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Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model
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The instability of a growing crystal limited by a high-symmetry surface in molecular-beam epitaxy is studied
in the limit where terrace size is very large compared to the atomic distance. In that case, everything is
deterministic except the nucleation of new terraces. Moreover, exchange of atoms between steps is ignored. If
the typical terrace siz&'; is chosen as length unit, the model depends on a single paramgtef which
characterizes the strength of step-edge bartihrlich-Schwoebel effect’]. Numerical simulations are sup-
ported by nonlocal evolution equations relating the time and space derivatives of the surface height. The first
mounds which appear have a radiJ¥ proportional to/'¢\/'¢// 5. In contrast with other authors who studied
different models, coarsening is found to become extremely slow after the mounds have reached a radius
\SP of order/%/ /. [S0163-182096)10631-7

|. THE EHRLICH-SCHWOEBEL INSTABILITY of the atomic beanfcalled shot noise in jarggnThe current

This article is devoted to a well-known instabifity/ I 1S measgred |n_part|cles per unit tinie dleLl d|mgn-
siong or in particles per unit time and unit lengttn

Wh'Ch oceurs in moleculgr-pegm epitaxy at low temperfaturea: 2+1 dimensions It is generally written as the following
if the growing crystal is limited by a surface of high-

H ; 15,19
symmetry orientation, the growth generates the formation Ophenomenologlcal equatior:

“terraces” of atomic height* In the presence of an extra a2 e S v2,0 0 e

= + +f; . .
energy barrier which hinders interlayer diffusion, atoms JrH =gz ) +KVEr )+ Y. (1.2
landing on these terraces cannot easily step ddvand Here, the random functiofy (7 t) corresponds to the fluc-

t_herefore nucleate new terraces. Since grooves are not easf{Yation of the adatom current around its expected average
filled up, eventually towers or “mounds” form. Such \gjye given by the diffusion equation. The phenomenologi-
mounds have bgen ob7sgrve% experlmotirgally on a variety Qfy| constantk is generally traced back to the exchange of
systems: Sf,Ge,” GaAs/® Cu;’ and Fe atoms between terraces, which results from thermal fluctua-

So far, the most complete theoretical studies have beefions and tends to smooth the surface. We shall come back to
numerical-™~" They confirm the existence of mounds, yis point later, and suggest another possible origin.
whose size increases with time due to coalescence. However,

the laws of thiscoarseningare, neither experimentally nor
theoretically clear: in certain cases the mound shapes remain
self-similar during coarsenidg-1t'#1®{yhile in other cases
they become sharpér21618aiso, the impossibility to study
very long times, accompanied by a slop steepening, may
sometimes prevent from drawing firm conclusions.

The purpose of the present work is to clarify the coarsen-
ing mechanism in +1 dimensiongone-dimensional surface
in a two-dimensional spageWe hope that this study may
give information about the physical2+ 1)-dimensional
growth problem.

In the following it will be useful to distinguish “top”
terraces, “bottom” terraces, and “vicinal” terraces, i.e.,
those which have both a lower edge and an upper éélige
1). Let z(r,t) be the height of the surface above its average
position h(t)=aFt. Both z and h are measured in atomic
layers. If evaporation is neglected satisfies the conserva-
tion equation

(72 = -
—=—a%V.j(r,t)+8f(r1), (1.2

ot FIG. 1. Typical profile of a1+ 1)-dimensional growing crystal.

(a) Top terracedtop), vicinal terraces(vic), and bottom terraces
whered’=d—1 is the surface dimensidd in this paper, 2  (bottor. (b) In the Zeno model, the velocity, of a step is a
in reality), and the random functioéf (r,t) is the fluctuation function of the widths/,, and/,,, of the neighboring terraces.
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The nature of the functiog(Vz(r,t)) is, of course, es- Which does not become deterministic in the limit of small

a. In addition, we mainly address the case when atoms can-
not detach from steps and be exchanged between terraces.
This situation is, in practice, realized at low temperatdrie.

this case, we shall argue th@t Eq. (1.2) has to be modified,

but a straightforward modification does account for the onset
of the instability. Also, the term iK will be shown to be

As a consequence of the Ehrlich-Schwoebel effect, ad present even in absence_ of thermal detachn{ép_\ﬂ'he evo-
toms on a vicinal terrace preferably stick to the upper edg Ut'ogcgéjrr:fega%?rgs V;hr'lcohn%‘y;ﬁ;:éilfﬁ:;%; rnt|(21jez)s C(ﬁln) only
and this means that the average current should have the sa %nl at very lon tir%es large slobes appear e
direction and sense &z. So the coefficienB is positive y ylong 9 P ppear.
and the first term of1.2) formally reduces Eq(1.1) to a

sential. Since the currenty must vanish on the high-

symmetry orientation, for small fluctuations Yt around its
equilibrium value 0, one can assuiié®

#$(Vz)=BVz (1.3

diffusion equation, but with a negative diffusion constant Il. BASIC EQUATIONS AND PARAMETERS
—B. It follows that the spatial Fourier transform(t) of OF THE MODEL
2(r ) diverges:z(t)=z,(0)expBKt). This is the manifes- In a growth problem, there are generally many param-

tation of the Zeno-Schwoebel instability: a plane surface isters. The model we shall study, initially proposed by Elki-
unstable, even if—as seen below—the second terfli®  nanj and Villain'® has the advantage to contain only two
stabilizes against short wavelength fluctuations. Howevergharacteristic lengths, which may be called nucleation length
the evolution can be precise only if a more complicated formand Schwoebel length. Only the ratio of these lengths has a
is used for the functions(Vz). Johnsoret al® have interpo-  nontrivial effect on the properties of the system, which there-
lated betweertl.3), valid at small slopes, and the expressionfore depends on a single significant parameter.

#(m)~1/m (with m=Vm), which was expected to be cor-  The nucleation lengtt; is qualitatively defined as the

rect at high slopes, obtaining the form typical width of a terrace just before a new terrace is nucle-
ated at the top of it. The Schwoebel lendthis defined as
. m follows: if the width [ of a “vicinal” terrace is smaller than

(m) = Bngz : (1.4 [, most of the atoms landing on this terrace go to its upper

edge, while if(>[g, about one-half of the atoms go to each
wherely is a length. Since(m) has always the same sign as €d9€ because they are too far from the other one.

- L In the simplest approximation, the atomic distarecés
m, all the directions are unstable and deeper and deep?lﬂst assumed to be infinitely small. Thntinuous Zeno
grooves are expected to form. :

Siegert and PlischRé have suggested that, due to the de-rMng?:cl)sgr \?vglyargerr?z:iﬁld in the continuum limit<[g, ;.

. Cn , y interested by the cégél., be-

tails of the crystal structure, the functiof(m) should be-  ~5use in the opposite case, deep crevaces appear very
come negative beyond some characteristic vaitieof the early'82 and no good crystal can be grown. Thus, we focus

slope. Sody/dm|«<0 and the slopen* would be stable ,;interest on the case
against small fluctuations of the orientation.

For instance, if the crystal is face centered cubic and the a<le<l,. (2.1
average surface i©01), it is conceivable that the local slope
cannot go beyond that of(@11) orientatior], since otherwise Even if (2.1) holds, terraces of width~a appear at very
overhangs would form. Such a suggestion turned out to bgyng times. The behavior at these long times depends on the
correct in the case of heteroepitaxial growth of Fe/N(%@f. microscopic features of the system and, as will be seen in
11) and itis in agreement with the findings of Erestal” on  gec. X|Vv. These long times are not necessarily of practical
Cu/Cu. ) _ interest, if the purpose is just to obtain a smooth surface and
. The slope selection has been recently d'SCU_SSf’d also Byone does not care about what happens after the onset of the
Smilauer and Vyedensl%? and by Amar and Family’ Who  instability. In the forthcoming sections, will be assumed
perform simulations on solid-on-solid models. The first onespfinitely small.
introduce a transient mobility just after the adatom has | the simulations it is not easy to fulfill conditiof2.1),
dropped on the surface, while Amar and Family consider &ecause it would require terraces of several tens of lattice
downward funneling, determined by the search of a fourfold,gnstants. Anyway, it is not a bad approximation, as can be
hollow site. The_resulting final slopes are appreciably smalleggen from Refs. 8,16 and 17. In Johnswral® [(/a=1-10
than those obtained by Siegert and Plischke. and[¢/[,~0.04-0.8. In Refs. 16 and 17 can be estimated

In the present work, the fluctuating function$(r,t) and  as a measure of the average terrace sizelaman be de-
f,(r,t) will be assumed negligible. This is correct when all duced from the minimal mound size, as given by formula
terrace sizes are much larger than the atomic distanioe-  (3.6) below. It results that./a=10-20 andls/[;=0.1-1 .
cause, in that case, many atoms are necessary to producd us, condition(2.1) is a reasonable assumption.
given displacement of the steps, and the relative fluctuation We shall generally consider @+1)-dimensional model

of the number of atoms is negligible. The casesfr,t) is N whic
discussed in detail in Ref. 3.
Thus, we want to investigate a model in which the only

S ; [(=a
source of stochasticity is the nucleation of new terraces, s

D
F—l) 2.2
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and where the adatom densip(x) is maximum, when the width
of this terrace becomes equal to the valudefined by(2.3).
B((.+6l)= 12Da 2.3 This condition can be obtained by writing that the probability
che s F ' of nucleation on a terrace of width during the deposition of

one layer, is of order 1.

whereF is the beam intensity in atoms per unit time and unit For a vanishing Schwoebel effedt€0), (2.10 reads

length,D is the diffusion constant, arld’/a? is the hopping

rate for an atom wanting to step down. [\4
The evolution of the surface is determined by the local Poc(D=aF I_) . (2.11

step velocity, which is the sum of two terms, proportional to ¢

the local gradient of the adatom densitfr) on both sides of If the time unit is chosen as H@), the filling time of a

each step. The adatom density is in turn determined by thryer, and if the length unit is chosen &s the “Zeno equa-

diffusion equatiof? tions” (2.5—(2.10 become parameter free, and, in particu-
R R lar, independent o&. It is easily seen that the spatial distri-
p(r,t)=F+DV?p(r,t) (2.4 pution of the nucleation probability at a given time is also

parameter free. Therefore, all properties of the model for

and by appropriate boundary conditions on stepdn (2.4), ‘ h
Y approp y epdn (2.4 [s<=0 depend only orfFat and[(/(;. For instance,

the fluctuating functionsf(r,t) and f;(r,t) have been as-
sumed negligible, as justified in Sec. I. 9z
In 1+1 dimensions it is easy to eliminate the adatom den-

= ([em,Zo,m, . ..), (2.12

sity p(r,t) (Ref. 18 and the velocity of a step is found to be o(Fat)
(see Fig. 1 where®(u,v, ...) is afunction.
The Zeno equation$2.5—(2.10 allow for a numerical
va=F(l)+a9(lh+1), (2.5  solution of the problem. However, they do not provide much

insight because they give information on objectieps
which are perpetually created and annihilated, and whose
number perpetually changes in a way which is not easy to
predict from these equations. In the rest of this paper, we
shall try to derive more explicit information from the Zeno

wherel,, and [, are, respectively, the width of the upper
and lower terraces, and the functionfl) and g({) have
different definitions for top, bottom, and vicinal terraces. For
vicinal terraces,

aFl { equations. The system is generally assumed to bé& di-
f(H= - |1~ m) (2.6 mensional, but conjectures about {2e-1)-dimensional case
s will be presented in Sec. XV.
and
aFl [ IIl. ONSET OF THE INSTABILITY
S
9(h= e 1+ +L ) (2.7 In Sec. I, we related the surface evolution to the current
° density. In the case of an uniform absolute slopg= 1/,
For top terraces, the average current density
aF[ 102
(=" 2.8 =1 jxox
()2
and for bottom terraces can be obtained using the expression
aFl j (] ji(—
_ , jl2)+j(=12)
9(h= "5 (2.9 (0 =Fxt —————,

In addition, new terraces are created on a terrace of widtWwhich results from integrating2.4) if the left-hand side is
[ with a probability P,,([) per unit time, which increases neglected. Sincg(l/2)=1f({)/a andj(—[/2)=—g(l)/a, the
abruptly as soon a$§ becomes of ordef,. Elkinani and result, for negative slopesee Fig. 1is
Villain*® used the formula
f()—g() Fllg Fl

j(h= =— = —
210 2a 2+ 2(1+|m[ly 51

24 65
Pnucl([)= ﬁ 1+ T

These equations should be complemented by an equation We have used Eq€2.6) and(2.7) which are only valid on
for the probability of the location of the newly nucleated Vicinal terraces, so th#8.1) is not valid if|m[[c<1. As seen
terraces, which can be deduced from the Burton-CabrerdD S€c. I, the current density is expected to be proportional to
Frank theory associated with a model for terraceM for small values ofm=dz/dx (see also Appendix B A
nucleatior’>~?® The details will not be recalled here. reasonable interpolation is therefore

A deterministic version of nucleation process, which will ELLm
be occasionally used in the present work, is also possible; in j= s¢c _
this case a new terrace nucleates on an old one, at the place 2(1+|mlle)(1+|m[Lc)

(3.2
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A more precise expression, containing also higher order de-
rivatives ofz(x), will be derived in Sec. VI. Expressids3.2)

is analogous, but not identical to E¢l.4) proposed by
Johnsoret al.,® which contains a single length instead of the
two lengthsls and (. This forbids us, by rescaling the cur-
rent and/or the sloplen|, to put the above expression fpin

an “universal” form, which does not depend dgand /.. Z(x) wol
Such a rescaling is possible for the current proposed by '
Johnsoret al,® because they start by supposing an infinite
Schwoebel effect. In this case only the lengttappears and

it is reasonable to think that a universal function can be ob-
tained. Then, if the Schwoebel effect is finite, they simply
multiply the current by the quantitg.=(s/({s+a), which 00
goes to zero ifi;=0 (no Schwoebel effegtand it isS;=1

for an infinite Schwoebel effect.

If expression(3.2) were the only contribution to the cur-  FIG. 2. Stationary configurationgthick lines for different
rent, a smooth surface should be unstable with respect t@avelengths X/(,=2,4,6,8,8.6,9.397) and unstable configuration
height fluctuations of any wavelength. This prediction may(dashed ling for A/{;=9.4. The thin line represents the analytical
be tested by simulations on a sample of small sizeith profile (6.12). Deterministic nucleations/(.=0.015.
periodic boundary conditions. These simulations, reported in
Secs. V and Vlli[respectively, in the cases of deterministic IV. MEANING AND VALUE
(DN) and random nucleatiofRN)], show that the surface OF THE STABILIZING FORCE K
remains smooth ik is not too large. Consequently, the flat
surface is stable with respect to height fluctuations of short The linear term ir(3.3) is generally supposed to represent
wavelength and3.2) must be corrected. As recalled in Sec. the thermal smoothing arising from exchange of atoms be-
l, the usual Correcti(ﬁvﬁvlalg is an additionaL linear term tween terraces. However, we Cla(in contrast with Ref. 12
which should be of third order for symmetry reasons. Thethat it can also represent the effect of stochastic formation of
physical meaning of this term will be discussed in the nextnew terraces, at least at short times. At longer times, when

20.0

50 |

section. The resulting equation reads the surface profile has acquired a patterned structure, the
linear term fails to account for the fact that new terraces do
Flg{cm a’m not nucleate uniformly, but preferably near maxima.

3.3 Neglecting thermal smoothindf can be estimated in the

limit of the vanishing Schwoebel effect. Th€B.12 holds,
This expression will be seen to be satisfactory fe@rak  and sincg K]=lengtt?/time, comparison with1.1) yields
slopes The linearized form 0€3.3), valid for small values of
m, is

= miyarmiy K ae

K~F[2. 4.2
2

 F
= E[SICITH- K eV (3.9
Insertion into(3.6) yields

Inserting this equation int@l.1), for each Fourier compo-

nent[ z(x,t) =z4(t)exp(gx)], one finds i
x'c“fw[c\/z (4.2)
dzq  (Flle , Kqt 3 [s
ot =a 5 q q|zq- (3.5
The expression in brackets is negative fa>q* These results rely on E¢3.3), in which the linear term is
= JFL[/2K, so that a flat surface is stable with respect topurely phenomenological. It is therefore of interest to test
height fluctuations of wavelength smaller than (3.3). This test can be done on samples of small aizéut

slightly larger than\""". The simulations reported in the next

inf 2T | 2K sections and in Appendix A1l and A2 show that such
A :q_*:277 FL (3.6 samples evolve toward a stationary shépigs. 2 and & Is
such a stable stationary shape predicted(®y) as well?
The instability appears after a time of order This is a crucial test of3.3).
1 K For a slightly different currenfithe first term of(3.3) be-
£~ S~ , 3.7)  ing replaced by(1.4)], Huntet al® have shown that station-
aFll(g*)° a(Flsle) ary mounds are obtained for al>\* =27 [, [see Eq(1.4)
so that for the meaning ofy]. Their calculation has been extended
to (3.3 in Appendix B and an analogous result is found.
A VaFt* (. (3.8  Anyway, the actual form of the mounds—as obtained from

our simulations—is rather different from the analytical shape
This formula has already been obtained by Kffig. predicted by(3.3).
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V. STATIONARY PROFILES: NUMERICAL SOLUTION t+1/aF ;
OF THE DETERMINISTIC ZENO MODEL 5xn(t,1/aF)=f dt’ {f[[o(t")]+g[ [he1(t)]}.
t

We have solved the “Zeno” equatior{2.5—(2.9) for an (6.3
initial state in which all terraces have the same widthW ke th imati
[(0)<;. In this section, new terraces will be assumed to be € make the approximation
nucleated at the center of an old one, when its width be-
comes equal td;. This deterministicnucleation scheme has ( (t')= (V) + [o(t+ 1/aF) = () F by (V)
the advantage to give fully reproducible results, independent 2 2
of any fluctuation. The computer is used as a tool to So""?ntegration yields
difficult equations, not to make simulations. The results will
turn out to be partly applicable to the case of random nucle- 1
ation. Details are given in Appendix A 1. The main results  8x,(t,1/aF)= —[ f(
are as followssee Fig. 2 aF 6

(i) For periodsh smaller than a certain lengthz* and (6.9
larger tham\ ("=, the profile—if averaged on a time much ¢ 4| the terraces have the same lengtithe above equa-
larger than ldF—evolves toward a well-defined, nontrivial tjgons are fulfilled for every value of. In general, let us
shape. This shape is therefore a stable fixed point of thgefine ["'=((y+ (11 1)/2 and "= ({1, 1+ [,10)/2; by using
evolution equations, and the height of the profile increaseg,rmulas (2.6) and (2.7) for f and g, the above equation
with \. reads

(i) The minima of the stationary structures are angular
p0|r_1_’gs. o - - 41 Ig(Ir/_I/)

(iii) Far from a minimum, all stationary profiles may be oxpy(t,1/aF)= 5 + 20 (4T
approximated by a “universal” curve which is independent s s
of N, but does depend oi and 5. or

(iv) If A>\Z" the height differenceSz between minima

(6.9

[P . In+l+In+2)
2 97> '

(6.6)

and maxima becomes always deeper, at increasing time. \ ‘ Ii(["—{’)
(v) The transition from regimé) to regime(iv) is discon-  o%n(t,1/aF) = lnyy =5 '+ "= 25, 1+ T+ |
tinuous, i.e.,6z jumps abruptly from a finite value to infinity s s 6.7)
for A=\3"P, '
Of course, statemertiii ) makes sense only if Replacing ("—(") and ("+{’—2[,,,) by their Taylor
expansion, one obtains for negative values of the local slope
> (5.  mx)=1/(x)
and this equation can only be satisfied if 19 [s 1 om
; Mn(LURF) =y == 20 T 21+ Lm) T amd ox |
(>, (5.2 (6.8

As will be seen, some of these results can be obtained ana- This quantity is the shif5x of the profile in thex direc-
lytically in the continuum approximation, and the “univer- tion during the time 14F). In the continuum approximation

sal” shape can be found. it may be written as
VI. STATIONARY PROFILES: o XL ooz 19 6.9
CONTINUUM APPROXIMATION aF ot aFmadt  mFox’ ‘

The calculation will be made for negative values of the  The current density is therefore equal to
profile slope m=gz/ox (see Fig. L The condition

|m|[;>1 will be assumed. Let, be the velocity of thenth Fl, m F om
s[,)tgfi)n?nngd[n the width of the terrace, betweety_; andx, . 1= 2(1+—IS|m|) er e &—XEJS-HC, (6.10

where the factom/|m| has been introduced in order to take
trier both possibilitiesn<0 andm>0 into account.
5xn(t,1/aF)—xn(t+1/aF)—xn(t)—Jt dt’vn(t’) The first term reproduces expressi®2) in the limit
6. Im[l;>1 [see also Eq.(3.1)] and corresponds to the
Schwoebel currenit. It is destabilizing. The second contri-
the stationarity condition for vicinal terraces, ignoring pos-bution (j.)—which breaks the up-down symmetry—derives

sible nucleation of new terraces, writes from a curvature in the surface profile and in the regions of
negative curvaturegm<0), j. and the slopen have oppo-
Sxn(t,1/aF)=1,,1(t). (6.2  site signs, so tha, is stabilizing.

It is rather remarkable thgt, does not depend of3. Its
Substitutingv ,(t) by its expressiori2.5), (6.1) reads origin may be understood by considering the evolution of the
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of the top terrace fluctuates between 0 &ndnd its average
length should be close /2. The width of the terraces just
below is exactly(./2 just after the latest nucleation, and
should not change much (6.2 is satisfied. More generally,
the highest terraces have a width closé 8. Therefore the
slope at the top of the profile is close td2/This means that
in (6.12 one hagny=2/(,. The top of the profile is seen to
be an angular point, however with an angle closertfsee
Fig. 2(@)]. This will be shown to be an artefact of the deter-
ministic nucleation model.

What occurs now at minima? Numerical treatment sug-
gests that the steady profiles are well approximated by arcs
of a universal curve, which is obviously given §.12),
connected by angular points. In fact, if we impose the sta-
tionary condition to the case of a bottom terrace and the
approximation(6.4) is made, we find that a stationary profile
corresponds exactly to the vanishing of the curréhiO.
Strictly speaking, Eq(6.2) would imply j=const, but the
constant is not zero only on a vicinal surface: if the average

FIG. 3. Small pieces of a vicinal surface. The arrows indicateslope of the substrate is zero,nitustbe zero.
the velocity of each step. The slopeis negative in both cases, but Anyway, approximatior{6.4) is not satisfactory for a bot-
the curvatured,m is negative in(a@) and positive in(b). tom terrace, whose size changes a lot during the filling time

of a layer. It is just for this reason that our analytical treat-
two profiles of Fig. 3, in absence of the Schwoebel effect. Inment fails in the explanation of property) of Sec. V, ac-
the case(@) m<0 and 9,m<0, while in (b) m<O0 and cording to which, for a given value éf/!, the heightsz of
dym>0. If [=0, the velocity of each step is proportional to a stationary profile has a finite upper limit. This may be
the sum of the lengths of the upper and lower terrace. So, innderstood as a result of the Zeno paradoxon in its Elkinani-
(@) larger terraces become smaller while (i) their size  villain versionl® if very low values of the terrace width
increases. Brieflyj. explains why a growing vicinal surface (<[, were allowed at the bottom of the profile, the
is not stationary if neighboring terraces have different sizeSchwoebel effect could be considered infinite and the depth

(dxm#0). would increase to infinityor, in practice, up to a value of
Coming back to the case of negative slopes, the statiororder)/a).
arity conditionj=0 writes Equation(6.13 for y makes sense only i is smaller
Fl F 1 than a critical value,,,x, Wherey vanishes. More precisely,
_ s N a_m =0, (6.1 z(x) has two vertical asymptotes far= *+X,,,,. This upper
2(1+Lm[) = 4 m® ox bound yields an evaluation of$"*=2x .., namely
which can be easily integrated. Assuming that the curve has ,
the initial slopem(0)= —m,, we obtain sup e L
Ae =§+ 5 (6.19
1 1 s
z(x)=2(0)+ = In[y(1+2[img) ]+ =——[Vm3[2+y?
4 ST 2[mgt YO The validity of our expressio6.10 for the current can

5 be tested by comparing the analytical expressions for the
VmglE+y+mgl : e
—(1+Ism0)]——ln| ols YT Mo S] (6.12 profile z(x) [Eq. (6.12] and for the upper critical wave-

27| Jm2Z+y—mylg length \"P [Eq. (6.14)], with the numerical results. In Fig.

2(a) stationary profiles are seen not to depend very much on
the wavelength and they are also well fitted by the “univer-

(6.13 sal curve” z(x). This is a good surprise, because the current
(6.10 is an arbitrary cut at the term ifam.

The other half of the curvex&0) is easily obtained by In Fig. 4 we report the numerical and analytical values for
symmetry. A remarkable property of the cur@12 isto be g 'X[s). Again, the good agreement proves that a continuum
limited by two vertical asymptotes; because of this, a maxi-approach is essentially correct.
mal value for the wavelength of a stationary configuration
will be seen to exist. This finding contrgsts v_vith the an.alo— VIl. GENERAL PROPERTIES
gous curve deduced fror(‘8.3)—an1% derived in Appendix OF STATIONARY STRUCTURES
B—or with the results of Hunet al.

In the above calculation, maxima and minima have been The two preceding sections suggest that the steady solu-
disregarded. In this section, as in the preceding one, newons of the deterministic Zeno equations which are periodic
terraces will be assumed to be nucleated at the center of thwith one maximum per period, have with a good approxima-
top terrace when its width becomes equalto In this de- tion the following two propertiegFig. 2 and Fig. 5
terministic model, what happens at a maximum? The width (i) Between two minima, they have a universal shape

with x>0 and

y=1+2[my—4[max.
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VIIl. PERIODIC, STATIONARY PROFILES
WITH RANDOM NUCLEATION

In Sec. V deterministic rules have been assumed for the
nucleation of new terraces. This is not realistic, but should
provide a good description of the minima because nucleation
is not expected to be frequent there.

We have also done simulations using the RN scheme, on

samples of small size, which can be regarded as a period
since periodic boundary conditions are imposed. In contrast
with the case of deterministic nucleation, the results do not
depend on the initial state, so that it is not essential to take a
single maximum per period at the beginning of the simula-
tion; even, we can take a flat configurationtat0. The
following study should also allow, by comparing the results

0.0 0.1 with formula (3.6), to determine the parametr, which en-
I/, .
ters in the curren(3.3).

FIG. 4. Numerical (barg and analytical (curve values of
su
MR ITL)

The simulations are described in detail in Appendix A 2

and show the following propertie§) For periodsh smaller
than a certain length;"?, but larger than another length
A the profile evolves toward a well-defined, nontrivial

Z(X) = Zy+ @o(X—Xy), (7.)  shape(Fig. 6). (i) The minima of the stationary structures
are angular pointgiii) Far from a minimum, all stationary
profiles may be approximated by aindependent, “univer-

where ¢(Xx) is a universal function and the constaxt
changes at each minimum. The constapis the same ev-
erywhere, but the indew has been introduced for future use.
This property will be calledule of universal shapén the
following.

(ii) Each minimum is an angular point where the slope has
the same absolute value on both sides. This property will be
calledrule of equal slope# the following, and it is a trivial
consequence of periodicity, symmetry, and the rule of uni-
versal shape.

Since all minima ignore one another, any structure which
satisfies ruleq(i) and (ii) is stationary[Fig. 5b)]. These
structures have the remarkable property that all maxima have
equal heights. They will probably not be obtained in the
evolution of an initially planar surface, and therefore they
have no particular interest. What is interesting is that, as
argued below, there igo other nontrivial stationary struc-
ture.

40.0

35.0
300 |
25.0 I

2(%) 200

0.0

s L s
0.0 100 20.0 30.0 40.0
X

zZ(x)

100 |

0.0 s s L
-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

o
D=

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

FIG. 6. (a) Stationary configurations for different wavelengths

(AM1.=10,15,20,25,30). Random nucleatidg/(.=0.015. (b) As-
FIG. 5. Stationary solutions of the Zeno equatiof@.A peri- ymptotic  configurations at different wavelengths \/{;
odic solution.(b) A nonperiodic solution, made of pieces of the =2,3,4,5,6,7). Random nucleatiofy/[.=0.06. The lower critical
universal curve. wavelength can be located in betweely 4nd 5.
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FIG. 7. Average roughness of the asymptotic configurations of
small samples, as a function of the wavelength, for different values
of the Schwoebel length: from the left to the right,

[4/;=0.06,0.03,0.015,0.0075. Random nucleation. W 60000
sal” curve, however rather different from the universal curve 40000
of the deterministic caséiv) If \ is larger thar\3*?, but not W 55000
too much larger(let us say, smaller than\2'®), the height

differencesz between minima and maxima becomes always W 30000
deeper.(v) The transition from regimei) to regime(iv) is

discontinuous(vi) If \ is much larger than S"°, additional W 26000

minima appear(vii) The top of the profile is fairly flat, and

AP is much larger than the corresponding value, obtained ' ' '
with deterministic nucleation. 20000
In both deterministic and random models, we have de-
fined a lower § ) and an upperXS") critical wavelength. 17500
A nontrivial steady configuration is found only for
A<\ <\ For smaller values we have a flat surface and
. e . . 15000
for larger ones, an instability takes place with the formation
of deep crevaces. The numerical values\gf° are different H"'WWWW 12500
in the two models, but randomness probably does not intro-
duce new phenomena: a deterministic model is sufficient to NWWW
P « [T HA H 10000
understand the origin of the “upper” instability. At variance,

A¢" has some sense only in the random model, since in the 5000
deterministic one\""=,, and its introduction is not mean- 1000
ingful. . . . .
The dependenca™~[; 2 expected from(4.2 can be 200 0o %0 %00 1000
tested numerically. In Fig. 7 we report, for different values of
the Schwoebel length, the average roughness of the “station- FIG. 8. Configurations at increasing times, of a large sample
ary” configurations, obtained for samples of different wave- (M [c=100). Random nucleatiotts/[.=0.015. The number of de-
length. We see that for small, roughness is constant and Posited layers is indicated on the right.
does not depend dg, while for larger values ok (depend-
ing on ) it increases rather rapidly. The transition betweenis slow and they can be called “quasistationarfig. 8. In
the two regimes defines the lower critical wavelength. Everaddition, they are made of mounds of similar size, and in this
though its location is somewhat ambiguous, the expected déense they are not far from being periodic. The stationary,
pendence(4.2) seems to agree with our numerical results,periodic structures which emerge from the numerical treat-
with a numerical prefactor of order 1. The reason of thement may be roughly described by the same two properties,
difficulty in defining\ " is presumably that there is a smooth enounced at the beginning of Sec. VIL.
crossover, rather than a sharp transition between the two re- Since no analytical expression is available igt*, we
gimes. have not drawn the analogous of Fig. 4 for random nucle-
The growing surfaces which are obtained from simula-ation. For some specific values Qf, we find that (; is the
tions on large samples are not stationary, but their evolutiounit length: \3"}[s=0.06)=8/8.5, \"A[;=0.03)=15/16

80000
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The local currentp should contain the following.

(i) An m-dependent term, representing the nonequilibrium
current, mainly due to the Schwoebel effect. Its expression is
given in Eq.(3.2 and it is derived in Appendix B. In the
absence of nonthermal healing mechaniém5sand if the
crystal structure is not taken into accotnit is always posi-
tive and only vanishes fan=0 or m=-oo,

(i) A current which breaks the up-down symmetry

FIG. 9. Evolution of the profile near an angular poi@ if  [z(x)— —z(x)]. Such a term has been introduced phenom-
vx=0 and(b) if v,=0. enologically by several authdfs3*12who assumed that, for

weak slopes, it has the form comst,(m?). On the other
and A" [s=0.015)=30/32. These results are in agreementhand, for|m|(;>1, Eq. (6.10 shows that the current con-

with a dependence of the forig"*~ 1/L. tains a contribution of orddrF (d,m)/mq]. It is plausible to
assume that both forms match fon|[.~1, so that the con-
IX. ANGULAR POINTS tribution of interest to the current™

IN THE (1+1)-DIMENSIONAL PROBLEM 4 5 o 5

_ _ o _ Fc o a(m?) d | Feqlg dA(m=)
Slmulatlpns suggest that the _mlnlma of :[he profile are (Cz+m2I<2;)2 x o, c2+mZI§ ax
angular points. These angular points move. idte the ve- (10.2
locity of an angular point. 16,=0 [Fig. 9a)], we obviously . )
have dzldt=v,; if v,=0 [Fig. Ab)], we have |dz/4t| where the positive constantg andc, are of order unity. In

Z z . 1 T .
—|mv,|, wherem=az/dx. To clarify the sign one can see the deterministic model wher(6.120) appz)hes,clfl/& ,
that, if v,>0 (<0), thenaz/at is positive (negative and (i) A term containingm”=g"m/dx". As discussed in
m negative on the left of the minimum, whitez/ ot is nega- Sec. Ill, it can result both from exchange of atoms between
tive (positive and m positive on the }ight. Thus. in both Steps and from terrace nucleation. In our model, the first
casesiz/dt=—mu,. Adding the contributions pro’portional contribution is ignored. On the other hand, terrace nucleation
t0 v. andv.. one gbtains near a minimum becomes negligible when the terrace size is much smaller
X Z

than [,. This property can be accounted for if the term

9z Km" of formula (3.3 is multiplied by a function(m,m")

ot V2T Moy (9.))  which vanishes when nucleation is not expected, i.e., for

|m|{c>1, or should vanish for too larggositive values of

and therefore m’, namelym’[2>1. Form’ <0 and|m|[,<1, the function

. #(m,m’) is equal to 1.
aj_i:mvx_vz_ 9.2) . In conclusion, the most general local form of the current
The same result can be obtained by writing Fl.[m dA(m?)
e(m,m’,m”)= : —
. P 2(1+[m])(1+Lcm]) ax
= + '— . ” ’
2(X)=2(Xa) La(t)dx X (9.3 +Km'g(m,m’). (10.3

where x,(t) means the angular point. The time derivative The numerical work reported in Sec. VIII suggests that,
gives after some time, the minima of the profile are angular points.
This is in agreement with the analytic study of Sec. VI,
where the first two terms of10.3 are shown to produce a
current which carries matter away from a minimum
(m=0m’>0).

Now, if there is an angular point, the current density

0z(X,t)
at

X , 9 dz(x',t)

=v,—v,M(Xy,t)+ dx —_—
U~ UxM(Xg,1) fxa(t) gt ox'

9.9

and by writingd,z= —ad,j on both sides, E(¢9.2) is recov-

ered. j(x,t) cannot be given by Eq10.3 in its neighborhood,
since this current would be discontinuous and-&unction
X. NATURE AND WEAKNESS OF A LOCAL singularity would arise in the profile.
PHENOMENOLOGICAL EQUATION OF MOTION The bestway to reconcile our dream of a continuous

The Zeno equation&.5—(2.9), which define the deter- equation with the reality of angular points is a nonlocal form.

ministic motion of steps are too complicated to provide in-
sight into the evolution mechanism. We now look for a phe- Xl. NONLOCAL EQUATION OF MOTION

nomenological  differential - equation in the continuum  there js no reason to expect a continuous, local equation
approximation. A local form, natural generalization(&f2), ot motion to describe the model. Indeed a continuum model
might be can only be valid for an averaged surface, since the real
i , " surface has steps and is therefore not continuous. The surface
X,t) = @[ m(x,t),m’(x,t),m"(x,t)], 10. ) .
JO6B =@l mOx, b, m’ 061, M (x, 1] (10. has to be averaged on a length of orddthe distance be-
wherem=g9z/dx, m’' = 9%z/ 9x% andm” = 93z/ 9x3. tween stepsand on a time of order 1Ka). The resulting
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equation of motion has to take into account what happens
during this time in a range of orddraround each point.
Therefore, the effective equation of motion, resulting from
the integration of the microscopic equatiai2s5)—(2.10 on

a time of order 1/Fa), has no reason to be local. Away from

a minimum, the approximatiof6.4) transformed the prob-
lem into a local one. However, as already pointed out, this
approximation is too rough for a bottom terrace, whose size
changes a lot in time. For this reason, a local approximation

may fail near a minimum, and it does fail in our model.

We do not claim that any local, continuous growth equa-

tion is incompatible with angular points. For instance, the Vi
deterministic Kardar, Parisi, Zhang equatitn:

0z "+ 2 11

E =vm Em ( D

is known to give rise to angular pointéat least if v=0.
However, if the expression @fz/ 9t containsg®z/ 9x>=m’ or

FIG. 10. Evolution of a periodic profile according (b1.2. (a)
Stationary profile.(b) Initial profile smoother than the stationary
one, and affine to itthick line). (c) Resulting current of atomgd)

higher derivatives, this expression becomes infinite at an arResulting current gradient’ =dj/ox. As a consequence of the
gular point, and angular points can become impossible. lrquationdz/dt=—]’, the profile takes the form shown by the thin

the problem of interest in the present pap&t,dt involves
only terms containingm’ or higher derivatives and a nonlo-
cal form is unavoidable as argued above—at least vbin-
ishes in the last term dfL0.3.

We will assume that the current satisfies a nonlocal, ph
nomenological equation of the form

j(x,t)= fj:l“(x— u)e(m(u,t),m’(u,t)m”(u,t))du.
(11.2

The functionI'(u) is different from 0 in a small interval
e~ 1 aroundu=0, and its integral is equal to 1. Moreover,
symmetry implies thal"(u) is even. A natural guess is

F(u)=;exq—s|u|), (11.3

wheree ! will be seen to be of ordef .

Far from an angular point, the functiap(x) can be as-
sumed constant on the domain whéréu—x) is different
from 0, so thatp(m,m’,m") can be identified wit{10.3). It
can also be seen th&t(u) should be even, otherwise the
local approximation 0f11.2) would contain the product of
m’ by an even function ofn, which is forbidden by symme-
try.

In order to check thaf11.3 is an appropriate guess, we
now consider the vicinity of angular points. Neglectikgn
(10.3), one obtains

Fl(m AA(M?)
21+ m)(L+Jm)  ox
(11.4

where the functionA(m?) has been defined 0.2 and
whose deterministic limit i$/(8m?).

As seen from(9.2), dj(x,t)/dx is generally a discontinu-
ous function ofx at a minimum, buf (x,t) must be continu-
ous. Now, the leading singularity of the currémi.? results
from the leading singularity of11.4), which is due to its
second term and it is & type singularity. The most singular
term of (11.4 near an angular point at= ¢ is indeed

e(mm’,m”)=

e_

line in (b), for which the current is now uniformly destabilizing.

@singM(u,t),m’ (u,1))=— A(A(M?))(u— &(t)), (11.5

where A(A)=A,— A, means the discontinuity oA, across
the angular point { and | stand, respectively, foright
and left). For the deterministic model, A(A(m?))
=(F/8)A(1/m?).

Insertion of(11.5 into (11.2) yields the most singular part
of the current density:

jand 0=~ A [T x-u) - &()du
(11.9

or
Jsing%,t) = = ACA(M))T (x— &(1)). (119

According to(9.2), this current should be continuous and
have a discontinuous derivative at=¢. It follows from
(11.7 that I'(u) must have the same properties. The form
(11.3 has indeed these properties.

We can now ask how the previous description is modified
if the relaxation term Km") is added to the local current
(11.4. In this case the strongest singularity in
o(m,m’,m") is not eliminated by the spatial integration
(11.2 and even the nonlocal curreptwould be discontinu-
ous. This means that if the ternK(n”) is present, there are
no angular points. However, our simulations do show angu-
lar points, so that such a term must be negligible close to
them.

As a first test of Eq(11.2, let us consider the evolution
of a periodic profile which is initially smoother than the sta-
tionary shape zy(x). Let us assume, for instance,
Z(x,t=0)=\Zzy(x), with A<1 [Fig. 10b)]. Near a maxi-
mum, Eq.(3.3) holds and the stabilizing second term is more
reduced than the destabilizing first term, so that the current
of atoms is directed toward the top. Near a minimum, but not
too close, Eq(6.10 holds and the stabilizing second term is
increased, so that the current of atoms is directed toward the
bottom. Very close to a minimum, the integral equation
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do not exceed the critical valueZ™. If m,=—-m,, (12.2
predicts thatv,=0 in agreement with the rule of equal
slopes.

An interesting case is that of an angular point where the
slopes have the same sign on both sides. Accordifig2®),
such an angular point has a positive horizontal velocity, if
both the slopes are negative. This is in agreement with the
numerical results of Ref. 18, according to which such a step
bunch moves downward. Anyway, a step bunch should be
represented by a discontinuity in the surface prafike), so
that the current itself(x) should be discontinuous across it.

Now we want to calculate the vertical component of the
velocity of the angular point;,. By evaluating(9.2) on both

FIG. 11. The larger mounds eat the smaller one, in the centersides of the angular point, we can write
Pointsx=0 andx=Xx; do not move, because of the symmei(3.

t=0; (b) t>0. ia_j

m ox
(11.2 has to be used, so that the current is continuous at the VST T (12.4
minimum. Symmetry implies that it vanishes. It results that A(E)

the current has the shape shown in Fig(cl0
The modificationsz/dt=—dj/x [Fig. 10d)] of the pro- The singular part of the current is such that its spatial

file follows: initially, both maxima and minima go up. How- derivative changes sign acrogs & on the contrary, the
ever, the slope near the minima becomes flatter as seen frol%nsin ular partj,J) of the current gives a continuous con-
Fig. 10b), in other wordsm’ becomes weaker, so that the 9 part] 9

current, as given byl1.2 very close to a minimum, or by tribution to dj. So, we can write

(6.10 a little farther, changes sign, as well gs To sum- dj Jj ol
marize, the velocity of the minima is positive in the transient, — ===-— A(A(M?)). (12.5
initial state, but then become negative, so that the profile X £ X oX £

shape tends to the “universal” shape=0 in agreement

. . . By substitution in(12.4) we obtain
with simulations. y (12.4
il

Ihns 10
ox

ox

A(A(m?))
A(m)

In this section, the velocity of angular points will be re- where the second term on the right vanishes in the case of a
lated to the discontinuity of the slope and of the curvaturesymmetric profile (n,=—m,). Now let us calculate the first
using Eq.(11.2. From (11.7) one deduces the discontinuity term:
of the current density gradient

s(xt)\  far
[ 550)4(5

According to (9.2), this should be equal ta(m)(v/a).

(m+m)), (12.6

v,=—a

Xll. VELOCITY OF ANGULAR POINTS

Ijnd X, 1) _f“’ dum¢(m(u,t),m’(u.t))- (127

x ) _u X

)A(A(mz)). (12.2
§ Since this term is continuous, we can calculate the deriva-
tives inx= &. With respect to the angular point, the function

a,I'(x—u)|¢ is an odd function ofu (positive on the right,

Therefore negative on the leff ande(m,m’) changes sign. So, we can
o aT| | ACA(M?)) ® write
Ux= T a8 ok A(m) - (122 AndX,t) (=l (x—u)
¢ TZJ dUT [e(m(u,t),m’(u,t))
If Eq. (11.3 is assumed, we obtain ° 0
—e(m(—u,t),m’ (—u,t))], (12.8
A(A(M?)) . . .
Ux=a82—_ (12.3 where the angular point has been located+#0. If (11.3 is

A(m) assumed for the kernel functioi(u) and the quantity in

square brackets is considered constantufers ~1, we can

The comparison of this formula with numerical results tells . X .
approximate the previous expression as

thate "1~1,.
The main consequence (2.2 [or (12.3] is that a mini- gt e
mum moves in the direction where the absolute value of the L g =[e(M(0",t),m (07,1))
slope is weaker. In particular, if—as in Sec. IX—one con- 26 2
siders a profile which initially satisfies the conditigr-0 — o(Mm(0~,t),m'(0~,))]. (12.9

everywhere between angular poiriEg. 11), one finds that
the smaller arcs of the universal curve shriak long as they Finally, the velocityv, can be rewritten
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as as? A(A(m?)) mound width is smaller than the upper critical wavelength.
v,=— 5 Ae(mm’)+ —- W(mr+ml)- (12.10 Regions with positive curvatures{m>0) are generally
present only at the first stages of growth. They may also

This equation is consistent with the fact that the profilesform just after the death of a mouridee Fig. 8 However,
of Figs. §a) and 5b) are stationary. Indeeah, = —m, at all an a.ngular point rapidly arises, in agreement with the fact
minima ande=0 everywhere on the surface, which implies that in a convex region both terms of the curréfitl0 are
v,=0 at all minima. destabilizing. . _ .

We conclude that the phenomenological equatibh2), Num_erlcal S|mulat!ons of Zeno equations Wlth r_andom
after having successfully passed a series of tests, seems aplgcleation are also in agreement with the prediction that
to reproduce the results obtained numerically from the Zen&0a@rsening stops when the mound radius has reached the
equations of Sec. Il. However, its use is limited since wevalue \g™P. However, whem\>\g", the continuous Zeno
have not been able to write explicitly the functign In the ~ model ceases to be valid, and the microscopic properties of
following section, it is shown that, nevertheless, a qualitativethe material have to be taken into account, for instance, using

understanding of the coarsening process may be derivedie prescriptions of Siegert and PliscHReConjectures con-
from (11.2. cerning this later evolution are presented in the next section.

Xlll. MECHANISM OF COARSENING: SMALL MOUNDS XIV. MECHANISM OF COARSENING: LARGE MOUNDS

In this section, it will be argued that coarsening, i.e., coa-
lescence of mounds, is a consequencéldf?, or of Egs.
(12.3 and (12.10 combined with the approximate, loca

At long times, when mounds are larger thag™, the
| atomic size should be taken into account. Presumably, it is

form (0.1 of (11.2, valid away from minima. still possible to define a functiop(m,m’,m”")=0 and a

Let us assume that most of the mounds are close to thg/Niversal” stationary profile solution ofp(m,m’,m")=0.
“universal” shape defined bye(m(x),m’(x),m"(x))=0, Its asymptotes are no longer vertical, but have a definite

: "o . lope m* of order unity as required by Siegert and
where the functiong(m,m’,m") is defined by(10.3. A S 15 , .
gualitative, self-consistent justification of this assumptionPI'SChI.(e' Coalescenpe is therefore not forbidden even for
very big mounds. It is, however, expected to be extremely

will be given later. Anyway this assumption is in agreement . : .
with sirgulations yway P g slow, because when the slop& of Siegert and Plischke is

Suppose now that some mound is smaller than its neigh€ached, the current is zefthis is the definition om™) and
bors (Fig. 11). Because the stationary shape is convex, thihe profile is stationary. Coarsening is only possible in this
slope of this mound at the edges will be weaker than thé2t€r phase because the slop*e has not exactly the valye
slope of its neighbors. It follows from this fact arf@2.3 ~ PUt since it is very close ton*, the coarsening should be
that the width of the smaller mound decreases. Therefore thée"Y Slow as said above. o
vertical thickness also decreases because the general shape of ©F @ finite system, the final result of coarsening is that a
the mound away from the angular points, as an effect ofingle mound forms, with a slope equal to the characteristic
(10.1) tends to keep close to the “universal’ shape given byvalue. However, the evolution of the profile may depend on

o(m,m’,m")=0. Eventually, the smaller mound disappearsthe microscopic details of the model. Lanczycki and
and the neighboring ones have grown. At this point, the asSarm# have observed the formation of step bunches in

may be flatter than the universal shape, but further evolutiorfhis final stage. The reason is possibly that they use a model
due t0(10.1) and to a vertical motion of the border due to " which the characteristic slopes of Siegert and Plischke do

(12.10, brings them again to the universal shape. ThusnOt €xist. _
Thus, two phases are expected for the coarsening of a

coarsening results from smaller mounds being “eaten” by

bigger ones, a phenomenon which in turn results from Eq(_)ne—dimensional, infinite sample in a model following the

(11.2. Siegert-Plischke schem@) In the first phase, studied in the
Alternatively, we can say that the stationary configura-preced'ng section, _the mound size increases fairly rapldl_y

tions found in Secs. V and VIl fox <\ 'Pare stable against and the slope remains much smaller than unity. However, if

height fluctuations, but unstable against width ﬂuctuations.[S/IC is very small coarsening proceeds slowly) In the

Coarsening is due to this latter property, while the formerSecond phas_e, the slope is of order unity .close to the minima
one keeps the mounds close to the universal form and coarsening proceeds very slowly until the mound size is
X equal to the sample size. The transition from phégeo

Now, in the continuum Zeno model, the universal shape h i is ch terized by a d . ¢ ith
has two vertical asymptotes. Therefore, the above descriptioﬂ ase(ii) is characterized by a deepening of crevaces with-

suggests that coalescence should stop after the mound Si%t_rﬂgmflcant mcre:se of thg ;nountizram?s.
has reached a critical value. This value should obviously b(tah € pI;evfloqs slct'eme bavan” ormu 63)V ordvx S@ptﬁ)]ortt
identified with the quantity callea 2P € resuft ot simuiations byrmiiauer and vVvedens a

- L (ioarsening and steepening are competitive: the steeper the
The above description of coarsening is in good agreemen : .
. ; . ) ; mounds are, the slower the coarsening process is.
with our simulations, as will be seen at once. In Fig. 8 we
show the temporal evolution of large samplas>(\3"?), for
the vaIueIs/ICf 0.015 . After the very first mounds have XV. THREE-DIMENSIONAL CASE
appeared, their number decreases in time and the average
height increases. More precisely, the largest mounds grow at In 2+1 dimensions, it is reasonable to assume the follow-
the expense of the smallest ones. No deep crevace forms titig straightforward generalization ¢10.3
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.. e o . . singled out: in the first onéSiegert and Plischk®, Smilauer
j(r,t):f I'(r—u)e(m(u,t),Vm(u,t),V2m(u,t))d?u, and Vvedensky® Amar and Family’) mounds attain a self-
(15.1  similar structure and the maximum slope keeps constant.
. R . Anyway, the limiting slopes differ a lot and may be due to
where the vectom and the tensor§ m andV?m are, respec- crystal structure effectS, to kinetic effectst® or both” A
tively, the first, second, and third derivatives of the heightsimple explanation of the kinetic effects is not available at
z with respect tox andy. The functione should have the the moment.
following form, analogous t4¢10.3): In the second scenaritHunt et al'® mounds become
steeper and steeper, with no limiting value farFinally, in

s e s oo Fl.m . 5 the third onglproposed in the present pap#rere is no slope
®(m,Vm,Vem)= 2L L) (L 1) —V(A(m?)) selection either, but an upper critical wavelength does exist.
( sImi)( clM Both the second and third scenarios should have a crossover
+ K0(|rﬁ|,|€rﬁ|)V2rﬁ, (15.2 to the first one fom= 1/a, if the discrete nature of the lattice

would be correctly taken into account.
where the functiord(|m|,|Vm|) has the same properties as It is interesting to wonder whether this scenario survives
before. when thermal detachment of atoms from steps is allowed.
The interest of Eqs(15.1) and(15.2) is to show the non- We think it does, if the probability of detachment is suffi-
local and nonlinear character of the problem. As 11  ciently small, i.e., if the temperature is sufficiently low. In
dimensions, no local continuous equation can account for théact, in absence of detachment, for- A", the height of the
slope discontinuities which are now expected to occur ormounds increases linearly with time, at a positive velocity
angular lines rather than angular points. However, Egs.v, which depends org. So, if the rate of detachment is
(15.) and (15.2 are much less tractable yet than their smaller thanv,, the upper critical wavelength still exists,
equivalent in ¥1 dimensions. For instance, even if equa-while if the rate is larger tham,, Ai"Pis probably infinite
tions similar t0(12.3 and (12.10 can be written in 21 and the second scenario becomes pertinent.
dimensions, they will not be as predictive as ir1l The Our model is peculiar also in another respect: we do not
possibility of dislocations and disclinations in the network of obtain a powerlike behavior for the coarsening law,
mounds gives a higher complexity to tfe+1)-dimensional A (t)~t" . Usually, such a law would only be expected in the
case. “self-similar” regime (first scenarip. Anyway, both in ex-
periments and in simulations, it is observed even if the slope
XVI. CONCLUSIONS does not stay constant. In this case, the origin of such pow-

) ] . ] erlike behavior is not clear.
We have investigated &l+1)-dimensional model of a
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. APPENDIX A: NUMERICAL CALCULATIONS

During this first period, random nucleation is well ac- ON SMALL SAMPLES

counted for a linear termK(7°m/dx) in the curreng, which The numerical calculations of the following two sections

must be added to the Schwoebel currgnt are carried out by solving the Zeno coupled equations

At later _t|mes mouﬂds form and they are sepgrated b:]'f 2.5—(2.9)] for the step motion. Details are given in Ref.
angular points. The existence of these structures is due to Two possible models can be used: a “completely con-

currgntjc,_ which depe_nds on the curvature of the Surface‘tinuous” model, where there is no room for the interatomic
and in regions of negative curvaturg,(<0) may compen- distancea and a “quasicontinuous” model, where the

sates. Schwoebel barrier is turned off for terraces smaller than

b Alter moun(_js d_have ff_(l)rr_ned,ta tc%?rse_rzlhng proc??s lsttart 'his does not prevent small terraces, but anyway it limits the
ecause a periodic profiie IS not stable with respect to later epth of the crevaces when they form. If not differently

fluctuations. Coarsening is mainly a deterministic process, pecified, we will always use the finite val@e=0.005, .

driven by an asymme'gry between .the left and right s'lopes AlIso, the value of the nucleation length is everywhere
the angular point. At increasing times, the coarsening profakeh as 1

cess becomes slower, because of the steepening of the
mounds. When\ is larger tham\$"P~ 1/(;, our model pre-
dicts that coarsening stops and grooves become deeper and
deeper. Let us start by summarizing the temporal evolution of
We can compare our findings with the results of othersmall samples with a single pyramper period (see Fig. 2
models. Generally speaking, three different scenarios can Heach pyramid is characterized by its width(which equals

1. Deterministic nucleation
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the period\ in this cas¢ and by its heighth(0) att=0; on top terraces and DN elsewhere, we find that the surface

another important quantity is the starting terrace lengthundergoes an instability, so random nucleation on vicinal

[=L/2h(0). TheperiodL is obviously a constant, whila  terraces is an important source of stabilization.

changes with time. The Schwoebel length is fixed at the Random nucleation not only increaseS™, but it also

value [ /[.=0.015. The main results are the following. changes the shape of the stationary configurations, which are
(i) A threshold valuex$"P doesexist for the rising of the characterized by a large “flat” region on the top of the

instability; if L>AS", andh(0) is not too small, a crevace mounds. It may be reasonable to identify the width of this

appears and its depth increases with time. region on the lower critical wavelength!™ .
(i) For L<AZ"™ we have stationary configurations. If
h(0) is sufficiently high, so that nucleation takes place only APPENDIX B: STUDY OF Eq. (3.3
on top terrace$h(0)>L/2[.=h,,], the stationary configu-
ration is a pyramid whose height, depends onL: the In this Appendix we want to justify formul&3.3). This

steady valueh,, grows withL, but it does not go to infinity ~formula, which neglects asymmetry effe¢tecond term in

whenL goes to §3). Rather, forl,=0.015 we observe EJ- (10.3] and uses a linear form, for the term containing

that lim__,s-h,,=15 . It is important to stress that this 92m/9x?, allows for an analytical determination of stationary
c

. configurations. We will do that, by following the method of
result does not depend on the value of the lattice constant et 5119

a, the only difference being a slightly different value of We have said in the main text that the first term, the

sup sup_ — —3 . . .
)\Szp' For examplepc™=9.397-9.398 fom=5x10"" and  gchyoebel currentt,, results from an interpolation d8.1),
Ae'=9.391-9.392 fora=0. However, in both cases, the yaid at high slopes, and..3) which is expected to be correct
largest value oh., is 15. . for |[m|<[_ 1. Let us start by justifying expressiqa.3).

(iii) I h(O) is slightly larger thamy,,, h increases mono- \when (>, a new terrace nucleates on it, so there are no
tonically with time, untilh=h... If h(0) is higher, then ierraces larger thaf,. We shall suppose in this case that
h(t) increases almost linearly with time, until a valyeat  (~_ and the current will be calculated as an average on all
which the crevace is healedia step bunching. The value the terraces. We must however distinguish among top or bot-
t, increases witth(0) and withL. If h(0) is fixed,t, seems  (om terracewhich do not contribute to the currénand

to go to infinity whenL —(A\g™) ™. vicinal ones, which may be of two types, according to the
(iv) If h(0) is sufficiently smal[h(0)<hy,], nucleation  sign of the current.

takes place also on vicinal and bottom terraces, and trivial |f n, n_ n, are the number of terraces in each class
steady configurations are found. (respectively, vicinal up, vicinal down and top or bottom

Similarly, we can fix the widthL by varying the subdivided according to the current, we will hdeee(3.1)]
Schwoebel length;. In both the cases we conclude that a

finite value ofl is required to create an instability in a finite . Flg
sample. Wheris goes to zero)3"R(s) goes to infinity. Is= 201+ /1)
st*c

n,—n_ )
(BY)

n,+n_+ng

because each vicinal terrace contributes with a quantity

j+=xFL M2+ 1/1)].

In the case of RN as well, we obtain pyramid-like station- \We are interested in the dependencg £bn the average
ary configurations, similarly to the DN cagsee Fig. .  slope
Anyway, the critical lengti\"? is much larger in the ran-
dom case: random nucleation stabilizes the growth against
the Schwoebel effect. m= .

The effect of randomness on the growth is twofdid:it ¢
makes stochastic the nucleation on top terrdegsere most gg that
of the nucleations takes plgcand (ii) it implies a finite
probability of nucleation on vicinal terraces. Let us recall Fll,
that in the deterministic model, the nucleation of a new ter- js=mm.
race takes place only whém[.. For a vicinal terrace, if this ste
condition is not fulfilled at =0, it generally remains unful-
filled also at later times. The second effénticleation on
vicinal terracepis seen to be stabilizing, since it reduces the
Schwoebel current.

Since the probabilityP([) of nucleation is very weak for
[<; and stationary profiles seem to be characterized by fe
events of nucleation on vicinal terracéSig. 6), we could B
conclude that the second effect is negligible, but it is not so. m —

) ) . - K== js(m). (B4)
For example, let us consider the evolution of a “steady dx
configuration, obtainedia random nucleation. This means
that a further evolution with RN does not modify the main  Formally, this is the equation of motion of a particle of
characteristic of the surface profile, i.e., the interface widthmassK, whose (one-dimensional spatial coordinate isn
But, if we consider the artificial evolution determined by RN andx corresponds to the time. The potential is

2. Random nucleation

[

n+_n_

n,+n_+ng (B2)

(B3)

It is noteworthy that the two limiting expressioriB3)
and (3.1) coincide for|m|=1/(;.

Now, let us study the stationary solutions (&.3), by
following the method of Hunet al® Stationary solutions
Vgorrespond to a vanishing current, that is to say
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V(m)=f dmjs(m). (B5)

Substituting the first term 0f3.3) in (B5), it is easily
found, in the limit{.>[; and up to a constant, that

V(m)=i —In(1+|m|IS) In(1+|m|Ic) (B6)

cess can be directly inferred froifB6), sinceV(m) is a
single well potential and no upper limit fon exists.

The equivalence with the particle model leads us to define

the “energy”

1 2

— — _l’_ —

> Kl gx] TV(M=V(M),
whereM is the maximal slope of the stationary configura-

tion, at fixed wavelength. The wavelengthis

(B7)

7‘_4JM \ff dm (
~ o (dmidx) WM —V(m)
At small m we can expand/(m)

SHE 1
V(m)=7 T §(m[s)

mIc_ %(mlc)z} ]

mlg—

(B9)

and obtain forA

PAOLO POLITI AND JACQUES VILLAIN

5_4
MM —0)= 4\[\/F[ f
T
B [ 2K
=27 FSIC (BlO)

This coincides with the expressi@¢8.6) for the lower critical

wavelength\" .
The absence of slope selection during the coarsening pro-

In the opposite limit M — ), the period\ is given by

MVE fo JIn[(y+1MIg)~ l"(erllMI)l’]

\[ (B11)
J\/ In(1ly)
and the height of the stationary configuration by
5 fMd m MZ\Fjld Y (B12)
z= m———= = o

o dm/dx Flo y\/ln(lly)

As expectedM goes to infinity withA. The result(B11)
could be qualitatively obtained by observing that in the limit
of high slopes, conditioiB4) writes

(B13)

or M=~ F/K\, as given by(B11).
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