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The instability of a growing crystal limited by a high-symmetry surface in molecular-beam epitaxy is studied
in the limit where terrace size is very large compared to the atomic distance. In that case, everything is
deterministic except the nucleation of new terraces. Moreover, exchange of atoms between steps is ignored. If
the typical terrace sizel c is chosen as length unit, the model depends on a single parameter (l s /l c) which
characterizes the strength of step-edge barriers~‘‘Ehrlich-Schwoebel effect’’!. Numerical simulations are sup-
ported by nonlocal evolution equations relating the time and space derivatives of the surface height. The first
mounds which appear have a radiuslc

inf proportional tol cAl c /l s. In contrast with other authors who studied
different models, coarsening is found to become extremely slow after the mounds have reached a radius
lc
sup of order l c

2/l s . @S0163-1829~96!10631-7#

I. THE EHRLICH-SCHWOEBEL INSTABILITY

This article is devoted to a well-known instability1,2

which occurs in molecular-beam epitaxy at low temperature:
if the growing crystal is limited by a surface of high-
symmetry orientation, the growth generates the formation of
‘‘terraces’’ of atomic height.3,4 In the presence of an extra
energy barrier1 which hinders interlayer diffusion, atoms
landing on these terraces cannot easily step down1,2 and
therefore nucleate new terraces. Since grooves are not easily
filled up, eventually towers or ‘‘mounds’’ form. Such
mounds have been observed experimentally on a variety of
systems: Si,5 Ge,6 GaAs,7,8 Cu,9 and Fe.10–12

So far, the most complete theoretical studies have been
numerical.8,13–18 They confirm the existence of mounds,
whose size increases with time due to coalescence. However,
the laws of thiscoarseningare, neither experimentally nor
theoretically clear: in certain cases the mound shapes remain
self-similar during coarsening7,9,11,12,16,17while in other cases
they become sharper.6,10,16,18Also, the impossibility to study
very long times, accompanied by a slop steepening, may
sometimes prevent from drawing firm conclusions.

The purpose of the present work is to clarify the coarsen-
ing mechanism in 111 dimensions~one-dimensional surface
in a two-dimensional space!. We hope that this study may
give information about the physical,~211!-dimensional
growth problem.

In the following it will be useful to distinguish ‘‘top’’
terraces, ‘‘bottom’’ terraces, and ‘‘vicinal’’ terraces, i.e.,
those which have both a lower edge and an upper edge~Fig.
1!. Let z(rW,t) be the height of the surface above its average
position h(t)5aFt. Both z and h are measured in atomic
layers. If evaporation is neglected,z satisfies the conserva-
tion equation

]z

]t
52ad8¹W • jW~rW,t !1d f ~rW,t !, ~1.1!

whered85d21 is the surface dimension~1 in this paper, 2
in reality!, and the random functiond f (rW,t) is the fluctuation

of the atomic beam~called shot noise in jargon!. The current
jW is measured in particles per unit time~in d5111 dimen-
sions! or in particles per unit time and unit length~in
d5211 dimensions!. It is generally written as the following
phenomenological equation:3,8,15,19

jW~rW,t !5cW „¹W z~rW,t !…1K¹W „¹2z~rW,t !…1 fW j~rW,t !. ~1.2!

Here, the random functionfW j (rW,t) corresponds to the fluc-
tuation of the adatom current around its expected average
value given by the diffusion equation. The phenomenologi-
cal constantK is generally traced back to the exchange of
atoms between terraces, which results from thermal fluctua-
tions and tends to smooth the surface. We shall come back to
this point later, and suggest another possible origin.

FIG. 1. Typical profile of a~111!-dimensional growing crystal.
~a! Top terraces~top!, vicinal terraces~vic!, and bottom terraces
~bottom!. ~b! In the Zeno model, the velocityvn of a step is a
function of the widthsl n and l n11 of the neighboring terraces.
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The nature of the functionc„¹W z(rW,t)… is, of course, es-
sential. Since the currentcW must vanish on the high-
symmetry orientation, for small fluctuations of¹W z around its
equilibrium value 0, one can assume3,8,15

c~¹W z!5B¹W z. ~1.3!

As a consequence of the Ehrlich-Schwoebel effect, ada-
toms on a vicinal terrace preferably stick to the upper edge
and this means that the average current should have the same
direction and sense as¹z. So the coefficientB is positive
and the first term of~1.2! formally reduces Eq.~1.1! to a
diffusion equation, but with a negative diffusion constant
2B. It follows that the spatial Fourier transformzk(t) of
z(rW,t) diverges:zk(t)5zk(0)exp(Bk

2t). This is the manifes-
tation of the Zeno-Schwoebel instability: a plane surface is
unstable, even if—as seen below—the second term in~1.2!
stabilizes against short wavelength fluctuations. However,
the evolution can be precise only if a more complicated form
is used for the functionc(¹W z). Johnsonet al.8 have interpo-
lated between~1.3!, valid at small slopes, and the expression
c(mW );1/m ~with mW [¹W m), which was expected to be cor-
rect at high slopes, obtaining the form

c~mW !5B
mW

11ld
2m2 , ~1.4!

whereld is a length. Sincec(mW ) has always the same sign as
mW , all the directions are unstable and deeper and deeper
grooves are expected to form.

Siegert and Plischke15 have suggested that, due to the de-
tails of the crystal structure, the functionc(mW ) should be-
come negative beyond some characteristic valuem* of the
slope. So]c/]mum*,0 and the slopem* would be stable
against small fluctuations of the orientation.

For instance, if the crystal is face centered cubic and the
average surface is~001!, it is conceivable that the local slope
cannot go beyond that of a~111! orientation, since otherwise
overhangs would form. Such a suggestion turned out to be
correct in the case of heteroepitaxial growth of Fe/MgO~Ref.
11! and it is in agreement with the findings of Ernstet al.9 on
Cu/Cu.

The slope selection has been recently discussed also by
Šmilauer and Vvedensky16 and by Amar and Family,17 who
perform simulations on solid-on-solid models. The first ones
introduce a transient mobility just after the adatom has
dropped on the surface, while Amar and Family consider a
downward funneling, determined by the search of a fourfold
hollow site. The resulting final slopes are appreciably smaller
than those obtained by Siegert and Plischke.

In the present work, the fluctuating functionsd f (rW,t) and
fW j (rW,t) will be assumed negligible. This is correct when all
terrace sizes are much larger than the atomic distancea be-
cause, in that case, many atoms are necessary to produce a
given displacement of the steps, and the relative fluctuation
of the number of atoms is negligible. The case ofd f (rW,t) is
discussed in detail in Ref. 3.

Thus, we want to investigate a model in which the only
source of stochasticity is the nucleation of new terraces,

which does not become deterministic in the limit of small
a. In addition, we mainly address the case when atoms can-
not detach from steps and be exchanged between terraces.
This situation is, in practice, realized at low temperature.20 In
this case, we shall argue that~i! Eq. ~1.2! has to be modified,
but a straightforward modification does account for the onset
of the instability. Also, the term inK will be shown to be
present even in absence of thermal detachment.~ii ! The evo-
lution of the patterns which appear at longer times can only
be accounted for by a nonlocal modification of~1.2!. ~iii !
Only at very long times large slopes appear.

II. BASIC EQUATIONS AND PARAMETERS
OF THE MODEL

In a growth problem, there are generally many param-
eters. The model we shall study, initially proposed by Elki-
nani and Villain,18 has the advantage to contain only two
characteristic lengths, which may be called nucleation length
and Schwoebel length. Only the ratio of these lengths has a
nontrivial effect on the properties of the system, which there-
fore depends on a single significant parameter.

The nucleation lengthlc is qualitatively defined as the
typical width of a terrace just before a new terrace is nucle-
ated at the top of it. The Schwoebel lengthls is defined as
follows: if the width l of a ‘‘vicinal’’ terrace is smaller than
ls , most of the atoms landing on this terrace go to its upper
edge, while ifl@ls , about one-half of the atoms go to each
edge because they are too far from the other one.

In the simplest approximation, the atomic distancea is
just assumed to be infinitely small. Thiscontinuous Zeno
model can only be good in the continuum limita!ls ,lc .
Moreover, we are mainly interested by the casels!lc , be-
cause in the opposite case, deep crevaces appear very
early,18,21and no good crystal can be grown. Thus, we focus
our interest on the case

a!ls!lc . ~2.1!

Even if ~2.1! holds, terraces of widthl'a appear at very
long times. The behavior at these long times depends on the
microscopic features of the system and, as will be seen in
Sec. XIV. These long times are not necessarily of practical
interest, if the purpose is just to obtain a smooth surface and
if one does not care about what happens after the onset of the
instability. In the forthcoming sections,a will be assumed
infinitely small.

In the simulations it is not easy to fulfill condition~2.1!,
because it would require terraces of several tens of lattice
constants. Anyway, it is not a bad approximation, as can be
seen from Refs. 8,16 and 17. In Johnsonet al.8 ls /a.1–10
and ls /lc.0.04–0.8. In Refs. 16 and 17lc can be estimated
as a measure of the average terrace size andls can be de-
duced from the minimal mound size, as given by formula
~3.6! below. It results thatlc /a.10–20 andls /lc.0.1–1 .
Thus, condition~2.1! is a reasonable assumption.

We shall generally consider a~111!-dimensional model
in which18

ls5aS DD8
21D ~2.2!
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and

lc
3~lc16ls!5

12Da

F
, ~2.3!

whereF is the beam intensity in atoms per unit time and unit
length,D is the diffusion constant, andD8/a2 is the hopping
rate for an atom wanting to step down.

The evolution of the surface is determined by the local
step velocity, which is the sum of two terms, proportional to
the local gradient of the adatom densityr(rW) on both sides of
each step. The adatom density is in turn determined by the
diffusion equation22

ṙ~rW,t !5F1D¹2r~rW,t ! ~2.4!

and by appropriate boundary conditions on steps.4,23 In ~2.4!,
the fluctuating functionsd f (rW,t) and fW j (rW,t) have been as-
sumed negligible, as justified in Sec. I.

In 111 dimensions it is easy to eliminate the adatom den-
sity r(rW,t) ~Ref. 18! and the velocity of a step is found to be
~see Fig. 1!

vn5 f ~ln!1g~ln11!, ~2.5!

where ln and ln11 are, respectively, the width of the upper
and lower terraces, and the functionsf (l) and g(l) have
different definitions for top, bottom, and vicinal terraces. For
vicinal terraces,

f ~l!5
aFl

2 S 12
ls

l1ls
D ~2.6!

and

g~l!5
aFl

2 S 11
ls

l1ls
D . ~2.7!

For top terraces,

f ~l!5
aFl

2
~2.8!

and for bottom terraces

g~l!5
aFl

2
. ~2.9!

In addition, new terraces are created on a terrace of width
l with a probabilityPnucl(l) per unit time, which increases
abruptly as soon asl becomes of orderlc . Elkinani and
Villain18 used the formula

Pnucl~l!5
F2l4

12D S 11
6ls
l D . ~2.10!

These equations should be complemented by an equation
for the probability of the location of the newly nucleated
terraces, which can be deduced from the Burton-Cabrera-
Frank theory associated with a model for terrace
nucleation.23–26The details will not be recalled here.

A deterministic version of nucleation process, which will
be occasionally used in the present work, is also possible; in
this case a new terrace nucleates on an old one, at the place

where the adatom densityr(x) is maximum, when the width
of this terrace becomes equal to the valuelc defined by~2.3!.
This condition can be obtained by writing that the probability
of nucleation on a terrace of widthlc during the deposition of
one layer, is of order 1.

For a vanishing Schwoebel effect (ls50), ~2.10! reads

Pnucl~l!5aFS l

lc
D 4. ~2.11!

If the time unit is chosen as 1/(Fa), the filling time of a
layer, and if the length unit is chosen aslc , the ‘‘Zeno equa-
tions’’ ~2.5!–~2.10! become parameter free, and, in particu-
lar, independent ofa. It is easily seen that the spatial distri-
bution of the nucleation probability at a given time is also
parameter free. Therefore, all properties of the model for
ls50 depend only onFat and l/lc . For instance,

]z

]~Fat!
5F~lcm,lc

2]xm, . . . !, ~2.12!

whereF(u,v, . . . ) is afunction.
The Zeno equations~2.5!–~2.10! allow for a numerical

solution of the problem. However, they do not provide much
insight because they give information on objects~steps!
which are perpetually created and annihilated, and whose
number perpetually changes in a way which is not easy to
predict from these equations. In the rest of this paper, we
shall try to derive more explicit information from the Zeno
equations. The system is generally assumed to be 111 di-
mensional, but conjectures about the~211!-dimensional case
will be presented in Sec. XV.

III. ONSET OF THE INSTABILITY

In Sec. I, we related the surface evolution to the current
density. In the case of an uniform absolute slopeumu51/l,
the average current density

j ~l!5
1

l E2l/2

l/2

j ~x!dx

can be obtained using the expression

j ~x!5Fx1
j ~l/2!1 j ~2l/2!

2
,

which results from integrating~2.4! if the left-hand side is
neglected. Sincej (l/2)5 f (l)/a and j (2l/2)52g(l)/a, the
result, for negative slopes~see Fig. 1! is

j ~l!5
f ~l!2g~l!

2a
52

Flls
2~l1ls!

52
Fls

2~11umuls!
.

~3.1!

We have used Eqs.~2.6! and~2.7! which are only valid on
vicinal terraces, so that~3.1! is not valid if umulc,1. As seen
in Sec. I, the current density is expected to be proportional to
m for small values ofm5]z/]x ~see also Appendix B!. A
reasonable interpolation is therefore

j5
Flslcm

2~11umuls!~11umulc!
. ~3.2!
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A more precise expression, containing also higher order de-
rivatives ofz(x), will be derived in Sec. VI. Expression~3.2!
is analogous, but not identical to Eq.~1.4! proposed by
Johnsonet al.,8 which contains a single length instead of the
two lengthsls and lc . This forbids us, by rescaling the cur-
rent and/or the slopeumu, to put the above expression forj in
an ‘‘universal’’ form, which does not depend onls and lc .
Such a rescaling is possible for the current proposed by
Johnsonet al.,8 because they start by supposing an infinite
Schwoebel effect. In this case only the lengthlc appears and
it is reasonable to think that a universal function can be ob-
tained. Then, if the Schwoebel effect is finite, they simply
multiply the current by the quantitySc5ls /(ls1a), which
goes to zero ifls50 ~no Schwoebel effect! and it isSc51
for an infinite Schwoebel effect.

If expression~3.2! were the only contribution to the cur-
rent, a smooth surface should be unstable with respect to
height fluctuations of any wavelength. This prediction may
be tested by simulations on a sample of small sizel with
periodic boundary conditions. These simulations, reported in
Secs. V and VIII@respectively, in the cases of deterministic
~DN! and random nucleation~RN!#, show that the surface
remains smooth ifl is not too large. Consequently, the flat
surface is stable with respect to height fluctuations of short
wavelength and~3.2! must be corrected. As recalled in Sec.
I, the usual correction3,8,15,19 is an additional, linear term
which should be of third order for symmetry reasons. The
physical meaning of this term will be discussed in the next
section. The resulting equation reads

j5
Flslcm

2~11umuls!~11umulc!
1K

]2m

]x2
. ~3.3!

This expression will be seen to be satisfactory forweak
slopes. The linearized form of~3.3!, valid for small values of
m, is

j5
F

2
lslcm1K

]2m

]x2
. ~3.4!

Inserting this equation into~1.1!, for each Fourier compo-
nent @z(x,t)5zq(t)exp(iqx)#, one finds

]zq
]t

5aS Flslc
2

q22Kq4D zq . ~3.5!

The expression in brackets is negative forq.q*
5AFlslc/2K, so that a flat surface is stable with respect to
height fluctuations of wavelength smaller than

lc
inf5

2p

q*
52pA 2K

Flslc
. ~3.6!

The instability appears after a time of order

t*'
1

aFlslc~q* !2
'

K

a~Flslc!
2 ~3.7!

so that

lc
inf'AaFt* lslc. ~3.8!

This formula has already been obtained by Krug.27

IV. MEANING AND VALUE
OF THE STABILIZING FORCE K

The linear term in~3.3! is generally supposed to represent
the thermal smoothing arising from exchange of atoms be-
tween terraces. However, we claim~in contrast with Ref. 12!
that it can also represent the effect of stochastic formation of
new terraces, at least at short times. At longer times, when
the surface profile has acquired a patterned structure, the
linear term fails to account for the fact that new terraces do
not nucleate uniformly, but preferably near maxima.

Neglecting thermal smoothing,K can be estimated in the
limit of the vanishing Schwoebel effect. Then~2.12! holds,
and since@K#5 length3/time, comparison with~1.1! yields

K'Flc
4 . ~4.1!

Insertion into~3.6! yields

lc
inf'lcAlc

ls
. ~4.2!

These results rely on Eq.~3.3!, in which the linear term is
purely phenomenological. It is therefore of interest to test
~3.3!. This test can be done on samples of small sizel, but
slightly larger thanlc

inf . The simulations reported in the next
sections and in Appendix A 1 and A 2 show that such
samples evolve toward a stationary shape~Figs. 2 and 6!. Is
such a stable stationary shape predicted by~3.3! as well?
This is a crucial test of~3.3!.

For a slightly different current@the first term of~3.3! be-
ing replaced by~1.4!#, Huntet al.19 have shown that station-
ary mounds are obtained for alll.lc*52pld @see Eq.~1.4!
for the meaning ofld#. Their calculation has been extended
to ~3.3! in Appendix B and an analogous result is found.
Anyway, the actual form of the mounds—as obtained from
our simulations—is rather different from the analytical shape
predicted by~3.3!.

FIG. 2. Stationary configurations~thick lines! for different
wavelengths (l/lc52,4,6,8,8.6,9.397) and unstable configuration
~dashed line! for l/lc59.4. The thin line represents the analytical
profile ~6.12!. Deterministic nucleation,ls /lc50.015.
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V. STATIONARY PROFILES: NUMERICAL SOLUTION
OF THE DETERMINISTIC ZENO MODEL

We have solved the ‘‘Zeno’’ equations~2.5!–~2.9! for an
initial state in which all terraces have the same width
l(0),lc . In this section, new terraces will be assumed to be
nucleated at the center of an old one, when its width be-
comes equal tolc . Thisdeterministicnucleation scheme has
the advantage to give fully reproducible results, independent
of any fluctuation. The computer is used as a tool to solve
difficult equations, not to make simulations. The results will
turn out to be partly applicable to the case of random nucle-
ation. Details are given in Appendix A 1. The main results
are as follows~see Fig. 2!.

~i! For periodsl smaller than a certain lengthlc
sup and

larger thanlc
inf5lc , the profile—if averaged on a time much

larger than 1/aF—evolves toward a well-defined, nontrivial
shape. This shape is therefore a stable fixed point of the
evolution equations, and the height of the profile increases
with l.

~ii ! The minima of the stationary structures are angular
points.

~iii ! Far from a minimum, all stationary profiles may be
approximated by a ‘‘universal’’ curve which is independent
of l, but does depend onlc and ls .

~iv! If l.lc
sup the height differencedz between minima

and maxima becomes always deeper, at increasing time.
~v! The transition from regime~i! to regime~iv! is discon-

tinuous, i.e.,dz jumps abruptly from a finite value to infinity
for l5lc

sup.
Of course, statement~iii ! makes sense only if

l@lc ~5.1!

and this equation can only be satisfied if

lc@ls . ~5.2!

As will be seen, some of these results can be obtained ana-
lytically in the continuum approximation, and the ‘‘univer-
sal’’ shape can be found.

VI. STATIONARY PROFILES:
CONTINUUM APPROXIMATION

The calculation will be made for negative values of the
profile slope m5]z/]x ~see Fig. 1!. The condition
umulc.1 will be assumed. Letvn be the velocity of thenth
step andln the width of the terrace, betweenxn21 andxn .
Defining

dxn~ t,1/aF!5xn~ t11/aF!2xn~ t !5E
t

t11/aF

dt8vn~ t8!

~6.1!

the stationarity condition for vicinal terraces, ignoring pos-
sible nucleation of new terraces, writes

dxn~ t,1/aF!5ln11~ t !. ~6.2!

Substitutingvn(t) by its expression~2.5!, ~6.1! reads

dxn~ t,1/aF!5E
t

t11/aF

dt8$ f @ln~ t8!#1g@ln11~ t8!#%.

~6.3!

We make the approximation

ln~ t8!.
ln~ t !1ln~ t11/aF!

2
.

ln~ t !1ln11~ t !

2
. ~6.4!

Integration yields

dxn~ t,1/aF!5
1

aF H f S ln1ln11

2 D1gS ln111ln12

2 D J .
~6.5!

If all the terraces have the same lengthl, the above equa-
tions are fulfilled for every value ofl. In general, let us
define l85(ln1ln11)/2 and l95(ln111ln12)/2; by using
formulas ~2.6! and ~2.7! for f and g, the above equation
reads

dxn~ t,1/aF!5
l81l9

2
1

ls
2~l92l8!

2~ls1l8!~ls1l9!
~6.6!

or

dxn~ t,1/aF!2ln115
1

2 F l81l922ln111
ls
2~l92l8!

~ls1l8!~ls1l9!
G .

~6.7!

Replacing (l92l8) and (l91l822ln11) by their Taylor
expansion, one obtains for negative values of the local slope
m(x)[1/l(x)

dxn~ t,1/aF!2ln1152
1

m

]

]x F2
ls

2~11lsm!
1

1

4m3

]m

]x G .
~6.8!

This quantity is the shiftdx of the profile in thex direc-
tion during the time 1/(aF). In the continuum approximation
it may be written as

dx5
1

aF

]x

]t
5

1

aFm

]z

]t
52

1

mF

] j

]x
. ~6.9!

The current density is therefore equal to

j5
Fls

2~11lsumu!
m

umu
1

F

4m3

]m

]x
[ j s1 j c , ~6.10!

where the factorm/umu has been introduced in order to take
both possibilitiesm,0 andm.0 into account.

The first term reproduces expression~3.2! in the limit
umulc@1 @see also Eq.~3.1!# and corresponds to the
Schwoebel currentj s . It is destabilizing. The second contri-
bution (j c)—which breaks the up-down symmetry—derives
from a curvature in the surface profile and in the regions of
negative curvature (]xm,0), j c and the slopem have oppo-
site signs, so thatj c is stabilizing.

It is rather remarkable thatj c does not depend onls . Its
origin may be understood by considering the evolution of the
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two profiles of Fig. 3, in absence of the Schwoebel effect. In
the case~a! m,0 and ]xm,0, while in ~b! m,0 and
]xm.0. If ls50, the velocity of each step is proportional to
the sum of the lengths of the upper and lower terrace. So, in
~a! larger terraces become smaller while in~b! their size
increases. Briefly,j c explains why a growing vicinal surface
is not stationary if neighboring terraces have different sizes
(]xmÞ0).

Coming back to the case of negative slopes, the station-
arity condition j50 writes

2
Fls

2~11lsumu!
1
F

4

1

m3

]m

]x
50, ~6.11!

which can be easily integrated. Assuming that the curve has
the initial slopem(0)52m0, we obtain

z~x!5z~0!1
1

4
ln@y~112lsm0!#1

1

2lsm0
@Am0

2ls
21y2

2~11lsm0!#2
1

2
lnH Am0

2ls
21y1m0ls

Am0
2ls
21y2m0ls

J ~6.12!

with x.0 and

y5112lsm024lsm0
2x. ~6.13!

The other half of the curve (x,0) is easily obtained by
symmetry. A remarkable property of the curve~6.12! is to be
limited by two vertical asymptotes; because of this, a maxi-
mal value for the wavelength of a stationary configuration
will be seen to exist. This finding contrasts with the analo-
gous curve deduced from~3.3!—and derived in Appendix
B—or with the results of Huntet al.19

In the above calculation, maxima and minima have been
disregarded. In this section, as in the preceding one, new
terraces will be assumed to be nucleated at the center of the
top terrace when its width becomes equal tolc . In this de-
terministic model, what happens at a maximum? The width

of the top terrace fluctuates between 0 andlc and its average
length should be close tolc/2. The width of the terraces just
below is exactlylc/2 just after the latest nucleation, and
should not change much if~5.2! is satisfied. More generally,
the highest terraces have a width close tolc/2. Therefore the
slope at the top of the profile is close to 2/lc . This means that
in ~6.12! one hasm052/lc . The top of the profile is seen to
be an angular point, however with an angle close top @see
Fig. 2~a!#. This will be shown to be an artefact of the deter-
ministic nucleation model.

What occurs now at minima? Numerical treatment sug-
gests that the steady profiles are well approximated by arcs
of a universal curve, which is obviously given by~6.12!,
connected by angular points. In fact, if we impose the sta-
tionary condition to the case of a bottom terrace and the
approximation~6.4! is made, we find that a stationary profile
corresponds exactly to the vanishing of the current~6.10!.
Strictly speaking, Eq.~6.2! would imply j5const, but the
constant is not zero only on a vicinal surface: if the average
slope of the substrate is zero, itmustbe zero.

Anyway, approximation~6.4! is not satisfactory for a bot-
tom terrace, whose size changes a lot during the filling time
of a layer. It is just for this reason that our analytical treat-
ment fails in the explanation of property~v! of Sec. V, ac-
cording to which, for a given value ofls /lc , the heightdz of
a stationary profile has a finite upper limit. This may be
understood as a result of the Zeno paradoxon in its Elkinani-
Villain version:18 if very low values of the terrace width
l!ls were allowed at the bottom of the profile, the
Schwoebel effect could be considered infinite and the depth
would increase to infinity~or, in practice, up to a value of
orderl/a).

Equation ~6.13! for y makes sense only ifx is smaller
than a critical valuexmax, wherey vanishes. More precisely,
z(x) has two vertical asymptotes forx56xmax. This upper
bound yields an evaluation oflc

sup52x max, namely

lc
sup5

lc
2

8ls
1

lc
2
. ~6.14!

The validity of our expression~6.10! for the current can
be tested by comparing the analytical expressions for the
profile z(x) @Eq. ~6.12!# and for the upper critical wave-
lengthlc

sup @Eq. ~6.14!#, with the numerical results. In Fig.
2~a! stationary profiles are seen not to depend very much on
the wavelength and they are also well fitted by the ‘‘univer-
sal curve’’z(x). This is a good surprise, because the current
~6.10! is an arbitrary cut at the term in]xm.

In Fig. 4 we report the numerical and analytical values for
lc
sup(ls). Again, the good agreement proves that a continuum

approach is essentially correct.

VII. GENERAL PROPERTIES
OF STATIONARY STRUCTURES

The two preceding sections suggest that the steady solu-
tions of the deterministic Zeno equations which are periodic
with one maximum per period, have with a good approxima-
tion the following two properties~Fig. 2 and Fig. 5!.

~i! Between two minima, they have a universal shape

FIG. 3. Small pieces of a vicinal surface. The arrows indicate
the velocity of each step. The slopem is negative in both cases, but
the curvature]xm is negative in~a! and positive in~b!.

54 5119EHRLICH-SCHWOEBEL INSTABILITY IN MOLECULAR- . . .



z~x!5zn1w0~x2xn!, ~7.1!

where w0(x) is a universal function and the constantxn
changes at each minimum. The constantzn is the same ev-
erywhere, but the indexn has been introduced for future use.
This property will be calledrule of universal shapein the
following.

~ii ! Each minimum is an angular point where the slope has
the same absolute value on both sides. This property will be
calledrule of equal slopesin the following, and it is a trivial
consequence of periodicity, symmetry, and the rule of uni-
versal shape.

Since all minima ignore one another, any structure which
satisfies rules~i! and ~ii ! is stationary@Fig. 5~b!#. These
structures have the remarkable property that all maxima have
equal heights. They will probably not be obtained in the
evolution of an initially planar surface, and therefore they
have no particular interest. What is interesting is that, as
argued below, there isno other nontrivial stationary struc-
ture.

VIII. PERIODIC, STATIONARY PROFILES
WITH RANDOM NUCLEATION

In Sec. V deterministic rules have been assumed for the
nucleation of new terraces. This is not realistic, but should
provide a good description of the minima because nucleation
is not expected to be frequent there.

We have also done simulations using the RN scheme, on
samples of small sizel, which can be regarded as a period
since periodic boundary conditions are imposed. In contrast
with the case of deterministic nucleation, the results do not
depend on the initial state, so that it is not essential to take a
single maximum per period at the beginning of the simula-
tion; even, we can take a flat configuration att50. The
following study should also allow, by comparing the results
with formula ~3.6!, to determine the parameterK, which en-
ters in the current~3.3!.

The simulations are described in detail in Appendix A 2
and show the following properties.~i! For periodsl smaller
than a certain lengthlc

sup, but larger than another length
lc
inf , the profile evolves toward a well-defined, nontrivial

shape~Fig. 6!. ~ii ! The minima of the stationary structures
are angular points.~iii ! Far from a minimum, all stationary
profiles may be approximated by al-independent, ‘‘univer-

FIG. 6. ~a! Stationary configurations for different wavelengths
(l/lc510,15,20,25,30). Random nucleation,ls /lc50.015. ~b! As-
ymptotic configurations at different wavelengths (l/lc
52,3,4,5,6,7). Random nucleation,ls /lc50.06. The lower critical
wavelength can be located in between 4lc and 5lc .

FIG. 4. Numerical ~bars! and analytical ~curve! values of
lc
sup(ls /lc) .

FIG. 5. Stationary solutions of the Zeno equations.~a! A peri-
odic solution.~b! A nonperiodic solution, made of pieces of the
universal curve.
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sal’’ curve, however rather different from the universal curve
of the deterministic case.~iv! If l is larger thanlc

sup, but not
too much larger~let us say, smaller than 2lc

sup), the height
differencedz between minima and maxima becomes always
deeper.~v! The transition from regime~i! to regime~iv! is
discontinuous.~vi! If l is much larger thanlc

sup, additional
minima appear.~vii ! The top of the profile is fairly flat, and
lc
sup is much larger than the corresponding value, obtained

with deterministic nucleation.
In both deterministic and random models, we have de-

fined a lower (lc
inf) and an upper (lc

sup) critical wavelength.
A nontrivial steady configuration is found only for
lc
inf,l,lc

sup For smaller values we have a flat surface and
for larger ones, an instability takes place with the formation
of deep crevaces. The numerical values oflc

sup are different
in the two models, but randomness probably does not intro-
duce new phenomena: a deterministic model is sufficient to
understand the origin of the ‘‘upper’’ instability. At variance,
lc
inf has some sense only in the random model, since in the

deterministic onelc
inf5lc and its introduction is not mean-

ingful.
The dependencelc

inf;ls
21/2 expected from~4.2! can be

tested numerically. In Fig. 7 we report, for different values of
the Schwoebel length, the average roughness of the ‘‘station-
ary’’ configurations, obtained for samples of different wave-
length. We see that for smallL, roughness is constant and
does not depend onls , while for larger values ofL ~depend-
ing on ls) it increases rather rapidly. The transition between
the two regimes defines the lower critical wavelength. Even
though its location is somewhat ambiguous, the expected de-
pendence~4.2! seems to agree with our numerical results,
with a numerical prefactor of order 1. The reason of the
difficulty in defininglc

inf is presumably that there is a smooth
crossover, rather than a sharp transition between the two re-
gimes.

The growing surfaces which are obtained from simula-
tions on large samples are not stationary, but their evolution

is slow and they can be called ‘‘quasistationary’’~Fig. 8!. In
addition, they are made of mounds of similar size, and in this
sense they are not far from being periodic. The stationary,
periodic structures which emerge from the numerical treat-
ment may be roughly described by the same two properties,
enounced at the beginning of Sec. VII.

Since no analytical expression is available forlc
sup, we

have not drawn the analogous of Fig. 4 for random nucle-
ation. For some specific values ofls , we find that (lc is the
unit length!: lc

sup(ls50.06)58/8.5, lc
sup(ls50.03)515/16

FIG. 7. Average roughness of the asymptotic configurations of
small samples, as a function of the wavelength, for different values
of the Schwoebel length: from the left to the right,
ls /lc50.06,0.03,0.015,0.0075. Random nucleation.

FIG. 8. Configurations at increasing times, of a large sample
(l/lc5100). Random nucleation,ls /lc50.015. The number of de-
posited layers is indicated on the right.
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andlc
sup(ls50.015)530/32. These results are in agreement

with a dependence of the formlc
sup;1/ls .

IX. ANGULAR POINTS
IN THE „111…-DIMENSIONAL PROBLEM

Simulations suggest that the minima of the profile are
angular points. These angular points move. LetvW be the ve-
locity of an angular point. Ifvx50 @Fig. 9~a!#, we obviously
have ]z/]t5vz ; if vz50 @Fig. 9~b!#, we have u]z/]tu
5umvxu, wherem5]z/]x. To clarify the sign one can see
that, if vx.0 (,0), then]z/]t is positive ~negative! and
m negative on the left of the minimum, while]z/]t is nega-
tive ~positive! andm positive on the right. Thus, in both
cases]z/]t52mvx . Adding the contributions proportional
to vx andvz , one obtains near a minimum

]z

]t
5vz2mvx ~9.1!

and therefore

a
] j

]x
5mvx2vz . ~9.2!

The same result can be obtained by writing

z~x!5z~xa!1E
xa~ t !

x

dx8
]z

]x8
, ~9.3!

where xa(t) means the angular point. The time derivative
gives

]z~x,t !

]t
5vz2vxm~xa ,t !1E

xa~ t !

x

dx8
]

]t

]z~x8,t !

]x8
~9.4!

and by writing] tz52a]xj on both sides, Eq.~9.2! is recov-
ered.

X. NATURE AND WEAKNESS OF A LOCAL
PHENOMENOLOGICAL EQUATION OF MOTION

The Zeno equations~2.5!–~2.9!, which define the deter-
ministic motion of steps are too complicated to provide in-
sight into the evolution mechanism. We now look for a phe-
nomenological differential equation in the continuum
approximation. A local form, natural generalization of~1.2!,
might be

j ~x,t !5w@m~x,t !,m8~x,t !,m9~x,t !#, ~10.1!

wherem5]z/]x, m85]2z/]x2 andm95]3z/]x3.

The local currentw should contain the following.
~i! An m-dependent term, representing the nonequilibrium

current, mainly due to the Schwoebel effect. Its expression is
given in Eq. ~3.2! and it is derived in Appendix B. In the
absence of nonthermal healing mechanisms16,17 and if the
crystal structure is not taken into account,15 it is always posi-
tive and only vanishes form50 orm5`.

~ii ! A current which breaks the up-down symmetry
@z(x)→2z(x)#. Such a term has been introduced phenom-
enologically by several authors28–30,12who assumed that, for
weak slopes, it has the form const3]x(m

2). On the other
hand, for umulc@1, Eq. ~6.10! shows that the current con-
tains a contribution of order@F(]xm)/m

3#. It is plausible to
assume that both forms match forumulc'1, so that the con-
tribution of interest to the current is31

Fc1lc
4

~c21m2lc
2!2

]~m2!

]x
52

]

]x
F Fc1lc

2

c21m2lc
2G[2

]A~m2!

]x
,

~10.2!

where the positive constantsc1 andc2 are of order unity. In
the deterministic model where~6.10! applies,c151/8.

~iii ! A term containingm95]2m/]x2. As discussed in
Sec. III, it can result both from exchange of atoms between
steps and from terrace nucleation. In our model, the first
contribution is ignored. On the other hand, terrace nucleation
becomes negligible when the terrace size is much smaller
than lc . This property can be accounted for if the term
Km9 of formula ~3.3! is multiplied by a functionu(m,m8)
which vanishes when nucleation is not expected, i.e., for
umulc@1, or should vanish for too large,positivevalues of
m8, namelym8lc

2@1. Form8,0 andumulc!1, the function
u(m,m8) is equal to 1.

In conclusion, the most general local form of the current
is

w~m,m8,m9!5
Flclsm

2~11lsumu!~11lcumu!
2

]A~m2!

]x

1Km9u~m,m8!. ~10.3!

The numerical work reported in Sec. VIII suggests that,
after some time, the minima of the profile are angular points.
This is in agreement with the analytic study of Sec. VI,
where the first two terms of~10.3! are shown to produce a
current which carries matter away from a minimum
(m50,m8.0).

Now, if there is an angular point, the current density
j (x,t) cannot be given by Eq.~10.3! in its neighborhood,
since this current would be discontinuous and ad-function
singularity would arise in the profile.

The bestway to reconcile our dream of a continuous
equation with the reality of angular points is a nonlocal form.

XI. NONLOCAL EQUATION OF MOTION

There is no reason to expect a continuous, local equation
of motion to describe the model. Indeed a continuum model
can only be valid for an averaged surface, since the real
surface has steps and is therefore not continuous. The surface
has to be averaged on a length of orderl ~the distance be-
tween steps! and on a time of order 1/(Fa). The resulting

FIG. 9. Evolution of the profile near an angular point~a! if
vx50 and~b! if vz50.
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equation of motion has to take into account what happens
during this time in a range of orderl around each point.
Therefore, the effective equation of motion, resulting from
the integration of the microscopic equations~2.5!–~2.10! on
a time of order 1/(Fa), has no reason to be local. Away from
a minimum, the approximation~6.4! transformed the prob-
lem into a local one. However, as already pointed out, this
approximation is too rough for a bottom terrace, whose size
changes a lot in time. For this reason, a local approximation
may fail near a minimum, and it does fail in our model.

We do not claim that any local, continuous growth equa-
tion is incompatible with angular points. For instance, the
deterministic Kardar, Parisi, Zhang equation:32

]z

]t
5nm81

l

2
m2 ~11.1!

is known to give rise to angular points,32 at least ifn50.
However, if the expression of]z/]t contains]2z/]x25m8 or
higher derivatives, this expression becomes infinite at an an-
gular point, and angular points can become impossible. In
the problem of interest in the present paper,]z/]t involves
only terms containingm8 or higher derivatives and a nonlo-
cal form is unavoidable as argued above—at least ifu van-
ishes in the last term of~10.3!.

We will assume that the current satisfies a nonlocal, phe-
nomenological equation of the form

j ~x,t !5E
2`

1`

G~x2u!w„m~u,t !,m8~u,t !m9~u,t !…du.

~11.2!

The functionG(u) is different from 0 in a small interval
«21 aroundu50, and its integral is equal to 1. Moreover,
symmetry implies thatG(u) is even. A natural guess is

G~u!5
«

2
exp~2«uuu!, ~11.3!

where«21 will be seen to be of orderlc .
Far from an angular point, the functionw(x) can be as-

sumed constant on the domain whereG(u2x) is different
from 0, so thatw(m,m8,m9) can be identified with~10.3!. It
can also be seen thatG(u) should be even, otherwise the
local approximation of~11.2! would contain the product of
m8 by an even function ofm, which is forbidden by symme-
try.

In order to check that~11.3! is an appropriate guess, we
now consider the vicinity of angular points. NeglectingK in
~10.3!, one obtains

w~m,m8,m9!5
Flclsm

2~11lsumu!~11lcumu!
2

]A~m2!

]x
,

~11.4!

where the functionA(m2) has been defined in~10.2! and
whose deterministic limit isF/(8m2).

As seen from~9.2!, ] j (x,t)/]x is generally a discontinu-
ous function ofx at a minimum, butj (x,t) must be continu-
ous. Now, the leading singularity of the current~11.2! results
from the leading singularity of~11.4!, which is due to its
second term and it is ad type singularity. The most singular
term of ~11.4! near an angular point atx5j is indeed

wsing„m~u,t !,m8~u,t !…52D„A~m2!…d„u2j~ t !…, ~11.5!

whereD(A)[Ar2Al means the discontinuity ofA, across
the angular point (r and l stand, respectively, forright
and left!. For the deterministic model,D„A(m2)…
5(F/8)D(1/m2).

Insertion of~11.5! into ~11.2! yields the most singular part
of the current density:

j sing~x,t !52D„A~m2!…E
2`

1`

G~x2u!d„u2j~ t !…du

~11.6!

or

j sing~x,t !52D„A~m2!…G„x2j~ t !…. ~11.7!

According to~9.2!, this current should be continuous and
have a discontinuous derivative atx5j. It follows from
~11.7! that G(u) must have the same properties. The form
~11.3! has indeed these properties.

We can now ask how the previous description is modified
if the relaxation term (Km9) is added to the local current
~11.4!. In this case the strongest singularity in
w(m,m8,m9) is not eliminated by the spatial integration
~11.2! and even the nonlocal currentj would be discontinu-
ous. This means that if the term (Km9) is present, there are
no angular points. However, our simulations do show angu-
lar points, so that such a term must be negligible close to
them.

As a first test of Eq.~11.2!, let us consider the evolution
of a periodic profile which is initially smoother than the sta-
tionary shape z0(x). Let us assume, for instance,
z(x,t50)5lz0(x), with l,1 @Fig. 10~b!#. Near a maxi-
mum, Eq.~3.3! holds and the stabilizing second term is more
reduced than the destabilizing first term, so that the current
of atoms is directed toward the top. Near a minimum, but not
too close, Eq.~6.10! holds and the stabilizing second term is
increased, so that the current of atoms is directed toward the
bottom. Very close to a minimum, the integral equation

FIG. 10. Evolution of a periodic profile according to~11.2!. ~a!
Stationary profile.~b! Initial profile smoother than the stationary
one, and affine to it~thick line!. ~c! Resulting current of atoms.~d!
Resulting current gradientj 85] j /]x. As a consequence of the
equation]z/]t52 j 8, the profile takes the form shown by the thin
line in ~b!, for which the current is now uniformly destabilizing.
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~11.2! has to be used, so that the current is continuous at the
minimum. Symmetry implies that it vanishes. It results that
the current has the shape shown in Fig. 10~c!.

The modification]z/]t52] j /]x @Fig. 10~d!# of the pro-
file follows: initially, both maxima and minima go up. How-
ever, the slope near the minima becomes flatter as seen from
Fig. 10~b!, in other wordsm8 becomes weaker, so that the
current, as given by~11.2! very close to a minimum, or by
~6.10! a little farther, changes sign, as well asj 8. To sum-
marize, the velocity of the minima is positive in the transient,
initial state, but then become negative, so that the profile
shape tends to the ‘‘universal’’ shapew50 in agreement
with simulations.

XII. VELOCITY OF ANGULAR POINTS

In this section, the velocity of angular points will be re-
lated to the discontinuity of the slope and of the curvature,
using Eq.~11.2!. From ~11.7! one deduces the discontinuity
of the current density gradient

DS ] j ~x,t !

]x D 52DS ]G

]x U
j
DD„A~m2!…. ~12.1!

According to ~9.2!, this should be equal toD(m)(vx /a).
Therefore

vx52aDS ]G

]x U
j
DD„A~m2!…

D~m!
. ~12.2!

If Eq. ~11.3! is assumed, we obtain

vx5a«2
D„A~m2!…

D~m!
. ~12.3!

The comparison of this formula with numerical results tells
that «21;lc .

The main consequence of~12.2! @or ~12.3!# is that a mini-
mum moves in the direction where the absolute value of the
slope is weaker. In particular, if—as in Sec. IX—one con-
siders a profile which initially satisfies the conditionj50
everywhere between angular points~Fig. 11!, one finds that
the smaller arcs of the universal curve shrink~as long as they

do not exceed the critical valuelc
sup). If mr52ml , ~12.2!

predicts thatvx50 in agreement with the rule of equal
slopes.

An interesting case is that of an angular point where the
slopes have the same sign on both sides. According to~12.2!,
such an angular point has a positive horizontal velocity, if
both the slopes are negative. This is in agreement with the
numerical results of Ref. 18, according to which such a step
bunch moves downward. Anyway, a step bunch should be
represented by a discontinuity in the surface profilez(x), so
that the current itselfj (x) should be discontinuous across it.

Now we want to calculate the vertical component of the
velocity of the angular point,vz . By evaluating~9.2! on both
sides of the angular point, we can write

vz52

DS am ] j

]xD
DS 1mD . ~12.4!

The singular part of the current is such that its spatial
derivative changes sign acrossx5j; on the contrary, the
nonsingular part (j ns) of the current gives a continuous con-
tribution to ]xj . So, we can write

] j

]x U
j6

5
] j ns
]x

2
]G

]x U
j6

D„A~m2!…. ~12.5!

By substitution in~12.4! we obtain

vz52a
] j ns
]x

1aU ]G

]x U D„A~m2!…

D~m!
~mr1ml !, ~12.6!

where the second term on the right vanishes in the case of a
symmetric profile (ml52mr). Now let us calculate the first
term:

] j ns~x,t !

]x
5E

2`

`

du
]G~x2u!

]x
w„m~u,t !,m8~u,t !…. ~12.7!

Since this term is continuous, we can calculate the deriva-
tives inx5j. With respect to the angular point, the function
]xG(x2u)uj is an odd function ofu ~positive on the right,
negative on the left!, andw(m,m8) changes sign. So, we can
write

] j ns~x,t !

]x
5E

0

`

du
]G~x2u!

]x U
0

@w„m~u,t !,m8~u,t !…

2w„m~2u,t !,m8~2u,t !…#, ~12.8!

where the angular point has been located inj50. If ~11.3! is
assumed for the kernel functionG(u) and the quantity in
square brackets is considered constant foru,«21, we can
approximate the previous expression as

] j ns~x,t !

]x
5

«

2
@w„m~01,t !,m8~01,t !…

2w„m~02,t !,m8~02,t !…#. ~12.9!

Finally, the velocityvz can be rewritten

FIG. 11. The larger mounds eat the smaller one, in the center.
Pointsx50 andx5xf do not move, because of the symmetry.~a!
t50; ~b! t.0.
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vz52
a«

2
Dw~m,m8!1

a«2

2

D„A~m2!…

D~m!
~mr1ml !. ~12.10!

This equation is consistent with the fact that the profiles
of Figs. 5~a! and 5~b! are stationary. Indeedmr52ml at all
minima andw50 everywhere on the surface, which implies
vz50 at all minima.

We conclude that the phenomenological equation~11.2!,
after having successfully passed a series of tests, seems able
to reproduce the results obtained numerically from the Zeno
equations of Sec. II. However, its use is limited since we
have not been able to write explicitly the functionw. In the
following section, it is shown that, nevertheless, a qualitative
understanding of the coarsening process may be derived
from ~11.2!.

XIII. MECHANISM OF COARSENING: SMALL MOUNDS

In this section, it will be argued that coarsening, i.e., coa-
lescence of mounds, is a consequence of~11.2!, or of Eqs.
~12.3! and ~12.10! combined with the approximate, local
form ~10.1! of ~11.2!, valid away from minima.

Let us assume that most of the mounds are close to the
‘‘universal’’ shape defined byw„m(x),m8(x),m9(x)…50,
where the functionw(m,m8,m9) is defined by~10.3!. A
qualitative, self-consistent justification of this assumption
will be given later. Anyway this assumption is in agreement
with simulations.

Suppose now that some mound is smaller than its neigh-
bors ~Fig. 11!. Because the stationary shape is convex, the
slope of this mound at the edges will be weaker than the
slope of its neighbors. It follows from this fact and~12.3!
that the width of the smaller mound decreases. Therefore the
vertical thickness also decreases because the general shape of
the mound away from the angular points, as an effect of
~10.1! tends to keep close to the ‘‘universal’’ shape given by
w(m,m8,m9)50. Eventually, the smaller mound disappears
and the neighboring ones have grown. At this point, they
may be flatter than the universal shape, but further evolution,
due to ~10.1! and to a vertical motion of the border due to
~12.10!, brings them again to the universal shape. Thus,
coarsening results from smaller mounds being ‘‘eaten’’ by
bigger ones, a phenomenon which in turn results from Eq.
~11.2!.

Alternatively, we can say that the stationary configura-
tions found in Secs. V and VIII forl,lc

supare stable against
height fluctuations, but unstable against width fluctuations.
Coarsening is due to this latter property, while the former
one keeps the mounds close to the universal form.

Now, in the continuum Zeno model, the universal shape
has two vertical asymptotes. Therefore, the above description
suggests that coalescence should stop after the mound size
has reached a critical value. This value should obviously be
identified with the quantity calledlc

sup.
The above description of coarsening is in good agreement

with our simulations, as will be seen at once. In Fig. 8 we
show the temporal evolution of large samples (l@lc

sup), for
the valuels /lc50.015 . After the very first mounds have
appeared, their number decreases in time and the average
height increases. More precisely, the largest mounds grow at
the expense of the smallest ones. No deep crevace forms till

mound width is smaller than the upper critical wavelength.
Regions with positive curvature (]xm.0) are generally

present only at the first stages of growth. They may also
form just after the death of a mound~see Fig. 8!. However,
an angular point rapidly arises, in agreement with the fact
that in a convex region both terms of the current~6.10! are
destabilizing.

Numerical simulations of Zeno equations with random
nucleation are also in agreement with the prediction that
coarsening stops when the mound radius has reached the
value lc

sup. However, whenl.lc
sup, the continuous Zeno

model ceases to be valid, and the microscopic properties of
the material have to be taken into account, for instance, using
the prescriptions of Siegert and Plischke.15 Conjectures con-
cerning this later evolution are presented in the next section.

XIV. MECHANISM OF COARSENING: LARGE MOUNDS

At long times, when mounds are larger thanlc
sup, the

atomic size should be taken into account. Presumably, it is
still possible to define a functionw(m,m8,m9)50 and a
‘‘universal’’ stationary profile solution ofw(m,m8,m9)50.
Its asymptotes are no longer vertical, but have a definite
slope m* of order unity as required by Siegert and
Plischke.15 Coalescence is therefore not forbidden even for
very big mounds. It is, however, expected to be extremely
slow, because when the slopem* of Siegert and Plischke is
reached, the current is zero~this is the definition ofm* ) and
the profile is stationary. Coarsening is only possible in this
later phase because the slope has not exactly the valuem* ,
but since it is very close tom* , the coarsening should be
very slow as said above.

For a finite system, the final result of coarsening is that a
single mound forms, with a slope equal to the characteristic
value. However, the evolution of the profile may depend on
the microscopic details of the model. Lanczycki and
DasSarma33 have observed the formation of step bunches in
this final stage. The reason is possibly that they use a model
in which the characteristic slopes of Siegert and Plischke do
not exist.

Thus, two phases are expected for the coarsening of a
one-dimensional, infinite sample in a model following the
Siegert-Plischke scheme:~i! In the first phase, studied in the
preceding section, the mound size increases fairly rapidly
and the slope remains much smaller than unity. However, if
ls /lc is very small coarsening proceeds slowly.~ii ! In the
second phase, the slope is of order unity close to the minima
and coarsening proceeds very slowly until the mound size is
equal to the sample size. The transition from phase~i! to
phase~ii ! is characterized by a deepening of crevaces with-
out significant increase of the mound radius.

The previous scheme and formula~12.3! for vx support
the result of simulations by Sˇmilauer and Vvedensky16 that
coarsening and steepening are competitive: the steeper the
mounds are, the slower the coarsening process is.

XV. THREE-DIMENSIONAL CASE

In 211 dimensions, it is reasonable to assume the follow-
ing straightforward generalization of~10.3!
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jW~rW,t !5E G~rW2uW !wW „mW ~uW ,t !,¹W mW ~uW ,t !,¹2mW ~uW ,t !…d2u,

~15.1!

where the vectormW and the tensors¹W mW and¹2mW are, respec-
tively, the first, second, and third derivatives of the height
z with respect tox and y. The functionwW should have the
following form, analogous to~10.3!:

wW ~mW ,¹W mW ,¹2mW !5
FlslcmW

2~11lsumW u!~11lcumW u!
2¹W „A~m2!…

1Ku~ umW u,u¹W mW u!¹2mW , ~15.2!

where the functionu(umW u,u¹W mW u) has the same properties as
before.

The interest of Eqs.~15.1! and~15.2! is to show the non-
local and nonlinear character of the problem. As in 111
dimensions, no local continuous equation can account for the
slope discontinuities which are now expected to occur on
angular lines rather than angular points. However, Eqs.
~15.1! and ~15.2! are much less tractable yet than their
equivalent in 111 dimensions. For instance, even if equa-
tions similar to ~12.3! and ~12.10! can be written in 211
dimensions, they will not be as predictive as in 111. The
possibility of dislocations and disclinations in the network of
mounds gives a higher complexity to the~211!-dimensional
case.

XVI. CONCLUSIONS

We have investigated a~111!-dimensional model of a
high-symmetry growing surface. Surface grows by a deter-
ministic movement of the steps and by a random nucleation
of new terraces.

The stochastic character of the nucleation process is of
great importance during the first stages of the growth and it
makes a mound structure arise only after a timet*;1/ls

2 ,
with a wavelengthlc

inf;1/Als. This means that possible de-
fects of the surface are healed during the growth if their size
is smaller thanlc

inf @see, for example, the case of GaAs~Ref.
7!#.

During this first period, random nucleation is well ac-
counted for a linear term (K]2m/]x2) in the currentj , which
must be added to the Schwoebel currentj s .

At later times mounds form and they are separated by
angular points. The existence of these structures is due to a
current j c , which depends on the curvature of the surface
and in regions of negative curvature (]xm,0) may compen-
satej s .

After mounds have formed, a coarsening process starts,
because a periodic profile is not stable with respect to lateral
fluctuations. Coarsening is mainly a deterministic process,
driven by an asymmetry between the left and right slopes at
the angular point. At increasing times, the coarsening pro-
cess becomes slower, because of the steepening of the
mounds. Whenl is larger thanlc

sup;1/ls , our model pre-
dicts that coarsening stops and grooves become deeper and
deeper.

We can compare our findings with the results of other
models. Generally speaking, three different scenarios can be

singled out: in the first one~Siegert and Plischke,15 Šmilauer
and Vvedensky,16 Amar and Family17! mounds attain a self-
similar structure and the maximum slope keeps constant.
Anyway, the limiting slopes differ a lot and may be due to
crystal structure effects,15 to kinetic effects,16 or both.17 A
simple explanation of the kinetic effects is not available at
the moment.

In the second scenario~Hunt et al.19! mounds become
steeper and steeper, with no limiting value forl. Finally, in
the third one~proposed in the present paper! there is no slope
selection either, but an upper critical wavelength does exist.
Both the second and third scenarios should have a crossover
to the first one form'1/a, if the discrete nature of the lattice
would be correctly taken into account.

It is interesting to wonder whether this scenario survives
when thermal detachment of atoms from steps is allowed.
We think it does, if the probability of detachment is suffi-
ciently small, i.e., if the temperature is sufficiently low. In
fact, in absence of detachment, forl.lc

sup, the height of the
mounds increases linearly with time, at a positive velocity
vh which depends onls . So, if the rate of detachment is
smaller thanvh , the upper critical wavelength still exists,
while if the rate is larger thanvh , lc

sup is probably infinite
and the second scenario becomes pertinent.

Our model is peculiar also in another respect: we do not
obtain a powerlike behavior for the coarsening law,
l(t);tn . Usually, such a law would only be expected in the
‘‘self-similar’’ regime ~first scenario!. Anyway, both in ex-
periments and in simulations, it is observed even if the slope
does not stay constant. In this case, the origin of such pow-
erlike behavior is not clear.

ACKNOWLEDGMENTS

I. Elkinani is gratefully acknowledged for the permission
to make use of its routines and for his help during the first
stages of this work. We also thank P. Sˇmilauer and L.M.
Sander for illuminating discussions. P. Politi acknowledges
financial support from the EEC program Human Capital and
Mobility, under Contract No. ERBCHBICT941629.

APPENDIX A: NUMERICAL CALCULATIONS
ON SMALL SAMPLES

The numerical calculations of the following two sections
are carried out by solving the Zeno coupled equations
@~2.5!–~2.9!# for the step motion. Details are given in Ref.
18. Two possible models can be used: a ‘‘completely con-
tinuous’’ model, where there is no room for the interatomic
distance a and a ‘‘quasicontinuous’’ model, where the
Schwoebel barrier is turned off for terraces smaller thana.
This does not prevent small terraces, but anyway it limits the
depth of the crevaces when they form. If not differently
specified, we will always use the finite valuea50.005lc .
Also, the value of the nucleation lengthlc is everywhere
taken as 1.

1. Deterministic nucleation

Let us start by summarizing the temporal evolution of
small samples with a single pyramidper period~see Fig. 2!.
Each pyramid is characterized by its widthL ~which equals
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the periodl in this case! and by its heighth(0) at t50;
another important quantity is the starting terrace length
l5L/2h(0). TheperiodL is obviously a constant, whileh
changes with time. The Schwoebel length is fixed at the
value ls /lc50.015. The main results are the following.

~i! A threshold valuelc
sup doesexist for the rising of the

instability; if L.lc
sup, andh(0) is not too small, a crevace

appears and its depth increases with time.
~ii ! For L,lc

sup we have stationary configurations. If
h(0) is sufficiently high, so that nucleation takes place only
on top terraces@h(0).L/2lc[hmin#, the stationary configu-
ration is a pyramid whose heighth` depends onL: the
steady valueh` grows withL, but it does not go to infinity
when L goes to (lc

sup)2. Rather, forls50.015 we observe
that limL→(l

c
sup)2h`515 . It is important to stress that this

result does not depend on the value of the lattice constant
a, the only difference being a slightly different value of
lc
sup. For example,lc

sup59.397–9.398 fora5531023 and
lc
sup59.391–9.392 fora50. However, in both cases, the

largest value ofh` is 15.
~iii ! If h(0) is slightly larger thanhmin , h increases mono-

tonically with time, until h5h` . If h(0) is higher, then
h(t) increases almost linearly with time, until a valuetL at
which the crevace is healed,via step bunching. The value
tL increases withh(0) and withL. If h(0) is fixed,tL seems
to go to infinity whenL→(lc

sup)2.
~iv! If h(0) is sufficiently small@h(0),hmin#, nucleation

takes place also on vicinal and bottom terraces, and trivial
steady configurations are found.

Similarly, we can fix the widthL by varying the
Schwoebel lengthls . In both the cases we conclude that a
finite value ofls is required to create an instability in a finite
sample. Whenls goes to zero,lc

sup(ls) goes to infinity.

2. Random nucleation

In the case of RN as well, we obtain pyramid-like station-
ary configurations, similarly to the DN case~see Fig. 6!.
Anyway, the critical lengthlc

sup is much larger in the ran-
dom case: random nucleation stabilizes the growth against
the Schwoebel effect.

The effect of randomness on the growth is twofold:~i! it
makes stochastic the nucleation on top terraces~where most
of the nucleations takes place! and ~ii ! it implies a finite
probability of nucleation on vicinal terraces. Let us recall
that in the deterministic model, the nucleation of a new ter-
race takes place only whenl.lc . For a vicinal terrace, if this
condition is not fulfilled att50, it generally remains unful-
filled also at later times. The second effect~nucleation on
vicinal terraces! is seen to be stabilizing, since it reduces the
Schwoebel current.

Since the probabilityP(l) of nucleation is very weak for
l,lc and stationary profiles seem to be characterized by few
events of nucleation on vicinal terraces~Fig. 6!, we could
conclude that the second effect is negligible, but it is not so.
For example, let us consider the evolution of a ‘‘steady’’
configuration, obtainedvia random nucleation. This means
that a further evolution with RN does not modify the main
characteristic of the surface profile, i.e., the interface width.
But, if we consider the artificial evolution determined by RN

on top terraces and DN elsewhere, we find that the surface
undergoes an instability, so random nucleation on vicinal
terraces is an important source of stabilization.

Random nucleation not only increaseslc
sup, but it also

changes the shape of the stationary configurations, which are
characterized by a large ‘‘flat’’ region on the top of the
mounds. It may be reasonable to identify the width of this
region on the lower critical wavelength,lc

inf .

APPENDIX B: STUDY OF Eq. „3.3…

In this Appendix we want to justify formula~3.3!. This
formula, which neglects asymmetry effects@second term in
Eq. ~10.3!# and uses a linear form, for the term containing
]2m/]x2, allows for an analytical determination of stationary
configurations. We will do that, by following the method of
Hunt et al.19

We have said in the main text that the first term, the
Schwoebel currentj s , results from an interpolation of~3.1!,
valid at high slopes, and~1.3! which is expected to be correct
for umu!lc

21 . Let us start by justifying expression~1.3!.
When l.lc a new terrace nucleates on it, so there are no

terraces larger thanlc . We shall suppose in this case that
l.lc , and the current will be calculated as an average on all
the terraces. We must however distinguish among top or bot-
tom terraces~which do not contribute to the current! and
vicinal ones, which may be of two types, according to the
sign of the current.

If n1 ,n2 ,n0 are the number of terraces in each class
~respectively, vicinal up, vicinal down and top or bottom!,
subdivided according to the current, we will have@see~3.1!#

j s5
Fls

2~11ls /lc!
S n12n2

n11n21n0
D ~B1!

because each vicinal terrace contributes with a quantity
j656Fls /@2(11ls /lc)#.
We are interested in the dependence ofj s on the average

slope

m5
1

lc
S n12n2

n11n21n0
D ~B2!

so that

j s5
Flslc

2~11ls /lc!
m. ~B3!

It is noteworthy that the two limiting expressions~B3!
and ~3.1! coincide forumu51/lc .

Now, let us study the stationary solutions of~3.3!, by
following the method of Huntet al.19 Stationary solutions
correspond to a vanishing current, that is to say

K
d2m

dx2
52 j s~m!. ~B4!

Formally, this is the equation of motion of a particle of
massK, whose ~one-dimensional! spatial coordinate ism
andx corresponds to the time. The potential is
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V~m!5E dm js~m!. ~B5!

Substituting the first term of~3.3! in ~B5!, it is easily
found, in the limitlc@ls and up to a constant, that

V~m!5
Fls
2 F 1ls ln~11umuls!2

1

lc
ln~11umulc!G . ~B6!

The absence of slope selection during the coarsening pro-
cess can be directly inferred from~B6!, sinceV(m) is a
single well potential and no upper limit form exists.

The equivalence with the particle model leads us to define
the ‘‘energy’’

1

2
KS dmdx D 21V~m!5V~M !, ~B7!

whereM is the maximal slope of the stationary configura-
tion, at fixed wavelength. The wavelengthl is

l54E
0

M dm

~dm/dx!
54AK

2E0
M dm

AV~M !2V~m!
. ~B8!

At smallm we can expandV(m)

V~m!.
Fls
2 H 1ls Fmls2

1

2
~mls!

2G
2
1

lc
Fmlc2

1

2
~mlc!

2G J
.
F

4
lslcm

2 ~B9!

and obtain forl

l~M→0!.4AK

2
A 4

Flslc
E
0

M dm

AM22m2

.2pA 2K

Flslc
. ~B10!

This coincides with the expression~3.6! for the lower critical
wavelengthlc

inf .
In the opposite limit (M→`), the periodl is given by

l54MA K

Fls
E
0

1 dy

Aln@~y11/M ls!
21/ls~y11/M lc!

1/lc#

.4MAK

FE0
1 dy

Aln~1/y!
~B11!

and the height of the stationary configuration by

dz5E
0

M

dm
m

dm/dx
.M2AK

FE0
1

dy
y

Aln~1/y!
. ~B12!

As expected,M goes to infinity withl. The result~B11!
could be qualitatively obtained by observing that in the limit
of high slopes, condition~B4! writes

K
M

l2'F
1

M
~B13!

or M'AF/Kl, as given by~B11!.
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