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Density dependence of the electronic supershells in the homogeneous jellium model
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We present the results of self-consistent calculations of the electronic shell and supershell structures for
clusters having up to 6000 valence electrons. The ionic background is described in terms of a homogeneous
jellium. The calculations were performed for a series of different electron densities, resembling Cs, Rb, K, Na,
Li, Au, Cu, Tl, In, Ga, and Al, respectively. By analyzing the occupation of the energy levels at the Fermi
energy as a function of cluster size, we show how the shell and supershell structures for a given density arise
from the specific arrangement of energy levels. We investigate the electronic shells and supershells obtained
for different electron densities. Using a scaling argument, we find a surprisingly simple dependence of the
position of the supernodes on the electron den§&9163-18206)06331-X|

[. INTRODUCTION closed-shell clusters, are properly described by the model.
Furthermore, it was recently shown that even clusters with a
Following the observation of electronic shellgnd the rough surface can be well described by a spherically aver-
prediction of supershelfsthe electronic structure of metal aged potentiaf! It thus appears that assuming spherical sym-
clusters has attracted much interé&fTreating the valence metry of the clusters for describing the electronic shell and
electrons as an ideal Fermi gas moving in a suitably chosegupershell structure is justified.
model potential, the observed structures can be well The homogeneity of the jellium, however, may well be
understood:?>® Such an effective one-electron model evenquestioned. It has turned out that the shape of the jellium
lends itself to a semiclassical treatment. Using a periodi¢dge or, more generally, the shape of the Kohn-Sham poten-
orbit expansiofi’ for the density of states, the supershell tial at the surface seems to influence the supershells strongly,
structure can be interpreted as the beating pattern of the cowhile leaving the electronic shells relatively unaffectédn
tribution of two periodic orbit$:#° But obviously some ar- particular for high-density metals large discrepancies be-
bitrariness is involved in choosing a “suitable” model po- tween the predictions of the HSIM and the observed super-
tential to describe a cluster. A systematic framework forshell structure have been observed, most notably in the case
determining such effective one-electron potentials is proof gallium?? Clearly the simple HSJM has to be refined, e.g.,
vided by density-functional theo~*? Given the arrange- by choosing a suitable density profile at the surface and by
ment of the iongBorn-Oppenheimer approximatiprthe ef-  including pseudopotentiafé:* In spite of that, the homoge-
fective one-electron potential and the total energy of a clustefeous jellium model is still used as point of reference to
can be determined using the Kohn-Sham formalism. The micompare to the results of refined models. More importantly, a
croscopic structure of clusters is, however, not known ingood understanding of this basic model is needed to be able
general and the determination of the ground-state geometitp find the relevant features that should be included in an
from first principles is a major undertaking, which can only improved model, without introducing unnecessary complica-
be performed for clusters made of not more than some teHons.
atomst31° The reason for including the noble metals Au and Cu is to
Therefore drastic simplifications are called for to makebridge the gap between the low-density alkali metals and the
self-consistent calculations for very large clusters feasible. Ifigh-density trivalent materials. It is clear that the presence
parallel to the early electronic-structure calculations forof d states will affect the electronic shells. In the present
solids® and surface$’ one can, in a first approximation, work the results for these metals mainly serve for uncovering
describe the ionic background by a smooth charge distributhe trends in the electronic supershells as the electron density
tion, i.e., by a jellium. In the case of clusters the main pur-is varied.
pose of the jellium is to restrict the valence electrons to a The purpose of the present paper is threefold, which is
finite volume, that is, to define the cluster size. Imagining areflected in its organization. In Sec. Il we briefly review the
cluster to be a small drop it seems reasonable to choosel®mogeneous jellium model and present the results of our
spherically symmetric, homogeneous jellium. This leads tccalculations. These include the oscillating p&(iN) of the
the homogeneous, spherical jellium moddSJMm). 1819 total energy for densities resembling Cs, Rb, K, Na, Li, Au,
It turns out that assuming sphericity of the cluster will Cu, Tl, In, Ga, and Al, respectively, for clusters having 125
essentially influence only the amplitude of the shell oscilla-up to 6000 valence electrons. The position of the minima in
tions. Spherical models tend to overestimate the amplitude OF (magic numbers are listed explicitly. Furthermore, a
E since there are no degrees of freedom allowing for statienethod for determining the location of the nodes in the su-
Jahn-Teller deformations in open-shell systéthSuch ef-  pershell oscillation is given and the corresponding results for
fects give rise to a fine structure between the major shellhe clusters mentioned above are shown. This collection of
minima. The latter, however, being related to sphericaldata could serve as reference for jellium results, extending
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previously published results considerabfiy®18:27-29.22 Having reached self-consistency, the total energy is given by
Focusing on the occupation of energy levels as the clus-
ters increase in size, a simple interpretation of the origin of E(N)= f 3 > >
i T . = - r'Vis(rng(r)+E,In]+E nj,
supershell structure can be given. This is done in Sec. IlI. (N) HEOCC €u ks(M)Nef(1) +Exd n]+Ecaul N
Analyzing the states at the Fermi energy, we show that the 2

supershells arise from the fact that the difference in angular : . :
momentumAl for orbitals of given numben of nodes in the whereE,. is the exchange-correlation energy functional and

. R 9 . . . Ecoul i the electrostatic self-energy of the tothbth jellium
radial wave function increases with cluster size. Since only. . .
) . . _“and electronigcharge density.
integer values ofAl correspond to physical degeneracies,

i Do To treat large clusters more efficiently, instead of actually
there is a periodic change from degenerate to no.ndegenereﬁﬁding all the eigenfunctions of the Kohn-Sham equation
energy levels as the clusters grow larger. We give a semj- '

4 X : . ; . we determine the electron density(r) and the sunk e, of
classical explanation of this observation, which provides an, . " < o ioctron energies by contour integration from the

alternative to arguments using periodic orbit expansions. . ; b ,
one-electron Green'’s function dfl). Exploiting spherical
In Sec. IV we analyze how the shell and supershell struc—S mmetrv. the observables are given b
tures depend on the electron density. We show that for g Y, 9 y

homogeneous jellium edge the softness of the potential at the 2(21+1) 1
surface is fairly independent of the density. It thus turns out ne|(r)=2 am? 2 0,(E;r,r)dE, 3

that only the Wigner-Seitz radius, [related to the electron EF

density by 3/(4-rr§’)] is the relevant length scale for the elec- Y 22141) 1
tronic structure. We actually find that the supershells are lin- > e :477f drr2>) —_—
early shifted with 17, while the magic numbers are practi- w - 0 T Amrt 2mi
cally independent of the electron density. This suggests a
general mechanism difowthe surface softness influences the % g,(E;r,r)EdE. (4)
supershell structure. Finally, a fit to our data allows the re- EF
sults of jellium calculations to be estimated without actually
having to perform the lengthy computations.

Throughout the paper we give lengths in Bohr radig)
and energies in RydberdRy).

Hereg,(E;r,r) is the trace of the Green’s function for the
radial Kohn-Sham equation with angular momentunit is
constructed from the two solutiong™(E;r) andu; (E;r),
which are regular at the center and at infinity, respectively,

Il. JELLIUM CALCULATIONS us(E;ru(E;r)
A. Method 9i(E;r.r) W(E) '
In the homogeneous jellium model a given material iswhereW(E)=u;"'(E;r)u_ (E;r)—u;~(E;r)u; ' (E;r) is the
characterized by the average dengity,, of the valence Wronskian of(1).
electrons. Later on, it will be convenient to use the Wigner- At zero temperature the integration contour would have to
Seitz radiug ¢, in terms of which the bulk electron density is go through the Fermi enerdy: and we would have to deal
given by np,=3/(47r3). To make the description of the with poles on the real axis. We therefore introduce a ficti-
clusters independent of the valence of the metal under coriious finite but small temperature and multiply the Green’s
sideration, we will use the numb@ of valence electrons, function in Egs.(3) and (4) by a Fermi-Dirac distribution.
not the number of atoms, to denote the size of a cluster. IMThe contour can then be closed well abdyie, where the
the spherical, homogeneous jellium model the jellium denpoles on the real axis have negligible weight. The Fermi-
sity is then given by n,(r)=nyu®(Ro—r), where Dirac distribution, however, has additional poles at
Ro=rN"is the radius of the cluster. Er+(2n+1)wikT, for integern. Their contributions have
To find the total energ¥(N) of a jellium cluster having to be subtracted from the contour integral. Working with
N valence electrons we solve the Kohn-Sham equation  fractional occupations has the further advantage of reducing
oscillations in the occupation numbers during the iterative
[— A+ V(NP (N =€, P (1) (1)  process of reaching self-consistency.

i L The main reason for using the Green’s-function approach
self-consistently. The Kohn-Sham potential is given by they, golving the Kohn-Sham equation is its computational ef-
sum of the electrostatic potentials arising from the jelliumciency for large clusters. Since the radial mesh grows with
and the electronl_c charge_densny, respectively, and th@,q. cluster radiu,=r N¥3, the computation of the Green’s
exchange-correlation potential function scales witlN'>. To determinen, and= e, we have

-, to performl <Ry integrations, for which the integration
Vis(T)=V (;)JFZJ' d3r Ner’) FV, (1) contour is independent ®. Hence the computer time grows
*s ! Ir—r| 7 asN?3. This has to be compared to the traditional approach,

. . _ which for eachl involves findingn, ., R, eigenstates, thus
The electron densityg(r) is determined from th&l lowest- resulting in a computational complexity Gf(N).

lying eigenfunctions of1) Because of the large density gradients at the cluster sur-
face, it seems highly desirable to go beyond local-density

ne|(F)= 2 |q,#(;)|2_ approximation to the exchange-correlation energy. Figure 1

4 occ shows the self-consistent Kohn-Sham potentials for a
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TABLE |. Wigner-Seitz radiir for the different metals which

0'005/“_/;_*,_'__;/\/ were used in the self-consistent calculations to define the jellium
010¢ Vot E density.
9? -0'205 Nasooo (LDA) ; Metal rs in ag
> -0.30F 3
040 Vse ] Cs 5.62
T Vs Rb 5.20
pyse : : : : K 4.86
o S Na 3.93
-0105— vcoul ’é LI 3.95
2 020F . (@eaPw) 3 Au 3.01
> -030F E Cu 2.67
v, Tl 2.48
-0-40F Vis E In 2.41
-0.50E . . . i Ga 2.19
e FE 4 Al 2.07
'010 E Vcoul =
& 020F  Na (GGAEY) 3 - _
> -0.30F E(N)=E(N)—E(N). (6)
-0.40F Vo : N
-0.50E , , , E Thus, to extractE(N) from the total energye(N) ob-
20 40 60 80 tained from our self-consistent calculations we need to know

(8 the smooth parE(N) of the total energy. To this end we

FIG. 1. Self-consistent Kohn-Sham potentials for a homoge-h.ave determined the parametaﬁsn the asymptofuc expan—.
sion (5) by a least-squares fit. To check the quality of our fit,

neous, spherical Nggo jellium (Vks=VeoutVxe)- The results ] . o
shown here differ only in the way the exchange-correlation termV€ compare the fit parameters to known properties of jellium

was treated. The potential displayed in the first flobA) was Systems. The leading parameter should be equal to the
obtained using the local-density approximation in the parametrizabulk energy per electron of a homogeneous, neutral electron
tion given by Vosko, Wilk, and NusaifRef. 32. The second 9as
(GGA-PW) and third(GGA-EV) plots show the potentials obtained
using generalized gradient approximations as given by Perdew- 3
Wanget al. (Ref. 30 and Engel and Vosk(Ref. 31, respectively. ebulk:§k|%+ exclls).

Nasggo jellium obtained using local density approximation

and two different generalized gradient approximationsthe comparison of the parameters from the fit to ey is
(GGA's).%*3! Unfortunately, it turs out that the potentials shown in Fig. 2.

found using a GGA exhibit an unphysical shoulder at the The next to leading terra,N?? should resemble the total
surface. We therefore stick to the local-density energy of the jellium surface, heneg should be related to

approximatior? for all subsequent calculations. the surface energy by
B. Results
. . . 0.05[

We have performed self-consistent calculations for jel- [ ]
lium clusters with electron densitias,,, corresponding to 0.00¢ ' ]
Cs, Rb, K, Na, Li, Au, Cu, TI, In, Ga, and Akee Table)l - ]
Cluster sizes range from 125 to 6000 valence electrons for & -0.051° 1
each density considered. The calculations yield the total en- v% o ]
ergy E(N) as a function of cluster size. b 0107 o ]

Neglecting the discreteness of energy levels., disre- 0150 el oo
garding shell effecisthe total energy is approximated by the <9L PSR :
asymptotic expansion -0.20t ‘

- 2 4 6
E(N)=a;N+a,N¥3+a;N¥3+. . .. (5) r (ay)

In this Thomas-Fermi-like expansion the leading coefficient g 2 Leading term in the asymptotic expansion of the total

Ql_resemmes the bulk energy of the system. The neXt_CoefenergyE(N) extracted from our calculations for homogeneous jel-
ficient a; is related to the surface eng@]’he electronic  lium spheres of densities, = 3/(4r2). For comparison the dotted
shells and supershells reflect the deviations of the total enine shows the energy of a homogeneous electron gas in the local-

ergy E(N) from this smooth function. These are given by the density approximation using the parametrization given by Vosko,
oscillating part of the total energy, defined by Wilk, and Nusair(Ref. 32.
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For all jellium densities we find a pronounced modulation

Zggf_ oo 3 in the amplitude of the shell oscillations. Even a superficial
; Q,-Q T TN look at Fig. 4 shows that the beating patternEris shifted
or ] towards larger cluster sizes as the jellium density increases.
<<g 200/ 3 To characterize the supershell structure we use the location
S _aob ° + Lang-Kohn ] of the minima in the amplitude of the shell oscillations. The
o Lo O Perdew etal. ] position of these supernodes is given by minima in the en-
© '600:“?: o tmework ] velope of E(N). The envelope is obtained eliminating the
-800F ] rapid shell oscillations fromE(NY?)| using a low-pass Fou-
1000 i ] rier filter. Naturally such a filtering scheme introduces an
1200, . . . E uncertainty inNY3, which is of the order of a period of the
2 3 4 5 6 shell oscillation.
r,{ay) For all jellium densities we have considered, exactly two

. . . . supernodes fall in the range of clusters having 125-6000
FIG. 3. Next to leading term in the asymptotic expansion of thevalence electrons. Using the procedure described above, we

total energyE(N) extracted from our calculations for homogeneous have determined the position of these supernodes. The re-
jellium spheres of densitiesg=3/(4xr3) (diamonds. For com-  gits are listed in Table III.

parison the surface energiedor jellium surfaces as found by Lang

and Kohn(Ref. 17, Table Il and by Perdevet al. (Ref. 30, Table

XIl) are shown. The dotted line gives an interpolation of the Lang- 1. MICROSCOPIC ANALYSIS

Kohn data. A cluster with N valence electrons will be more stable

than neighboring clusters if its highest occupied orbital is
completely filled. The increase in stability can be character-
= 5. (7)  ized by the gap between the highest occupied and the lowest
4mrg unoccupied level. In general, the width of this gap rapidly
decreases with growing cluster size. A set of degenerate lev-
Figure 3 shows the comparison between the surface energys will, however, open a larger gap in the spectrum. The
obtained from the fit parameter, and the surface energies electronic shell structure can thus be traced back to degen-
for jellium surfaces calculated by Lang-KoHrand Perdew eracies in the energy spectrum of the cluster potential at the
et al®° The discrepancies between the surface energies fourflermi energyE . In the following we therefore focus on the
by Lang-Kohn and the other data are probably due to the usgohn-Sham energies, | next toEg . In doing so we identify
of a different exchange-correlation energy functional: Langthe degeneracies that cause the strong shell oscillations and
and Kohn used the Wigner approximation to the exchangefind a mechanism that explains why there are no such degen-
correlation energy, while the treatment of exchange and coferacies near the supernodes.
relation in the work of Perdewt al. and in our calculations The potentials in our self-consistent calculations are
was based on the results of Monte Carlo simulations of thepherically symmetric. Therefore we can characterize the en-
homogeneous electron g¥s. ergy levels by two quantum numbers: the numberf nodes
Having found the parameters of the asymptotic expansioin the radial wave function and the angular momentum quan-
(5) we can readily determine the oscillating p(N) of the  tum numberl. The degeneracy of an eigenenergy, is
total energy. The results from our self-consistent calculationgiven by 2(2 +1). Hence states with lardehave a stronger
for the densities listed in Table | are shown in Fig. 4. Plottinginfluence on the shell structure than those with small angular
E over N3, which is proportional to the cluster radius, we momentum.
find regular oscillationgshell structurg The amplitude of Since in our self-consistent calculations the Kohn-Sham
these oscillations is modulated, resembling a beating pattefgvels are populated according to a Fermi-Dirac distribution
(supershell structuje _
The local minima in the oscillating paf of the total 2(21+1)
energy correspond to clusters that are expected to be excep- €l 1+ e ni ERVKT’
tionally stable. We call the number of valence electribnis
these clustersnagic numbersThey are listed in Table II. It  degenerate levels,, near the Fermi energig are filled
turns out that in the regions where the amplitude of the shellimultaneously. By “filling” a level we mean that the occu-
oscillations is large, the magic numbers for different jellium pation of €n, changes with cluster siz@.e., with the total
densities are comparable. Comparing the sequences of corigamberN of valence electrons
sponding minima irE, we find that the magic numbers grow
slightly as the Wigner-Seitz radius decreases. In the regions AN, (N)=N_ (N)—N_ (N—1)#0.
where the amplitude of the shell oscillations is small, similar " " "
sequences of magic numbers exist. Here, however, they d@ practice, we do not consider all individuaN,_, but only
not extend over the whole range of jellium densities. Insteaqhe SUMS n!
we find that a sequence starting at small densities ends at
some intermediate density, while a new sequence, shifted by
about half a period, evolves and extends to larger jellium AN;=> AN, .
densities. n n!

a
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__ FIG. 4. Oscillating parE of the total energy for jellium clusters as a function of the number of valence eledtroAsthe minima of

E the corresponding number of electrons is indicaedgic numberns These numbers are also listed in Table Il. The positions of the
supershell nodes are indicated by open triangles. The numbers given in parentheses below these are the positions of the supernodes given &
N3 (cf. Table ).

For a given angular momentum the first level to be these degeneracies are indicated in Fig. 5. The patterns are
filled as the cluster size increases will be the one with thesimilar for all jellium densities. The main difference is that
nodeless radial functiomy,, followed by those with quan- the pattern is shifted towards larger cluster sizes as the
tum numbern=1,2,. ... Since these levels are well sepa- Wigner-Seitz radius decreases. We find that the first maxi-
rated, their filling will be indicated by small humps in mum in the shell amplitude is caused by the degeneracy of
AN;, which otherwise vanishes. Figure 5 shows thi,,  the statesep ~e;; 3 followed by ey ~€,;¢. The second
shifted vertically byl, as functions oN*, maximum in the supershell structure is mainly due to the

Since orbitals having the same energy are filled simultadegeneraciese;~¢€,, 3, supported byeg~e;; 4 and
neously, finding several humps for the same cluster siz€1~€3)-6- _
means that the corresponding orbitals are degenerate. For To find out why there are nodal regions iy we first
the leading levelsi.e., those with large angular momentum observe that the humps with a given quantum nunmbare
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TABLE II. List of the magic numbers for jellium clusters of different densities. Listed are the numbers of
valence electron8l in the range from 125 to 6000 for which the oscillating part of the total energy has a
minimum. The magic numbers for the different jellium clusters are arranged in sequences of comparable size.
In the regions where the amplitude of the shell oscillations is léc§e-ig. 4 these sequences extend over
the whole range of densities. In the vicinity of the nodes in the supershell structure this is no longer true. Here
sequences starting at small jellium densities end at intermediate densities, while a new sequence, shifted by
about half a period, evolves and extends to larger densities.

Cs Rb K Na Li Au Cu Tl In Ga Al
137 137 138 138 138 138 138 138 138 138 138
186 186 186 189 196 196 196 198 198 198 198
254 254 254 254 254 254 254 261 267 267 267
338 338 338 338 338 338 338 339 339 339 339
437 438 438 439 440 440 440 441 441 441 441
539 543 545 551 556 556 557 558 561 561 561
617 618 619 634 640 638 638 639 639 639
668 673 674 676 676 677 686 693 693 693 693
751 751 752 756 759 783

832 832 832 832 831 831 834 834
910 911 912 912 912 914 921 924 927 927

1013 1012 1011 1011 1011 1011
1078 1079 1080 1096 1100 1100 1100 1101 1101 1101 1101
1215 1218
1281 1282 1282 1284 1284 1286 1314 1314 1314 1314 1314
1503 1503 1503 1507 1515 1516 1518 1521 1521 1524 1554
1747 1751 1755 1760 1760 1760 1760 1767 1770 1776 1779
2018 2019 2019 2019 2039 2047 2048 2049 2049 2049 2049
2322 2324 2326 2330 2333 2334 2334 2337 2346 2367 2367
2654 2653 2653 2656 2665 2670 2672 2673 2673 2679 2682
2909 2906 2903 2913
3070 3063 3056 3025 3028 3028 3028 3030 3030 3042 3048
3261 3267 3271 3279 3283 3288
3409 3418 3436 3438 3438 3438 3438
3510
3607 3619 3645 3676 3692 3695 3708 3708
3865 3847 3849 3849 3861 3882
4063 4067 4068 4068 4088 4112 4152 4152 4155 4155 4158
4332 4320 4317 4323
4544 4554 4561 4569 4570 4570 4570 4569 4569 4593 4656
5015 5025 5035 5068 5095 5097 5101 5106 5106 5109 5109
5471 5511 5502
5567 5565 5565 5582 5601 5607 5630 5655 5658 5670 5670

arranged into nearly straight linésee Fig. 5. The slope of where 7ike=(2mEg)Y? is the Fermi momentum. Using
theseoccupation liness larger for smallem, i.e., the dis- semiclassical quantization, we can go beyond this crude ap-
tanceAl between two such lines increases with cluster sizggroximation. The angular momentum is then written as
N. But since the angular momentum is quantized, degenerate=# (1 + 1/2), wherel is the angular momentum quantum
energy levels exist only for integer values &f. Therefore  number. Introducing the parameter
regions where energy levels are degenerate are separated by
regions without degeneracies. Hence the supershell structure [+1/2
can be traced back to the differences in the slopes of the Y= R 9)
occupation lines. Fo

The origin of these lines can be understood from a simpl§ypich is unity in the classical cag8), the Bohr-Sommerfeld
classical argument. Assuming that the Fermi eneifgyis  cqndition for an infinitely deep potential well of radid,

fairly independent of the cluster size, the maximum angulagegs
[1
7 —1- arcco$7)) =a(n+3/4). (10

momentum for an electron in a potential well of radius
Ro=r N3 is given by

|+1
2

L mad N) =%keRy, (8)
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TABLE IIl. Position of the nodes in the supershell structure for

jellium clusters of different densities. The position of the super- . : . &
nodes was determined by finding the minima in the envelope 0 — — D
of E(N). N denotes the number of valence electrons in the cluster. —Na = /«/}
Py
Metal Np® N3 20 —F 5 Ssss ):/:"
Cs 8.39 14.59 b Tamng _g]g b
Rb 8.43 14.67 ~ — ﬁi —
K 8.47 14.75 10+
Na 8.95 15.11 s E——
Li 9.15 15.45 g e ey S *
Au 9.30 15.62 0 : i : &
Cu 9.68 15.86 301 17 A
Tl 9.79 16.01 24
In 9.85 16.11 <
Ga 10.13 16.37 ool pe
Al 10.29 16.49 Z &
2z
Expanding this equation to first order around the classical 10}
casey=1, we can solve for the angular momentum of a state
with quantum numben at the Fermi level:
O i 1 1
[37T(n+3/4)]2/3 0 5 N“;IO 15

E,\, _ 1/3
I+ 5 ~keRo (keRp)¥3. (11

2
. FIG. 5. Filling of the orbitals with increasing cluster sikkein
Figure 6 shows the angular momentum quantum numBer the self-consistent calculations for jellium clustessN, is the

a function ofkeRy. It turns out that, for small quantum num- change in the occupation of the orbitals with angular momentum
bersn, the approximation(11) matches the quantum me- | In the plot, theAN, are shifted byl. The small humps in the
chanical result quite well. The deviations for largeare due  horizontal lines indicate a change in the occupation of an orbital
to the expansion aroungl=1, not to the semiclassical ap- with the corresponding angular momentum, i.e., the filling of that
proximation itself. Since a statg, | at the Fermi level will be  orbital. Since degenerate orbitals are filled simultaneously, the ex-
filled as the cluster size increases, the crosses in Fig. 6 can lstence of several such humps for a given cluster Bizhows that
identified with the humps in Fig. 5. Hence the expangith the corresponding orbitals are degenerate. For the orbitals with

provides, for smalh, a good approximation to the occupa- large angular momentum these degeneracies are indicated by lines
tion lines for the infinite potential well. connecting such humps. The first hump for a giv@orresponds to

the orbital with nodeless radial wave functios=0. Likewise, the
orbital connected with the second hump has the quantum number
IV. SCALING ANALYSIS n=1. As can be seen from the plots, the humps for orbitals with

In the present section we analyze the systematic variatiorgivenn are arranged into nearly straight lines of slightly different
in the shell and supershell structures as the jellium density i§/oPe-
changed. The key to such an analysis is the identification of
relevant scales. Expressing all data in terms of these scalegyrface region, which hence is a good candidate for an addi-
i.e., dealing with dimensionlessduced quantitigsallows tional length scale. We will denote the surface widthaby
the results for different materials to be conveniently com- We might assume then that the changes in the electronic
pared. shells and supershells can be described in terms of the di-

Obviously, the Wigner-Seitz radius is such a scale. Itis mensionless parameterrs. For a rough estimate of how
a fundamental length describing how the volume of the clusa varies with the jellium density, we have performed a
ter depends on the jellium density. Via the relation simple Thomas-Fermi calculation for a plane jellium surface

n,(z)=n,0(—2). Given an ared\ the surface energy is
( 977) 137

Mg ©

4

=~

» _ , {elne(2)Ine(2) — e[ni(2)Ini(2)}dz
it is also related to a basic energy scale. As a simple example _Je
we note that the overall amplitude of the shell oscillations olne(2)]= A '
E is proportional to Jr/§ This is shown in Fig. 7.

From the shape of the self-consistent Kohn-Sham potenwheree(n) is the Thomas-Fermi energy functional including
tials we can identify a second length scale. As can be seethe second order gradient correction to kinetic enérgyx-
from Fig. 8, for a given jellium density the shape of the change energy, and Hartree energy. To estiraatee mini-
potentials aroundR, is quite independent of cluster size. For mize the surface energy using a parametrized electron den-
each material it can be characterized by the width of thesity, where the only parameter is the surface width
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FIG. 6. Position of the energy Ieve&gv,:hzkﬁJ/Zm in an infi- FIG. 8. Self-consistent Kohn-Sham potential for sodium and
nite spherical potential wel{spherical cavity of radiusR,. For  gallium jellies of different sizes. To compare the surface region of
comparison with Fig. 5, we givkR, on the abscissa and the angu- the potentials, we choseminus the radiu®, of the corresponding
lar momentun on the ordinate. The position of the energy levels isjellium as the abscissa. As can be seen, the shape of the potential at
indicated by crosses. For smal] these can be well described by the surface of the clusters is fairly independent of the 8lz&he
the semiclassical expansion that is described in the text. The clafworizontal lines indicate the Fermi energies of the corresponding
sical limit L,,,,=7keRy is given by the dotted line. systems.

The dependence of the shell and supershell structures on
the scaling parametex/r ¢ is revealed by plotting the magic
numbers and the supernodes againsf.1Figure 10 shows
the resulting pattern, which is surprisingly simple. The magic

ne(z)=n,f(z/a).

A good choice for the functiori(z) is®®

1— Eez, z<0 numbers are practically independent of the jellium density,
f(2)= 2 while the supernodes are linearly shifted withs1/A closer
look at the supernodes reveals that their position can be ac-
59721 z=0. curately interpolated by a linear function. For some given

jellium density a reliable estimate of the location of the
The resulting surface width,, as a function of the Wigner- minima in the supershell structure can be read off Fig. 11,
Seitz radiug 4 is shown in Fig. 9. It is fairly independent of without having to perform a time-consuming self-consistent
the jellium density, in agreement with the results of the self-calculation.
consistent Kohn-Sham calculations shown in Fig. 8. Hence It is interesting to note that the first and the second super-
rs seems to be the only relevant length scale in the clustemode are shifted by the same amount. Writing the oscillating

problem. part of the total energy as a beating pattern
1.0 ' T I -
Ay
Ly ] . :
0.8+ _ 1.0 :
-~ [ \\ 1 1
i O\o 0.8 _ ......................................................... ]
__ 0.6 s _ ~ [ ]
) i N < 06
@ o, i B b ]
i-%/ 0.4} Yo - o 041 _ no correlation (0:=2/3)
> S e 1 - Xou with 0=0.81
g [ Tl ] 0.2f ]
0.2 Teeal - Galn Li Na  KRbGCs
L RaER N 0.0 | L. L Ll
r T 0 2 4 6
0.0l Ce ' ] ry (ay)
2 3 4 5 6
re (ao) FIG. 9. Widtha,, of the surface region as a function of electron

density. a,, was obtained from a Thomas-Fermi calculati@n-

FIG. 7. Scaling of the amplitude of the shell oscillations with cluding gradient corrections and exchanfme a parametrized elec-
the electron densityi=3/(47r3). The diamonds give the maxi- tron density. The energy functional included second-order gradient
mum amplitude of the oscillating paBE extracted from our self- corrections to the kinetic energy, Coulomb energy, and the ex-
consistent calculations. The dotted line gives a fit of these datghange energyfull line). Including also exchange in th€, ap-
points with the one-parameter function con$t/ proximation(Ref. 37 yields the dotted curve.
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= o FIG. 11. Shift of the first and second supernodes as a function of
FIG. 10. Position of the shell minimecrossesand of the SU- 1 The error bars are due to the uncertainty in determining the
pernodes(diamond$ as a function of X/,. Corresponding shell the envelope OE(N) The lines give a linear fit of the data, the
minima and supernodes are connected by full and broken "ne%arameters of Which.are displayed in the plot '

respectively.
trum near the Fermi levef, we have found a simple pat-

E(N)zcos(lem_ @1) +cog FLNY3—¢,) tern in which the orbitals are filled: the occupation lines.
They can be understood using a semiclassical expansion.
fi—fy . 0172 fit+fs 1 Qualitatively there is no difference between clusters of dif-
=2¢co 2 N 2 2 N ferent density. The strong oscillations i are caused by

degeneracies of energy levels closeEo. The supershells
P11 @2 (12) are a consequence of the different slopes of the occupation
2 lines, which imply transition zones between regions where

suggests a simple picture for understanding such a parallle‘?VeIS are degenerate. The shift of the supermnodes with in-

displacement. Since the supershell oscillation is described by casing density can be understood from an analysis of the

the first cosine in(12), the position of thekth supernode is thyls |(}al Sﬁalels. We ha\{j |der|1t|f|egas thehrele%/ar;t Ien.gth f
given by scale for the cluster problem. It turns out that the location o

the supernodes is linearly shifted withr 1/

s (KFD T @1— @, Furthermore, the identification af as the typical length
K =1 _g 1. scale for the supersht_alls suggests _ajustlﬂcatlon ofitheoc _

L2 12 procedure proposed in Ref. 23 to improve the results of jel-
In this picture a shift of the supernodes, which leaves thdium calculations for gallium clusters. There it was found
period of the oscillation unchanged, naturally arises from ahat the introduction of a nonhomogeneous jellium back-
variation of the phases; and ¢,. In a semiclassical ap- ground is essential for treating Geaclusters, while alkali-
proach, using a periodic orbit expansithese phases are metal clusters are well described by a homogeneous jellium.
determined by the cluster surface. This is consistent with th&Vith the help of the above scaling argument that puzzle may
observation that the supershell structure is sensitive to thke resolved. Assuming that the typical length scale for fea-
shape of the surface potent’&l? Using an expansion of the tures in the jellium is the ionic radius,, while the length
relevant semiclassical integrals in terms of the scaling pascale for the electrons is the Wigner-Seitz radiyswe find
rametera/r ¢ (leptodermous expansigrit can be shown that that the importance of inhomogeneities increases with the
the above interpretation indeed describes the mechanism unumber of valence electro@,« (r /r s)°. Hence, for triva-
derlying the observed shift of the supernodes. lent materials a soft jellium surface should have a stronger
influence on the supershells than for alkali metals.
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