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We study the effect of liquid loading on the characteristics of surface acoustic waves propagating along the
~100! surface of silicon. A nonviscous liquid layer of infinite thickness in contact with a solid substrate causes
changes in the wave velocity and the attenuation of surface waves along the liquid-solid boundary. More
importantly, we examine an additional branch of the Rayleigh surface that is induced by the liquid loading. We
also find that the pseudosurface wave, which is restricted only to certain directions on the free surface, extends
to all directions on the liquid-loaded~100! surface. Calculating the acoustic Poynting vectors associated with
these surface-related acoustic modes, we find that the Rayleigh wave and the induced Rayleigh wave emit
energy only into the liquid, whereas the pseudosurface wave emits energy both into the liquid and solid
substrate.@S0163-1829~96!03131-1#

I. INTRODUCTION

The surface acoustic waves~SAW’s! originally studied by
Lord Rayleigh1 have attracted enormous interest of scientists
in the fields of seismology, materials science, electrical en-
gineering, and physics.2 The generalizations of Rayleigh’s
pioneering work, i.e., the Rayleigh waves supported on the
semi-infinite, isotropic, elastic medium bounded by a stress-
free planar surface, to the waves in more realistic systems,
such as anisotropic media, piezoelectric media,3,4 and inho-
mogeneous media with solid-solid5 and solid-liquid6 bound-
aries have been studied extensively. However, even for the
SAW’s ~or interface waves! at solid-liquid interfaces, impor-
tant characteristics remain to be studied.

The purpose of the present work is to examine theoreti-
cally the effect of liquid loading on the propagation charac-
teristics of SAW’s on a real crystal surface with elastic an-
isotropy. This would be interesting in conjunction with
recent experimental verifications7–10 of the predicted ‘‘pho-
non focusing’’11,12at crystal surfaces.13–16One of the current
methods used for studying the focusing effect of SAW’s or
surface phonons utilizes focused ultrasonic immersion
transducers.8,9 With this method, the propagation of SAW’s
with the effect of liquid in contact with an anisotropic solid
surface has been measured. Hence, the theoretical study of
the SAW’s in the presence of liquid loadings should be sub-
stantially important to interpret the experimental results on
the SAW focusing obtained with ultrasonic immersion trans-
ducers.

It is known that even for the stress-free flat surface, the
introduction of elastic anisotropy gives rise to branches of
acoustic waves called pseudosurface waves~PSW’s!, which
behave like Rayleigh surface waves~RSW’s!, although they
are not true~nondecaying! surface waves, except in isolated
directions.17 The loading of liquid on the solid surface is
usually expected to act as a small perturbation on the prop-
erties of SAW’s, because the acoustic impedance of a liquid
(ZL) is typically one order of magnitude smaller than that of

a solid (ZS) supporting SAW’s, e.g.,ZL51.483105 g
cm22 s21 (ZL50.923105 g cm22 s21) for water~alcohol!
andZS51.363106 g cm22 s21 for the transverse mode in
the @100# direction of silicon.18

The effect of water loading on the Rayleigh waves propa-
gating on the surface of steel was studied by Viktorovet al.6

They found a velocity change of about 0.05%. In addition,
attenuation of the Rayeigh wave occurs, due to the emission
of longitudinal waves into liquid. This behavior is common,
because the sound velocitycL in liquid is usually much
smaller than the Rayleigh-wave velocity in a solid. In the
case of water on top of steel, the wave amplitude is reduced
to e21 of its original value when the Rayleigh wave travels
about fourteen wavelengths along the water-steel boundary.

In the case of liquid loading on an anisotropic solid sur-
face we predict more dramatic effects to occur, in addition to
the expected small change in velocity and the occurrence of
the attenuation of the SAW. Specifically, we find hiterto un-
obserbed branches of RSW’s and PSW’s that are induced by
the liquid loading. These modes radiate acoustic energy ei-
ther into liquid or solid, or into both. In general, those waves
which radiate the energy only into the liquid retain their
RSW designation; those which radiate into both liquid and
solid are PSW’s.

In the next section, we formulate the problem in the con-
text of elasticity theory. In Sec. III, we give extensive nu-
merical results on phase velocities, group velocities, and at-
tenuation rates of the surface-related acoustic modes for
alcohol and water loadings of the~001! face of silicon. Liq-
uid loading causes additional Rayleigh modes~localized at
the silicon surface! and an extension of the branches of the
PSW’s. The origins of these Rayleigh modes induced by
liquid loading~termed IRW! and the extension of the PSW’s
are discussed in Sec. IV. In Sec. V, we calculate acoustic
Poynting vectors to see the energy emissivities of the RSW
and PSW branches. Our overall conclusions are given in Sec.
VI. The origin of the IRW is analyzed more quantitatively
based on fcc model in the Appendix.
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II. FORMULATION

We take a Cartesian coordinate system such that the solid
~liquid! occupiesx35z.0 (z,0) and the solid-liquid inter-
face (z50) is parallel to the plane containing the vector
xi5(x1 ,x2)5(x,y). Thus, we write the displacement vector
associated with the acoustic wave in the liquid as

U5Aeei ~ki•xi2vt !eiqz, ~1!

where A is the amplitude, ki5(k1 ,k2) is the two-
dimensional wave vector common to that in the solid, and
q is the wave number in thez direction which satisfies the
dispersion relation

ki
21q25v2/cL

2[KL
2 , ~2!

whereKL is the magnitude of the wave vectorKL in liquid.
Only longitudinal waves can propagate in nonviscous liquid,
hence, the polarization vector is written as

e5~ki ,q!/KL . ~3!

At the liquid-solid interface the stress (S) induced by the
liquid is nonvanishing only when it is normal to the inter-
face. Thus,S15S250 and

S35 ilA~ki•ei1qe3![ iAS3 , ~4!

whereS35l(ki•ei1qe3) andl (5rLcL
2 , rL is the density

of liquid! is a Làme constant.
In a solid the displacement vectoru takes the form

u5 (
a51

3

B~a!«~a!ei ~ki•xi2vt !eik3
~a!z, ~5!

wherea (51, 2, and 3! discriminates three partial waves
with amplitudesB(a)’s, «(a)’s are unit polarization vectors
andk3

(a)’s determine the spatial variation of the displacement
perpendicular to the solid surface. It should be noted that
k3
(a)’s are determined by solving the equation of motion with
k5(ki ,k3)

~rSv
2d im2Ci jmnkjkn!«m50 ~ i51,2,3!, ~6!

for the givenki andv, whererS is the mass density of the
solid andCi jm is the stiffness tensor. The summation con-
vention over repeated indices is assumed in Eq.~6!.

The associated stresss at the ~001! surface of a cubic
crystal is given by

s j5 iC44(
a51

3

B~a!~kj«3
~a!1k3

~a!« j
~a!!

[ i (
a51

3

B~a!sj
~a! ~ j51,2!,

~7!

s35 i (
a51

3

B~a!@C12~k1«1
~a!1k2«2

~a!!1C11k3
~a!«3

~a!#

[ i (
a51

3

B~a!s3
~a! ,

where

sj
~a!5C44~kj«3

~a!1k3« j
~a!! ~ j51,2!,

~8!

s3
~a!5C12~k1«1

~a!1k2«2
~a!!1C11k3

~a!«3
~a!

andCi j are the elastic constants. The continuity of the nor-
mal components of the stresses and the lattice displacements
at the liquid-solid interface, and also the stress-free condition
along the interface lead to

U s1~1! s1
~2! s1

~3! 0

s2
~1! s2

~2! s2
~3! 0

s3
~1! s3

~2! s3
~3! 2S3

«3
~1! «3

~2! «3
~3! 2e3

U50 ~9!

or

e3GS2S3GL50, ~10!

where

GS5Us1~1! s1
~2! s1

~3!

s2
~1! s2

~2! s2
~3!

s3
~1! s3

~2! s3
~3!
U ~11!

and

GL5U s1~1! s1
~2! s1

~3!

s2
~1! s2

~2! s2
~3!

«3
~1! «3

~2! «3
~3!
U . ~12!

Note that the boundary condition valid for a stress-free pla-
nar surface is

GS50. ~13!

The boundary condition~10! determines the velocity of sur-
face wavesc5v/ukiu, with k3

(a)’s determined from Eq.~6!.
Actually, for determining ak3

(a) from Eq. ~6!, we need to
knowc, so Eqs.~6! and~10! are used to determinek3

(a)’s and
c simultaneously. Here, we define the RSW as the mode with
all three partial waves localized near the solid surface, i.e.,
Im k3

(a).0 for a51, 2, and 3. If~at least! one ofk3
(a)’s has

a negative imaginary part, the amplitude of the correspond-
ing wave grows in the bulk of solid at an increasing normal
distance from surface. This wave corresponds to the PSW.

An additional complexity arises from the fact that Eq.~6!
@together with Eq.~10!# has solutions for a complexki .

19

This is because the phase velocity of surface waves on the
free surface of a solid is usually faster than the sound veloc-
ity cL in liquid and the effect of liquid loading on the
surface-wave velocity is small, so thatc.cL still holds.
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Thus, the phase matching condition requires that a longitu-
dinal wave is emitted from the surface wave into the liquid
with an angleuL5sin21(cL /c), as measured from the normal
of the interface. This can be readily understood by plotting
the slowness curves of acoustic waves in liquid and solid, as
shown in Fig. 1. This figure shows the~010! sections of the
constant-frequency (v5v0) surfaces~or slowness surfaces!
of the longitudinal (L) wave in liquid and the bulk acoustic
waves in silicon. The velocityc of an RSW propagating in
the @100# direction on the free~001! silicon surface is
c54.933105 cm/s and the corresponding slowness is
c2152.0331026 s/cm, which occurs outside the slowness
curves in silicon, but inside the one in water~the dot in Fig.
1!.

Thus, for a given frequencyv0 , a real wave vector
(KL) exists for the wave in water, which has a parallel slow-
ness equal to that of the RSW. However, this is not the case
with the wave in solid. The surface waves on the substrate
surface perturbed by a semi-infinite, nonviscous liquid are
attenuated as they propagate, radiating their acoustic energy
into liquid, i.e., complexki is required to satisfy both the
elasticity equations and Snell’s law. This can be also seen by
explicitly writing Eq. ~10! for an isotropic solid,3,6

~ki
22KL

2!1/2@4ki
2~ki

22kt
2!1/2~ki

22kl
2!1/22~2ki

22kt
2!2#

5
rL
rS
kt
4~ki

22kl
2!1/2, ~14!

whereki5ukiu, kl5v/cl andkt5v/ct , andcl andct are the
velocities of the longitudinal and transverse waves in solid
defined bycl

25C11/rS andct
25C44/rS under the condition

C112C1252C44 required for an isotropic medium. For

rL /rS50 ~valid for a free surface!, Eq. ~14! has a real solu-
tion ki satisfyingKL.ki.kt.kl ~or cL,c,ct,cl). This
corresponds to the Rayleigh wave (c5v/ki is its velocity!.
For a finiterL /rS andKL.ki.kt.kl , the right-hand side
~r.h.s.! of Eq. ~14! is real but the left-hand side~l.h.s.! is pure
imaginary. This means thatki satisfying Eq.~14! should be a
complex quantity.

The same thing also happens for an anisotropic solid.
Thus, we putki5ki

(R)1 iki
(I ) , whereki

(I ) determines the at-
tenuation ~dependent on the propagation direction! of the
wave along the substrate surface. The SAW velocityc,
which is real, should be redefined byc5v/uki

(R)u5v/ki
(R) .

We also introduce the attenuation coefficientã defined
by ã5ki

(I )/ki
(R)5uki

(I )u/uki
(R)u. In the numerical calculations,

we search for the SAW solutions by usingki5(11 i ã)ki
(R)

or ki
(I )5ã ki

(R) .17

III. NUMERICAL RESULTS

Figures 2~a! and 2~b! show one of the principal results of
our calculations. In these figures, we plot the phase velocities
versus the propagation direction of surface waves on the
~001! face of silicon. The velocities of the RSW and PSW on
the free ~001! face of silicon are plotted as triangles and
circles, respectively. In the@110# direction (45°) the RSW
degenerates into the bulk slow transverse~ST! wave at point
C, and a true surface wave with localized character appears
in the PSW branch~point B, see also Appendix!. Also the
PSW degenerates into the bulk ST mode at angles smaller
than ;23° and no PSW solution is obtained at these
angles.17

In Fig. 2, we also plot the velocities of both the RSW and
PSW on the same surface of silicon with the loading of al-
cohol and water layers of semi-infinite thickness. We find
two kinds of qualitative changes due to liquid loading.

~i! A branch of Rayleigh surface wave@we refer to it as an
induced Rayleigh wave~IRW!# appears close to the original
PSW branch at angles>27°. This can be clearly seen for the
case of alcohol loading. For water loading, the situation is
more complicated and interesting: the IRW appears to run
continuously into the RSW branch at an angle around 28°.
For consistency with the unloaded and alcohol-loaded cases,
however, we view the IRW branch as touching the RSW at a
point (D), leaving both branches sharply cusped. The upgo-
ing branch of the IRW becomes nearly degenerate with the
bulk ST mode.

Note that the branches that we have labeled the RSW and
IRW are together part of the generalized Rayleigh-wave
structure for this interface; they radiate acoustic energy only
into the liquid, as we shall see in Sec. V. In the case of liquid
loading, we define the branch with a phase velocity closer to
that at the free surface as the RSW. So, for water loading
there is a transition from the RSW branch to the IRW branch
at an angle;28°, but no such transition occurs between the
RSW and IRW for alcohol loading, justifying our terminol-
ogy. The contact between branches is found to first occur for
ZL /ZS.0.085.

~ii ! The PSW branch, which for the free surface exists at
a restricted region from an angle;23° to the@110# direc-
tion, extends all the way to the@100# direction when the

FIG. 1. The~010! section of the constant-frequency surfaces of
the bulk elastic waves@longitudinal ~L!, fast transverse~FT!, and
slow transverse~ST!# on a silicon loaded by water. The dot indi-
cates the location of the wave number (ki5v0 /c, v0 is a given
frequency! of the Rayleigh surface wave~RSW! in the @100# direc-
tion. The angleuL5sin21(cL /c) gives the direction of the wave
vectorKL along which the longitudinal wave is emitted into water
from the RSW @uL.17.5° for water on a silicon, where
cL51.4833105 cm/s andc54.9283105 cm/s for the velocities of
the longitudinal wave in water and the RSW in silicon are used#.
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~001! surface is loaded by a liquid.
The group velocities corresponding to these cases are

shown in Fig. 3. Figure 3~b! for the alcohol loading shows
the folding of the group-velocity curve of the RSW, exhibit-
ing cusps at 9.3° and 27.2° from the@100# ~and their equiva-
lent directions!, which is similar to the result for the free

~001! surface of silicon shown in Fig. 3~a!.16 For water load-
ing @Fig. 3~c!#, the cusps do not exist in the group-velocity
curves of the RSW, but they instead appear in the IRW
branch~at 34.5° and 40.8° from the@100# and their equiva-
lent directions!. Also, folds appear in the group-velocity
curves of the PSW branch for both the alcohol and water
loadings. Note that they do not exist in the PSW branch for
the free~001! surface of silicon.

One of the remarkable features of the liquid loading pre-
dicted for the surface wave propagation is the fact that the
group velocities of the RSW and IRW are very sensitive to
the liquid loading, e.g., there is a continuous transition be-
tween the RSW and IRW branches for water loading, but
discontinuities exist between these branches for alcohol load-

FIG. 2. ~a! Phase velocities of the surface waves in the~001!
plane of silicon with water and alcohol loadings.@The abscissa is
the wave-vector angle measured from the@100# direction.# The ve-
locities of the RSW and PSW are plotted by dots, while those of the
IRW’s are plotted by solid lines. The RSW and PSW velocities on
the free silicon surface are plotted by triangles and open circles,
respectively. At the points marked by ‘‘A’’ and ‘‘ B, ’’ the waves are
polarized within the saggital plane. At point ‘‘C, ’’ the RSW degen-
erates to a bulk shear wave~slow transverse wave! polarized hori-
zontally. ~b! The magnification of the phase velocities near the
point ‘‘D ’’ of ~a!. The velocities of the bulk slow transverse~ST!
wave are plotted by dashed line.

FIG. 3. Calculated group velocities of the RSW, PSW~dotted
lines!, and IRW~solid lines! on the~001! silicon substrate with~a!
free surface,~b! alcohol loading, and~c! water loading.~d! The
magnification of the structure enclosed by the dashed lines in~c!.
The abscissa is the angle in the real space measured from the@100#
direction ~not the angle of the wave vector!. In part ~c!, the identi-
fications of the RSW and IRW branches have been corrected from
those in Ref. 8.
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ing. For water loading, the continuity of the RSW and IRW
makes a ‘‘V’’ structure in the @100# directions, which has
been observed experimentally.8,9

In Fig. 4, the attenuation coefficientsã ’s are plotted as a
function of wave-vector direction. The overall magnitude is
larger for the water loading than the alcohol loading, because
ZL /ZS50.11 for the former case andZL /ZS50.068 for the
latter case, respectively. For the case of water loading, it is

clearly seen that the RSW branch at lower angles connects
smoothly to the IRW branch.

IV. ORIGINS OF EXTRA BRANCHES

As previously discussed, the character of the surface
waves~RSW or PSW! is determined by the form of the wave
numbersk3 that describe the wave motion in the solid per-
pendicular to the surface. From Eq.~6!, it follows thatk3 is
a double-valued function of the sound velocity and, in gen-
eral, is complex. Ifk3 has a positive imaginary part, the wave
is localized near the solid surface, and ifk3 has a negative
imaginary part, the wave amplitude increases in the bulk of
the solid with the distance from the surface. Which of the
two values ofk3 is required for a partial wave depends on the
boundary conditions and also on the propagation direction.

To get an insight into this point, first we consider the
f ree ~001! surface of silicon and two specific propagation
directions, i.e., the@100# and@110# directions. In these direc-
tions, the lattice vibrations polarized within the saggital
plane ~the saggital modes! are decoupled from those polar-
ized perpendicular to the same plane~the shear modes with
horizontal polarization, or SH modes!. The Rayleigh wave
solutions are found in the saggital mode, where theL ~lon-
gitudinal! and FT ~fast transverse! waves are coupled and
their wave numbersk3

(1) andk3
(2) are complex with positive

imaginary parts (@k3
(1)#*52k3

(2)). Their velocities are indi-
cated by the points marked byA andB in Fig. 2~a!.

As Table I illustrates, at pointsA andB, only two (k3
(1)

andk3
(2)) of the three possible wave vectors contribute to the

surface-wave solution. Since both the contributing wave vec-
tors have positive imaginary components, their amplitudes
decrease as the waves propagate into the solids; these waves
are, by definition, Rayleigh surface waves. As propagation
directions rotate away from these high-symmetry directions,
a third-partial wave with SH-like polarization couples to the
solution; the form of this partial wave determines whether
the surface wave is a RSW or a PSW.

An important observation is that in the@100# direction the
velocity of the RSW@at point A of Fig. 2~a!# is slower than

FIG. 4. Attenuation coefficientsã ’s of the surface waves versus
the propagation direction on the~001! plane of silicon, with~a!
alcohol loading and~b! water loading. The abscissa is the wave-
vector angle measured from the@100# direction. The coefficients of
the RSW and PSW are plotted by dotted lines and those of IRW are
plotted by solid lines.

TABLE I. Values and forms of complexk3
(a) (a 51, 2, 3! describing the variation of the surface-wave

amplitudes normal to the surface for several propagation directions in the~001! face of silicon@a, a8, b,
b8, c, andd are real and positive, ande ande are small positive numbers depending on the angle from the
chosen directions~@100# and @110#! and loading effect#. ID gives the identification of the branch in Fig. 2.

Direction ID On axis On axis Near axis On axis Near axis
~free surface! weights ~free surface! ~water loaded! ~loaded!

0.4801 0.456 i A1/2 a 1bi 0.4391 0.469 i a 1bi
@100# A 20.4801 0.456 i A1/2 2a1bi 20.5221 0.441 i 2a81b8i

0.540 i 0 ci 70.04460.538i 7e 6ci

0.4021 0.532 i A1/2 a 1bi 0.3591 0.547 i a 1bi
@110# B 20.4021 0.532 i A1/2 2a 1bi 20.4461 0.514 i 2a8 1b8i

0.341 0 d2ei 70.34960.044i 7d 6ei

0.4191 0.619 i 0 a 1bi 0.4191 0.619 i a 1bi
@110# C 20.4191 0.619 i 0 2a1bi 20.4191 0.619 i 2a81b8i

0 1 ei 0 2e1ei
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that of the bulk ST wave, but in the@110# direction the RSW
@at pointB of Fig. 2~a!# is f aster than the ST wave~see
Figs. 1 and 5!. Thus, the RSW solution near the@100# direc-
tion is stable even if this coupling turns on, i.e., the RSW
does not decay into a bulk wave, because the velocity of the
RSW in this direction is much slower than that of the bulk
ST wave, leading to the RSW velocity change
Dc5c2c@100# which is real, wherec@100# is the velocity of
the RSW in the@100# direction.~A complex velocity change
is equivalent to a complexki and signals a decay of the wave
along the surface as shown in Sec. II.! In these directions, the
wave numberk3

(3) associated with the third partial wave
coming from the coupling to the ST wave is pure imaginary
~with positive imaginary part! and, thus, the wave is still
localized near the surface.

Near the@110# direction, the situation is quite different.
The ST branch~with SH character! has a velocity much
slower than that of the true surface wave~RSW!, embedded
in the PSW branch at 45°. Accordingly, the coupling of the
saggital and ST modes should lead to the decay of the waves
in the PSW branch into the bulk transverse wave~Fig. 5!.
The analytical calculation specifically reveals that the veloc-
ity change near the@110# direction Dc85c2c@110# is
complex, wherec@110#.5.083105 cm/s is the phase velocity
of the true surface wave in the@110# direction of Si ~as
explicitly shown in the Appendix for a fcc lattice!. This in-
dicates that the amplitude is attenuated as the wave propa-
gates along the surface, which is characteristic of a PSW at a
free surface. At the same time, the wave numberk3

(3) ac-
quires a small imaginary part near the@110# direction~in the
@110# directionk3

(3) is real, but the partial wave characterized
by k3

(3) is decoupled from the RSW!, which must be negative
to allow the damping of the wave along the surface, i.e.,ki is
complex, thoughk3

(1) and k3
(2) still have positive imaginary

parts and represent the localized character~see Table I!.
Thus, away from the@110# direction the surface wave has a
bulk-wave component, due to the coupling to the ST wave.
However, the imaginary part ofk3

(3)/ki
(R) is very small~typi-

cally 102421025),4,17 so the wave grows very slowly with
the distance away from the surface and looks like a surface
wave. This is the reason that the wave in this branch is called
the PSW.

With a surface loading by a nonviscous liquid, RSW’s on
the free surface receive a perturbation and are no longer
stable. They couple into the liquid, because their velocities
are generally much higher than the sound velocitycL in the
liquid. Thus, the amplitude of a RSW at the solid-liquid in-
terface is attenuated as the wave propagates along the inter-
face and radiates energy into the liquid, as shown in Fig. 1.
In addition, the behavior of the wave amplitude inside solid
is modified from the case of the free surface.

Quantitatively, the effect of the liquid loading is con-
trolled by the ratio of the acoustic impedance of the liquid to
that of the solid, which we denote bya5ZL /ZS(;0.1). For
both the@100# and@110# directions the velocity changes, due
to the liquid loading, arepure imaginaryin the lowest order
of a. ~The finite correction to the velocity, which is real,
arises in the order ofa2.) Owing to thisattenuationof the
lattice vibrationsalong the interface, double values of the
wave numberk3

(3) in a solid now become possible. As shown
in Table I, this means that near the@100# direction, the PSW,
which radiates energy into the bulk of the solid, appears in
addition to the RSW .~The PSW is not supported on the free
surface near the@100# direction, because there is no attenu-
ation of the wave along the surface.!

The emission of waves into both the liquid and solid, i.e.,
Im@q#.0 and Im@k3

(3)#,0, does not lead to any unphysical
results if the wave is attenuated as it propagates along the
interface. This can be seen by noting that

Im@q#z1ki
~ I !
•xi50 ~z,0!, ~15!

Im@k3
~3!#z1ki

~ I !
•xi50 ~z.0!, ~16!

hold for the wave emitted into the liquid (z,0) and the
third-partial wave emitted into the solid (z.0), where
x5(xi ,z) is a point along the group-velocity vector, or along
the acoustic Poynting vectors of each wave~see Fig. 6!.
Hence, Im@q# . 0 and Im@k3

(3)# , 0 satisfy Eqs.~15! and
~16! if ki

(I ) . 0 holds. These equations also imply that the
displacement amplitudes of the waves emitted from a point
O ~on the interface! areconstantalong the lines in which
the acoustic energy of the waves are propagated, i.e.,OP
andOQ in Fig. 6 which are parallel to the acoustic Poynting
vectorsP(L) in the liquid andP(S) in the solid defined in the
next section. This is the consequence of the fact that we
employ the linear elasticity theory without dissipation. It
should be noted that in the liquid the direction of the energy
flow is parallel to the wave vectorKL and only the third-
partial wave governed byk3

(3) with Im@k3
(3)# , 0 survives at

a large distancez in solid.
As the wave travels along the interface, its amplitude on

the interface is attenuated exponentially, due to the emission
of waves into the solid and liquid according to
exp(2ki

(I )
•xi). Thus, on the plane perpendicular to the wave

vectorki , the waves emitted at a later time from the inter-

FIG. 5. The~110! section of the constant-frequency surfaces of
the bulk elastic waves@longitudinal (L), fast transverse~FT!, and
slow transverse~ST!# in silicon. The dot indicates the location of
the wave number (ki5v0 /c, v0 is a given frequency and
c55.0813105 cm/s! of the true surface wave in the@110# direction
~free surface!. The corresponding location in Fig. 2~a! is point B
and this wave is on the PSW branch. For the propagation slightly
away from the@110# direction, this wave couples to the bulk ST
wave ~the outermost curve!, and hence radiates the energy into the
bulk of the solid at the angleu indicated (u523.1° in the@110# of
silicon!.
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face~e.g., from a pointO8) are located closer to the interface
(z50), i.e., at pointsP8 andQ8, and their amplitudes are
much smaller than the amplitudes of the waves at pointsP
andQ emitted earlier. This leads to the fact that the profile of
the wave amplitude grows exponentially as the distanceuzu
from the interface increases on both the solid and liquid sides
@Fig. 6~b!#.

Near the@110# direction, on the other hand, the RSW-type
wave localized in the vicinity of the interface@all the asso-
ciatedk3

(a) (a51,2,3) have positive imaginary parts# is in-
duced by the liquid loading. For this mode~IRW!, there
exists no emission of wave into the solid side and the attenu-
ation of the wave amplitude along the interface is balanced
with the emission of the wave only into the liquid. All these
features shown above are confirmed not only by numerical

calculations for silicon, but also by the analytical calcula-
tions using the elastic constants of an anisotropic fcc lattice,
i.e., C1152C1252C44.

20 The details of these calculations
are given in the Appendix.

There is a third location where the SAW takes on unusual
behavior. At the point labeledC for @110# propagation@Fig.
2~a!#, solving the Christoffel equations reveals — as at
pointsA andB — two partial waves with wave numbers,
k3
(a) (a51 and 2!, are polarized in the saggital plane and one
that with k3

(3) is not. Unlike the previous case, however, the
first two-partial waves do not contribute to the SAW solu-
tion. Also unexpectedly,k3

(3)50. This solution~solutionC in
Table I! is, in fact, the bulk ST wave polarized horizontally
~SH wave!; in this one direction, this bulk mode happens to
satisfy the zero-stress boundary conditions at a free surface.
As the propagation direction is rotated away from@110#, the
bulk ST wave does not satisfy these boundary conditions and
the coupledL and FT modes begin to contribute to forming
the surface wave. In addition, the wave numberk3

(3) corre-
sponding to the SH-like partial wave, becomes pure imagi-
nary ~with positive imaginary part!, although quite small,
indicating a slow decrease in wave amplitude as the wave
enters the solid.4 Thus, our bulk ST wave at@110# becomes a
Rayleigh surface wave near@110# to satisfy the stress-free
boundary condition. While the addition of surface loading
allows both a RSW and a PSW to emerge from pointsA and
B, relaxing the boundary conditions nearC does not allow a
PSW solution near this point. This is because in this direc-
tion a SH-like partial wave, with amplitude growing into the
solid, already contributes to the upper PSW branch as dis-
cussed above.

V. ENERGY FLOW

Because the penetration distance of the amplitude of an
RSW into solid is finite, it is capable of radiating acoustic
energy only into liquid as the wave propagates along the
solid-liquid interface. How about the PSW? An interesting
issue is whether a PSW radiates energy predominantly into
the solid or both into solid and liquid comparably. To answer
this question, we calculate the acoustic Poynting vectors as-
sociated with the RSW and PSW, defined by4

Pi
~m!52

1

2
Re$Ti j

~m!@Ẇj
~m!#* % ~ i51,2,3!, ~17!

wherem5L, S stand for liquid and solid, respectively, and
Ti j
(m) is the stress tensor„note thatS j5T3 j

(L) and s j5T3 j
(S)

@see Eqs.~4! and ~7!#…, andW(L)5U andW(S)5u.
In order to define the energy emissivities of the RSW and

PSW into solid and liquid we consider a cylindrical region of
heightz11z2 and of radiusr of the top and bottom faces as
shown in Fig. 7 and calculate the acoustic flux

I i
~ in!5EP~L !

•n,0
2z2,z,0

P~L !
•ndA1EP~S!

•n,0
0,z,z1

P~S!
•ndA, ~18!

incident on this region through the sidewall, wheredA is a
surface element,n is the unit vector normal to the sidewall
and the integral should be taken over the area of the sidewall

FIG. 6. ~a! Schematic of the bulk wave radiation associated with
the PSW. The waves are emitted from a pointO (O8) on the inter-
face into the liquid and solid sides alongOP (O8P8) and OQ
(O8Q8), respectively. These lines are parallel to the acoustic
Poynting vectors (P(L) andP(S)), or group velocity vectors of the
longitudinal wave in liquid and the third partial wave~at a large
z) in the solid, respectively. The displacement amplitudes are con-
stant along these linesOP (O8P8) in the liquid andOQ (O8Q8) in
the solid. The angles shown satisfy tanuL 5 Im@q#/ki

(I ) and Im
@k3

(3)#tanuS 1 ki
(I )cos(f2fk)50, wheref and fk are the azi-

muthal angles of the vectorsP(S) and ki , respectively.~b! Sche-
matic of the amplitude profiles of the PSW on the solid-liquid in-
terface and also on thez axis. The magnitudes of the lattice
displacements at the points O and P associated with the longitudinal
wave in liquid~filled squares! and at the points O and Q associated
with the third partial wave in solid~open squares! are the same,
leading to the exponential growths of the lattice displacement with
the distancesuzu from the interface.
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for which P(m)•n<0. Similarly, the flux leaving from this
region through the sidewall is

I i
~out!5EP~L !

•n.0
2z2,z,0

P~L !
•ndA1EP~S!

•n.0
0,z,z1

P~S!
•ndA. ~19!

The flux emitted into the solid through the bottom face of the
cylinder is

I S5E
z5z1.0

P3
~S!dA ~20!

and that emitted into the liquid through the upper face of the
cylinder is

I L52E
z52z2,0

P3
~L !dA. ~21!

Now the sumI i
(in)2I i

(out)2I S1I L should vanish, which guar-
antees the conservation of the acoustic energy. Thus, we can
define the quantities, which measure the energy emissivities
of acoustic waves into solid (ES) and into liquid (EL), as

ES52I S /I i
~ in! , EL5I L /I i

~ in! . ~22!

Of courseES andEL depend on the areas~or the radiusr!
of the top and bottom faces of the cylinder and also onz1
andz2 . Figure 8 plots the emissivitiesEL into liquid ~with
z15z255l and r52l, wherel is the wavelength of the
RSW in the @100# direction! of surface-related acoustic
modes in~100! silicon for alcohol and water loadings. As
expected, RSW emits the acoustic energy only into liquid
though the emissivity vanishes in the@110# direction, where
the RSW becomes an SH wave, which does not couple to the
longitudinal wave in liquid. The IRW also emits the energy
only into liquid. For propagations close to the angle where
the IRW branch degenerates into the bulk ST wave~at angles
;27°), the negative emissivity into the solid (ES,0) can be
seen for both alcohol and water loadings. This means that at
these propagation angles, the energy flow from the solid to
liquid exists due to the bulklike nature of IRW branch.

More interesting results can be seen for the PSW branch.
The energy emission into liquid associated with the PSW is
vanishingly small at angles smaller than;25° from the

@100# direction, i.e., the portion of the PSW branch induced
by the liquid does not radiate acoustic vibrations into the
liquid, but rather emits the energy into the bulk of solid. At
angles larger than;25°, however, the energy emissivity of
the PSW into the solid is suppressed and emission into liquid
appears.21 These latter angles are those at which the PSW’s
exist for free surface and they behave rather like surface
waves.17 Thus, the presence of induced PSW’s at angles near
the @100# direction cannot be observed by measuring energy
transmission into liquid, but could be confirmed by observ-
ing the energy transmission into the solid.

It should be noted that in the@100# direction the induced
PSW coincides with the RSW, so their energy emissivities
into liquid should also coincide, i.e.,EL50. Actually,EL for
the PSW very sharply increases to the value of the RSW at
angles close to 0°, which is, however, not explicitly seen in
Fig. 8.

VI. CONCLUDING REMARKS

In the present work, we studied theoretically the effects of
liquid loading on the properties of the surface acoustic waves
propagating on the~100! face of silicon. The liquid loading
studied previously had been restricted to the case of isotropic
elastic substrate and only the appearance of complex wave

FIG. 7. Schematic of the cylindrical region assumed for the
calculation of the acoustic flux and emissivities of the surface
waves.

FIG. 8. Energy emissivitiesEL’s of the RSW, PSW~dotted
lines!, and IRW~solid lines! into liquid in the presence of~a! alco-
hol loading and~b! water loading. The abscissa is the wave-vector
angle measured from the@100# direction. ~The parameters chosen
arez15z255l andr52l, wherel is the wavelength of the RSW
in the @100# direction.! The emissivitiesES’s of the PSW and IRW
(2ES for the IRW! into the solid are also plotted by dashed lines
and thin solid lines, respectively. At 0°~@100# direction! ES for the
PSW vanishes.
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numbers~equivalently, the velocity change and attenuation
of waves! perturbed by the loading was recognized. How-
ever, the presence of the elastic anisotropy produces a more
interesting effect as discussed in this paper. Similar results
are also expected for the liquid loading on the surfaces of
lower symmetry, or on surfaces of crystals with noncubic
symmetry.22

It should be noted that the extension of the PSW branch
induced by the liquid loading predominantly emits the en-
ergy into the solid substrate, so the existence of this portion
of the PSW branch cannot be confirmed by measuring the
acoustic signal in the liquid. For its observation the acoustic
signal propagating slower than the bulk ST mode, but faster
than the RSW, must be detected in the solid side. This re-
mains an interesting challenge.

We also remark here that the PSW’s studied here are
those with only one-partial wave, which grows into the bulk
of the solid substrate~for instance, Im@k3

(1)#.0, Im
@k3

(2)#.0, but Im@k3
(3)#,0). Actually, the PSW solutions

with two partial waves, the amplitudes of which grow into
the solid also exist.22 However, these PSW’s generally con-
sist at least of one partial wave with a large growth rate into
the solid and also a large attenuation coefficientã along the
solid-liquid interface. Hence, it should be hard to observe the
associated acoustic energy emitted into liquid.

The frequencies of the SAW’s excited experimentally
with ultrasonic immersion transducers are typically in the
range of 10 MHz and the corresponding wavelengths are
about 0.1 mm. These lengths are not negligible compared to
the propagation distances of the SAW’s in the experiments.
Thus, the finite-wavelength effects such as diffraction and
interference should play important roles in the focusing ex-
periments using coherent SAW’s in the above frequency
range. The similar effects have already been observed in the
focusing experiments of bulk acoustic waves of 10-MHz
range.23 We plan to analyze the group velocities of the
SAW’s at solid-liquid interfaces taking account of the finite-
wavelength effects.
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APPENDIX: FCC MODEL CALCULATIONS

To understand the origin of the PSW and the IRW, we
consider the surface wave solutions near the@110# direction
on the~001! surface of a cubic crystal. The elastic constants
in the fcc lattice, i.e.,C1152C1252C44,

20 are used as an
illustration. Here, we note that the anisotropy factor
A52C44/(C112C12)52 in the fcc lattice leads to qualita-
tively the same angular dependence of the sound velocities
of surface and bulk waves as in silicon (A51.57!, germa-
nium (A51.67! and GaAs (A51.83!.

Figure 9 plots the normalized phase velocities versus
propagation direction of several acoustic modes on the~001!
face of the fcc lattice. Bulk transverse modes satisfy the
stress-free boundary condition at the points marked by dots
@also at these points bulk slow transverse~ST! waves become

SH waves polarized perpendicular to the saggital plane#. The
velocity of the RSW degenerates into a bulk ST wave in the
@110# direction (y0 in Fig. 9! and in this direction the true
surface wave localized near the surface appears in the PSW
branch with the normalized velocityy1 ~the cross in Fig. 9!.
Except for the@110# direction, the wave in the PSW branch
has a partial wave, the amplitude of which grows with the
distance from the surface and becomes degenerate with the
bulk ST mode at angles smaller than;20°.

1. †110‡ propagation: free surface

In this case, the saggital modes~longitudinal and FT
waves! are decoupled from the SH mode~ST wave! and the
equations of motion become

S 5ki
2/21k3

22rSv
2/C44 2kik3

2kik3 ki
212k3

22rSv
2/C44

D S « i

«3
D 50,

~A1!

for the saggital mode and

~ki
2/21k3

22rSv
2/C44!«'50, ~A2!

for the SH mode. In these equations,ki is the wave number
in the @110# direction@within the ~001! surface# andk3 is the
component perpendicular to the surface~the solid occupies
the half spacex3.0!.

The secular equation obtained from Eq.~A1! determines
the wave numberk3 of the saggital mode for a given fre-
quency v5kic. Now we introduce the variables,

FIG. 9. Normalized velocities (y5c/ct) of the bulk transverse
and surface acoustic waves propagating in the~001! plane of the fcc
lattice ~the surface is stress-free for the RSW and PSW, and the
abscissa is the wave-vector angle measured from the@100# direc-
tion!. y251, y1

25(72A17)/45(0.848)2, (y18)
25(32A3)/2

5(0.796)2, and y0
251/2. The cross indicates the velocity of the

true surface wave in the@110# direction. At the points marked by
dots, the waves are polarized perpendicular to the saggital plane,
i.e., SH waves.
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k5k3 /ki , y
25c2/ct

2 @ct5(C44/rS)
1/2 is the velocity of the

isotropic FT mode in the ~001! plane#, and
z5k22y211/2. The secular equation corresponding to Eq.
~A1! reads

2z21y2z22~y221!50. ~A3!

Thus, the saggital modes have the solutions

z5
1

4
$2y26@y4116y2216#1/2%[S z~1!

z~2!D , ~A4!

or

S @k~1!#2

@k~2!#2
D 5

1

4
~3y2226@y4116y2216#1/2!. ~A5!

Also Eq. ~A2! gives for the SH mode

z50[z~3!, ~A6!

or

@k~3!#25y221/2. ~A7!

The polarization vectors of the saggital modes corresponding
to z(1) andz(2) are determined from Eq.~A1! or

S 21z~ i ! 2k~ i !

2k~ i ! 2z~ i !1y2D S « i
~ i !

«3
~ i !D 50 ~ i51,2!. ~A8!

In the above equations, the velocityc ~or normalized veloc-
ity y) is still unknown and is determined by the boundary
conditions.

The stress-free boundary condition at the solid surface is
written as

U «3
~1!1k~1!« i

~1! «3
~2!1k~2!« i

~2!

« i
~1!12k~1!«3

~1! « i
~2!12k~2!«3

~2!U50. ~A9!

This leads to

2y6215y4132y22165~y224!~2y427y214!50.
~A10!

Hence, we find

y25c2/ct
254, ~76A17!/4. ~A11!

Among these solutions, y5y15c1 /ct5@72A17#1/2/2
50.848 ~the cross in the@110# direction of Fig. 9! corre-
sponds to the surface-wave velocity in the@110# direction.
This velocity is larger than the velocity of the ST mode
cst5ct /A2 or y05c st/ct51/A2 in the @110# direction ~Fig.
9!. Substituting y5y150.848 into Eq. ~A5!, we have
(k (1),k (2))560.51910.480i for the saggital mode. These
constants govern the decay of the wave amplitudes into the
solid. For this velocityk (3)5Ay1221/250.648. This is real
~becausey1.y0 or c1.cst) and the wave is abulkSH mode.
The associated SH wave is, however, decoupled from the
saggital mode in the@110# direction. At an angle close to the
@110# direction, the SH-like partial wave characterized by
k (3) couples to the saggital mode. This coupling causes the
attenuation of the surface-wave amplitudes with propagation
distance as shown below.

2. A propagation close to the†110‡ axis: free surface

For a propagation angleu5p/42d (d!1) measured
from the @100# axis on the~001! surface, the equation of
motion ~6! becomes

S 2~21z!2d2~41z!, 22d~11z!1d3~z17!/3 2~22d2!k

2~11z!1d2~52z!/3, 2z1d2~21z!, 4~d2d3/6!k

2k 0 2z1y2
D S « i

«'

«3
D 50, ~A12!

wherez5k22y211/2 as before. From this equation we find, up to the order ofd2,

@k~1!#25y221/21b1d2j/2, j5~2b15y224!/@b~b2g!#,

@k~2!#25y221/21g1d2z/2, z5~2g15y224!/@g~g2b!#, ~A13!

@k~3!#25y221/21d2h/2, h5~5y224!/~12y2!,

whereb5z(1), g5z(2). Also the polarization vectors corresponding tok (1), k (2), andk (3) are

~« i
~1! ,«'

~1! ,«3
~1!!5N~1!@2~12y2!1d2f ~1!,2gd,2bk~1!#,

~« i
~2! ,«'

~2! ,«3
~2!!5N~2!@2~12y2!1d2f ~2!,2bg,2gk~2!#, ~A14!

~« i
~3! ,«'

~3! ,«3
~3!!5N~3!@y2d,2~12y2!1d2f ~3!,2k~3!d#,

where N(1), N(2), and N(3) are the normalization factors, and f (1)52bj, f (2)52gz, and
f (3)5(6y4231y2122)/3(3y222).
Now the boundary condition determinant~13! reads
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U «3
~1!1k~1!« i

~1! «3
~2!1k~2!« i

~2! «3
~3!1k~3!« i

~3!

k~1!«'
~1! k~2!«'

~2! k~3!«'
~3!

« i
~1!12k~1!«3

~1! « i
~2!12k~2!«3

~2! « i
~3!12k~3!«3

~3!
U50, ~A15!

where the~1,1!, ~2,2!, and~3,3! elements areO(1) and other elements areO(d) @see Eq.~A14!#. This leads to the equation
determining the normalized velocityy

4~12y2!2k~3!~k~1!2k~2!!~12y222y2k~1!k~2!24@k~1!k~2!#2!

2d2$2~12y2! f ~3!k~3!~k~1!2k~2!!~12y222y2k~1!k~2!24@k~1!k~2!#2!

14~12y2!2k~3!@~122k~1!k~2!!~zk~1!2jk~2!!12~k~1!2k~2!!# ~A16!

1~12y2!~22y2!k~3!~k~1!2k~2!!@2y42y22212~y222!k~1!k~2!#

12~3y222!2~@k~1!#22@k~2!#2!k~1!k~2!%50.

Note that we have to keep the terms ofO(d2) in the first
term of Eq. ~A16! @the terms ofO(d2) are contained in
k (a)#, but we may putd250 inside the curly bracket. Thus,
we can write the complicated Eq.~A16! in the form

g~y,d2!2d2h~y!50, ~A17!

whereg is the first term of Eq.~A16! andh is the term inside
the curly bracket of Eq.~A16!. Putting y5y11Dy, where
Dy5O(d2), and using the equationg(y1,0)50 ~this gives
the normalized frequencyy1 in the @110# direction!, we have

Dy5d2@h~y1!2]g~y1 ,d
2!/]d2ud250#/@]g~y,0!/]yuy1#.

~A18!

Here, we note that ford50, i.e., for the@110# propaga-
tion, the wave numbersk (1) andk (2) are complex numbers
of the forms k (1)(y1)5a1bi, k (2)(y1)52a1bi, and
k (3)(y1)5d, wherea, b, andd are positive real numbers, as
shown above~see Table I!. This means thatk (1)1k (2) is
pure imaginary, but k (1)2k (2) and k (1)k (2) are both real,
leading to the fact thath(y1) is complex@the last term of Eq.
~A16! is pure imaginary# though]g/]d2 and]g/]y are real.
Thus, we conclude thatDy is a complexquantity, or at an
angle in the vicinity of the@110# direction the normalized
velocity y5c/ct5kt /ki becomescomplex, i.e., the phonons
in the branch that we are discussing attenuate as they propa-
gate at an angle close to the@110# direction.

Because y is now complex, the wave numbers
k (3)56(y221/21d2h/2)1/2 are also complex. This implies
that the small SH-like component, which couples~through
k (3)) to the saggital mode near the@110# direction, also has a
complex wave number perpendicular to the surface. The
imaginary part ofk (3) must be negativeso that the amplitude
may grow exponentially with a distance from the surface.
Thus, the wave of this mode is called a pseudosurface wave
~PSW!. The positive imaginary part ofk (3) ~corresponding to
a wave localized near the surface! is not allowed because of
the attenuation of the wave along the surface.

For dÞ0, the true surface wave appears below the ST
branch at a velocity given byy5y01Dy, wherey051/A2
(c,cst5ct /A2) andD(y2)52d2h/253d2/2.0. However,

for this modeDk (3)5O(d4), so we cannot say ifk (3) is pure
imaginary ~as expected!, at least not in the approximation
that we are employing. The reason for the decay of the PSW
branch, except in the@110# direction, is the coupling to a
bulk ST mode, which has slower sound velocity, i.e.,
c st,c1 , as has been explained in Sec. IV~Fig. 5!.

3. †110‡ propagation: with liquid loading

When the solid surface is in contact with liquid, the equa-
tion determining the surface wave velocity@Eq. ~10!# be-
comes, for the@110# propagation,

8k~1!k~2!2~2@k~1!#2112y2!~2@k~2!#2112y2!

12~2k~1!k~2!21!~2k~1!k~2!211y2!

54ayk~1!k~2!~k~1!1k~2!!/k, ~A19!

where a5ZL /ZS5rLcL /rSct (a.0.1) and
k[(12cL

2/c2)1/2. Using the equations

@k~1!k~2!#25~2y427y215!/4,
~A20!

@k~1!#21@k~2!#25~3y222!/2,

obtained from Eq.~A5!, we have

y2k~1!k~2!1y423y2125ayk~1!k~2!~k~1!1k~2!!/k.
~A21!

Setting y5y11Dy and k (1,2)5k (1,2)(y1)1Dk (1,2), where
Dy, Dk (1,2)5O(a), and using the relation

D@k~1!k~2!#5~y327y/4!Dy/@k~1!k~2!#, ~A22!

we find

Dy5
ak~1!k~2!~k~1!1k~2!!

2k~1!k~2!14y2261
y427y2/4

k~1!k~2!

1

kU
y5y1

.

~A23!
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Again k (1)k (2) is real andk (1)1k (2) is pure imaginary at
y5y1 . Thus,Dy is pure imaginary, which means that the
attenuationof the surface wave is caused by liquid loading
and its magnitude is of the order ofa, but the velocity
change~which should be a real quantity! is of the order of
a2. The latter has been checked by analytically calculating
Dy up toO(a2), although here we do not give the explicit
formula, which is lengthy. Instead, we show that these
results are in accord with the numerical calculations.
According to Eq. ~A23! and the analytical calculation
up to O(a2) that we find for the water/silicon
system, Im@Dki#/ki5 iDy/y150.0244 ~0.0243! and
Re@Dki#/ki5Dc/c150.00219 ~0.00216!, which should be
compared with the numerically obtained attenuation and ve-
locity change shown in the parentheses.

4. A propagation close to the†110‡ axis: with liquid loading

In this case, the equation determining the velocityy is Eq.
~A16!, but the r.h.s. is finite with a contribution proportional
to a @similar to the r.h.s. of Eq.~A19!# coming from the
liquid loading. We note that the terms, except for the last one
of the l.h.s. of Eq.~A16!, are proportional tok (3), which is
double valued. (k (1) and k (2) are also double valued, but
their signs have been chosen so that the wave may decay
with the distance from the solid surface.! Without liquid
loading, one of those two values~with different signs! of
k (3) is not allowed in the branch starting fromy1 ~PSW!,
becausey is complex~irrespective of the sign ofk (3)) and
the wave must decay along the surface.k (3) with the positive
imaginary part~though very small 102321025) corresponds
to the wave localized near the surface, so this is not accom-
modated to the attenuation of the waves along the surface.

However,with liquid loadingboth values ofk (3) become

possible, because the wave is always attenuated along the
surface by the continuous transmission of the energy into the
liquid „i.e., complex wave numberq in the liquid side per-
pendicular to the interface@see Eq.~2!#…. So, the energy
transmission into the solid is not necessary for the attenua-
tion of the wave along the surface. Thus, one ofk (3)’s with
a positive imaginary part~localized wave near the solid sur-
face! is now allowed, leading to the liquid induced Rayleigh
wave ~IRW!. It is important to note that Im@k (3)#5O(a),
i.e., the decay constant is of the order of 0.1 or less
~Im@k (3)#560.044 in the@110# for the water/silicon sys-
tem!.

Here, we compare this situation with that in a direction
close to the@100#, where no PSW solution exists for the free
surface. For this direction@k (3)#25y2211O(d2), where
d is, this time, a small angle measured from the@100# axis.
The fcc model calculation for thef ree sur f ace gives
y5y185@(32A3)/2#1/250.796,1 in the @100# ~see Fig. 9!.
So,k (3) is pure imaginaryfor y5y18 and its magnitude is
of the order of 0.5 (k (3)560.605i). This leads to the fact
that the correction toy18 for a finited @derived from an equa-
tion quite similar to Eq.~A16!#24 near the@100# is real. Thus,
there is no attenuation along the surface and the surface wave
keeps its localized character, i.e., only a RSW is allowed.
@k (3) with negative imaginary part~PSW! is not allowed as a
solution because there is no attenuation along the surface.#
With liquid loading, the attenuation of the wave along the
surface is induced, as in the case of@110# propagation. Thus,
y becomes complex and its imaginary part isO(a). This
means that@k (3)#2 becomes complex and bothk (3)’s with
positive and negative imaginary parts are now possible, lead-
ing to the appearance of the PSW. Note that near the@100#
direction, the IRW coincides with the RSW.
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