the V and Ni atoms. In the GGA,
however, the nonspherical atoms profit not more than 0.01
eV from the extra freedom: for the GGA the lifting of the
symmetry restriction has a much larger impact than allowing
noninteger occupations.

In Table III and in Fig. 1, the cohesive energy is presented
for the LDA and the two GGA’s. We see that the PW func-
tional gives a slightly smaller correction to the LDA than BP,
but both clearly improve very much upon the LDA, the av-
erage absolute error dropping from 1.3 eV in the LDA case
to 0.3 eV for both GGA’s. The large overbinding for iron
reported by Refs. 25 and 26 can partly be ascribed to the
unphysical spherical restriction on the density of the iron
atom. The remaining discrepancy of 0.3 eV with the PW
result of Ref. 26 can be related to the approximate nature of
the linear-muffin-tin-orbital–atomic-spheres approximation
~LMTO-ASA! method that these authors used. The result of
Ref. 25 is a bit puzzling, since if we calculate the BP86
result with a spherical reference atom we arrive at a cohesive
energy that is 1.2 eV lower than that of Ref. 25. In the cases
where the reference atoms are spherical~Cr, Cu, Zn! PW
seems to outperform the BP functional.

The results of the EV functional, which are not included
in the table, lead to an average absolute error of 1.1 eV, and
the severe overbinding of the LDA is replaced by an almost
equally severe underbinding. This is consistent with the pre-
diction of lattice constants that are much too large for a va-
riety of metals,35 confirming the conclusion that this func-

TABLE III. Absolute values of the cohesive energies~eV! of
first-row transition metals, as calculated with the LDA, and the
gradient corrected functionals BP and PW. The energies are with
respect to theC4v atoms of Table I.

El LDA BP PW exp.

Sc 4.87 3.84 4.11 3.90
Ti 6.29 4.87 5.09 4.85
V 6.49 4.90 5.12 5.31
Cr 5.22 3.58 3.80 4.10
Mn 5.19 3.44 3.73 2.92
Fe 6.25 4.52 4.78 4.28
Co 6.51 4.67 4.88 4.39
Ni 5.98 4.33 4.52 4.44
Cu 4.29 3.12 3.30 3.49
Zn 1.91 0.98 1.17 1.35
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tional is unsatisfactory for energies, as well as for for the
energydifferencebetween atom and bulk.

The crucial quantity in DFT calculations for which ap-
proximations are required is the XC part of the energy. Our
results suggest that the GGA approximation to this quantity
is quite good as far as energy differences are concerned. It is
interesting to analyze the influence of this energy term on the
results. What can be expected for the XC contribution to the
cohesive energy? Roughly speaking, the exchange energy
becomes more negative with the number of spin-aligned va-
lence electrons, and since usually there are more parallel
spins in the atom than in the bulk, a repulsive exchange
contribution may be expected that rises from Sc to Cr and
drops for later transition metals. The correlation energy~also
stabilizing! is roughly proportional to the number of electron
pairs. As the valence electron pairing increases going from
the atom to the bulk, correlation should increase the bonding
energy, again with a maximum for Cr. In Fig. 2 it is seen that
the GGA ~PW! yields a repulsive exchange contribution to
the cohesive energy, in accordance with the foregoing argu-
ment, except for the fringe elements Sc and Zn. The shape of
the curve is also in agreement with our expectations. The

LDA, however, predicts a bonding exchange contribution for
Mn to Zn, a result that defies our expectations for the middle
transition metals. Apparently, the well-known LDA underes-
timation of the exchange energy in atoms is not fully carried
over to the bulk. It is clear that the GGA exchange curve
resembles its LDA equivalent, but it is shifted upwards by
;2 eV. The bonding role of the exchange energy for Sc and
Zn ~also for the GGA! may be related to the atomic configu-
ration: in Sc the interaction between the aligned 3d↑ and 4s↑

electrons is very weak since the 4s is much more diffuse
than the 3d, and in Zn the number of aligned electrons is the
same for the atom as in the bulk. The loss of spin-
polarization energy when going to the bulk will thus be small
~or zero! and the argument given above for a repulsive ex-
change contribution to the cohesive energy does not apply.
This, of course, does not explain the fact that, actually, there
is a bonding contribution of the exchange energy for Sc and
Zn.

With respect to the correlation energy we note that the ex-
pected bonding correlation contribution to the cohesive en-
ergy is reproduced by both the LDA and the GGA, as shown
in Fig. 2. The GGA correlation curve is very much like the
LDA result shifted downwards;1 eV. Since the GGA re-
sults for both exchange and correlation exhibit approxi-
mately uniform shifts with respect to LDA through the
transition-metal series, the GGA’s do not effectively im-
prove the trend of the cohesive energy through the series, cf.
Fig. 1, although they do improve substantially the absolute
values.

V. ANALYSIS OF THE GGA’s

We will now study the effect of the GGA’s on the bond-
ing energy in more detail by first examining what regions in
real space contribute to the XC energy. We will subsequently
investigate the relative importance of regions where the den-
sity gradient is high~low!, in order to better understand the
differences between the BP and PW functionals. All data in
this section refer to the Cu example.

In Fig. 3 we see how the XC part of the cohesive energy
is built up in various spatial regions. For the construction of
this figure we first note that the cohesive energy can be cal-
culated as the integral over the unit cell of the energy density
of the crystal minus the sum of the energy densities of the
free atoms, located at the bulk positions, i.e., as a unit-cell
integral over what could be called the cohesive energy den-
sity. To gain some insight into what regions are important for
this integral, we divide the unit cell~the standard Wigner-
Seitz cell! in spherical shells around the Cu atom at the cen-
ter of the cell. These spherical shells will eventually be trun-
cated by the unit-cell boundaries and only the part within the
unit cell is taken into account. The largest distance from Cu
to the unit-cell boundary is 3.4 bohr. The total integral is
split up into contributions from the different regions con-
structed in this way. In the figure we show the contributions
of a few XC energy terms to what is conceptually the spheri-
cally integrated cohesive energy density. A point atr stands
for the contribution of the spherical shell surroundingr with
thicknessDr50.34. First we see that the LDA exchange and
correlation curves have a similar shape, starting with a repul-
sive part in the atomic region followed by an attractive part

FIG. 1. Cohesive energies from Table III according to experi-
ment, and as calculated with the functionals LDA, BP, and PW. The
cohesive energies are defined here asE~crystal!2E~atoms!.

FIG. 2. Exchange~X! and correlation~C! contributions to the
cohesive energy in both the LDA and~the BP form of! the GGA.
~Positive contributions areantibonding.!
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in the bond region. In view of the proportionality tor ~the
LDA exchange energy density is for instance simply
2CXr4/3!, this must reflect a charge flow from the atomic to
the bonding region. The gradient corrections~representing
the change from LDA to GGA! are close to zero in the
atomic region, but in the bonding region~the bond midpoint
is at 2.4 bohr! there is a repulsive gradient correction to the
exchange, compensated partly by an attractive correlation
correction. It is interesting to observe that the curves of the
gradient corrections for exchange and for correlation re-
semble each other, the correlation correction having an op-
posite sign and being smaller in magnitude than the ex-
change correction. The gradient corrections in the figure
pertain to the BP functional, but the result is virtually indis-
tinguishable in the case where the PW functional was used. It
is to be noted that the gradient corrections come from the
bonding region, a result that may be understood as follows
~cf. the analysis of Ref. 48!. The gradient corrections depend,
apart from the magnitude of the density and the volume con-
sidered~in this case spherical shells with volume propor-
tional to r 2!, on the inhomogeneity parameters
~s5~24p2!21/3u¹ru/r4/3!, which is relatively small in the
atomic region, but increases exponentially in the outer region
of atoms where the density decays exponentially. In the
bonding region we are dealing with points that fall in the
outer regions of the constituting atoms, with concomitant
high s’s, but in the crystal the density gradients are very low
around the bond midplane~often exactly zero at the bond
midpoint by symmetry!. The gradient corrections will thus in
the bonding region be much larger for the atomic energy
densities than for the crystal energy density. The positive
sign ~repulsive character! of the exchange correction and the
negative sign of the correlation correction follow immedi-
ately from the stabilizing~destabilizing! nature of the ex-
change~correlation! gradient corrections.

The difference between the functionals BP and PW is
mainly due to the exchange expression. For Cu the differ-
ence in cohesive energy is for 0.2 eV due to exchange and
only for 0.03 eV due to correlation. In the expression for the

exchange energy, Eq.~1!, an enhancement factorF(s) ap-
pears which is plotted in Fig. 4 for the three exchange func-
tionals of Becke88, EngelVosko93, and PerdewWang91, the
F51 case leading to the LDA result. SinceFB.FPW for all
s, the Becke functional always gives a more negative ex-
change energy than PW:Ex

B,Ex
PW. We also haveFB>1

and consequentlyEx
B,Ex

LDA . For very large inhomogene-
ities s.8, FPW becomes smaller than one, going asymptoti-
cally to zero, which could lead to a less negative exchange
energy than the LDA. However this is not the case, even in
atoms wheres diverges in the tails one findsEx

B,Ex
PW

,Ex
LDA .49 The PW functional was constructed in such a way

that it reverts for smalls to the gradient expansion approxi-
mation~GEA! form FGEA(s)511c2s

2, with c250.1234 a.u.
The Becke functional has a gradient coefficientc2 that is 2.2
times too large. The deviation ofFPW from FB due to this
low gradient limit is only significant fors,0.2.32 The Becke
exchange functional1 was tailored such that it creates the
exact asymptotic energy density for an electron far away
from the molecule, by choosing a specific large-s form for F.
Clearly PW spoils this exact long-range behavior, as it goes
to zero to satisfy nonuniform scaling relations. So we have
one functional with the correct low gradient limit and an-
other describing the atomic tails better. Which part of the
correction factor is important for the gradient correction to
the exchange energy? To answer this question we write the
nonlocal~NL, i.e., gradient-correction! part of the GGA ex-
change as an integral overs:

Ex
NL5E W~s!~F~s!21!ds, ~2!

with the weight functionW(s) being the integral of the LDA
exchange energy density over the subvolume where the den-
sity has the inhomogeneitys. To get an impression of the
integrand in Eq.~2!, we split the integral up into different
ranges ofs. ~We note that a similar analysis for atoms has
recently been made by Zupanet al.50! The ranges are chosen
logarithmically betweens50.1 ands58, the contributions
from others being negligible in our example~Cu crystal!. In
Fig. 5 the integral over ans region is given by a point in the
center of that region and these points add up to the total
integral. In Fig. 5~a! we see that the weight functionW(s)
has an extremum fors;0.5, in both the atomic and the bulk

FIG. 3. Contributions from spherical shells, see text, to some
cohesive energy terms for Cu: LDA exchange, LDA correlation,
and the NL part of the exchange and correlation of the BP func-
tional. The bond midpoint is at 2.4 a.u., the largest distance from
the cell center to the boundary is 3.4 bohr. A point atr stands for
the integral over a shell with thicknessDr50.34a0 .

FIG. 4. Enhancement factorF(s) @see Eq.~1!# of the exchange
energy for the gradient-corrected functionals under study.
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case. Although in the atoms high values ofs occur in the
atomic tails, the value ofW(s) is negligible fors.2.5 since
there is negligible charge with such a high gradient. Figure
5~b! shows the splitting up, according to density inhomoge-
neity, of the PW exchange correction for the atomic and the
bulk calculation. The important conclusion is that the low
gradient regions,0.2 does not contribute to the nonlocal
correction at all: even in the bulk the total contribution from
s,0.2 is less than 0.02 eV per atom. This is a combined
effect of the small value ofW(s) ~there is not much charge
with such a small gradient! and the small deviation ofF(s)
from one in that region. In Fig. 5~c! the difference between
the Becke and PW exchange functional is plotted, and since
FB.FPW the result is always negative. The difference in the
bulk between the two functionals comes almost entirely from
the s,1 region. Both exchange functionals lower the bulk
total energy,B more than PW, but the difference is deter-
mined by the value ofF at intermediates values. In the
atomic calculation the Becke exchange energy density is also
more negative at highers values. So the result that Becke
gives smaller cohesive energies than PW comes from the fact
that Becke gets more energy lowering out of the atomic tails.
It now is also understandable that the EV exchange correc-
tion is much larger, sinceFEV has a steeper slope in the
important s;1 region, thus favoring nonsmooth densities
more than the other functionals.

VI. SUMMARY

In conclusion, we have shown that the GGA’s BP and PW
are clearly an improvement over the LDA for predicting co-
hesive energies of first-row transition metals. This result is
only obtained if the lowest-energy determinantal state for the
atoms, without symmetry restrictions, is used to obtain the
atomic reference energy. The effect of symmetry lowering is
large as the GGA’s are sensitive to density gradients and
therefore to the choice of atomic reference determinant. The
restriction to integer occupation numbers proves to have neg-
ligible influence on the GGA atomic energies. The overbind-
ing of the LDA appears to be related to a not sufficiently
repulsive exchange contribution to the cohesive energy~even
negative, i.e., bonding for elements to the right of Cr!. The
GGA demonstrates, much more in line with qualitative ex-
pectations, a repulsive role of the exchange energy in the
formation of these metals except Sc and Zn. Analysis of the
XC contribution to the cohesive energy density shows that
the repulsive nonlocal corrections to the cohesive energy
originate from the bonding region. In contrast, the LDA
exchange-correlation cohesive energy density is bonding in
the bonding region and derives its overall repulsive character
from a significant antibonding contribution from the atomic
region. The splitting up of the exchange energy integral into
subvolumes with a certain charge inhomogeneitys reveals
that the GGA exchange energy is very sensitive to the value
of the enhancement factorF(s) for s somewhat smaller than
one, whereas the precise form ofF(s) for others is not as
important. Therefore the fact that the PW functional has a
correct low gradient limit is not important for its perfor-
mance. The result that the EV nonlocal correction for the

FIG. 5. Subdivision of the exchange energy according to charge
inhomogeneitys, see Eq.~2!, in the Cu atomic~drawn line! and
bulk case~broken line!. The exchange energy can be written as an
integral overs and data points in this set of figures represent the
integral over such a range and hence give an impression of the
integrand itself. The ranges are chosen logarithmically as is ex-
plained in the text.~a! Weight factorW(s) of Eq. ~2! that is thes
distribution of the LDA exchange energy.~b! W(s)@FPW(s)21#,
the s distribution of the nonlocal PW correction to the exchange
energy.~c! W(s)@FB(s)2FPW(s)#, thes distribution of the differ-
ence between the BP and PW exchange energies.
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exchange energy is much larger than the BP and PW nonlo-
cal corrections is due to the large slope of the enhancement
factor of this~EV! functional fors;1. The performance of
the EV functional on cohesive energies is very poor as the
severe LDA overbinding is replaced by an almost equally
severe underbinding.
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