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Dynamical mean-field theory for perovskites
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Using the Hubbard Hamiltonian for transition-metal 8hd oxygen B states with perovskite geometry, we
present a dynamical mean-field theory that becomes exact in the limit of large coordination numbers or
equivalently large spatial dimensiolls. The theory is based on a description of these systems for [rge
using a selective treatment of different hopping processes, which cannot be generated by a unique scaling of
the hopping element. The model is solved using a perturbational approach and an extended noncrossing
approximation. We discuss the origin of the various &d 2 bands, the doping dependence of its spectral
weight, and the evolution of quasiparticles at the Fermi level upon doping, leading to interesting insight into
the dynamical character of the charge carriers near the metal insulator instability of transition-metal oxide
systems, three-dimensional perovskites, and other strongly correlated transition-metal oxides.
[S0163-182696)01528-7

[. INTRODUCTION tance for an understanding of these materials that one takes
the local spin and charge fluctuations of the transition-metal
The electronic structure of the strongly correlated copperandthe oxygen states into account; i.e., both orbital degrees
oxide superconductors, other transition-metal-based perovef freedom have to be described on the same footing.
kites, and of transition-metal oxides such as NiO, FeO, or For systems with one orbital degree of freedom a theoreti-
MnO has been an enduring problem in the last yé&atstill cal approach that allows the calculation of the excitation
containing numerous unresolved questions. Among them argpectrum of strongly correlated systems, maintaining the
the nature of the insulating state, the evolution and dopinglominating local correlations, was recently proposed by
dependence of coherent quasiparticles near the Fermi enerddetzner and Vollhard? They introduced a dynamical mean-
in a doped Mott Hubbard or charge-transfer insuldtand field theory, where the system can be mapped onto a local
the transfer of spectral weight from high- to low-energy problem coupled to an effective balttr.*® This dynamical
scale€ Experimentally, interesting variations of the spectro-mean-field approach is exact in the limit of large coordina-
scopic and thermodynamic materials occur upon electron anion numbers or equivalently for large spatial dimensions
hole doping®*? Recently, Tokuraetall® showed that (D—=)."*%In most applications of this approach, the one-
Sr, _,La, TiO5 with perovskitelike structure exhibits a pro- band Hubbard model is considered. A scaling of the hopping
nounced increase of the effective mass in approaching thelement liket=t*//D with fixed t* leads forD— to a
insulating state while keeping the existence of a large Fermiemarkable simplification of the many-body problem while
surface that satisfies the Luttinger sum rule. They alreadyetaining the nontrivial local dynamics of the elementary ex-
argued that the different behavior of this compound com<itations and other main features of the modef?
pared to the pronounced two-dimensional higheuprates Few attempts have been made to extend the dynamical
might be due its three-dimensional character. Furthermoranean-field theory to systems with more than one orbital de-
the transfer of spectral weight in Li-doped Ni@ef. 1) and  gree of freedom. Valenti and Grdsrealized that for the
the investigation of hole and electron doping of this com-two-band Hubbard model with perovskite structure, a scaling
pound in Ref. 12 demonstrate the importance of strong elegrocedure similar to the one-band model does not lead to a
tronic correlations in transition-metal oxides. A systematicfinite bandwidth. In order to avoid these difficulties Georges,
analysis of the electronic structure ofi 3ransition-metal Kotliar, and KrautR® introduced a CuO model where two
compounds was recently performed by Saitttal® They interpenetrating hypercubic lattices of copper and oxygen
showed that for a variety of materials such as LaMnO sites have been considered. This leads to a finite bandwidth
LaFeQ,. LaCoQ;, Mng,sliS,. Nig33liS,, NiO, FeO, or and is able to describe interesting physics of the model under
MnO the character of the band gap is of the charge-transferonsideration. However, square root divergencies of the un-
type. Furthermore, the analysis of x-ray photoemissiorcorrelated density of states occur, which result from the
spectrd® demonstrates the importance of the charge-transfesublattice structure of the underlying lattice. This could limit
mechanism in systems such agQ{, TiO,, or LaCrQ; and  the range of applicability of this model in the description of
showed that many of the early transition-metal compoundseal transition-metal oxides or possibly high-systems.
have to be reclassified as intermediate between the charge- In this paper we propose a scaling procedure to develop a
transfer and the Mott-Hubbard regions or as falling into thereasonable model of perovskite systems for lddgeased on
charge-transfer region itself. Consequently, it is of impor-a selective treatment of different hopping processes in large
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dimensions. It will be shown that this procedure leads to an-site energiest is the amplitude of the nearest-neighbor
large D version of the three-band Hubbard model, whichTM-O hopping integral, andJ is the Coulomb repulsion
reproduces important physics of the low-dimensional situabetween TM holes with occupation number operator
tion. First, we solve this model using perturbation thé6f)  nd —qf 4. The p, -d hopping matrix elements have
and show that this leads to a qualitatively wrong description 'g 7 t t?] a_ | q i l=itx /2

of the physics near half filling. These problems are avoided® 29 SYMMELry, SO ag;; = or T 1=17T X2 0r
by using an extended version of the noncrossing |~ Xa/2, refpectwely. Only the combinatiorps,
approximatior?’-3! Finally, we discuss the doping depen- =(1/\2D)Z.0{Piox, Of OXygen states hybridizes with the
dence of the transition-metal and oxygen densities of statesl states>? Since the operatorsg, do not anticommute, it is
This is of interest due to the evolution of coherent quasiparnecessary to orthogonalize the corresponding states leading

ticles near the Fermi energy, the transfer of spectral weighto p, = Vilpska where pg, is the Fourier transform of
and the change of the effective mass upon doping. Ps, and

Il. THEORY

D
The dynamical mean-field theory, which becomes exact in

2
the limit of large coordination numbers, turned out to be a %=1 5;1 COK, - @
natural starting point for the description of highly correlated
electronic systems such as the one-band Hubbard model and . . .
the Anderson lattice model. All this is based on a properBesides they, , which now fulfill standard fermion commu-
scaling of the hopping element, originally proposed in Reftation relations,D—1 linear independent combinations of
14. In the following, we show that the extension of this ap-the Fourier transforms qﬁ,T(,Xa occur, which are orthogonal

proach to more complex systems is only possible if one geng, p! and build up nonbonding oxygen orbitals. These non-

eralizes the idea of the scaling procedure in a way that thg,ging states at, decouple from the remainder of the sys-
corresponding transfer functions between different unit cells P

but not the hopping element itself, have to be scaled. This i%eT gnd d?] not h?\_/e to be _Tonsldereddm the following cal-
demonstrated for the case of the two-band Hubbard Hamil*" ation. The resulting Hamiltonian reads

tonian, which describes hybridized transition-metaM)

and oxygen states with perovskite lattice structure. Similar to

the one-band case, the problem can be mapped onto an H=2 (sddﬁgdk,ﬁspplgpka)

Anderson impurity problem and the enormous amount of ko

theoretical tools, developed for the solution of this model,

can be used. Furthermore, we show that the most natural +2DtY, (% di Pk +H.C)+U nind . (3)
choice of the corresponding impurity problem is to include ko |

all local orbitals into the impurity, not solely the strongly

correlated ones. Otherwise, the set of self-consistent equays js a straightforward extension of the two-band Hubbard

tions is not well-defined, leading to various computational,qqel of perovskite systems to arbitrary dimension and can

problems. In our case, a cluster of hybridized TM and O site%e used as the basis of aDLlexpansion. However, there

is embedded into an effective medium. Physically, this ISavists no scaling of the form=t*/D# with exponents lead-
necessary because the charge and spin fluctuations of thesSe i wrivial limit forD—sc0. Valenti and Gro i
two states are closely intertwined and have to be describe@d '© @ hontrivial imit forty—=cs. vaienti and t5ros' sug

on the same footing. The solution of the extended Andersoﬂ?s"ed a scaling .W'tlﬁzllz’ .Wh'Ch. leads to a zero band-
impurity model is performed using a perturbational width of the bonding and antibonding states, i.e., the TM-O

approach’?® and an extended version of the noncrossmg“dimers” of different lattice sites decouple. All other
approximatior?’~3! The details of the latter method are pre- choices ofs lead either to zero or to infinite density of states.

sented in the Appendix. In order to obtain a physically reasonable limit of the
_ perovskites for larg® one has to bear in mind that different
A. Scaling procedure for large D hopping processes, which are of the same ordér Bre of

We consider theD-dimensional extension of the perov- different importance for larg®. Due to the local character
skite lattice, where the transition-metal sites sit on aOf the Coulomb interaction, it is sufficient to perform the
D-dimensional hypercubic lattice and tBeoxygen sites per Scaling at first forU=0. For the calculation of the single-
unit cell are located between every two nearest-neighbor TNparticle Green’s function one has to sum up all closed paths
sites. For simplicity, we consider only one TMidrbital. ~ ON the lattice under consideration. In Fig. 1 we show two
The corresponding@+1)-band Hubbard Hamiltonian for different hopg)mg processes, which are of fourth ordet.in
the TM 3d and O 2, (a=1,... D) orbitals reads There are D processes of typé) and only 2D processes

“ of type (b). Using a scaling such as=t*/\/D the contribu-
+ T tion of the (a) processes to the Green’s function are of order
H= % deiodio+|§a €pPigx Prox, 1 whereas théb) processes have only contributions of order
' o 1/D and are suppressed fBr— leading to the zero band-
@t d_d width of Ref. 24. This results from the TM coordination
H“Za gil(divp'UXQ+H'C')+Uzi ity - (@) number being P whereas the oxygen coordination number
.t - ) ) is 2. A selective consideration of these different paths can be
Here,d;, (Pi,x ) creates a hole in a TM®(O 2p, ) orbital  obtained by the following partial summation of paths starting
at sitei (I) with spino. e4 ande, are the corresponding at TM sitei and ending at the TM sitg:
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ian distribution functiony/2/mexp(—2y?).*® For simplicity,

we use in the following a semielliptical reduced density of
statespo(y) = 2/m1—y? if y?<1 and zero otherwise. This

Bethe lattice of the TM sites does not change the relative

local arrangement of TM and O sites, typical for perovskite
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: systems. Finally, it is interesting to point out that this se-
BN SR et ' . ' lected treatment of different hopping processes can be gen-
_ _c> ® P /,t_\+ ferlf;ueo_l by thelz_ Hatmlltofnlan ?_f Ec(?)t,hlf onﬁ perforrps tth?
R NN ollowing scaling transformation of the coherence factor:
2
FIG. 1. Hopping processes of ordgt, which are of different t2D yﬁ—>2(t*)2—2 \[S(t*)zak_ (10

importance for largd. Since there are @2 processes of typé&)
but only 2D processes of typéb), the latter are suppressed com-

pared to the former for large dimensions Based on this formulation of the larde version of the

TM-O system forU =0, it is straightforward to show fod

#0, in analogy to the one-band case, that the self-energy
3 4(w) of TM holes is momentum independent. Conse-
quently, one finds the following for the TM Green'’s function

4ij(@) =G§(@) 8 + G§(@) Tjj(©) G§ ()

+2| G (@) Ti(0)Gi (@) T)j(w)Gi (@) + - -. within the Bethe lattice:
4?2 1 4% \?

W Gyw) 0 eg—S(w) - —— ‘Z(w—s ) Gylw).

Here, the locall Green'’s function p p (11)
G(w)=| w—e4— 2Dt? | (5) This results from the representation of the Green’s function
d d w—¢gp with semielliptical density of states:

contains all TM-O-TM hopping processes, where the path 1
returns to the starting TM site without entering any other TM Gy(w)= NE Gy(k,w)
site [(a) processels The transfer functiorT;;(w), which is K
given by (—t2)/(w—ap) for neighboring TM sites and zero w—t, [(0—ey)[w—e4—Sq4(®)]
otherwise, has the character of an effective, but frequency- T p}‘( P a2 , (12

dependent TM-TM hopping elemeﬁtijoc5<ij>t2 [(b) pro-
cessep Therefore, we propose the following scaling proce-with F(z)=2[z—1—(z—1)>~1] and the relation
dure, where the two different hopping processes are treatefl(z)~1=z—1—17(z). Furthermore, the system can be

differently: mapped onto an Anderson model with effective hybridiza-
4(t%)?) 1 tion and additional self-consistency condition.
th(w)=<w—sd— > =D/, (6) Finally, we note that the additional consideration of the
—&p TM-O Coulomb repulsionU,4 would lead to further

5 (1) frequency-dependentcontributions of the self-energies

t 3 o5(w) (aBe{p,d}). This results from the small coordina-
Tij(@)=— &) \/;w—gp’ (t%)?= \/D_/th' () tiorf number of the oxygen sites and is different in the one-
) ) ] band case, where each intersite Coulomb repulsion contrib-

Here, the effective TM-TM hopping; (nott itselfy has \ies in zeroth order of I¥ only through its Hartree-Fock

been scaled in ana_llogy to the one-band case. Conse_quen%me_lg Therefore, the limitD— might be an interesting
the processes of Fig(H) are no more suppressed relative t0 5nnroach for a detailed consideration of the dynamical inter-

that of Fig. 1a). The summation of all closed paths on the pjay of spin and charge fluctuations of transition-metal ox-
remaining hypercubic TM lattice is straightforward and leadsjyeg.

to thed Green’s function fold =0:

po(y—1) B. Effective TM-O impurity model

o _ W&
Ga(@)= 4(t*)2f dy(w—gp)(w—gd)m(t*)z—y’ ® As in the one-band case, the lareversion of a TM-O
model is mapped onto an effective impurity model. Due to
the occurrence of an additional orbital degree of freedom, the
choice of the corresponding effective medium is not unique.
oY) = 12 5<y— ia 9) Although, the most obvious choice might be to embed only
N“R J2D K the TM site into an effective medium and to change solely
the self-consistence condition, it is straightforward to show
with a=30_;cok,. The oxygen Green's function that this leads to a divergence of the hybridization of this
Gp(w), which refers to the statgs,, can be obtained from medium at the oxygen on site energy. This is due to the
Gg(w) by interchanging:4 ande,,. The largeD behavior of  fact that the effective medium has to simulate not solely the
po(y) is, in analogy to the one-band case, given by a Gausszorrelated TM sites but also the existence of the oxygen

where the reduced density of stajggy) is defined by
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FIG. 2. Schematic impurity model where a cluster of one TM
and O site is embedded within an effective medium. Here, the local
hybridizationt between the two local sites is explicitly taken into
account. The effective medium is coupled only to the oxygen states(j

FIG. 3. TM (solid line) and O (dashed ling density of states
btained within the iterated perturbation theory for half filling. Note
that the spectral weight of the various bands is erroneously de-

states. In order to avoid this divergency, we propose in th%cribed within the IPT such that no insulator occurs for half filling.

following an impurity model where a cluster of one TM and
one O orbital is embedded within an effective medium. This

o . ; : In the following we solve the impurity model of E¢L3)
is illustrated in Fig. 2. Motivated by the perovskite geometry, . : .
we couple the effective medium only to the oxygen sites YSINg the iterated perturbation thedi?T), and an extended

Furthermore, the local TM-O hybridization within the cluster V(fafrsut)_n of théa. nor?crqus(;ng aEpp:rLc%lggtldn_Ct:A), Where the
is explicitly taken into account. This leads to a well-definedEECUVE Meaium IS fixed by d17). Since it was necessary

effective medium. The corresponding Hamiltonian reads for the consideration of the TM-O cIust_er to generalize the
standard NCA scheme to more local eigenstates, the corre-

Heor=Hioet Hmeds (13 sponding details are given in the Appendix.
where the local part is given by
Ill. RESULTS
H,. = dtd +e.pfp +2t(d' o +ptd. )1+ Undnd In the following, we present our results for the TM and O
loc Z [£adydot £pPoPo+ 2H(d Pyt Pod,)] [ densities of states obtained within the IPT and NCA. In Fig.

3 we show our results for the TM and O densities of states
obtained within the IPT for half filing x=0
(x=ng+n,—1). Two Hubbard bands, which are dominated
Himei= 2> (WiCh p,+H.C)+ > excl iy (14) by TM states, are separated byand two oxygen dominated
ko ko bands in the neighborhood ef, are visible. Similar to the
é)ne-band case, the IPT leads to an interesting structure of the
density of states, where now four bands are occurring. How-
ever, the expected insulating behavior at half filliffor
W, |2 largeU) does not occur. This results from the overestimation
(15  of the spectral weight of the lower Hubbard band within the
IPT by «1—ng4. The occupation of oxygen sitesi{>0)

This coupling of the effective medium to the oxygen statesdu€ 10 TM-O hybridization leads to an overcounting of cop-

although not unique, is physically motivated by the localP€' Sites, which can be occupied without paying any Cou-
arrangement of the original lattice. From the equation of mo—lt?mb energy. Therefore, the success of the IPT in the one-

and

describes the coupling of the oxygen states with the effectiv
medium, characterized by the hybridization

T )=,

k w+i0+_8k.

tion of the effective Hamiltonian, it follows that and cas¥ does not occur within the two-band model. This
is due to the absence of the particle-hole symmetry and the
t2 change of the TM occupation humhey as a function ot at
Gy(w) t=w—eq4—34(0)————. (16 half filling. This shortcoming of the IPT results from the
w—ep—J) occupati . : ;
pation of O sites and is expected to vanish for small
Comparing this with Eq(11), one immediately finds n,, which occurs in the limit of a large value for
A=ge,—eq. However, for the physically interesting situa-
) t°Gy(w) tion A=U/2, the IPT leads to qualitatively wrong results and
J0)=1"Gy(w)| 1— m : (17 one has to develop theoretical approaches that take the local

TM-O many-body states explicitly into account. Therefore,
This is the self-consistant equation of the theory, based owe use the NCA, which was shown to be in excellent agree-
the condition that the Green’s function of the impurity modelment with quantum Monte Carlo simulations in the one-band
defined in Eq(13) equals that of the lattice system. Note that case, such that a local TM-O hybrid with 16 local eigenstates
this effective medium, which represents the states coupled tis coupled to an effective medium. Here, the TM-O singlet
the oxygen, is predominantly determined by the correlatedtate, which is related to an important excitation near half
TM sites. filling, is explicitly taken into account.
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In Fig. 4 we show the TM and O densities of states at halfterested in calculations within a restricted Hilbert space of
filling and for a hole and an electron-doped system, obtainethe most important states. The results are presented in Fig.
within the noncrossing approximation. The calculations are4(b) for hole-doped systems, whereby the meaning of the
performed forU=2A=10t andt=1eV. At half filling we  state labels are given in Table I. The leading contribution is
now find the expected insulating state; i.e., the Fermi leve|inderlined while negligible contributions are embraced.
lies in the middle of the charge-transfer gap. In this charge- The main contributions to the ban@sandE occur also
transfer regime we find bands dominated by TM sta®s ( for an uncorrelated system and are built up by transitions
F, andG), which are separated by the Coulomb repulsionyetween an empty sta{®) and a bonding |¢l,)) or anti-

U due to the Mott-Hubbard splitting and on both sides of thebonding (p,)) combination of TM and O states, respec-
charge-transfer gap TM- and O-dominated banBsand ey More interesting are the bands C, F, andG, be-

C). Besides the O-dominated band above the charge-transfey, oo they are purely due to strong electronic correlations.

gap (C-D) a second one for higher excitation energy OCCUM jere, the band$ and G are due to transitions from the
(E). A detailed analysis of the transitions between the Vari'TM-d,ominated statdd,) to states that are dominated b
ous many-body states of the local TM-O hybrid reveals that o y

these are built up by the TM-O singlet and triplet states. AIIdOUny occupied TM.snes, €., Fhey form the upper Hubbard
these features of the density of states are believed to be gehgnd. Ba_de_ contains essent!ally the well-knq\(vn ™-O
eral properties of the model under consideraficand are Zhang-Rlpe singlet state resulting from a tran5|t|on from
also qualitatively in agreement with exact cluster diagonalihe bonding stat¢d,) to the state|Sy) dominated by the
izations and Monte Carlo simulations for two-dimensional TM-O singlet state. Other contributions close in energy are
systems*~38 This demonstrates that it is indeed possible toidentified under labeD. Furthermore, a pronounced part of
reproduce important physical phenomena of the low-bandE, which consists predominantly of antibondifw,)
dimensional situation within the large approach. Besides states, results also from the transition of singly occupied sites
this general structure on a larger energy scale, a coheretn TM-O triplet state$T .. ) . Consequently, we find a singlet-
guasiparticle peak near the Fermi level occurs, which showgiplet splitting, which compares well with the resuld ®b-
an interesting temperature and doping dependéseg be- tained from perturbation theory infor two spatial dimen-
low). sions, where)=t?[A "1+ (U—A)"1].3 Finally, the lowest

In order to clarify the origin of the details of the density of state A results from a transition between the antibonding
states, we investigated which transitions between the locatate|p,) and the singlet statgS;). Interestingly, this state
many-body states are predominately responsible for eacbccurs for very low excitation energies and only in systems
band. Technically, this is performed within the NCA if one with an occupied singlet state, i.e., for hole-doped systems.
restricts the available Hilbert space according to the generdlhis is a consequence of the fact that the singlet state with
scheme presented in the Appendix. If the spectral weight of &wo particles per TM-O unit has lower energy than the singly
band decreases after projecting out a certain local stateccupied antibonding state,).
|m), a transition from or into this state is responsible for the  This interpretation of the various bands in terms of the
band. This analysis is of particular importance, if one is in-transitions between many-body states allows a transparent

TABLE I. The degeneracy, occupation, and relative energy of all local eigenstates introduced in the
Appendix and the corresponding labels used in Fig. 4 are given. The eigenvalues are obtdiied@ozV,
A=5eV, andt=1 eV. Here, tan= — (4t/A) and tan®= (4t/A+U) . The coefficients;, v;, andw; can
be obtained from the diagonalization of the three-dimensional space built )y dd), and|pp); see, for
example, Ref. 42.

State label State Degeneracy Occupatign E—ung
1 |0) 1 0 0
2 |d,,) = (cospd]+singp})|0) 2 1 -0.701
3 |p,) = (cospd},—singp})|0) 2 1 5.701
4 |To>:(1/\/§)(d£p1+d1pb|0> 1 2 5
5 IT,)=dlp}/0) 2 2 5
6 |Soy=[udld]+v,pp] 1 2 2.738
~w,(dp!—dp})]|0)
7 dd)=[u,dld]+v,p{p] 1 2 12.217
—Wz(dMT—tﬁp?)] |T0>T
8 Ipp>=[l¢3%dl:rzisp¢pi 1 2 10
—W3(dTpl—dlpT)]|0>
9 D)= (cosd!pld"
+sinadlplp’,)|0) 2 3 9.298
10 |P,)=(costd!plp’,
—sinad!pld’ )|0) 2 3 15.702
11 |DP)=d{pld|p]|0) 1 4 20
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o:% f\l/\\ and of the unoccupied bands and the unoccupied part of the lower
0.0 E— = ; i
4 g 12 16 Hubbard bandlow-energy electron statpfor electron dopingb).
oleV]
16 79 E 13 25,37, (04, (68), 5-10) are present als_o fdd=0 _With even larger spectral weight.
Bida e 3s S e Based on this analysis, which demonstrates that the den-
D:59.G-8), 49 (10-1D sity of states near the Fermi level is built up by the transi-

tions between only a few local many-body states, it is inter-
FIG. 4. TM (solid line) and O (dashed ling density of states esting to pgrform the calculation within a regtricted Hilbert'

obtained within the hybrid-NCA at half fillinga) for hole doping ~ SPace. In Fig. 6 we show the TM and O densities of states if
x=0.1 (b), and electron doping=—0.1 (c). For hole doping itis ~One takes only the staté8), |p,),|d),|Sp), and|T-) into
indicated which transitions between the local states contribute to theccount. The results are compared with that for the full Hil-
corresponding bands, where the meaning of the state labels is givdlert spacgdashed ling It is impressive that the details of
in Table I. The leading contribution is underlined while negligible the single-particle excitation spectrum near the Fermi level
contributions are in parentheses. are very well reproduced by this restricted set of states. Note

that this calculation includes still the full information about
explanation of the doping dependence of their spectralhe orbital character of the low-energy spectrum. This might
weight. In Fig. 5 we show the spectral weight of variousbe of interest for the theoretical description of more complex
bands upon electron and hole doping. For hole doping weystems where the diagonalization of the local problem leads
plot in part(a) of the figure the spectral weight of all occu- to extremely large numbers of coupled integral equations of
pied states and of the occupied part of the singlet klowd-  the NCA. The most important states can be found straight-
energy hole stat¢sThe latter demonstrates that the transferforwardly from the eigenstates of the complete local prob-
of spectral weight, discussed in Ref. 8, is included within oudem, since the peak position is well reproduced from the
approach. As expected, the spectral weight of the bondingorresponding difference of the relative eigenenergies, as
band decreases upon doping. However, bAndvhich re-  given in Table I.
sults from the transition betwedi®,) and |p,) increases, Finally, we present our results for the coherent low-
because upon hole doping more initial singlet states arenergy peak near the Fermi level. In Fig. 7 we show the
available The corresponding results for the electron-dopedensity of states near the Fermi leveb=0) for a hole
materials are shown in Fig (i), where we plot the spectral doping concentratiom=0.2 for various temperaturé® For
weight of all unoccupied bands and that of the unoccupieetlectron doping, the corresponding low-energy part of the
part of the lower Hubbard ban8, which carries the Fermi spectrum behaves very similarly. Although the density of
level (low-energy electron statesWVhile the spectral weight states at the Fermi level is almost constant, the states near the
of the bands, which are purely due to correlations, decreaseBermi energy are strongly temperature dependent. For de-
bandE increases upon electron doping. The character of thereasing temperature, a coherent quasiparticle peak occurs,
system becomes much more uncorrelated, leading to an invhich builds up its maximum slightly below the Fermi en-
crease of the bonding and antibonding TM-O states, whiclergy.



In Figs. 8a) and 8b) we present our results for the dop-

54 DYNAMICAL MEAN-FIELD THEORY FOR PEROVSKITES 5323
0.8 @ - . - y 04 (@ 10.4 :
a 1 - | ;
! U=10eV *=0014 | b x=0.017
—_ I ‘ - x=0.023 03t : 1
,-\0‘6 | A=5¢eV 03 |[---- x=0.11 ; }
204 | : t=1ev = Tosle | 02T Tm1000 K
= : > —) ;
= | i ) )
302 oo o2} f/\ -
= R VARt ) :
0.0 L= N P ) ar
- -4 0 8 12 01t
o[eV]
0.8 ®) T y
: 0.0
—06 | . ’,"| I
2 0.4 ‘ ‘.'
= I 1.0 :
‘81;0'2 ,: L (b) l’/‘}a x=-0.08
0.0 L3 S 08 | 6/\1, ~~~~~~ x=-0.10
8 4 0 v 4 12 o f
@[eV] > |
L |
FIG. 6. TM (a) and O(b) density of states obtained within the 2 |
hybrid-NCA for hole dopingx=0.1 within a restricted Hilbert = :
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son with the results of the full local spa¢dashed lines !
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ing dependence of the low-energy part of the spectrum for a
hole-doped system in the charge-transfer regime and for an
electron-doped system in the Mott-Hubbard regime at
T=300 K. As expected, the general behavior of the low-
energy part of the total density of states is relatively similar
in both regimes. The evolution of these quasiparticles results
in a large effective-mass ratio obtained vim*/m
=[1- IR 4(w)/dw]|,-o. In Fig. &c), as a representative
example we show results for a hole-doped material in the
charge-transfer regime corresponding to Fida)8 This
shows clearly the mass enhancement when approaching the
insulating regime either charge-transfer or Mott Hubbard
type and resembles the doping dependence of the effective-
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FIG. 8. Doping dependence of the coherent quasiparticle peak
for T=300 K in the charge-transfer regime with=10 eV, A=5
eV (@) and in the Mott-Hubbard regime witd =5 eV, A=9.5 eV
(b). In both cases we uge=1 eV. The effective mass in the charge-
transfer regime and for hole doping is shown in fajt For com-
parison we also plot in the inset the result for low hole doping
(x=0.017) but high temperaturé=1000 K, which demonstrates
that strong temperature dependence occurs in the low doping re-
gime.

mass obtained within the Brinkmann-Rice transitféf?
where only the coherent part of the spectrum occurs. In ad-
dition, we plot in Fig. 8a) the density of states for low hole
doping x=0.017) but for large temperatures B£1000 K.

This shows that the quasiparticle peak disappears completely

FIG. 7. Density of states near the Fermi level for hole dopingb€tween 300 and 1000 K, giving rise to an enormous tem-
x=0.2 and for various temperatures. Note the formation of a coherPerature dependence of the low-energy excitations in
ent quasiparticle peak resulting from Kondo-like resonances beslightly-doped perovskite systems. The enhancement of
tween the singly occupied bonding TM-O state and the doubly ocm*/m with band filling agrees with the observed behavior in
cupied singlet state.

Sr,_,La, TiO3, 2% which is believed to fall into the the Mott-
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Hubbard regime. Furthermore, the measurement of the Hatktical studies of transition metal compounds within the dy-
coefficient indicates the formation of a large Fermi surfacenamical mean-field approach.
Although our dynamical mean-field approach does not allow
an investigation of the momentum-dependent spectral den- ACKNOWLEDGMENTS
sit
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large Fermi surface formed by the coherent part of the spec-
trum (m/m*) 8(w— eg ) with renormalized quasiparticle en-
ergy e . This is possible because only a few particles can
occupy a large number of momentum states due to its low |n this Appendix, we discuss an extended version of the
spectral weighim/m*. The physical origin of the coherent noncrossing approximation for an impurity model given in
quasiparticle resonance is similar to the conventionaEq.(13). The NCA was shown to be in excellent agreement
Abrikosov-Suhl resonance of systems with magnetic impuriwith quantum Monte Carlo calculations for the dynamical
ties. In the charge-transfer regime, for hole doping, the resomean-field theory of the one-band c&%é° This approxima-
nant transition between a bonding stidg) and the Zhang- tion is not a perturbational expansion with respect to the
Rice single{Sy) builds up the Kondo-like peak. For electron Coulomb repulsior, but takes into account all eigenstates
doping, it is correspondingly a transition between an emptyf the local part of the impurity Hamiltonian by performing
state|0) and|d,,). an expansion with respect to the hybridizati@fw). There-
fore, we rewrite the Hamiltonian of Eq13) in terms of the
IV. CONCLUSIONS Hubbard operator,,,=|m’){m|, where |m) is, in our

_ ) ~case, one of the 16 eigenstatesHhf., with eigenvalueg,,
In conclusion, we presented a dynamical mean-fieldsee Table )t

theory for perovskites that is based on a scaling procedure of

the large-dimensional Hubbard model of transition-metal Hloczz [~

3d and oxygen p states. In the limiD—x, the electronic om

self-energy is, similar to the one-band case, momentum in-

dependent and the model can be mapped onto an AndersonH e~ 2 (WKCEUP;m,XmmmLH.c.HE skclgckg.
impurity model. It is demonstrated that the most natural komm’ ko

choice of this impurity is to include all local orbitals of one The eigenvalues dfl . are explicitly given in Ref. 42. The
unit cell, not solely the strongly correlated ones. Correspond(lgx 16) matrix P’ and a corresponding matrR“ are de-

ingly a model with 16 local many-body states is embeddedined by the following representation of the O and TM de-
into an effective medium, which has to be determined selfstruction operators:

consistently. Motivated by the perovskite lattice geometry,
this effective medium is coupled only to the oxygen sites of Py= z P X s
the impurity and simulates predominantly the TM sites of the m,m’

real lattice. The solution of the local problem is performed
using the iterated perturbation theory and an extended non-
crossing approximation. It is shown that the spectral weight

of the various bands of the density of states is erroneousI{J . ) ) o .
described within the IPT. This shortcoming results from theUSing this representation of the Hamiltonian, one introduces

missing electron-hole symmetry of the half-filled model, Within NCA scheme the local propagators for each of the
leading to an absence of a metal insulator transition for halfigenstatesm):
filling. In distinction, the NCA is able to describe this prob- 1
lem properly and gives interesting insight into the origin and P (@)= :

. ; m(®@) T ,
doping dependence of the various bands of the TM and O w+i0"—En—Zp(w)
densities of states. Furthermore, the occurrence and dopiq/gi,[h
as well as temperature dependencies of a coherent quasipar-_
ticle peak near the Fermi level are discussed. This resul
from a Kondo-like resonance between an empty and a bond-
ing TM-O state for electron doping and this bonding state

APPENDIX: NONCROSSING APPROXIMATION
OF A TM-O CLUSTER

_ T
dO'_ Z Dmm’xmm"
m,m’

(A1)

the corresponding spectral  densityp,(w)
(U/m)ImP(w+i0"). The NCA self-energies are given

1 +oo
and the Zhang-Rice singlet state for hole doping. Finally, it Sp(w)=—=2 |Pgmm,|2f def(mmme)
is shown that the restriction of the local states to a limited set To,m’ -
of most important states reproduces very well the low-energy XIMT(&+i0%)P, (@+ 7 8). (A2)

density of states, keeping the full orbital information of the

involved states. This is of importance for an extension of theHere, f(e) is the Fermi distribution function and
theory to more realistic situations including all fidebands 7y o= +1 (—1) if the particle number of the stafm’) is
such that only a small number of coupled NCA equationshigher (lower) than the particle number of the stdta). In
have to be solved. This might be stimulating for further theo-Eq. (A2), we neglect the vertex corrections discussed in
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Refs. 31 and 39-41. Although this was shown to slightlywhere ({X;m;Xmm ) iS the Fourier transform of the re-
underestimate the Kondo temperature and to shift thearded Green's function—i#(t){[ Xy m(t);Xmm (0)]:).
Abrikosov-Suhl resonance slightly away from the chemicalThey can be expressed with respect to the NCA local propa-
potential, it gives important insights into the low-energy ex-gators as follows:

citations, in particular for large values of the Coulomb repul-
sion. Furthermore, in view of the enormous numerical prob-
lems, which arises if one calculates these vertex corrections
even for less complex systems than otfr&.and due to the
additional self-consistent condition of the larBeapproach, —Pm(&)Pm(w—e)*],
it is actually very difficult to go beyond EqA2). Finally,
the Green'’s functions of the system, which give the informa:
tion about the single-particle excitation spectrum, result fro

1 (= _
<<Xm’m;xmm’>>wzz_of_xdse 'Bs[pm’(s)Pm(w+3)

where the partition sum Z, is defined by

Smf .. dee Pep (g). All the summations with respect to

" andm’ are performed over the 16 eigenstate$igf.. As

v 12 can be seen from Table | the spin degeneracy leads to only

Gy(w)= E |Dmm'| (K m s X Y o (A3) 11 different eigenstates and propagators in the paramagnetic
mm state. The solution of Eq$18) and(19), which are coupled

singular integral equations, is performed using the fast Fou-

Gplw)= E |p%m/|2<<xm,m;xmm,>>w, (A4) rier transformation for the convoluti(_)n integrals and using
mm’ the defect propagators of the local eigenstates.
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