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Effects of liquid loading on surface acoustic waves in solids
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We study the effect of liquid loading on the characteristics of surface acoustic waves propagating along the
(100 surface of silicon. A nonviscous liquid layer of infinite thickness in contact with a solid substrate causes
changes in the wave velocity and the attenuation of surface waves along the liquid-solid boundary. More
importantly, we examine an additional branch of the Rayleigh surface that is induced by the liquid loading. We
also find that the pseudosurface wave, which is restricted only to certain directions on the free surface, extends
to all directions on the liquid-loaded.00) surface. Calculating the acoustic Poynting vectors associated with
these surface-related acoustic modes, we find that the Rayleigh wave and the induced Rayleigh wave emit
energy only into the liquid, whereas the pseudosurface wave emits energy both into the liquid and solid
substrate[S0163-1826)03131-1

[. INTRODUCTION a solid (Zs) supporting SAW's, e.g.Z, =1.48<10° ¢
cm ?s1(Z,=0.92x10° g cm 2 s~ 1) for water(alcoho)

The surface acoustic wavéSAW’s) originally studied by andZg=1.36x10° gcm 2 s~ ! for the transverse mode in
Lord Rayleigh have attracted enormous interest of scientistghe [100] direction of silicon'®
in the fields of seismology, materials science, electrical en- The effect of water loading on the Rayleigh waves propa-
gineering, and physicsThe generalizations of Rayleigh’s gating on the surface of steel was studied by Viktoeowal
pioneering work, i.e., the Rayleigh waves supported on thdhey found a velocity change of about 0.05%. In addition,
semi-infinite, isotropic, elastic medium bounded by a stressattenuation of the Rayeigh wave occurs, due to the emission
free planar surface, to the waves in more realistic system®f longitudinal waves into liquid. This behavior is common,
such as anisotropic media, piezoelectric médiand inho- because the sound velocity in liquid is usually much
mogeneous media with solid-salidnd solid-liquid bound- ~ smaller than the Rayleigh-wave velocity in a solid. In the
aries have been studied extensively. However, even for thease of water on top of steel, the wave amplitude is reduced
SAW'’s (or interface wavesat solid-liquid interfaces, impor- to e ! of its original value when the Rayleigh wave travels
tant characteristics remain to be studied. about fourteen wavelengths along the water-steel boundary.

The purpose of the present work is to examine theoreti- In the case of liquid loading on an anisotropic solid sur-
cally the effect of liquid loading on the propagation charac-face we predict more dramatic effects to occur, in addition to
teristics of SAW’s on a real crystal surface with elastic an-the expected small change in velocity and the occurrence of
isotropy. This would be interesting in conjunction with the attenuation of the SAW. Specifically, we find hiterto un-
recent experimental verificatiofid® of the predicted “pho-  obserbed branches of RSW’s and PSW’s that are induced by
non focusing*'*2at crystal surfaceS$'°One of the current  the liquid loading. These modes radiate acoustic energy ei-
methods used for studying the focusing effect of SAW’s orther into liquid or solid, or into both. In general, those waves
surface phonons utilizes focused ultrasonic immersiorwhich radiate the energy only into the liquid retain their
transducer&?® With this method, the propagation of SAW’s RSW designation; those which radiate into both liquid and
with the effect of liquid in contact with an anisotropic solid solid are PSW's.
surface has been measured. Hence, the theoretical study of In the next section, we formulate the problem in the con-
the SAW's in the presence of liquid loadings should be subiext of elasticity theory. In Sec. Ill, we give extensive nu-
stantially important to interpret the experimental results onmerical results on phase velocities, group velocities, and at-
the SAW focusing obtained with ultrasonic immersion trans-tenuation rates of the surface-related acoustic modes for
ducers. alcohol and water loadings of tH@01) face of silicon. Lig-

It is known that even for the stress-free flat surface, theuid loading causes additional Rayleigh modkxalized at
introduction of elastic anisotropy gives rise to branches othe silicon surfaceand an extension of the branches of the
acoustic waves called pseudosurface waRSW'’y, which  PSW's. The origins of these Rayleigh modes induced by
behave like Rayleigh surface wave8SW's), although they liquid loading(termed IRW and the extension of the PSW's
are not truglnondecayinyg surface waves, except in isolated are discussed in Sec. IV. In Sec. V, we calculate acoustic
directions!’ The loading of liquid on the solid surface is Poynting vectors to see the energy emissivities of the RSW
usually expected to act as a small perturbation on the propand PSW branches. Our overall conclusions are given in Sec.
erties of SAW’s, because the acoustic impedance of a liquid/l. The origin of the IRW is analyzed more quantitatively
(Z,) is typically one order of magnitude smaller than that ofbased on fcc model in the Appendix.
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Il. FORMULATION S{¥=Caakje§” +kee!®)  (j=1,2),
We take a Cartesian coordinate system such that the solid
(liquid) occupiests=2z>0 (z<0) and the solid-liquid inter- (8)
face (=0) is parallel to the plane containing the vector
X|=(X1,X2) = (X,y). Thus, we write the displacement vector 5= Coakye | + ke s”) + Crk ey

associated with the acoustic wave in the liquid as
KX — o) andC;j; are the elastic constants. The continuity of the nor-
U=Aee KX wt)equ, (1) . .
mal components of the stresses and the lattice displacements
where A is the amplitude, kj=(k;,k;) is the two- at the liquid-solid interface, and also the stress-free condition
dimensional wave vector common to that in the solid, ancglong the interface lead to
g is the wave number in the direction which satisfies the

dispersion relation S<ll) S<12> 3(13) 0
kf+q%=w?/ct=KZ, 2 st 2 s 0 . .
whereK is the magnitude of the wave vecti; in liquid. si) s s -s;
Only longitudinal waves can propagate in nonviscous liquid, eD @ B _g
. . - . 3 3 3 3
hence, the polarization vector is written as
e=(k,q)/K. (3 or
At the liquid-solid interface the stres€J induced by the
liquid is nonvanishing only when it is normal to the inter- es3l's—SI' =0, (10
face. Thus3,=3,=0 and
_ _ where
E3=|)\A(k||-q|+qe3)E|A83, 4)
whereS; =\ (k|- ¢+qes) and\ (=p.c?, p, is the density st s? s
of liquid) is a Lame constant. e |sl) 2 &®
In a solid the displacement vectartakes the form ST ™2 2 2 (1)
(1 &2 3
3 S37 Sz S3
: ela)
u= B(@ gla)gilk-x—obgiky”z 5
Zl ¢ ® and
where a (=1, 2, and 3 discriminates three partial waves L ) 5
with amplitudesB(®)’s, &(*)’s are unit polarization vectors si? sP s
andk{”’s determine the spatial variation of the displacement ro=|s® s s (12)
perpendicular to the solid surface. It should be noted that - D @ (@
k{"’s are determined by solving the equation of motion with g3 &3 &3
k=(k}.ks)
Note that the boundary condition valid for a stress-free pla-
(ps®?8im—CijmnKikn)em=0 (i=1,2,3, (6)  nar surface is
for the givenk| and w, wherepg is the mass density of the
solid andC;;,, is the stiffness tensor. The summation con- I's=o0. (13

vention over repeated indices is assumed in (By.
The associated stress at the (001) surface of a cubic The poundary conditiofil0) determines the velocity of sur-

crystal is given by face wave= w/[k||, with k§’s determined from Eq(6).
3 Actually, for determining ak{* from Eq. (6), we need to
o= iC"’"’Z‘l B (k;e ) + k() knowc, so Eqs(6) and(10) are used to determirié®’s and

¢ simultaneously. Here, we define the RSW as the mode with
3 all three partial waves localized near the solid surface, i.e.,
=i, B("‘)s}“) (j=1,2), Im k§”>0 for @=1, 2, and 3. If(at least one ofk{"’s has
a=1 a negative imaginary part, the amplitude of the correspond-
(7)  ing wave grows in the bulk of solid at an increasing normal
distance from surface. This wave corresponds to the PSW.
An additional complexity arises from the fact that E6)
[together with Eq.(10)] has solutions for a complek; .
This is because the phase velocity of surface waves on the
=i > B*@syY, free surface of a solid is usually faster than the sound veloc-
ot ity ¢, in liquid and the effect of liquid loading on the
where surface-wave velocity is small, so that>c, still holds.

3
o3=i X, BY[Ciyfkyet” +kaes”)+Cipki¥el]
a=1

3
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pL/ps=0 (valid for a free surface Eq. (14) has a real solu-
tion k; satisfying K >k >k>k; (or c,<c<c;<c;). This
corresponds to the Rayleigh wave={ w/k is its velocity.
For a finitep, /ps andK_ >k >k>k,, the right-hand side

@ (r.h.s) of Eq. (14) is real but the left-hand sidgh.s) is pure
imaginary. This means théf satisfying Eq(14) should be a
complex quantity.

The same thing also happens for an anisotropic solid.

Thus, we putk;=k{®+ik{", wherek{" determines the at-
tenuation (dependent on the propagation direcjiaf the

Liquid (water) 0 RSW wave along the substrate surface. The SAW velodcity
o L which is real, should be redefined loy= w/|k{®|= w/k{®.
Solid (S wy /¢ k, || [100] ’ = @l [T = @K
old S W&d s; I We also introduce the attenuation coefficiemt defined
™ by @=k{"/k{®=k{"|/|k{?]. In the numerical calculations,

we search for the SAW solutions by usikg= (1+ia)k{?
or k= kf? .17

k, || [001]
FIG. 1. The(010) section of the constant-frequency surfaces of ll. NUMERICAL RESULTS
the bulk elastic waveflongitudinal (L), fast transverséFT), and
slow transvers¢ST)] on a silicon loaded by water. The dot indi- Figures Za) and 2b) show one of the principal results of

cates the location of the wave numbésj€ wq/c, wq is a given  our calculations. In these figures, we plot the phase velocities
frequency of the Rayleigh surface wau&SW) in the[100] direc-  versus the propagation direction of surface waves on the
tion. The angled_=sin"'(c_/c) gives the direction of the wave (001) face of silicon. The velocities of the RSW and PSW on
vectorK, along which the longitudinal wave is emitted into water the free (001) face of silicon are plotted as triangles and
from the RSW[6 =17.5° for water on a silicon, where cjrcles, respectively. In thgl10] direction (45°) the RSW
¢, =1.483<10° cm/s andc=4.928< 10° cms for the velocities of  gegenerates into the bulk slow transve(S&) wave at point

the longitudinal wave in water and the RSW in silicon are dsed C, and a true surface wave with localized character appears
in the PSW branclipoint B, see also Appendjx Also the

Thus, the phase matching condition requires that a IongituPSW degenerates into the bulk ST mode at angles smaller

dmal wave is em|t'§e91from the surface wave into the I|qU|dthan ~23° and no PSW solution is obtained at these
with an angled, =sin™*(c_/c), as measured from the normal angles'’

of the interface. This can be readily understood by plotting || Fig. 2, we also plot the velocities of both the RSW and
the slowness curves of acoustic waves in liquid and solid, a8\ on th’e same surface of silicon with the loading of al-
shown in Fig. 1. This figure shows t810 sections of the cohol and water layers of semi-infinite thickness. We find
constant-frequencyu{= w) surfacesior slowness surfaces y, \inds of qualitative changes due to liquid loading.
of the longitudinal {) wave in liquid and the bulk acoustic ) A pranch of Rayleigh surface wayee refer to it as an
waves in silicon. The velocitg of an RSW propagating in i, ,ced Rayleigh wavéRW)] appears close to the original
the [100] direction on the free(00)) SI|IC.OI”I surface is . PSW branch at angles27°. This can be clearly seen for the
c:ﬁ%x 10 92"’5 and the corresponding Slowness iSq,qe of aicohol loading. For water loading, the situation is
¢ "=2.03x10 s/cm, V.Vh'Ch oceurs outside the .S'IOV‘.meSSmore complicated and interesting: the IRW appears to run
curves in silicon, but inside the one in waténe dot in Fig. continuously into the RSW branch at an angle around 28°.
D). . For consistency with the unloaded and alcohol-loaded cases,
Thus, for a given frequencysy, @ real wave vector . ever we view the IRW branch as touching the RSW at a
(K ) exists for the wave in water, which has_a_parallel SIOW'point (D), leaving both branches sharply cusped. The upgo-
ness equal to that of the RSW. However, this is not the casg,y yranch of the IRW becomes nearly degenerate with the
with the wave in solid. The surface waves on the substratg | ST mode.

surface perturbed by a semi-infinite, nonviscous liquid are \gte that the branches that we have labeled the RSW and
attenpat_ed as they propagate, rad_iating their_acoustic energ¥\v are together part of the generalized Rayleigh-wave
into liquid, i.e., complexk; is required to satisfy both the g cture for this interface; they radiate acoustic energy only
elasticity equations and Snell's law. This can be also seen by the Jiquid, as we shall see in Sec. V. In the case of liquid
explicitly writing Eq. (10) for an isotropic solid, loading, we define the branch with a phase velocity closer to
2 L 2\U 2012 1.2 U201,2 1, 2\12_ (91,2 1,2\2 that at the free surface as the RSW. So, for water loading
(I — KE) P 4Kk — k) Y00 — k) M- (2K k)] there is a transition from the RSW branch to the IRW branch
PL 42 Lo at an angle~28°, but no such transition occurs between the
= p_skt(kH =k (14 RSW and IRW for alcohol loading, justifying our terminol-
ogy. The contact between branches is found to first occur for
wherek =k||, k= w/c; andk,= w/c;, andc, andc, are the 7, /Zs=0.085.
velocities of the longitudinal and transverse waves in solid (ii) The PSW branch, which for the free surface exists at
defined byc?=Cy,/pg andc?= C,/ps under the condition a restricted region from an angte23° to the[110] direc-
C11—C1,=2Cy, required for an isotropic medium. For tion, extends all the way to thELOQ] direction when the
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Angle from [100] (deg) free surface,b) alcohol loading, andc) water loading.(d) The

magpnification of the structure enclosed by the dashed linds)in
FIG. 2. (@ Phase velocities of the surface waves in (881)  The abscissa is the angle in the real space measured frofhGoe
plane of silicon with water and alcohol loading¥he abscissa is direction(not the angle of the wave vecjotn part(c), the identi-
the wave-vector angle measured from [60] direction] The ve-  fications of the RSW and IRW branches have been corrected from
locities of the RSW and PSW are plotted by dots, while those of théhose in Ref. 8.
IRW’s are plotted by solid lines. The RSW and PSW velocities on(OOl) surface of silicon shown in Fig.(a).le For water load-

the free silicon surface are plotted by triangles and open circles; . h d ist in th loci
respectively. At the points marked byA” and “ B,” the waves are Ing [Fig. ()], the cusps do not exist in the group-velocity

polarized within the saggital plane. At poinC:” the RSW degen-  Curves of the ORSW' bUtothey instead appear in the IRW
erates to a bulk shear wavslow transverse wayepolarized hori-  Pranch(at 34.5° and 40.8° from thgl00] and their equiva-

zontally. (b) The magnification of the phase velocities near thel€nt directiong. Also, folds appear in the group-velocity
point “D” of (a). The velocities of the bulk slow transverégT) curves of the PSW branch for both the alcohol and water

wave are plotted by dashed line. loadings. Note that they do not exist in the PSW branch for
the free(001) surface of silicon.
(001) surface is loaded by a liquid. One of the remarkable features of the liquid loading pre-

The group velocities corresponding to these cases ardicted for the surface wave propagation is the fact that the
shown in Fig. 3. Figure ®) for the alcohol loading shows group velocities of the RSW and IRW are very sensitive to
the folding of the group-velocity curve of the RSW, exhibit- the liquid loading, e.g., there is a continuous transition be-
ing cusps at 9.3° and 27.2° from thE00] (and their equiva- tween the RSW and IRW branches for water loading, but
lent direction$, which is similar to the result for the free discontinuities exist between these branches for alcohol load-



54 EFFECT OF LIQUID LOADING ON SURFACE ACOUSTIC ... 5155

NS clearly seen that the RSW branch at lower angles connects

2F @ ] smoothly to the IRW branch.
250107 :

2o0r E IV. ORIGINS OF EXTRA BRANCHES

As previously discussed, the character of the surface
waves(RSW or PSW is determined by the form of the wave
numbersks that describe the wave motion in the solid per-
pendicular to the surface. From E®), it follows thatkj; is
a double-valued function of the sound velocity and, in gen-
eral, is complex. k5 has a positive imaginary part, the wave
is localized near the solid surface, andkif has a negative
imaginary part, the wave amplitude increases in the bulk of

Attenuation Coefficient o

1 2 f

220 L e the solid with the distance from the surface. Which of the

& [ two values ok; is required for a partial wave depends on the

= 2.0 - . . .

% r ] boundary conditions and also on the propagation direction.

S st PSWo .o ] To get an insight into this point, first we consider the

o " ] free (001 surface of silicon and two specific propagation

& 100 ] directions, i.e., th¢100] and[110] directions. In these direc-

< r 1 . . . . . e .

= ; 1 tions, the lattice vibrations polarized within the saggital

L sk g . lane (the saggital modesare decoupled from those polar-

= F __Sl + water RSW 1 p gg p p

< . IRW\/-.__/ ] ized perpendicular to the same plaftiee shear modes with
L T TR horizontal polarization, or SH modesThe Rayleigh wave

Angle from [100] (deg) solutions are found in the saggital mode, where lth@on-

gitudina) and FT (fast transversewaves are coupled and

FIG. 4. Attenuation coefficientd’s of the surface waves versus their wave number&$? andk” are complex with positive
the propagation direction on th@01) plane of silicon, with(a  imaginary parts [(k{]* = —k{?). Their velocities are indi-
alcohol loading andb) water loading. The abscissa is the wave- cated by the points marked ldy andB in Fig. 2(a).
vector angle measured from the0Q] direction. The coefficients of As Table | illustrates, at points andB, only two (k(31)

the RSW and PSW are plotted by dotted lines and those of IRW argng kgz)) of the three possible wave vectors contribute to the

plotted by solid lines. surface-wave solution. Since both the contributing wave vec-
tors have positive imaginary components, their amplitudes

ing. For water loading, the continuity of the RSW and IRW decrease as the waves propagate into the solids; these waves

makes a ‘V” structure in the[100] directions, which has are, by definition, Rayleigh surface waves. As propagation

been observed experimentafty. directions rotate away from these high-symmetry directions,

In Fig. 4, the attenuation coefficientés are plotted as a a third-partial wave with SH-like polarization couples to the

function of wave-vector direction. The overall magnitude issolution; the form of this partial wave determines whether

larger for the water loading than the alcohol loading, becausthe surface wave is a RSW or a PSW.

Z,125=0.11 for the former case arg} /Zs=0.068 for the An important observation is that in th&00] direction the

latter case, respectively. For the case of water loading, it iselocity of the RSWat point A of Fig. Za)] is slowerthan

TABLE |. Values and forms of complek(sa) (a =1, 2, 3 describing the variation of the surface-wave
amplitudes normal to the surface for several propagation directions itD@ face of silicon[a, a’, b,
b’, ¢, andd are real and positive, areland e are small positive numbers depending on the angle from the
chosen directiong100] and[110]) and loading effedt ID gives the identification of the branch in Fig. 2.

Direction ID On axis On axis Near axis On axis Near axis
(free surfacg weights  (free surfacg (water loaded (loaded
0.480+ 0.456i V1/2 a +bi 0.439+ 0.469i a +hi
[100] A —0.480+ 0.456i V1/2 —a+bi —0.522+ 0.441i —a’'+b’i
0.540i 0 Ci +0.044+0.538 Fe *ci
0.402+ 0.532i J172 a +bi 0.359+ 0.547i a +hi
[110] B  —0.402+ 0.532i a7 —a +hi —0.446+ 0.514i —a’ +b'i
0.341 0 d—ei +0.349+0.044 *d *ei
0.419+ 0.619i 0 a +bi 0.419+ 0.619i a +bi
[110] C —0.419+ 0.619i 0 —a+bi —0.419+ 0.619i —a'+b’i
0 1 ei 0 —e+ei




5156 S. TAMURA, R. E. VINES, AND J. P. WOLFE 54

parts and represent the localized charadsse Table )l
Thus, away from th¢110] direction the surface wave has a

vacwm wy/ € bulk-wave component, due to tge cgu_pling to the ST wave.
. . However, the imaginary part &>/k{? is very small(typi-
(001) Si ky ll [110] cally 1074—-10"%),*" so the wave grows very slowly with

the distance away from the surface and looks like a surface
; wave. This is the reason that the wave in this branch is called
L the PSW.
With a surface loading by a nonviscous liquid, RSW’s on
the free surface receive a perturbation and are no longer
— stable. They couple into the liquid, because their velocities
O are generally much higher than the sound velocityin the
liquid. Thus, the amplitude of a RSW at the solid-liquid in-
k, || {001] terface is attenuated as the wave propagates along the inter-
face and radiates energy into the liquid, as shown in Fig. 1.
FIG. 5. The(110 section of the constant-frequency surfaces of N addition, the behavior of the wave amplitude inside solid
the bulk elastic wavefongitudinal (L), fast transverséFT), and 1S modified from the case of the free surface.

slow transverséST)] in silicon. The dot indicates the location of ~ Quantitatively, the effect of the liquid loading is con-
the wave number K=wo/c, w, is a given frequency and trolled by the ratio of the acoustic impedance of the liquid to

¢=5.081x 10° cm/9 of the true surface wave in ttj¢10] direction  that of the solid, which we denote ta~=27, /Z5(~0.1). For
(free surfaceg The corresponding location in Fig(a is point B both the[100] and[110] directions the velocity changes, due
and this wave is on the PSW branch. For the propagation slightlyo the liquid loading, arg@ure imaginaryin the lowest order
away from the[110] direction, this wave couples to the bulk ST of a. (The finite correction to the velocity, which is real,
wave (the outermost curyeand hence radiates the energy into the arises in the order (ﬂz_) Owing to thisattenuationof the
bulk of the solid at the anglé indicated ¢=23.1° in the[110] of  |attice vibrationsalong the interface double values of the
silicon). wave numbek$ in a solid now become possible. As shown
in Table I, this means that near thE0Q] direction, the PSW,
that of the bulk ST wave, but in tHa10] direction the RSW  which radiates energy into the bulk of the solid, appears in
[at pointB of Fig. 2@)] is faster than the ST wavdsee addition to the RSW (The PSW is not supported on the free
Figs. 1 and & Thus, the RSW solution near th&00] direc-  surface near thgl00] direction, because there is no attenu-
tion is stable even if this coupling turns on, i.e., the RSwation of the wave along the surfage.
does not decay into a bulk wave, because the velocity of the The emission of waves into both the liquid and solid, i.e.,
RSW in this direction is much slower than that of the bulk Im[q]>0 and Inﬁk(33)]<0, does not lead to any unphysical
ST wave, leading to the RSW velocity changeresults if the wave is attenuated as it propagates along the
Ac=c—cyoq Which isreal, wherec;qq is the velocity of  interface. This can be seen by noting that
the RSW in thg100] direction.(A complex velocity change
is equivalent to a complel and signals a decay of the wave
along the surface as shown in Sec). I these directions, the (3) N oo
wave numberk{® associated with the third partial wave imiks”1z+ k|- x=0  (z>0), (16
coming from the coupling to the ST wave is pure imaginaryhold for the wave emitted into the liquidz€0) and the
(with positive imaginary paytand, thus, the wave is still third-partial wave emitted into the solidzf0), where
localized near the surface. X=(X,2) is a point along the group-velocity vector, or along
Near the[110] direction, the situation is quite different. the acoustic Poynting vectors of each waigee Fig. 6.
The ST branch(with SH character has a velocity much Hence, Iniq] > 0 and Inﬁk?)] < 0 satisfy Egs(15) and
slower than that of the true surface waRSW), embedded  (16) if k{"’ > 0 holds. These equations also imply that the
in the PSW branch at 45°. Accordingly, the coupling of thedisplacement amplitudes of the waves emitted from a point
saggital and ST modes should lead to the decay of the waves (on the interfaceare constantalong the lines in which
in the PSW branch into the bulk transverse wék@. 5.  the acoustic energy of the waves are propagated,®.€.,
The analytical calculation specifically reveals that the velocandOQ in Fig. 6 which are parallel to the acoustic Poynting
ity change near the[110] direction Ac’=c—Ci11g IS  vectorsP(") in the liquid andP'® in the solid defined in the
complex wherec;1,q=5.08< 10° cm/s is the phase velocity next section. This is the consequence of the fact that we
of the true surface wave in thgl10] direction of Si(as  employ the linear elasticity theory without dissipation. It
explicitly shown in the Appendix for a fcc lattigeThis in-  should be noted that in the liquid the direction of the energy
dicates that the amplitude is attenuated as the wave propgiow is parallel to the wave vectdt, and only the third-
gates along the surface, Whl(_:h is characteristic of a PSW at ggrtjal wave governed b with Im[k$] < 0 survives at
free surface. At the same time, the wave numki&? ac- 4 |arge distance in solid.
quires a small imaginary part near tfii10] direction(in the As the wave travels along the interface, its amplitude on
[110] directionk$® is real, but the partial wave characterized the interface is attenuated exponentially, due to the emission
by k(33) is decoupled from the RSWwhich must be negative of waves into the solid and liquid according to
to allow the damping of the wave along the surface, kgis  exp(— kﬁ')-x”). Thus, on the plane perpendicular to the wave
complex, thougH<(31) and kgz) still have positive imaginary vectork, the waves emitted at a later time from the inter-

Im{qlz+k{"-x=0 (z<0), (15)
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@) calculations for silicon, but also by the analytical calcula-
P tions using the elastic constants of an anisotropic fcc lattice,
i.e., C;;7=2C;,=2C,,.?° The details of these calculations
are given in the Appendix.
There is a third location where the SAW takes on unusual
oy 0./ ® behavior. At the point labele@ for [110] propagatior Fig.
ki 2(a)], solving the Christoffel equations reveals — as at
points A and B — two partial waves with wave numbers,
N k{) (a=1 and 3, are polarized in the saggital plane and one
= ‘ . Q that with k$>) is not. Unlike the previous case, however, the
v first two-partial waves do not contribute to the SAW solu-
tion. Also unexpectedlyk$?=0. This solution(solutionC in
Table ) is, in fact, the bulk ST wave polarized horizontally
z (SH wave; in this one direction, this bulk mode happens to
satisfy the zero-stress boundary conditions at a free surface.
(b) ' As the propagation direction is rotated away freh10], the
| Displacement bulk ST wave does not satisfy these boundary conditions and
the coupled. and FT modes begin to contribute to forming
the surface wave. In addition, the wave numkg? corre-
sponding to the SH-like partial wave, becomes pure imagi-
nary (with positive imaginary pajt although quite small,
indicating a slow decrease in wave amplitude as the wave
enters the solid.Thus, our bulk ST wave 4f.10] becomes a
Rayleigh surface wave ne@t10] to satisfy the stress-free
boundary condition. While the addition of surface loading
allows both a RSW and a PSW to emerge from pofisnd
B, relaxing the boundary conditions neardoes not allow a
FIG. 6. (a) Schematic of the bulk wave radiation associated with F_’SW SOIUt_'On nea_r this p0|nt_. This 'S_ because |_n th's direc-
the PSW. The waves are emitted from a p@nO’) on the inter- tion a SH-like partla_l wave, with amplitude growing into the_
face into the liquid and solid sides aloi@P (O'P’) and0Q  Solid, already contributes to the upper PSW branch as dis-
(0'Q’), respectively. These lines are parallel to the acousticCussed above.
Poynting vectors R(™) and P(®), or group velocity vectors of the

Interface

longitudinal wave in liquid and the third partial wayat a large V. ENERGY FLOW
z) in the solid, respectively. The displacement amplitudes are con- ) ) )
stant along these ling8P (O’P’) in the liquid andOQ (O’Q’) in Because the penetration distance of the amplitude of an

the solid. The angles shown satisfy gan= Im[q]/kﬁ') and Im  RSW into solid is finite, it is capable of radiating acoustic
[k{Ptands + k{"cos(p— $)=0, where ¢ and ¢, are the azi- energy only into liquid as the wave propagates along the
muthal angles of the vecto®® andk;, respectively.(b) Sche-  solid-liquid interface. How about the PSW? An interesting
matic of the amplitude profiles of the PSW on the solid-liquid in- issue is whether a PSW radiates energy predominantly into
terface and also on the axis. The magnitudes of the lattice the solid or both into solid and liquid comparably. To answer
displacements at the points O and P associated with the longitudinghis question, we calculate the acoustic Poynting vectors as-

wave in liquid(filled squarepand at the points O and Q associated sociated with the RSW and PSW, defined by
with the third partial wave in solidopen squargsare the same,

leading to the exponential growths of the lattice displacement with 1 .
the distance$z| from the interface. pM=— ERe{Ti(jm)[W}m)]*} (i=1,2,3, 17

face(e.g., from a poinO’) are located closer to the interface
(z=0), i.e., at pointsP’ andQ’, and their amplitudes are
much smaller than the amplitudes of the waves at pdmts
andQ emitted earlier. This leads to the fact that the profile of In order to define th issiviti fthe RSW and
the wave amplitude grows exponentially as the distdake N order o detine the energy emISSIViies ot Ine RSYV an
Erom tg(e)i]nterface increases on both the solid and liquid sidegg\é\r/1 tlgic-)i-szzhgn?jngf“rqal:jlﬂ ;V%??Q:'S)er: gncgltl)r:)c:trtl)cnil f;ege':nagf
Fig. 6(b)]. P .

Near the[110] direction, on the other hand, the RSW-type shown in Fig. 7 and calculate the acoustic flux
wave localized in the vicinity of the interfadeall the asso-
ciatedk{® (a=1,2,3) have positive imaginary pafts in- |ﬁin>:f " p(L).ndA+f(S) PS.ndA, (18
duced by the liquid loading. For this modéRW), there Ezz'<nz<<% o<rtay
exists no emission of wave into the solid side and the attenu-
ation of the wave amplitude along the interface is balancedhcident on this region through the sidewall, whet& is a
with the emission of the wave only into the liquid. All these surface element) is the unit vector normal to the sidewall
features shown above are confirmed not only by numericahnd the integral should be taken over the area of the sidewall

wherem=L, S stand for liquid and solid, respectively, and
T{™ is the stress tensgfnote thats;=T§) and o;=T§)
[see Eqgs(4) and(7)]), andW)=U andW® =u.

0<z<zy
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FIG. 7. Schematic of the cylindrical region assumed for the
calculation of the acoustic flux and emissivities of the surface
waves.

e
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Emissivity into Liquid E;

for which P(™.n<0. Similarly, the flux leaving from this Es (PSW) , g
region through the sidewall is 3 E
0.2 i\ RsW
Givrwaer] ®W 703 5
1= | s poo PP NdA+ | s 1o oP'®-ndA. (19) g AN
| PL).n>0 PS).n>0 -E, IRW) ., -
—2,<z<0 0<z<z4 0.080tttorisad s OBV =\ s
] ) ] "0 10 20 30 40
The flux emitted into the solid through the bottom face of the Angle from [100] (deg)

cylinder is
FIG. 8. Energy emissivitie€,'s of the RSW, PSW(dotted
|s:f P(SS)dA (20) lines), and IRW(solid lineg into liquid in the presence df) alco-
z=2,>0 hol loading andb) water loading. The abscissa is the wave-vector
] ] o angle measured from tHd0Q] direction. (The parameters chosen
anql that _em|tted into the liquid through the upper face of theyrez, = z,= 5\ andr =2\, where\ is the wavelength of the RSW
cylinder is in the[100] direction) The emissivitieEg's of the PSW and IRW
(— Eg for the IRW) into the solid are also plotted by dashed lines
I =— J' Pg‘)dA. (21) and thin splid lines, respectively. At QP100] direction Eg for the
2=—2,<0 PSW vanishes.

Now the sumi{™ —1{*""—1+1, should vanish, which guar-
antees the conservation of the acoustic energy. Thus, we ¢
define the quantities, which measure the energy emissiviti
of acoustic waves into solidgg) and into liquid ), as

100] direction, i.e., the portion of the PSW branch induced
the liquid does not radiate acoustic vibrations into the
& guid, but rather emits the energy into the bulk of solid. At
angles larger than-25°, however, the energy emissivity of
Eee | /Iﬁi”) E =1 /(™ 22) the PSW into the solid is suppressed and emission into liquid
sTost e ELTIL appear$! These latter angles are those at which the PSW's
exist for free surface and they behave rather like surface
waves'’ Thus, the presence of induced PSW's at angles near
the[100] direction cannot be observed by measuring energy
transmission into liquid, but could be confirmed by observ-
ing the energy transmission into the solid.
It should be noted that in tHel0Q] direction the induced

dPSW coincides with the RSW, so their energy emissivities
into liquid should also coincide, i.eE; =0. Actually,E, for

the RSW becomes an SH wave, which does not couple to e PSW very sh?rply Increases to the value O.f Fhe RSW at
angles close to 0°, which is, however, not explicitly seen in

longitudinal wave in liquid. The IRW also emits the energy ~.

only into liquid. For propagations close to the angle where 9- 8

the IRW branch degenerates into the bulk ST wateangles

~27°), the negative emissivity into the soliE<0) can be

seen for both alcohol and water loadings. This means that at

these propagation angles, the energy flow from the solid to In the present work, we studied theoretically the effects of

liquid exists due to the bulklike nature of IRW branch. liquid loading on the properties of the surface acoustic waves
More interesting results can be seen for the PSW branctpropagating on thé100 face of silicon. The liquid loading

The energy emission into liquid associated with the PSW istudied previously had been restricted to the case of isotropic

vanishingly small at angles smaller than25° from the elastic substrate and only the appearance of complex wave

Of courseEg andE, depend on the aredsr the radiug)
of the top and bottom faces of the cylinder and alsozgn
andz,. Figure 8 plots the emissivitiels, into liquid (with
z,=2,=5\ andr=2\, where\ is the wavelength of the
RSW in the [100] direction of surface-related acoustic
modes in(100 silicon for alcohol and water loadings. As
expected, RSW emits the acoustic energy only into liqui
though the emissivity vanishes in th&10] direction, where

VI. CONCLUDING REMARKS



54 EFFECT OF LIQUID LOADING ON SURFACE ACOUSTIC ... 5159

numbers(equivalently, the velocity change and attenuation
of waves perturbed by the loading was recognized. How-
ever, the presence of the elastic anisotropy produces a more L
interesting effect as discussed in this paper. Similar results TE T
are also expected for the liquid loading on the surfaces of r
lower symmetry, or on surfaces of crystals with noncubic
symmetry??

It should be noted that the extension of the PSW branch
induced by the liquid loading predominantly emits the en-
ergy into the solid substrate, so the existence of this portion
of the PSW branch cannot be confirmed by measuring the
acoustic signal in the liquid. For its observation the acoustic
signal propagating slower than the bulk ST mode, but faster
than the RSW, must be detected in the solid side. This re-
mains an interesting challenge.

09 F .

K Y1

Normalized Velocity c/ct
g
2]
(2

We also remark here that the PSW's studied here are 07 a *
those with only one-partial wave, which grows into the bulk ’ 1
of the solid substrate(for instance, Ifk{Y]>0, Im T T T T T Y
[k{#1>0, but Infk{?1<0). Actually, the PSW solutions 0 10 20 30 40
with two partial waves, the amplitudes of which grow into Angle from [100] (deg)

the solid also exist? However, these PSW'’s generally con-

sist at least of one partial wave with a large growth rate into  FIG. 9. Normalized velocitiesy(=c/c,) of the bulk transverse
the solid and also a large attenuation coefficieralong the  and surface acoustic waves propagating in(@) plane of the fcc
solid-liquid interface. Hence, it should be hard to observe thdattice (the surface is stress-free for the RSW and PSW, and the
associated acoustic energy emitted into liquid. abscissa is the wave-vector angle measured froniX86] direc-

The frequencies of the SAW's excited experimentallytion). y,=1, y2=(7—1/17)/4=(0.848F, (y;)?=(3—+3)/2
with ultrasonic immersion transducers are typically in the=(0.796}, andy5=1/2. The cross indicates the velocity of the
range of 10 MHz and the corresponding wavelengths ar&ue surface wave in thgL10] direction. At the points marked by
about 0.1 mm. These lengths are not negligible compared t@80ts, the waves are polarized perpendicular to the saggital plane,
the propagation distances of the SAW's in the experiments:€-» SH waves.

Thus, the finite-wavelength effects such as diffraction and ] ) ]

interference should play important roles in the focusing ex-SH waves polarized perpendicular to the saggital plafiee
periments using coherent SAW's in the above frequency€loCity of the RSW degenerates into a bulk ST wave in the
range. The similar effects have already been observed in tHd 10] direction (o in Fig. 9 and in this direction the true
focusing experiments of bulk acoustic waves of 10-MHzSurface wave localized near the surface appears in the PSW
range®® We plan to analyze the group velocities of the Pranch with the normalized velocity, (the cross in Fig. B

SAW's at solid-liquid interfaces taking account of the finite- Except for the[110] direction, the wave in the PSW branch
wavelength effects. has a partial wave, the amplitude of which grows with the

distance from the surface and becomes degenerate with the

bulk ST mode at angles smaller thar20°.
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waves are decoupled from the SH mod8T wave and the
equations of motion become
APPENDIX: FCC MODEL CALCULATIONS

N 5k/2+k5— psw?/Cyy 2kk3 g
To understand the origin of the PSW and the IRW, we ) ) ) =0,
consider the surface wave solutions near[thE0] direction 2kjks ki +2k3—psw/Cas/ \ &3
on the(002)) surface of a cubic crystal. The elastic constants (A1)

in the fcc lattice, i.e..Cq3=2C1,=2Cy4,,%° are used as an o the saggital mode and

illustration. Here, we note that the anisotropy factor

A=2Cy/(C11—Cyp)=2 in the fcc lattice leads to qualita- (kf/2+ k3— psw?/Cuye, =0, (A2)

tively the same angular dependence of the sound velocities

of surface and bulk waves as in silicoA£1.57), germa- for the SH mode. In these equatioks,is the wave number

nium (A=1.67 and GaAs A=1.83. in the[110] direction[within the (001) surfacg andkj is the
Figure 9 plots the normalized phase velocities versusomponent perpendicular to the surfatiee solid occupies

propagation direction of several acoustic modes on@d)  the half space;>0).

face of the fcc lattice. Bulk transverse modes satisfy the The secular equation obtained from K1) determines

stress-free boundary condition at the points marked by dotthe wave numbek; of the saggital mode for a given fre-

[also at these points bulk slow transve(S&) waves become quency w=Kkic. Now we introduce the variables,
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k=kz /Ky, y2=c?/cf [c,=(Cualps)¥?is the velocity of the e+ We(V o+ kDef?
isotropic FT mode in the (00) pland, and 1 DD (2 22| =0- (A9)
z=k?—y?+1/2. The secular equation corresponding to Eq. eV +2xWel) e+ 2k Pl
(A1) reads This leads to
222+y22—2(y2—1):0. (A3) 2y6_15y4+32y2_16:(y2_4)(2y4_7y2+4):0-

Thus, the saggital modes have the solutions (A10)

1 e Hence, we find

z=—{-y*=[y*+16y>—16]" s( ) A4

Uy ElY e 161 = (A4) y2=c?c2=4, (7=\17)/4. (A1)

or Among these solutions, y=y,;=c,/c,=[7—J17]V%2

[\ 1 =0.848 (the cross in thg110] direction of Fig. 9 corre-
= 2(3v2—2+Tv4+16v2—161Y2). (A5 sponds to the surface-wave velocity in tHl0] direction.
([K(Z)]2> 23 by 4 1. (AS) This velocity is larger than the velocity of the ST mode

: Cs=C¢/\/2 Oryo=c y/c;=1/\2 in the[110] direction (Fig.
Also Eq.(A2) gives for the SH mode 9). Substituting y=y,=0.848 into Eq. (A5), we have

7=0=23 A6)  («kM),k@)==+0.519+0.480 for the saggital mode. These
constants govern the decay of the wave amplitudes into the
or solid. For this velocity<(®= \ly?—1/2=0.648. This is real
[k®]2=y2—1/2. (A7) (becauseg/, >y, or c,;>cg) and the wave is Aulk SH mode.

The associated SH wave is, however, decoupled from the
The polarization vectors of the saggital modes correspondingaggita| mode in thg110] direction. At an angle close to the
to zM) andz(® are determined from EdA1) or [110] direction, the SH-like partial wave characterized by
«®) couples to the saggital mode. This coupling causes the
attenuation of the surface-wave amplitudes with propagation
distance as shown below.

2+20 240

e’ .
2k 2704 y2 s<3i>)=O (i=12. (A8

In the above equations, the velocity(or normalized veloc-

ity y) is still unknown and is determined by the boundary 2. A propagation close fo the110] axis: free surface

conditions. For a propagation anglé=w/4—6 (6<1) measured
The stress-free boundary condition at the solid surface ifrom the [100] axis on the(001) surface, the equation of
written as motion (6) becomes
|
2(2+2)— 6%(4+2), —28(1+2)+83%z+7)I3 2(2—8)«k g|
2(1+2)+ 6%(5-2)/3, 22+ 842 +2), 4(6-8%6)k || e, | =0, (A12)
2k 0 2z+y? €3

wherez= k?>—y?+ 1/2 as before. From this equation we find, up to the ordes?of
[« V]P=y?—1/2+ B+ 6%¢2,  E=(2B+5y*—DI[B(B— )],
[P P=y? =12+ y+ 802, (=2y+5y°=I[y(y—B)], (A13)
[¥P=y?— 12+ °5i2, n=(5y°—4)/(1-y?),
whereg=z(1), y=2(?). Also the polarization vectors correspondingsd’, «?, and«® are
(efV eV, e§)=NP[2(1-y?) + 82D, 295,28k 1)],
(8ﬁ2) ,812) ,8%2))2 N(Z)[Z(l_y2)+ 52f(2),2,3'}’,2')’l<(2)], (A14)
(), ,e5)=NO[y?5,2(1-y?) + 513,23 5],
where N®,  N® —and N® are the normalization factors, andf®=-g¢ f@=—y7  and

)= (6y*—31y2+22)/3(3y%—2).
Now the boundary condition determinafi3) reads
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sgl)-i- K(l)sﬁl) 8%2)+K(2)8ﬁ2) 8%3)+K(3)8‘3)
PR kPg? kg3 =0, (A15)
8ﬁ1)+2K(1)8(31) 8ﬁ2)+2K(2)8(32) 8ﬁ3)+2K(3)8(33)

where the(1,1), (2,2), and(3,3) elements ar@®(1) and other elements af®@(5) [see Eq.(A14)]. This leads to the equation
determining the normalized velocity

4(1-y?) 2k (kD = k@)(1—y2—2y2 kD) (2 — 4] D (D]2)
— 8%2(1—y2) f O kB = () (1—y2—2y24D (D — 4] D) (2)]2)
+4(1-y?) 2126V k@) (V= Ex@) +2( V) = k(2] (A16)
+(1-y?)(2-y) (V= P [2y*—y? =2+ 2(y? - 2) KV i ]

+ 2(3y2_ 2)2([K(l)]2_[K(2)]2) K(l)K(Z)}: 0.

Note that we have to keep the terms @52) in the first  for this modeA «(3)=0(5%), so we cannot say ¥® is pure
term of Eq.(A16) [the terms ofO(6%) are contained in imaginary (as expecteq at least not in the approximation
«(®], but we may puts®>=0 inside the curly bracket. Thus, that we are employing. The reason for the decay of the PSW

we can write the complicated E¢A16) in the form branch, except in th¢110] direction, is the coupling to a
5 ) bulk ST mode, which has slower sound velocity, i.e.,
g(y,s9)—6°h(y)=0, (Al7) ¢ 4<c,, as has been explained in Sec. (g. 5.
whereg is the first term of Eq(A16) andh is the term inside
the curly bracket of Eq(A16). Puttingy=y;+Ay, where 3.[110] propagation: with liquid loading

Ay=0(4%), and using the equatiog(y;,0)=0 (this gives

] . e When the solid surface is in contact with liquid, the equa-
the normalized frequenay; in the[110] direction), we have

tion determining the surface wave velocitiq. (10)] be-

Ay=&Lh(y) = g(y1, 105 2ol 99(y,0/dyl,,).  COMeS: for th 110] propagation,
(A18) 8k k@ — (2[ kU2 +1-y?)(2[ @2 +1—y?)
Here, we note that fo6=0, i.e., for the[110] propaga-
tion, the wave numbers™) and «(?) are complex numbers +2(2kW @ = 1) (2D D — 1 4 y?)
of the forms «Y(y;)=a+bi, «®(y;)=—a+bi, and
«®)(y;)=d, wherea, b, andd are positive real numbers, as =4ayx V@ (kP +k?)/k, (A19)

shown above(see Table )l This means thakM+ «? is
pure imaginary but kM-« and kY« are both real
leading to the fact thdi(y,) is complexthe last term of Eq.
(A16) is pure imaginarythoughdg/ 95> anddg/dy are real. [V @)= (2y*— 7y?+5)/4
Thus, we conclude thaly is acomplexquantity, or at an ’
angle in the vicinity of the[110] direction the normalized (11201 (D12 (202
velocity y=c/c;=k;/k, becomesomplexi.e., the phonons [ LT =3y =2)/2,

in the branch that we are discussing attenuate as they propgbtained from Eq(A5), we have

gate at an angle close to th&lQ] direction.

Because y is now complex, the wave numbers  y2x(Dx@ 4yt 3y242=ayx® @ (D4 @)/,
kB =+ (y?—1/2+ 5°5/2)*? are also complex. This implies (A21)
that the small SH-like component, which coupiglsrough .
<)) to the saggital mode near tfie10] direction, also hasa S¢€tting ({;yﬁAy and xP=k™2(yy) + Ak, where
complex wave nL(Jr?ber perpendicular to the surface. ThéY: A« “=0(a), and using the relation
imaginary part ofc(®> must be negativeo that the amplitude
mayg grO\)//vpexponentially with agdistance from thepsurface. ALY D)= (y? =Tyl Ayl D], (A22)
Thus, the wave of this mode is called a pseudosurface wauge find
(PSW). The positive imaginary part of®) (corresponding to

where a=Z 1Zg=p Cc /psCy (a=0.1) and
k=(1—c?/c?)Y2 Using the equations

(A20)

a wave localized near the surfads not allowed because of ak M@ (kD4 (2 1
the attenuation of the wave along the surface. Ay= v —7y?4 P

For 6+0, the true surface wave appears below the ST 2k W@ 1 4y?2 6+ — T
branch at a velocity given by=y,+ Ay, wherey,=1/y2 KK y=y,

(c<cg=C,/\2) andA(y?) = — §25/2=38%/2>0. However, (A23)
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Again kKM« is real and«™+ «? is pure imaginary at possible, because the wave is always attenuated along the
y=Yy,. Thus,Ay is pure imaginary which means that the surface by the continuous transmission of the energy into the
attenuationof the surface wave is caused by liquid loading liquid (i.e., complex wave numbeg in the liquid side per-
and its magnitude is of the order @, but thevelocity pendicular to the interfacgsee Eq.(2)]). So, the energy
change(which should be a real quantjtys of the order of  transmission into the solid is not necessary for the attenua-
a2. The latter has been checked by analytically calculatingion of the wave along the surface. Thus, onext?’s with

Ay up to O(a?), although here we do not give the explicit g positive imaginary partiocalized wave near the solid sur-
formula, which is lengthy. Instead, we show that theseacq is now allowed, leading to the liquid induced Rayleigh
results are in accord with the numerical calculat|0ns.wave (IRW). It is important to note that Ifrk(S)]=O(a),
According to Eg.(A23) and the analytical calculation o = the decay constant is of the order of 0.1 or less

up to O(a’) that we find for the water/silicon (IM[«®)]=+0.044 in the[110] for the water/silicon sys-
system,  InfAkj]/k=iAy/y;=0.0244 (0.0243 and tem).

Re[Ak)]/kj=Ac/c,=0.00219(0.00216, which should be Here, we compare this situation with that in a direction
compared with the numerically obtained attenuation and veg|gse to thg 100], where no PSW solution exists for the free

locity change shown in the parentheses. surface. For this directiofic®]2=y2—1+0(6%), where
_ R _ d is, this time, a small angle measured from fA60] axis.
4. A propagation close to the[110] axis: with liquid loading The fcc model calculation for théree surfacegives

In this case, the equation determining the velogiig Eq.  Y=Y1=[(3—/3)/2]%>=0.796<1 in the[100] (see Fig. 9.
(A16), but the r.h.s. is finite with a contribution proportional So, «® is pure imaginaryfor y=y; and its magnitude is
to a [similar to the r.h.s. of Eq(A19)] coming from the of the order of 0.5 £(®)= +0.605). This leads to the fact
liquid loading. We note that the terms, except for the last onehat the correction tg; for a finite 5 [derived from an equa-
of the L.h.s. of Eq(A16), are proportional to<‘®), which is  tion quite similar to Eq(A16)]?* near thg100] is real. Thus,
double valued. £ and «® are also double valued, but there is no attenuation along the surface and the surface wave
their signs have been chosen so that the wave may dec&geps its localized character, i.e., only a RSW is allowed.
with the distance from the solid surfageWithout liquid [ «(®) with negative imaginary patPSW is not allowed as a
loading one of those two value@with different signg of  solution because there is no attenuation along the sutface.
«®) is not allowed in the branch starting from (PSW),  With liquid loading the attenuation of the wave along the
becausey is complex(irrespective of the sign ok(®) and  surface is induced, as in the casq bf0] propagation. Thus,
the wave must decay along the surfae€) with the positive y becomes complex and its imaginary partQ¢a). This
imaginary parithough very small 103— 10" °) corresponds means thaf «(®)]? becomes complex and bot®)'s with
to the wave localized near the surface, so this is not acconpositive and negative imaginary parts are now possible, lead-
modated to the attenuation of the waves along the surfaceing to the appearance of the PSW. Note that neaf106€]
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