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We present the results of self-consistent calculations of the electronic shell and supershell structures for
clusters having up to 6000 valence electrons. The ionic background is described in terms of a homogeneous
jellium. The calculations were performed for a series of different electron densities, resembling Cs, Rb, K, Na,
Li, Au, Cu, Tl, In, Ga, and Al, respectively. By analyzing the occupation of the energy levels at the Fermi
energy as a function of cluster size, we show how the shell and supershell structures for a given density arise
from the specific arrangement of energy levels. We investigate the electronic shells and supershells obtained
for different electron densities. Using a scaling argument, we find a surprisingly simple dependence of the
position of the supernodes on the electron density.@S0163-1829~96!06331-X#

I. INTRODUCTION

Following the observation of electronic shells,1 and the
prediction of supershells,2 the electronic structure of metal
clusters has attracted much interest.3,4 Treating the valence
electrons as an ideal Fermi gas moving in a suitably chosen
model potential, the observed structures can be well
understood.1,2,5 Such an effective one-electron model even
lends itself to a semiclassical treatment. Using a periodic
orbit expansion6,7 for the density of states, the supershell
structure can be interpreted as the beating pattern of the con-
tribution of two periodic orbits.2,8,9 But obviously some ar-
bitrariness is involved in choosing a ‘‘suitable’’ model po-
tential to describe a cluster. A systematic framework for
determining such effective one-electron potentials is pro-
vided by density-functional theory.10–12 Given the arrange-
ment of the ions~Born-Oppenheimer approximation!, the ef-
fective one-electron potential and the total energy of a cluster
can be determined using the Kohn-Sham formalism. The mi-
croscopic structure of clusters is, however, not known in
general and the determination of the ground-state geometry
from first principles is a major undertaking, which can only
be performed for clusters made of not more than some ten
atoms.13–15

Therefore drastic simplifications are called for to make
self-consistent calculations for very large clusters feasible. In
parallel to the early electronic-structure calculations for
solids16 and surfaces,17 one can, in a first approximation,
describe the ionic background by a smooth charge distribu-
tion, i.e., by a jellium. In the case of clusters the main pur-
pose of the jellium is to restrict the valence electrons to a
finite volume, that is, to define the cluster size. Imagining a
cluster to be a small drop it seems reasonable to choose a
spherically symmetric, homogeneous jellium. This leads to
the homogeneous, spherical jellium model~HSJM!.18,19

It turns out that assuming sphericity of the cluster will
essentially influence only the amplitude of the shell oscilla-
tions. Spherical models tend to overestimate the amplitude of
Ẽ since there are no degrees of freedom allowing for static
Jahn-Teller deformations in open-shell systems.20 Such ef-
fects give rise to a fine structure between the major shell
minima. The latter, however, being related to spherical

closed-shell clusters, are properly described by the model.
Furthermore, it was recently shown that even clusters with a
rough surface can be well described by a spherically aver-
aged potential.21 It thus appears that assuming spherical sym-
metry of the clusters for describing the electronic shell and
supershell structure is justified.

The homogeneity of the jellium, however, may well be
questioned. It has turned out that the shape of the jellium
edge or, more generally, the shape of the Kohn-Sham poten-
tial at the surface seems to influence the supershells strongly,
while leaving the electronic shells relatively unaffected.22 In
particular for high-density metals large discrepancies be-
tween the predictions of the HSJM and the observed super-
shell structure have been observed, most notably in the case
of gallium.23 Clearly the simple HSJM has to be refined, e.g.,
by choosing a suitable density profile at the surface and by
including pseudopotentials.24,25 In spite of that, the homoge-
neous jellium model is still used as point of reference to
compare to the results of refined models. More importantly, a
good understanding of this basic model is needed to be able
to find the relevant features that should be included in an
improved model, without introducing unnecessary complica-
tions.

The reason for including the noble metals Au and Cu is to
bridge the gap between the low-density alkali metals and the
high-density trivalent materials. It is clear that the presence
of d states will affect the electronic shells. In the present
work the results for these metals mainly serve for uncovering
the trends in the electronic supershells as the electron density
is varied.

The purpose of the present paper is threefold, which is
reflected in its organization. In Sec. II we briefly review the
homogeneous jellium model and present the results of our
calculations. These include the oscillating partẼ(N) of the
total energy for densities resembling Cs, Rb, K, Na, Li, Au,
Cu, Tl, In, Ga, and Al, respectively, for clusters having 125
up to 6000 valence electrons. The position of the minima in
Ẽ ~magic numbers! are listed explicitly. Furthermore, a
method for determining the location of the nodes in the su-
pershell oscillation is given and the corresponding results for
the clusters mentioned above are shown. This collection of
data could serve as reference for jellium results, extending
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previously published results considerably.26,19,18,27–29,22

Focusing on the occupation of energy levels as the clus-
ters increase in size, a simple interpretation of the origin of
supershell structure can be given. This is done in Sec. III.
Analyzing the states at the Fermi energy, we show that the
supershells arise from the fact that the difference in angular
momentumD l for orbitals of given numbern of nodes in the
radial wave function increases with cluster size. Since only
integer values ofD l correspond to physical degeneracies,
there is a periodic change from degenerate to nondegenerate
energy levels as the clusters grow larger. We give a semi-
classical explanation of this observation, which provides an
alternative to arguments using periodic orbit expansions.

In Sec. IV we analyze how the shell and supershell struc-
tures depend on the electron density. We show that for a
homogeneous jellium edge the softness of the potential at the
surface is fairly independent of the density. It thus turns out
that only the Wigner-Seitz radiusr s @related to the electron
density by 3/(4pr s

3)# is the relevant length scale for the elec-
tronic structure. We actually find that the supershells are lin-
early shifted with 1/r s , while the magic numbers are practi-
cally independent of the electron density. This suggests a
general mechanism ofhowthe surface softness influences the
supershell structure. Finally, a fit to our data allows the re-
sults of jellium calculations to be estimated without actually
having to perform the lengthy computations.

Throughout the paper we give lengths in Bohr radii (a0)
and energies in Rydbergs~Ry!.

II. JELLIUM CALCULATIONS

A. Method

In the homogeneous jellium model a given material is
characterized by the average densitynbulk of the valence
electrons. Later on, it will be convenient to use the Wigner-
Seitz radiusr s , in terms of which the bulk electron density is
given by nbulk53/(4pr s

3). To make the description of the
clusters independent of the valence of the metal under con-
sideration, we will use the numberN of valence electrons,
not the number of atoms, to denote the size of a cluster. In
the spherical, homogeneous jellium model the jellium den-
sity is then given by nI(r )5nbulkQ(R02r ), where
R05r sN

1/3 is the radius of the cluster.
To find the total energyE(N) of a jellium cluster having

N valence electrons we solve the Kohn-Sham equation

@2D1VKS~rW !#Cm~rW !5emCm~rW ! ~1!

self-consistently. The Kohn-Sham potential is given by the
sum of the electrostatic potentials arising from the jellium
and the electronic charge density, respectively, and the
exchange-correlation potential

VKS~rW !5VI~rW !12E d3r 8
nel~rW8!

urW2rW8u
1Vxc~rW !.

The electron densitynel(rW) is determined from theN lowest-
lying eigenfunctions of~1!

nel~rW !5 (
m occ

uCm~rW !u2.

Having reached self-consistency, the total energy is given by

E~N!5 (
m occ

em2E d3rVKS~rW !nel~rW !1Exc@n#1ECoul@n#,

~2!

whereExc is the exchange-correlation energy functional and
ECoul is the electrostatic self-energy of the total~both jellium
and electronic! charge density.

To treat large clusters more efficiently, instead of actually
finding all the eigenfunctions of the Kohn-Sham equation,
we determine the electron densitynel(r ) and the sum(em of
the one-electron energies by contour integration from the
one-electron Green’s function of~1!. Exploiting spherical
symmetry, the observables are given by

nel~r !5(
l

2~2l11!

4pr 2
1

2p i R EF

gl~E;r ,r !dE, ~3!

(
m

«m54pE
0

`

drr 2(
l

2~2l11!

4pr 2
1

2p i

3 R
EF

gl~E;r ,r !EdE. ~4!

Heregl(E;r ,r ) is the trace of the Green’s function for the
radial Kohn-Sham equation with angular momentuml . It is
constructed from the two solutionsul

,(E;r ) and ul
.(E;r ),

which are regular at the center and at infinity, respectively,

gl~E;r ,r !52
ul

,~E;r !ul
.~E;r !

W~E!
,

whereW(E)5ul
,8(E;r )uL

.(E;r )2ul
,(E;r )ul

.8(E;r ) is the
Wronskian of~1!.

At zero temperature the integration contour would have to
go through the Fermi energyEF and we would have to deal
with poles on the real axis. We therefore introduce a ficti-
tious finite but small temperature and multiply the Green’s
function in Eqs.~3! and ~4! by a Fermi-Dirac distribution.
The contour can then be closed well aboveEF , where the
poles on the real axis have negligible weight. The Fermi-
Dirac distribution, however, has additional poles at
EF1(2n11)p ikT, for integern. Their contributions have
to be subtracted from the contour integral. Working with
fractional occupations has the further advantage of reducing
oscillations in the occupation numbers during the iterative
process of reaching self-consistency.

The main reason for using the Green’s-function approach
to solving the Kohn-Sham equation is its computational ef-
ficiency for large clusters. Since the radial mesh grows with
the cluster radiusR05r sN

1/3, the computation of the Green’s
function scales withN1/3. To determinenel and(em we have
to perform lmax}R0 integrations, for which the integration
contour is independent ofN. Hence the computer time grows
asN2/3. This has to be compared to the traditional approach,
which for eachl involves findingnmax}R0 eigenstates, thus
resulting in a computational complexity ofO(N).

Because of the large density gradients at the cluster sur-
face, it seems highly desirable to go beyond local-density
approximation to the exchange-correlation energy. Figure 1
shows the self-consistent Kohn-Sham potentials for a
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Na5000 jellium obtained using local density approximation
and two different generalized gradient approximations
~GGA’s!.30,31 Unfortunately, it turns out that the potentials
found using a GGA exhibit an unphysical shoulder at the
surface. We therefore stick to the local-density
approximation32 for all subsequent calculations.

B. Results

We have performed self-consistent calculations for jel-
lium clusters with electron densitiesnbulk corresponding to
Cs, Rb, K, Na, Li, Au, Cu, Tl, In, Ga, and Al~see Table I!.
Cluster sizes range from 125 to 6000 valence electrons for
each density considered. The calculations yield the total en-
ergyE(N) as a function of cluster size.

Neglecting the discreteness of energy levels~i.e., disre-
garding shell effects! the total energy is approximated by the
asymptotic expansion

Ē~N!5a1N1a2N
2/31a3N

1/31•••. ~5!

In this Thomas-Fermi-like expansion the leading coefficient
a1 resembles the bulk energy of the system. The next coef-
ficient a2 is related to the surface energy.33 The electronic
shells and supershells reflect the deviations of the total en-
ergyE(N) from this smooth function. These are given by the
oscillating part of the total energy, defined by

Ẽ~N!5E~N!2Ē~N!. ~6!

Thus, to extractẼ(N) from the total energyE(N) ob-
tained from our self-consistent calculations we need to know
the smooth partĒ(N) of the total energy. To this end we
have determined the parametersai in the asymptotic expan-
sion ~5! by a least-squares fit. To check the quality of our fit,
we compare the fit parameters to known properties of jellium
systems. The leading parametera1 should be equal to the
bulk energy per electron of a homogeneous, neutral electron
gas

ebulk5
3

5
kF
21exc~r s!.

The comparison of the parametersa1 from the fit toebulk is
shown in Fig. 2.

The next to leading terma2N
2/3 should resemble the total

energy of the jellium surface, hencea2 should be related to
the surface energys by

FIG. 1. Self-consistent Kohn-Sham potentials for a homoge-
neous, spherical Na5000 jellium (VKS5VCoul1V xc). The results
shown here differ only in the way the exchange-correlation term
was treated. The potential displayed in the first plot~LDA ! was
obtained using the local-density approximation in the parametriza-
tion given by Vosko, Wilk, and Nusair~Ref. 32!. The second
~GGA-PW! and third~GGA-EV! plots show the potentials obtained
using generalized gradient approximations as given by Perdew-
Wanget al. ~Ref. 30! and Engel and Vosko~Ref. 31!, respectively.

TABLE I. Wigner-Seitz radiir s for the different metals which
were used in the self-consistent calculations to define the jellium
density.

Metal r s in a0

Cs 5.62
Rb 5.20
K 4.86
Na 3.93
Li 3.25
Au 3.01
Cu 2.67
Tl 2.48
In 2.41
Ga 2.19
Al 2.07

FIG. 2. Leading term in the asymptotic expansion of the total
energyE(N) extracted from our calculations for homogeneous jel-
lium spheres of densitiesnel53/(4pr s

3). For comparison the dotted
line shows the energy of a homogeneous electron gas in the local-
density approximation using the parametrization given by Vosko,
Wilk, and Nusair~Ref. 32!.
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s5
a2

4pr s
2 . ~7!

Figure 3 shows the comparison between the surface energy
obtained from the fit parametera2 and the surface energies
for jellium surfaces calculated by Lang-Kohn17 and Perdew
et al.30 The discrepancies between the surface energies found
by Lang-Kohn and the other data are probably due to the use
of a different exchange-correlation energy functional: Lang
and Kohn used the Wigner approximation to the exchange-
correlation energy, while the treatment of exchange and cor-
relation in the work of Perdewet al. and in our calculations
was based on the results of Monte Carlo simulations of the
homogeneous electron gas.34

Having found the parameters of the asymptotic expansion
~5! we can readily determine the oscillating partẼ(N) of the
total energy. The results from our self-consistent calculations
for the densities listed in Table I are shown in Fig. 4. Plotting
Ẽ overN1/3, which is proportional to the cluster radius, we
find regular oscillations~shell structure!. The amplitude of
these oscillations is modulated, resembling a beating pattern
~supershell structure!.

The local minima in the oscillating partẼ of the total
energy correspond to clusters that are expected to be excep-
tionally stable. We call the number of valence electronsN in
these clustersmagic numbers. They are listed in Table II. It
turns out that in the regions where the amplitude of the shell
oscillations is large, the magic numbers for different jellium
densities are comparable. Comparing the sequences of corre-
sponding minima inẼ, we find that the magic numbers grow
slightly as the Wigner-Seitz radius decreases. In the regions
where the amplitude of the shell oscillations is small, similar
sequences of magic numbers exist. Here, however, they do
not extend over the whole range of jellium densities. Instead
we find that a sequence starting at small densities ends at
some intermediate density, while a new sequence, shifted by
about half a period, evolves and extends to larger jellium
densities.

For all jellium densities we find a pronounced modulation
in the amplitude of the shell oscillations. Even a superficial
look at Fig. 4 shows that the beating pattern inẼ is shifted
towards larger cluster sizes as the jellium density increases.
To characterize the supershell structure we use the location
of the minima in the amplitude of the shell oscillations. The
position of these supernodes is given by minima in the en-
velope of Ẽ(N). The envelope is obtained eliminating the
rapid shell oscillations fromuẼ(N1/3)u using a low-pass Fou-
rier filter. Naturally such a filtering scheme introduces an
uncertainty inN1/3, which is of the order of a period of the
shell oscillation.

For all jellium densities we have considered, exactly two
supernodes fall in the range of clusters having 125–6000
valence electrons. Using the procedure described above, we
have determined the position of these supernodes. The re-
sults are listed in Table III.

III. MICROSCOPIC ANALYSIS
A cluster withN valence electrons will be more stable

than neighboring clusters if its highest occupied orbital is
completely filled. The increase in stability can be character-
ized by the gap between the highest occupied and the lowest
unoccupied level. In general, the width of this gap rapidly
decreases with growing cluster size. A set of degenerate lev-
els will, however, open a larger gap in the spectrum. The
electronic shell structure can thus be traced back to degen-
eracies in the energy spectrum of the cluster potential at the
Fermi energyEF . In the following we therefore focus on the
Kohn-Sham energiesen,l next toEF . In doing so we identify
the degeneracies that cause the strong shell oscillations and
find a mechanism that explains why there are no such degen-
eracies near the supernodes.

The potentials in our self-consistent calculations are
spherically symmetric. Therefore we can characterize the en-
ergy levels by two quantum numbers: the numbern of nodes
in the radial wave function and the angular momentum quan-
tum numberl . The degeneracy of an eigenenergyen,l is
given by 2(2l11). Hence states with largel have a stronger
influence on the shell structure than those with small angular
momentum.

Since in our self-consistent calculations the Kohn-Sham
levels are populated according to a Fermi-Dirac distribution

Nen,l
5

2~2l11!

11e~en,l2EF!/kT ,

degenerate levelsen,l near the Fermi energyEF are filled
simultaneously. By ‘‘filling’’ a level we mean that the occu-
pation of en,l changes with cluster size~i.e., with the total
numberN of valence electrons!:

DNen,l
~N!5Nen,l

~N!2Nen,l
~N21!Þ0.

In practice, we do not consider all individualDNen,l
, but only

the sums

DNl5(
n

DNen,l
.

FIG. 3. Next to leading term in the asymptotic expansion of the
total energyE(N) extracted from our calculations for homogeneous
jellium spheres of densitiesnel53/(4pr s

3) ~diamonds!. For com-
parison the surface energiess for jellium surfaces as found by Lang
and Kohn~Ref. 17, Table II! and by Perdewet al. ~Ref. 30, Table
XII ! are shown. The dotted line gives an interpolation of the Lang-
Kohn data.
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For a given angular momentuml , the first level to be
filled as the cluster size increases will be the one with the
nodeless radial functione0,l , followed by those with quan-
tum numbersn51,2, . . . . Since these levels are well sepa-
rated, their filling will be indicated by small humps in
DNl , which otherwise vanishes. Figure 5 shows theDNl ,
shifted vertically byl , as functions ofN1/3.

Since orbitals having the same energy are filled simulta-
neously, finding several humps for the same cluster size
means that the corresponding orbitalsen,l are degenerate. For
the leading levels~i.e., those with large angular momentum!

these degeneracies are indicated in Fig. 5. The patterns are
similar for all jellium densities. The main difference is that
the pattern is shifted towards larger cluster sizes as the
Wigner-Seitz radius decreases. We find that the first maxi-
mum in the shell amplitude is caused by the degeneracy of
the statese0,l'e1,l23 followed by e0,l'e2,l26. The second
maximum in the supershell structure is mainly due to the
degeneraciese1,l'e2,l23, supported by e0,l'e1,l24 and
e1,l'e3,l26.

To find out why there are nodal regions inẼ, we first
observe that the humps with a given quantum numbern are

FIG. 4. Oscillating partẼ of the total energy for jellium clusters as a function of the number of valence electronsN. At the minima of
Ẽ the corresponding number of electrons is indicated~magic numbers!. These numbers are also listed in Table II. The positions of the
supershell nodes are indicated by open triangles. The numbers given in parentheses below these are the positions of the supernodes given as
N1/3 ~cf. Table III!.
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arranged into nearly straight lines~see Fig. 5!. The slope of
theseoccupation linesis larger for smallern, i.e., the dis-
tanceD l between two such lines increases with cluster size
N. But since the angular momentum is quantized, degenerate
energy levels exist only for integer values ofD l . Therefore
regions where energy levels are degenerate are separated by
regions without degeneracies. Hence the supershell structure
can be traced back to the differences in the slopes of the
occupation lines.

The origin of these lines can be understood from a simple
classical argument. Assuming that the Fermi energyEF is
fairly independent of the cluster size, the maximum angular
momentum for an electron in a potential well of radius
R05r sN

1/3 is given by

Lmax~N!5\kFR0 , ~8!

where \kF5(2mEF)
1/2 is the Fermi momentum. Using

semiclassical quantization, we can go beyond this crude ap-
proximation. The angular momentum is then written as
L5\( l11/2), wherel is the angular momentum quantum
number. Introducing the parameter

g5
l11/2

kFR0
, ~9!

which is unity in the classical case~8!, the Bohr-Sommerfeld
condition for an infinitely deep potential well of radiusR0
reads

S l1 1

2D SA 1

g2 212arccos~g! D 5p~n13/4!. ~10!

TABLE II. List of the magic numbers for jellium clusters of different densities. Listed are the numbers of
valence electronsN in the range from 125 to 6000 for which the oscillating part of the total energy has a
minimum. The magic numbers for the different jellium clusters are arranged in sequences of comparable size.
In the regions where the amplitude of the shell oscillations is large~cf. Fig. 4! these sequences extend over
the whole range of densities. In the vicinity of the nodes in the supershell structure this is no longer true. Here
sequences starting at small jellium densities end at intermediate densities, while a new sequence, shifted by
about half a period, evolves and extends to larger densities.

Cs Rb K Na Li Au Cu Tl In Ga Al

137 137 138 138 138 138 138 138 138 138 138
186 186 186 189 196 196 196 198 198 198 198
254 254 254 254 254 254 254 261 267 267 267
338 338 338 338 338 338 338 339 339 339 339
437 438 438 439 440 440 440 441 441 441 441
539 543 545 551 556 556 557 558 561 561 561
617 618 619 634 640 638 638 639 639 639
668 673 674 676 676 677 686 693 693 693 693
751 751 752 756 759 783

832 832 832 832 831 831 834 834
910 911 912 912 912 914 921 924 927 927

1013 1012 1011 1011 1011 1011
1078 1079 1080 1096 1100 1100 1100 1101 1101 1101 1101

1215 1218
1281 1282 1282 1284 1284 1286 1314 1314 1314 1314 1314
1503 1503 1503 1507 1515 1516 1518 1521 1521 1524 1554
1747 1751 1755 1760 1760 1760 1760 1767 1770 1776 1779
2018 2019 2019 2019 2039 2047 2048 2049 2049 2049 2049
2322 2324 2326 2330 2333 2334 2334 2337 2346 2367 2367
2654 2653 2653 2656 2665 2670 2672 2673 2673 2679 2682
2909 2906 2903 2913
3070 3063 3056 3025 3028 3028 3028 3030 3030 3042 3048
3261 3267 3271 3279 3283 3288

3409 3418 3436 3438 3438 3438 3438
3510

3607 3619 3645 3676 3692 3695 3708 3708
3865 3847 3849 3849 3861 3882

4063 4067 4068 4068 4088 4112 4152 4152 4155 4155 4158
4332 4320 4317 4323

4544 4554 4561 4569 4570 4570 4570 4569 4569 4593 4656
5015 5025 5035 5068 5095 5097 5101 5106 5106 5109 5109

5471 5511 5502
5567 5565 5565 5582 5601 5607 5630 5655 5658 5670 5670
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Expanding this equation to first order around the classical
caseg51, we can solve for the angular momentum of a state
with quantum numbern at the Fermi level:

l1
1

2
'kFR02

@3p~n13/4!#2/3

2
~kFR0!

1/3. ~11!

Figure 6 shows the angular momentum quantum numberl as
a function ofkFR0. It turns out that, for small quantum num-
bers n, the approximation~11! matches the quantum me-
chanical result quite well. The deviations for largern are due
to the expansion aroundg51, not to the semiclassical ap-
proximation itself. Since a stateen,l at the Fermi level will be
filled as the cluster size increases, the crosses in Fig. 6 can be
identified with the humps in Fig. 5. Hence the expansion~11!
provides, for smalln, a good approximation to the occupa-
tion lines for the infinite potential well.

IV. SCALING ANALYSIS

In the present section we analyze the systematic variations
in the shell and supershell structures as the jellium density is
changed. The key to such an analysis is the identification of
relevant scales. Expressing all data in terms of these scales,
i.e., dealing with dimensionlessreduced quantities, allows
the results for different materials to be conveniently com-
pared.

Obviously, the Wigner-Seitz radiusr s is such a scale. It is
a fundamental length describing how the volume of the clus-
ter depends on the jellium density. Via the relation

kF'S 9p

4 D 1/3 1r s
it is also related to a basic energy scale. As a simple example
we note that the overall amplitude of the shell oscillations
Ẽ is proportional to 1/r s

2 This is shown in Fig. 7.
From the shape of the self-consistent Kohn-Sham poten-

tials we can identify a second length scale. As can be seen
from Fig. 8, for a given jellium density the shape of the
potentials aroundR0 is quite independent of cluster size. For
each material it can be characterized by the width of the

surface region, which hence is a good candidate for an addi-
tional length scale. We will denote the surface width bya.

We might assume then that the changes in the electronic
shells and supershells can be described in terms of the di-
mensionless parametera/r s . For a rough estimate of how
a varies with the jellium density, we have performed a
simple Thomas-Fermi calculation for a plane jellium surface
nI(z)5nIQ(2z). Given an areaA the surface energy is

s@nel~z!#5

E
2`

`

$e@nel~z!#nel~z!2e@nI~z!#nI~z!%dz

A
,

wheree(n) is the Thomas-Fermi energy functional including
the second order gradient correction to kinetic energy,35 ex-
change energy, and Hartree energy. To estimatea, we mini-
mize the surface energy using a parametrized electron den-
sity, where the only parameter is the surface width

TABLE III. Position of the nodes in the supershell structure for
jellium clusters of different densities. The position of the super-
nodes was determined by finding the minima in the envelope
of Ẽ(N). N denotes the number of valence electrons in the cluster.

Metal N1
1/3 N2

1/3

Cs 8.39 14.59
Rb 8.43 14.67
K 8.47 14.75
Na 8.95 15.11
Li 9.15 15.45
Au 9.30 15.62
Cu 9.68 15.86
Tl 9.79 16.01
In 9.85 16.11
Ga 10.13 16.37
Al 10.29 16.49

FIG. 5. Filling of the orbitals with increasing cluster sizeN in
the self-consistent calculations for jellium clusters.DNl is the
change in the occupation of the orbitals with angular momentum
l . In the plot, theDNl are shifted byl . The small humps in the
horizontal lines indicate a change in the occupation of an orbital
with the corresponding angular momentum, i.e., the filling of that
orbital. Since degenerate orbitals are filled simultaneously, the ex-
istence of several such humps for a given cluster sizeN shows that
the corresponding orbitals are degenerate. For the orbitals with
large angular momentum these degeneracies are indicated by lines
connecting such humps. The first hump for a givenl corresponds to
the orbital with nodeless radial wave functionn50. Likewise, the
orbital connected with the second hump has the quantum number
n51. As can be seen from the plots, the humps for orbitals with
given n are arranged into nearly straight lines of slightly different
slope.
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nel~z!5nI f ~z/a!.

A good choice for the functionf (z) is36

f ~z!5H 12
1

2
ez, z,0

1

2
e2z, z>0.

The resulting surface widthaopt as a function of the Wigner-
Seitz radiusr s is shown in Fig. 9. It is fairly independent of
the jellium density, in agreement with the results of the self-
consistent Kohn-Sham calculations shown in Fig. 8. Hence
r s seems to be the only relevant length scale in the cluster
problem.

The dependence of the shell and supershell structures on
the scaling parametera/r s is revealed by plotting the magic
numbers and the supernodes against 1/r s . Figure 10 shows
the resulting pattern, which is surprisingly simple. The magic
numbers are practically independent of the jellium density,
while the supernodes are linearly shifted with 1/r s . A closer
look at the supernodes reveals that their position can be ac-
curately interpolated by a linear function. For some given
jellium density a reliable estimate of the location of the
minima in the supershell structure can be read off Fig. 11,
without having to perform a time-consuming self-consistent
calculation.

It is interesting to note that the first and the second super-
node are shifted by the same amount. Writing the oscillating
part of the total energy as a beating pattern

FIG. 7. Scaling of the amplitude of the shell oscillations with
the electron densitynel53/(4pr s

3). The diamonds give the maxi-
mum amplitude of the oscillating partẼ extracted from our self-
consistent calculations. The dotted line gives a fit of these data
points with the one-parameter function const/r s

2 .

FIG. 9. Widthaopt of the surface region as a function of electron
density.aopt was obtained from a Thomas-Fermi calculation~in-
cluding gradient corrections and exchange! for a parametrized elec-
tron density. The energy functional included second-order gradient
corrections to the kinetic energy, Coulomb energy, and the ex-
change energy~full line!. Including also exchange in theXa ap-
proximation~Ref. 37! yields the dotted curve.

FIG. 6. Position of the energy levelsen,l5\2kn,l
2 /2m in an infi-

nite spherical potential well~spherical cavity! of radiusR0. For
comparison with Fig. 5, we givekR0 on the abscissa and the angu-
lar momentuml on the ordinate. The position of the energy levels is
indicated by crosses. For smalln, these can be well described by
the semiclassical expansion that is described in the text. The clas-
sical limit Lmax5\kFR0 is given by the dotted line.

FIG. 8. Self-consistent Kohn-Sham potential for sodium and
gallium jellies of different sizes. To compare the surface region of
the potentials, we choser minus the radiusR0 of the corresponding
jellium as the abscissa. As can be seen, the shape of the potential at
the surface of the clusters is fairly independent of the sizeN. The
horizontal lines indicate the Fermi energies of the corresponding
systems.
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Ẽ~N!5cos~ f 1N
1/32w1!1cos~ f 2N

1/32w2!

52 cosS f 12 f 2
2

N1/32
w12w2

2 D cosS f 11 f 2
2

N1/3

2
w11w2

2 D ~12!

suggests a simple picture for understanding such a parallel
displacement. Since the supershell oscillation is described by
the first cosine in~12!, the position of thekth supernode is
given by

Nk
1/35

~2k11!p

f 12 f 2
1

w12w2

f 12 f 2
.

In this picture a shift of the supernodes, which leaves the
period of the oscillation unchanged, naturally arises from a
variation of the phasesw1 and w2. In a semiclassical ap-
proach, using a periodic orbit expansion,2 these phases are
determined by the cluster surface. This is consistent with the
observation that the supershell structure is sensitive to the
shape of the surface potential.5,22 Using an expansion of the
relevant semiclassical integrals in terms of the scaling pa-
rametera/r s ~leptodermous expansion!, it can be shown that
the above interpretation indeed describes the mechanism un-
derlying the observed shift of the supernodes.38

V. CONCLUSIONS

We have analyzed how the oscillating partẼ of the total
energy extracted from self-consistent calculations depends
on the electron density. It turns out that the magic numbers
are fairly independent of the density, while the supershell
oscillations are shifted towards larger cluster sizes as the
Wigner-Seitz radius decreases. Focusing on the energy spec-

trum near the Fermi levelEF , we have found a simple pat-
tern in which the orbitals are filled: the occupation lines.
They can be understood using a semiclassical expansion.
Qualitatively there is no difference between clusters of dif-
ferent density. The strong oscillations inẼ are caused by
degeneracies of energy levels close toEF . The supershells
are a consequence of the different slopes of the occupation
lines, which imply transition zones between regions where
levels are degenerate. The shift of the supernodes with in-
creasing density can be understood from an analysis of the
physical scales. We have identifiedr s as the relevant length
scale for the cluster problem. It turns out that the location of
the supernodes is linearly shifted with 1/r s .

Furthermore, the identification ofr s as the typical length
scale for the supershells suggests a justification of thead hoc
procedure proposed in Ref. 23 to improve the results of jel-
lium calculations for gallium clusters. There it was found
that the introduction of a nonhomogeneous jellium back-
ground is essential for treating GaN clusters, while alkali-
metal clusters are well described by a homogeneous jellium.
With the help of the above scaling argument that puzzle may
be resolved. Assuming that the typical length scale for fea-
tures in the jellium is the ionic radiusr at, while the length
scale for the electrons is the Wigner-Seitz radiusr s , we find
that the importance of inhomogeneities increases with the
number of valence electronsZval}(r at/r s)

3. Hence, for triva-
lent materials a soft jellium surface should have a stronger
influence on the supershells than for alkali metals.
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