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Using the Hubbard Hamiltonian for transition-metal 3d and oxygen 2p states with perovskite geometry, we
present a dynamical mean-field theory that becomes exact in the limit of large coordination numbers or
equivalently large spatial dimensionsD. The theory is based on a description of these systems for largeD
using a selective treatment of different hopping processes, which cannot be generated by a unique scaling of
the hopping element. The model is solved using a perturbational approach and an extended noncrossing
approximation. We discuss the origin of the various 3d and 2p bands, the doping dependence of its spectral
weight, and the evolution of quasiparticles at the Fermi level upon doping, leading to interesting insight into
the dynamical character of the charge carriers near the metal insulator instability of transition-metal oxide
systems, three-dimensional perovskites, and other strongly correlated transition-metal oxides.
@S0163-1829~96!01528-7#

I. INTRODUCTION

The electronic structure of the strongly correlated copper-
oxide superconductors, other transition-metal-based perovs-
kites, and of transition-metal oxides such as NiO, FeO, or
MnO has been an enduring problem in the last years,1–6 still
containing numerous unresolved questions. Among them are
the nature of the insulating state, the evolution and doping
dependence of coherent quasiparticles near the Fermi energy
in a doped Mott Hubbard or charge-transfer insulator,7 and
the transfer of spectral weight from high- to low-energy
scales.8 Experimentally, interesting variations of the spectro-
scopic and thermodynamic materials occur upon electron and
hole doping.9–12 Recently, Tokuraet al.10 showed that
Sr12xLaxTiO3 with perovskitelike structure exhibits a pro-
nounced increase of the effective mass in approaching the
insulating state while keeping the existence of a large Fermi
surface that satisfies the Luttinger sum rule. They already
argued that the different behavior of this compound com-
pared to the pronounced two-dimensional high-Tc cuprates
might be due its three-dimensional character. Furthermore,
the transfer of spectral weight in Li-doped NiO~Ref. 11! and
the investigation of hole and electron doping of this com-
pound in Ref. 12 demonstrate the importance of strong elec-
tronic correlations in transition-metal oxides. A systematic
analysis of the electronic structure of 3d transition-metal
compounds was recently performed by Saitohet al.6 They
showed that for a variety of materials such as LaMnO3 ,

LaFeO3 , LaCoO3 , Mn0.25TiS2 , Ni0.33TiS2 , NiO, FeO, or
MnO the character of the band gap is of the charge-transfer
type. Furthermore, the analysis of x-ray photoemission
spectra13 demonstrates the importance of the charge-transfer
mechanism in systems such as V2O5 , TiO2 , or LaCrO3 and
showed that many of the early transition-metal compounds
have to be reclassified as intermediate between the charge-
transfer and the Mott-Hubbard regions or as falling into the
charge-transfer region itself. Consequently, it is of impor-

tance for an understanding of these materials that one takes
the local spin and charge fluctuations of the transition-metal
and the oxygen states into account; i.e., both orbital degrees
of freedom have to be described on the same footing.

For systems with one orbital degree of freedom a theoreti-
cal approach that allows the calculation of the excitation
spectrum of strongly correlated systems, maintaining the
dominating local correlations, was recently proposed by
Metzner and Vollhard.14 They introduced a dynamical mean-
field theory, where the system can be mapped onto a local
problem coupled to an effective bath.15–18 This dynamical
mean-field approach is exact in the limit of large coordina-
tion numbers or equivalently for large spatial dimensions
(D→`).14,19 In most applications of this approach, the one-
band Hubbard model is considered. A scaling of the hopping
element liket5t* /AD with fixed t* leads forD→` to a
remarkable simplification of the many-body problem while
retaining the nontrivial local dynamics of the elementary ex-
citations and other main features of the model.17–23

Few attempts have been made to extend the dynamical
mean-field theory to systems with more than one orbital de-
gree of freedom. Valenti and Gros24 realized that for the
two-band Hubbard model with perovskite structure, a scaling
procedure similar to the one-band model does not lead to a
finite bandwidth. In order to avoid these difficulties Georges,
Kotliar, and Krauth25 introduced a CuO model where two
interpenetrating hypercubic lattices of copper and oxygen
sites have been considered. This leads to a finite bandwidth
and is able to describe interesting physics of the model under
consideration. However, square root divergencies of the un-
correlated density of states occur, which result from the
sublattice structure of the underlying lattice. This could limit
the range of applicability of this model in the description of
real transition-metal oxides or possibly high-Tc systems.

In this paper we propose a scaling procedure to develop a
reasonable model of perovskite systems for largeD based on
a selective treatment of different hopping processes in large
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dimensions. It will be shown that this procedure leads to a
large D version of the three-band Hubbard model, which
reproduces important physics of the low-dimensional situa-
tion. First, we solve this model using perturbation theory17,26

and show that this leads to a qualitatively wrong description
of the physics near half filling. These problems are avoided
by using an extended version of the noncrossing
approximation.27–31 Finally, we discuss the doping depen-
dence of the transition-metal and oxygen densities of states.
This is of interest due to the evolution of coherent quasipar-
ticles near the Fermi energy, the transfer of spectral weight,
and the change of the effective mass upon doping.

II. THEORY

The dynamical mean-field theory, which becomes exact in
the limit of large coordination numbers, turned out to be a
natural starting point for the description of highly correlated
electronic systems such as the one-band Hubbard model and
the Anderson lattice model. All this is based on a proper
scaling of the hopping element, originally proposed in Ref.
14. In the following, we show that the extension of this ap-
proach to more complex systems is only possible if one gen-
eralizes the idea of the scaling procedure in a way that the
corresponding transfer functions between different unit cells,
but not the hopping element itself, have to be scaled. This is
demonstrated for the case of the two-band Hubbard Hamil-
tonian, which describes hybridized transition-metal~TM!
and oxygen states with perovskite lattice structure. Similar to
the one-band case, the problem can be mapped onto an
Anderson impurity problem and the enormous amount of
theoretical tools, developed for the solution of this model,
can be used. Furthermore, we show that the most natural
choice of the corresponding impurity problem is to include
all local orbitals into the impurity, not solely the strongly
correlated ones. Otherwise, the set of self-consistent equa-
tions is not well-defined, leading to various computational
problems. In our case, a cluster of hybridized TM and O sites
is embedded into an effective medium. Physically, this is
necessary because the charge and spin fluctuations of these
two states are closely intertwined and have to be described
on the same footing. The solution of the extended Anderson
impurity model is performed using a perturbational
approach17,26 and an extended version of the noncrossing
approximation.27–31The details of the latter method are pre-
sented in the Appendix.

A. Scaling procedure for largeD

We consider theD-dimensional extension of the perov-
skite lattice, where the transition-metal sites sit on a
D-dimensional hypercubic lattice and theD oxygen sites per
unit cell are located between every two nearest-neighbor TM
sites. For simplicity, we consider only one TM 3d orbital.
The corresponding (D11)-band Hubbard Hamiltonian for
the TM 3d and O 2pxa

(a51, . . . ,D) orbitals reads

H5(
i ,s

«ddis
† dis1 (
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«pplsxa
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Besides thepks , which now fulfill standard fermion commu-
tation relations,D21 linear independent combinations of
the Fourier transforms ofplsxa

† occur, which are orthogonal

to pks
† and build up nonbonding oxygen orbitals. These non-

bonding states at«p decouple from the remainder of the sys-
tem and do not have to be considered in the following cal-
culation. The resulting Hamiltonian reads

H5(
ks
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This is a straightforward extension of the two-band Hubbard
model of perovskite systems to arbitrary dimension and can
be used as the basis of a 1/D expansion. However, there
exists no scaling of the formt5t* /Db with exponentb lead-
ing to a nontrivial limit forD→`. Valenti and Gros24 sug-
gested a scaling withb51/2, which leads to a zero band-
width of the bonding and antibonding states, i.e., the TM-O
‘‘dimers’’ of different lattice sites decouple. All other
choices ofb lead either to zero or to infinite density of states.

In order to obtain a physically reasonable limit of the
perovskites for largeD one has to bear in mind that different
hopping processes, which are of the same order int, are of
different importance for largeD. Due to the local character
of the Coulomb interaction, it is sufficient to perform the
scaling at first forU50. For the calculation of the single-
particle Green’s function one has to sum up all closed paths
on the lattice under consideration. In Fig. 1 we show two
different hopping processes, which are of fourth order int.
There are 4D2 processes of type~a! and only 2D processes
of type ~b!. Using a scaling such ast5t* /AD the contribu-
tion of the~a! processes to the Green’s function are of order
1 whereas the~b! processes have only contributions of order
1/D and are suppressed forD→` leading to the zero band-
width of Ref. 24. This results from the TM coordination
number being 2D whereas the oxygen coordination number
is 2. A selective consideration of these different paths can be
obtained by the following partial summation of paths starting
at TM site i and ending at the TM sitej :
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Gdi j
o ~v!5Gd

at~v!d i j1Gd
at~v!Ti j ~v!Gd
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1(
l
Gd
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Here, the locald Green’s function

Gd
at~v!5S v2«d2

2Dt2

v2«p
D 21

~5!

contains all TM-O-TM hopping processes, where the path
returns to the starting TM site without entering any other TM
site @~a! processes#. The transfer functionTi j (v), which is
given by (2t2)/(v2«p) for neighboring TM sites and zero
otherwise, has the character of an effective, but frequency-
dependent TM-TM hopping elementTi j}d^ i j &t

2 @~b! pro-
cesses#. Therefore, we propose the following scaling proce-
dure, where the two different hopping processes are treated
differently:

Gd
at~v!5S v2«d2

4~ t* !2

v2«p
D 21

, t*5AD/2t, ~6!

Ti j ~v!52d^ i j &A2

D

~ t* !2

v2«p
, ~ t* !25AD/2t2. ~7!

Here, the effective TM-TM hoppingTi j ~not t itself! has
been scaled in analogy to the one-band case. Consequently,
the processes of Fig. 1~b! are no more suppressed relative to
that of Fig. 1~a!. The summation of all closed paths on the
remaining hypercubic TM lattice is straightforward and leads
to thed Green’s function forU50:

Gd
o~v!5

v2«p

4~ t* !2
E dy

r0~y21!

~v2«p!~v2«d!/4~ t* !22y
, ~8!

where the reduced density of statesr0(y) is defined by

r0~y!5
1

N(
k

dS y2
1

A2D
akD , ~9!

with ak5(n51
D coskn . The oxygen Green’s function

Gp
o(v), which refers to the statespks , can be obtained from

Gd
o(v) by interchanging«d and«p . The largeD behavior of

r0(y) is, in analogy to the one-band case, given by a Gauss-

ian distribution functionA2/pexp(22y2).19 For simplicity,
we use in the following a semielliptical reduced density of
statesr0(y)52/pA12y2 if y2,1 and zero otherwise. This
Bethe lattice of the TM sites does not change the relative
local arrangement of TM and O sites, typical for perovskite
systems. Finally, it is interesting to point out that this se-
lected treatment of different hopping processes can be gen-
erated by the Hamiltonian of Eq.~3!, if one performs the
following scaling transformation of the coherence factor:

t2Dgk
2→2~ t* !222A2

D
~ t* !2ak . ~10!

Based on this formulation of the largeD version of the
TM-O system forU50, it is straightforward to show forU
Þ0, in analogy to the one-band case, that the self-energy
Sd(v) of TM holes is momentum independent. Conse-
quently, one finds the following for the TM Green’s function
within the Bethe lattice:

Gd~v!215v2«d2Sd~v!2
4t2

v2«p
2
1

4 S 4t2

v2«p
D 2Gd~v!.

~11!

This results from the representation of the Green’s function
with semielliptical density of states:

Gd~v!5
1

N(
k
Gd~k,v!

5
v2«p

4t2
FS ~v2«p!@v2«d2Sd~v!#

4t2 D , ~12!

with F(z)[2@z212A(z21)221# and the relation
F(z)215z212 1

4F(z). Furthermore, the system can be
mapped onto an Anderson model with effective hybridiza-
tion and additional self-consistency condition.

Finally, we note that the additional consideration of the
TM-O Coulomb repulsionUpd would lead to further
frequency-dependentcontributions of the self-energies
Sab(v) (abP$p,d%). This results from the small coordina-
tion number of the oxygen sites and is different in the one-
band case, where each intersite Coulomb repulsion contrib-
utes in zeroth order of 1/D only through its Hartree-Fock
value.19 Therefore, the limitD→` might be an interesting
approach for a detailed consideration of the dynamical inter-
play of spin and charge fluctuations of transition-metal ox-
ides.

B. Effective TM-O impurity model

As in the one-band case, the large-D version of a TM-O
model is mapped onto an effective impurity model. Due to
the occurrence of an additional orbital degree of freedom, the
choice of the corresponding effective medium is not unique.
Although, the most obvious choice might be to embed only
the TM site into an effective medium and to change solely
the self-consistence condition, it is straightforward to show
that this leads to a divergence of the hybridization of this
medium at the oxygen on site energy«p . This is due to the
fact that the effective medium has to simulate not solely the
correlated TM sites but also the existence of the oxygen

FIG. 1. Hopping processes of ordert4, which are of different
importance for largeD. Since there are 4D2 processes of type~a!
but only 2D processes of type~b!, the latter are suppressed com-
pared to the former for large dimensions.
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states. In order to avoid this divergency, we propose in the
following an impurity model where a cluster of one TM and
one O orbital is embedded within an effective medium. This
is illustrated in Fig. 2. Motivated by the perovskite geometry,
we couple the effective medium only to the oxygen sites.
Furthermore, the local TM-O hybridization within the cluster
is explicitly taken into account. This leads to a well-defined
effective medium. The corresponding Hamiltonian reads

Heff5H loc1Hmed, ~13!

where the local part is given by

H loc5(
s

@«dds
†ds1«pps

†ps12t~ds
†ps1ps

†ds!#1Un↑
dn↓

d

and

Hmed5(
ks

~Wkcks
† ps1H.c.!1(

ks
«kcks

† cks ~14!

describes the coupling of the oxygen states with the effective
medium, characterized by the hybridization

J~v!5(
k

uWku2

v1 i012«k
. ~15!

This coupling of the effective medium to the oxygen states,
although not unique, is physically motivated by the local
arrangement of the original lattice. From the equation of mo-
tion of the effective Hamiltonian, it follows that

Gd~v!215v2«d2Sd~v!2
4t2

v2«p2J~v!
. ~16!

Comparing this with Eq.~11!, one immediately finds

J~v!5t2Gd~v!S 12
t2Gd~v!

v2«p2t2Gd~v! D . ~17!

This is the self-consistant equation of the theory, based on
the condition that the Green’s function of the impurity model
defined in Eq.~13! equals that of the lattice system. Note that
this effective medium, which represents the states coupled to
the oxygen, is predominantly determined by the correlated
TM sites.

In the following we solve the impurity model of Eq.~13!
using the iterated perturbation theory~IPT!, and an extended
version of the noncrossing approximation~NCA!, where the
effective medium is fixed by Eq.~17!. Since it was necessary
for the consideration of the TM-O cluster to generalize the
standard NCA scheme to more local eigenstates, the corre-
sponding details are given in the Appendix.

III. RESULTS

In the following, we present our results for the TM and O
densities of states obtained within the IPT and NCA. In Fig.
3 we show our results for the TM and O densities of states
obtained within the IPT for half filling x50
(x5nd1np21). Two Hubbard bands, which are dominated
by TM states, are separated byU and two oxygen dominated
bands in the neighborhood of«p are visible. Similar to the
one-band case, the IPT leads to an interesting structure of the
density of states, where now four bands are occurring. How-
ever, the expected insulating behavior at half filling~for
largeU) does not occur. This results from the overestimation
of the spectral weight of the lower Hubbard band within the
IPT by }12nd . The occupation of oxygen sites (np.0)
due to TM-O hybridization leads to an overcounting of cop-
per sites, which can be occupied without paying any Cou-
lomb energy. Therefore, the success of the IPT in the one-
band case17 does not occur within the two-band model. This
is due to the absence of the particle-hole symmetry and the
change of the TM occupation numbernd as a function oft at
half filling. This shortcoming of the IPT results from the
occupation of O sites and is expected to vanish for small
np , which occurs in the limit of a large value for
D5«p2«d . However, for the physically interesting situa-
tion D'U/2, the IPT leads to qualitatively wrong results and
one has to develop theoretical approaches that take the local
TM-O many-body states explicitly into account. Therefore,
we use the NCA, which was shown to be in excellent agree-
ment with quantum Monte Carlo simulations in the one-band
case, such that a local TM-O hybrid with 16 local eigenstates
is coupled to an effective medium. Here, the TM-O singlet
state, which is related to an important excitation near half
filling, is explicitly taken into account.

FIG. 2. Schematic impurity model where a cluster of one TM
and O site is embedded within an effective medium. Here, the local
hybridization t between the two local sites is explicitly taken into
account. The effective medium is coupled only to the oxygen states.

FIG. 3. TM ~solid line! and O ~dashed line! density of states
obtained within the iterated perturbation theory for half filling. Note
that the spectral weight of the various bands is erroneously de-
scribed within the IPT such that no insulator occurs for half filling.
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In Fig. 4 we show the TM and O densities of states at half
filling and for a hole and an electron-doped system, obtained
within the noncrossing approximation. The calculations are
performed forU52D510t and t51 eV. At half filling we
now find the expected insulating state; i.e., the Fermi level
lies in the middle of the charge-transfer gap. In this charge-
transfer regime we find bands dominated by TM states (B,
F, andG), which are separated by the Coulomb repulsion
U due to the Mott-Hubbard splitting and on both sides of the
charge-transfer gap TM- and O-dominated bands (B and
C). Besides the O-dominated band above the charge-transfer
gap (C-D) a second one for higher excitation energy occurs
(E). A detailed analysis of the transitions between the vari-
ous many-body states of the local TM-O hybrid reveals that
these are built up by the TM-O singlet and triplet states. All
these features of the density of states are believed to be gen-
eral properties of the model under consideration33 and are
also qualitatively in agreement with exact cluster diagonal-
izations and Monte Carlo simulations for two-dimensional
systems.34–36 This demonstrates that it is indeed possible to
reproduce important physical phenomena of the low-
dimensional situation within the largeD approach. Besides
this general structure on a larger energy scale, a coherent
quasiparticle peak near the Fermi level occurs, which shows
an interesting temperature and doping dependency~see be-
low!.

In order to clarify the origin of the details of the density of
states, we investigated which transitions between the local
many-body states are predominately responsible for each
band. Technically, this is performed within the NCA if one
restricts the available Hilbert space according to the general
scheme presented in the Appendix. If the spectral weight of a
band decreases after projecting out a certain local state
um&, a transition from or into this state is responsible for the
band. This analysis is of particular importance, if one is in-

terested in calculations within a restricted Hilbert space of
the most important states. The results are presented in Fig.
4~b! for hole-doped systems, whereby the meaning of the
state labels are given in Table I. The leading contribution is
underlined while negligible contributions are embraced.

The main contributions to the bandsB andE occur also
for an uncorrelated system and are built up by transitions
between an empty stateu0& and a bonding (uds&) or anti-
bonding (ups&) combination of TM and O states, respec-
tively. More interesting are the bandsA, C, F, andG, be-
cause they are purely due to strong electronic correlations.
Here, the bandsF and G are due to transitions from the
TM-dominated stateuds& to states that are dominated by
doubly occupied TM sites, i.e., they form the upper Hubbard
band. BandC contains essentially the well-known TM-O
Zhang-Rice singlet state32 resulting from a transition from
the bonding stateuds& to the stateuS0& dominated by the
TM-O singlet state. Other contributions close in energy are
identified under labelD. Furthermore, a pronounced part of
bandE, which consists predominantly of antibondingups&
states, results also from the transition of singly occupied sites
to TM-O triplet statesuT6& . Consequently, we find a singlet-
triplet splitting, which compares well with the result 8J ob-
tained from perturbation theory int for two spatial dimen-
sions, whereJ5t2@D211(U2D)21#.37 Finally, the lowest
stateA results from a transition between the antibonding
stateups& and the singlet stateuS0&. Interestingly, this state
occurs for very low excitation energies and only in systems
with an occupied singlet state, i.e., for hole-doped systems.
This is a consequence of the fact that the singlet state with
two particles per TM-O unit has lower energy than the singly
occupied antibonding stateups&.

This interpretation of the various bands in terms of the
transitions between many-body states allows a transparent

TABLE I. The degeneracy, occupation, and relative energy of all local eigenstates introduced in the
Appendix and the corresponding labels used in Fig. 4 are given. The eigenvalues are obtained forU510 eV,
D55 eV, andt51 eV. Here, tan2f52(4t/D) and tan2u5(4t/D1U) . The coefficientsui , v i , andwi can
be obtained from the diagonalization of the three-dimensional space built up byuS0&, udd&, andupp&; see, for
example, Ref. 42.

State label State Degeneracy Occupationn0 Em2mn0

1 u0& 1 0 0
2 uds&5(cosfds

†1sinfps
†)u0& 2 1 -0.701

3 ups&5(cosfds
†2sinfps

†)u0& 2 1 5.701
4 uT0&5(1/A2)(d↑

†p↓
†1d↓

†p↑
†)u0& 1 2 5

5 uTs&5ds
†ps

† u0& 2 2 5
6 uS0&5@u1d↑

†d↓
†1v1p↑

†p↓
† 1 2 2.738

2w1(d↑
†p↓

†2d↓
†p↑

†)] u0&
7 udd&5@u2d↑

†d↓
†1v2p↑

†p↓
† 1 2 12.217

2w2(d↑
†p↓

†2d↓
†p↑

†)] u0&
8 upp&5@u3d↑

†d↓
†1v3p↑

†p↓
† 1 2 10

2w3(d↑
†p↓

†2d↓
†p↑

†)] u0&
9 uDs&5(cosuds

†ps
†d2s

†

1sinuds
†ps

†p2s
† )u0& 2 3 9.298

10 uPs&5(cosuds
†ps

†p2s
†

2sinuds
†ps

†d2s
† )u0& 2 3 15.702

11 uDP&5d↑
†p↑

†d↓
†p↓

†u0& 1 4 20
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explanation of the doping dependence of their spectral
weight. In Fig. 5 we show the spectral weight of various
bands upon electron and hole doping. For hole doping we
plot in part ~a! of the figure the spectral weight of all occu-
pied states and of the occupied part of the singlet band~low-
energy hole states!. The latter demonstrates that the transfer
of spectral weight, discussed in Ref. 8, is included within our
approach. As expected, the spectral weight of the bonding
band decreases upon doping. However, bandA, which re-
sults from the transition betweenuS0& and ups& increases,
because upon hole doping more initial singlet states are
available The corresponding results for the electron-doped
materials are shown in Fig. 5~b!, where we plot the spectral
weight of all unoccupied bands and that of the unoccupied
part of the lower Hubbard bandB, which carries the Fermi
level ~low-energy electron states!. While the spectral weight
of the bands, which are purely due to correlations, decreases,
bandE increases upon electron doping. The character of the
system becomes much more uncorrelated, leading to an in-
crease of the bonding and antibonding TM-O states, which

are present also forU50 with even larger spectral weight.
Based on this analysis, which demonstrates that the den-

sity of states near the Fermi level is built up by the transi-
tions between only a few local many-body states, it is inter-
esting to perform the calculation within a restricted Hilbert
space. In Fig. 6 we show the TM and O densities of states if
one takes only the statesu0&, ups&,uds&,uS0&, anduT6& into
account. The results are compared with that for the full Hil-
bert space~dashed line!. It is impressive that the details of
the single-particle excitation spectrum near the Fermi level
are very well reproduced by this restricted set of states. Note
that this calculation includes still the full information about
the orbital character of the low-energy spectrum. This might
be of interest for the theoretical description of more complex
systems where the diagonalization of the local problem leads
to extremely large numbers of coupled integral equations of
the NCA. The most important states can be found straight-
forwardly from the eigenstates of the complete local prob-
lem, since the peak position is well reproduced from the
corresponding difference of the relative eigenenergies, as
given in Table I.

Finally, we present our results for the coherent low-
energy peak near the Fermi level. In Fig. 7 we show the
density of states near the Fermi level (v50) for a hole
doping concentrationx50.2 for various temperatures.38 For
electron doping, the corresponding low-energy part of the
spectrum behaves very similarly. Although the density of
states at the Fermi level is almost constant, the states near the
Fermi energy are strongly temperature dependent. For de-
creasing temperature, a coherent quasiparticle peak occurs,
which builds up its maximum slightly below the Fermi en-
ergy.

FIG. 4. TM ~solid line! and O ~dashed line! density of states
obtained within the hybrid-NCA at half filling~a! for hole doping
x50.1 ~b!, and electron dopingx520.1 ~c!. For hole doping it is
indicated which transitions between the local states contribute to the
corresponding bands, where the meaning of the state labels is given
in Table I. The leading contribution is underlined while negligible
contributions are in parentheses.

FIG. 5. Doping dependence of the spectral weight multiplied
with the spin degeneration of the occupied bands and the occupied
part of the singlet band~low-energy hole states! for hole doping~a!
and of the unoccupied bands and the unoccupied part of the lower
Hubbard band~low-energy electron states! for electron doping~b!.
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In Figs. 8~a! and 8~b! we present our results for the dop-
ing dependence of the low-energy part of the spectrum for a
hole-doped system in the charge-transfer regime and for an
electron-doped system in the Mott-Hubbard regime at
T5300 K. As expected, the general behavior of the low-
energy part of the total density of states is relatively similar
in both regimes. The evolution of these quasiparticles results
in a large effective-mass ratio obtained viam* /m
5@12]ReSd(v)/]v#uv50 . In Fig. 8~c!, as a representative
example we show results for a hole-doped material in the
charge-transfer regime corresponding to Fig. 8~a!. This
shows clearly the mass enhancement when approaching the
insulating regime either charge-transfer or Mott Hubbard
type and resembles the doping dependence of the effective-

mass obtained within the Brinkmann-Rice transition,43,44

where only the coherent part of the spectrum occurs. In ad-
dition, we plot in Fig. 8~a! the density of states for low hole
doping (x50.017) but for large temperatures ofT51000 K.
This shows that the quasiparticle peak disappears completely
between 300 and 1000 K, giving rise to an enormous tem-
perature dependence of the low-energy excitations in
slightly-doped perovskite systems. The enhancement of
m* /m with band filling agrees with the observed behavior in
Sr12xLaxTiO3 ,

10 which is believed to fall into the the Mott-

FIG. 6. TM ~a! and O~b! density of states obtained within the
hybrid-NCA for hole dopingx50.1 within a restricted Hilbert
space of the local statesu0&, uds&, ups&, uTs&, anduS0& in compari-
son with the results of the full local space~dashed lines!.

FIG. 7. Density of states near the Fermi level for hole doping
x50.2 and for various temperatures. Note the formation of a coher-
ent quasiparticle peak resulting from Kondo-like resonances be-
tween the singly occupied bonding TM-O state and the doubly oc-
cupied singlet state.

FIG. 8. Doping dependence of the coherent quasiparticle peak
for T5300 K in the charge-transfer regime withU510 eV,D55
eV ~a! and in the Mott-Hubbard regime withU55 eV,D59.5 eV
~b!. In both cases we uset51 eV. The effective mass in the charge-
transfer regime and for hole doping is shown in part~c!. For com-
parison we also plot in the inset the result for low hole doping
(x50.017) but high temperatureT51000 K, which demonstrates
that strong temperature dependence occurs in the low doping re-
gime.
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Hubbard regime. Furthermore, the measurement of the Hall
coefficient indicates the formation of a large Fermi surface.
Although our dynamical mean-field approach does not allow
an investigation of the momentum-dependent spectral den-
sity

A~k,v!'
m

m*
d~v2«k* !1Aincoh~k,v!,

we believe that a large effective-mass ratiom* /m leads to a
large Fermi surface formed by the coherent part of the spec-
trum (m/m* )d(v2«k* ) with renormalized quasiparticle en-
ergy «k* . This is possible because only a few particles can
occupy a large number of momentum states due to its low
spectral weightm/m* . The physical origin of the coherent
quasiparticle resonance is similar to the conventional
Abrikosov-Suhl resonance of systems with magnetic impuri-
ties. In the charge-transfer regime, for hole doping, the reso-
nant transition between a bonding stateuds& and the Zhang-
Rice singletuS0& builds up the Kondo-like peak. For electron
doping, it is correspondingly a transition between an empty
stateu0& and uds&.

IV. CONCLUSIONS

In conclusion, we presented a dynamical mean-field
theory for perovskites that is based on a scaling procedure of
the large-dimensional Hubbard model of transition-metal
3d and oxygen 2p states. In the limitD→`, the electronic
self-energy is, similar to the one-band case, momentum in-
dependent and the model can be mapped onto an Anderson
impurity model. It is demonstrated that the most natural
choice of this impurity is to include all local orbitals of one
unit cell, not solely the strongly correlated ones. Correspond-
ingly a model with 16 local many-body states is embedded
into an effective medium, which has to be determined self-
consistently. Motivated by the perovskite lattice geometry,
this effective medium is coupled only to the oxygen sites of
the impurity and simulates predominantly the TM sites of the
real lattice. The solution of the local problem is performed
using the iterated perturbation theory and an extended non-
crossing approximation. It is shown that the spectral weight
of the various bands of the density of states is erroneously
described within the IPT. This shortcoming results from the
missing electron-hole symmetry of the half-filled model,
leading to an absence of a metal insulator transition for half
filling. In distinction, the NCA is able to describe this prob-
lem properly and gives interesting insight into the origin and
doping dependence of the various bands of the TM and O
densities of states. Furthermore, the occurrence and doping
as well as temperature dependencies of a coherent quasipar-
ticle peak near the Fermi level are discussed. This results
from a Kondo-like resonance between an empty and a bond-
ing TM-O state for electron doping and this bonding state
and the Zhang-Rice singlet state for hole doping. Finally, it
is shown that the restriction of the local states to a limited set
of most important states reproduces very well the low-energy
density of states, keeping the full orbital information of the
involved states. This is of importance for an extension of the
theory to more realistic situations including all fived bands
such that only a small number of coupled NCA equations
have to be solved. This might be stimulating for further theo-

retical studies of transition metal compounds within the dy-
namical mean-field approach.
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APPENDIX: NONCROSSING APPROXIMATION
OF A TM-O CLUSTER

In this Appendix, we discuss an extended version of the
noncrossing approximation for an impurity model given in
Eq. ~13!. The NCA was shown to be in excellent agreement
with quantum Monte Carlo calculations for the dynamical
mean-field theory of the one-band case.22,23This approxima-
tion is not a perturbational expansion with respect to the
Coulomb repulsionU, but takes into account all eigenstates
of the local part of the impurity Hamiltonian by performing
an expansion with respect to the hybridizationJ(v). There-
fore, we rewrite the Hamiltonian of Eq.~13! in terms of the
Hubbard operatorsXm8m[um8&^mu, where um& is, in our
case, one of the 16 eigenstates ofH loc , with eigenvalueEm
~see Table I!:

H loc5(
sm

EmXmm,

Hmed5 (
ksmm8

~Wkcks
† Pmm8

s Xmm81H.c.!1(
ks

«kcks
† cks .

The eigenvalues ofH loc are explicitly given in Ref. 42. The
(16316) matrixPs and a corresponding matrixDs are de-
fined by the following representation of the O and TM de-
struction operators:

ps5 (
m,m8

Pmm8
s Xmm8,

ds5 (
m,m8

Dmm8
s Xmm8.

Using this representation of the Hamiltonian, one introduces
within NCA scheme the local propagators for each of the
eigenstatesum&:

Pm~v!5
1

v1 i012Em2Sm~v!
, ~A1!

with the corresponding spectral densitypm(v)
52(1/p)ImPm(v1 i01). The NCA self-energies are given
by

Sm~v!52
1

p (
s,m8

uPm,m8
s u2E

2`

1`

d« f ~hm,m8«!

3ImJ~«1 i01!Pm8~v1hm,m8«!. ~A2!

Here, f («) is the Fermi distribution function and
hm,m8511 (21) if the particle number of the stateum8& is
higher ~lower! than the particle number of the stateum&. In
Eq. ~A2!, we neglect the vertex corrections discussed in
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Refs. 31 and 39–41. Although this was shown to slightly
underestimate the Kondo temperature and to shift the
Abrikosov-Suhl resonance slightly away from the chemical
potential, it gives important insights into the low-energy ex-
citations, in particular for large values of the Coulomb repul-
sion. Furthermore, in view of the enormous numerical prob-
lems, which arises if one calculates these vertex corrections
even for less complex systems than ours,40,41 and due to the
additional self-consistent condition of the largeD approach,
it is actually very difficult to go beyond Eq.~A2!. Finally,
the Green’s functions of the system, which give the informa-
tion about the single-particle excitation spectrum, result from

Gd~v!5 (
m,m8

uDmm8
s u2^^Xm8m ;Xmm8&&v , ~A3!

Gp~v!5 (
m,m8

uPmm8
s u2^^Xm8m ;Xmm8&&v , ~A4!

where ^^Xm8m ;Xmm8&&v is the Fourier transform of the re-
tarded Green’s function2 iu(t)^@Xm8m(t);Xmm8(0)#1&.
They can be expressed with respect to the NCA local propa-
gators as follows:

^^Xm8m ;Xmm8&&v5
1

Z0
E

2`

`

d«e2b«@pm8~«!Pm~v1«!

2pm~«!Pm8~v2«!* #,

where the partition sum Z0 is defined by
(m*2`

` d«e2b«pm(«). All the summations with respect to
m andm8 are performed over the 16 eigenstates ofH loc . As
can be seen from Table I the spin degeneracy leads to only
11 different eigenstates and propagators in the paramagnetic
state. The solution of Eqs.~18! and ~19!, which are coupled
singular integral equations, is performed using the fast Fou-
rier transformation for the convolution integrals and using
the defect propagators of the local eigenstates.28,29

1J. G. Bednorz and K. A. Mu¨ller, Z. Phys. B64, 189 ~1986!.
2Y. Fujishima, Y. Tokura, T. Arima, and S. Uchida, Physica C
185, 1001~1991!.

3T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B48, 17 006
~1993!.
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