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The combined effect of striction and crystallinity can produce a state for vicinal crystalline interfaces, which
we call the step-density-wave~StDW! phase due to its resemblance to the charge-density-wave phase of
one-dimensional conductors. This phase arises due to a spontaneous periodic distortion of the surface com-
mensurate with the steps, which creates a potential that localizes them. In many cases of interest the energy
gain of step localization is greater than the energy cost of the elastic distortion, thus favoring the StDW phase.
There is true long-range translational order of the step positions relative to the surface distortion, which makes
the StDW phase similar to traditional smooth interfaces. The surface distortion and associated step waves are
not fixed rigidly in space, however, but only relative to each other. Therefore, in the absence of pinning by
impurities, the combined system of steps with associated surface elastic distortion can move freely in response
to an external force~for example, under crystal growth conditions! so that in this respect it resembles a rough
interface. In this paper we demonstrate the existence of the StDW phase and study the phase transitions
between the rough phase of wandering steps and the StDW phase.@S0163-1829~96!07231-1#

I. INTRODUCTION

This paper will study the phase diagram for a vicinal sur-
face: a crystal interface having wide terraces of a low Miller
index face separated by elementary steps. These steps induce
an elastic deformation in the bulk of the crystal, and this in
turn produces a long-range interaction between the steps.1

Since the steps are actually a structure of the crystal, their
shape and location are discrete on the scale of the lattice, so
that in order to regard them as interacting objects of linear
topology we will have to introduce a periodic potential at the
atomic scale. We will show that a combination of the effects
of deformability and crystallinity can lead to a new thermo-
dynamic state of the crystal surface, in addition to the well-
understood rough and smooth phases.2

Our insight into the behavior of this system was based on
an analogy between the steps and the world lines of a one-
dimensional electronic liquid placed in a periodic ion lattice.
This system has the following properties: when the lattice is
undeformable, the quantum system is either a metal or Mott
insulator; the insulating phase occurs when the filling factor
is rational and quantum fluctuations are sufficiently weak.
When the ion lattice is deformable the electron-ion interac-
tion induces an effective electron-electron interaction, and
there is another mechanism, first noticed by Peierls,3 to make
an insulator out of the one-dimensional quantum system that
does not depend on having a rational filling factor: the lattice
distorts spontaneously so that it is modulated at the Fermi
wave vector, creating a commensurate potential for the elec-
trons.

In our analogy, the quantum fluctuations of the electrons
are equated to the thermal fluctuations of the steps, the metal
is equivalent to the rough phase of the wandering steps, and
the Mott insulator becomes the flat phase in which the steps
are locked in by in-plane periodicity. The deformation-

induced effective electron-electron interaction is analogous
to the elasticity-mediated interstep interaction found in con-
tinuum elasticity theory.1 We will extend our analogy to
show that a vicinal interface of wandering steps can exhibit a
Peierls-like state, driven by a spontaneous surface deforma-
tion commensurate with the average interstep spacing, which
we call thestep-density-wave~StDW! phase.

In Sec. II we derive a long-wavelength Hamiltonian de-
scribing a vicinal interface on a deformable crystal. In Sec.
III we demonstrate how this Hamiltonian describes the con-
tinuum limit. In Sec. IV we show how a surface elastic de-
formation can lower the system free energy: first we analyze
a low-temperature limit using elementary arguments, and
clarify the nature of the distorted state. Then the case of finite
temperatures is studied using a renormalization-group ap-
proach, leading to a phase diagram and a discussion of the
nature of the possible phase transitions. Section V presents
some speculations on possible experimental relevance of our
findings.

II. LONG-WAVELENGTH HAMILTONIAN

A vicinal surface will have a set of on average parallel
and uniformly spaced steps of linear densityn. We will
choose a coordinate system such that the average slope is
alongx ~the steps are parallel toy!, and the outward normal
is thez direction. We will describe the conformation of the
mth step~regarded as a continuous linear object! located near
x5m/n by its displacementv(x,y) in the x direction. The
atoms in the crystal are displaced from the lattice sites~of
lattice spacingr21! by a displacement fieldu(x,y,z). The
interacting steps are described by a Hamiltonian of the form
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Hsteps5
1

2 E dx dy@K1~]v/]x!21K2~]v/]y!2#

1E dy(
j ,m

V@m/n1v~m/n,y!

2 j /r2ux~ j /r,y,z50!#, ~1!

whereV(x) is a function that represents the effects of atom-
icity: it attempts to align themth step with thej th atomic
row on the surface. The gradient part of~1! describes a trans-
lationally invariant anisotropic interface with positive stiff-

ness coefficientsK1 andK2. The Hamiltonian~1! is valid on
scales that exceed the mean interstep distancen21 provided
that step wandering is small~u]v/]xu,u]v/]yu!1! and that
the temperatureT is below the roughening phase transition
temperature of the terrace. This Hamiltonian can be put into
continuum form by representing the sums using the Poisson
sum rule,4 which replacesm/n→x, j /r→x8, while keeping
track of the higher Fourier components of the sum. Assum-
ing the integralV5* 2`

` V(x)dx is finite allows us to ap-
proximateV(x)5Vd(x), thus giving in the long-wavelength
limit

Hsteps5
1

2 E dx dy@K1~]v/]x!21K2~]v/]y!2#

1rnV(
p,q

E dx dy@12~]v/]x!#@12~]ux /]x!#exp2p i @~nq2rp!x2nqv1rpux#. ~2!

The combinationsn[12(]v/]x)] andr@12(]ux/]x)# in ~2! describe how the displacements alter density of steps and atoms.
Thep5q50 term of the sum~2! contains a term independent of the derivatives]v/]x and]ux/]x, as well as terms linear

in them. These terms can be dropped: thex derivatives of the fieldsv andux represent the fluctuations in the step and atom
density about homogeneity, and so we must impose*dx dy(]v/]x)5*dx dy(]ux/]x)50 if the step and atom density are to
be correctly specified byn andr, respectively. Then

Hsteps5
1

2 E dx dy@K1~]v/]x!21K2~]v/]y!212rnV~]v/]x!]ux /]x#

1rnV(
p,q

8 E dx dy exp2p i @~nq2rp!x2nqv1rpux#, ~3!

where the symbol(8 means that the terms corresponding top5q50 have been removed from the sum. Finally we have to
take into account elastic deformation in the bulk of the crystal induced by the coupling with the step displacement fieldv. The
corresponding energy is given byHbulk5*z<0dx dy dz12( i ,ks ikuik , wheresik anduik are the components of the stress and
strain tensors,5 respectively, and are related by Hooke’s laws ik5[E/(11s)][ uik1s/(122s)S juj jd ik] with E ands being
Young’s modulus and Poisson’s ratio, respectively. CombiningHbulk with ~3! we get the total Hamiltonian of the system

H5E
z<0

dx dy dz
1

2 (
i ,k

s ikuik1
1

2 E dx dy@K1~]v/]x!21K2~]v/]y!212rnV~]v/]x!]ux /]x#

1rnV(
p,q

8E dx dy exp2p i @~nq2rp!x2nqv1rpux#. ~4!

When the interstep distancen21 is commensurate with the
lattice periodicityr21 in the x direction ~i.e., nq5rp! and
the crystal is undeformable~ux50!, the most relevant terms
of the sum in~4! are those with smallestq and p, namely,
those reducing to 2rnV*dx dycos2pnqv; dropping the
rest brings~4! to an anisotropic version of the sine-Gordon
problem analyzed by Villain, Grempel, and Lapujoulade6 in
connection with the roughening phase transition of high
Miller index crystal faces.

Lyuksyutov7 considered a Hamiltonian similar to~4! in
the context of the closely related problem of solitons of the
commensurate phase on an elastic substrate; however, the
effects described below were overlooked.

The nonharmonic terms of the Hamiltonian~4! represent
the moirépattern of the step and atom periodicities and can

be understood from a phenomenological point of view. A
short-ranged interaction between the steps and terrace atoms
gives rise to a gradient coupling betweenv andux ~regarding
two systems as continuous media!; the term
2rnV(]v/]x)(]ux/]x) in ~4! is the lowest-order term of this
type. Since each subsystem consists of discrete elementary
objects~steps and atoms! with some average spacing, each
creates an effective periodic potential for the other popula-
tion, and the effect is described by the sum in~4!.

III. CONTINUUM LIMIT

The parameterV entering Eq.~4! can be regarded phe-
nomenologically as the amplitude of the step-atom interac-
tion. However, it is a poorly defined quantity since the steps
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are not objects that can literally exert or experience a force.
The physical meaning ofV can be understood by going to
the continuum limit.

Let us assume that the discreteness effects accumulated in
the sum in~4! can be neglected; later we will find when this
assumption is justified. Then the part of the Hamiltonian~4!
dependent only on the elastic degrees of freedom reads as
follows:

Hel5E
z<0

dx dy dz
1

2 (
i ,k

s ikuik

1rnVE dx dy~]v/]x!~]ux /]x!. ~5!

Let us consider the case that the fieldv depends only on
x—this means that the interface consists of straight steps of
varying density. Introducing Fourier transforms inx accord-
ing to the rulef (x)5*(dk/2p) f (k)expikx, reduces~5! to

Hel /L5E
z<0

dzE dk

2p

1

2 (
i ,k

s i j ~k,z!ui j ~2k,z!

1rnVE dk

2p
k2v~k!u~2k!, ~6!

whereL is the system size in they direction. The coupling
betweenv andux in Eqs. ~5! and ~6! implies that the pres-
ence of a vertical profile]v/]x induces a finite lateral strain
]ux/]x; to eliminate the elastic degrees of freedom from~6!,
we have to solve a two-dimensional elasticity problem~we
ignore for now they dependence! with the boundary condi-
tion ux(k,z50)5u(k). The equations of equilibrium in the
bulk are5

]sxx

]x
1

]sxz

]z
50, ~7a!

]szx

]x
1

]szz

]z
50. ~7b!

Two boundary conditions must be given to determine the
solution uniquely, one of which is the specified value
ux(k,z50)5u(k). In his treatment, Lyuksyutov7 selected as
the second boundary conditionsxz(z50)50, which incor-
rectly asserts the absence of any force parallel to the surface.
We will instead useszz(z50)50 ~no normal force!. It can
be shown that this is equivalent to choosinguz(k,z50) so as
to minimize the elastic energy of the bulk.

Under these conditions Eq.~6! simplifies to

Hel /L5
E

4~12s2!
E dk

2p
ukuu~k!u~2k!

1rnVE dk

2p
k2v~k!u~2k!. ~8!

The uku dependence in the first term of~8! implies a long-
range interaction via the bulk of the crystal. It can be under-
stood as follows: a surface deformation having a wave num-
berk decays in the bulk over a distance of order 1/uku, so that
most of the elastic energy is confined in a well-defined layer
of this thickness; the total energy per unit area can be esti-

mated by multiplying the elastic energy density~quadratic in
k! by the thickness of the layer 1/uku wherein the energy is
accumulated.

The significance of having the elastic energy linear inuku
is that thermal fluctuations do not destroy the long-range
translational order of the atomic positions along the crystal
interface—the surface inherits the long-range order of the
three-dimensional crystal.8 It has an important simplifying
consequence for what follows: fluctuations of the fieldu can
be neglected and their effect is manifested only in the tem-
perature dependence of the elastic constants~assuming that
we are far away from the melting point!.

The elastic degrees of freedom can now be eliminated
from ~8!: this is equivalent to a minimization overu(k) and
subsequent evaluation of~8! at the minimum. This gives us

Hel /L52
12s2

E
~rnV!2E dk

2p
uku3v~k!v~2k! ~9a!

5
n2

2 E dx dx8
]v
]x

U~x2x8!
]v
]x8

~9b!

U~x!5
2~12s2!

pE

~rV!2

x2
as x→`. ~9c!

Equation~9b! describes a nonlocal interaction between the
gradients]v/]x and ]v/]x8 at points separated by the dis-
tanceux-x8u. Since displacement of the steps along the ter-
race gives rise to a vertical shift of the interface, there is a
local surface slopenb ]v/]x ~whereb is the step height!,
and then Eq.~9b! can be interpreted as describing an inter-
action between slopes; in turn, Eq.~9c! has the meaning of
an inverse-square interaction between steps mediated by the
effects of striction1,2,9—the steps of the same sign repel each
other while the steps of opposite signs attract, regardless of
the sign of the parameterV.

Previous continuum treatments1,2 did not determine
uniquely the sign of the interstep interaction for oppositely
oriented steps: the step was treated as a localized surface
force distributionfd8(x) where the vectorf lies in thex–z
plane: f x describes a local stretch of the surface~it is inde-
pendent of the step sign! while f z is a local torque that tends
to twist the crystal~it changes its sign if the step direction
reverses!. The standard way to present the interaction of
steps 1 and 2 separated by a distancex is to write it as1,2

U12~x!5
2~12s2!

pE

f1•f2
x2

, ~9d!

where the vectorsf1 and f2 describe the force distribution
associated with the steps 1 and 2. Comparing this with Eq.
~9c! we conclude that~i! f x50, i.e., there is no local stretch
associated with the step;~ii ! f z5ruVu, i.e., we have identi-
fied the phenomenological parameterV introduced in Eq.
~2!. However, it is also true thatf z5ab where a is the
surface tension of the terrace;1,2 then we can write

ruVu5ab. ~10!

An important feature of~10! that attests to the coherence of
the approach is that there is no dependence on the elastic
properties of the bulk, something that should have been ex-
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pected from the outset. We note that in Eq.~4! the parameter
V also controls the strength of the effects of crystallinity, and
one should be able to describe the problem of the roughening
phase transition of a high Miller index face in the undeform-
able limit using it. This is indeed the case, as taking the
undeformable limit does not affect Eq.~10!.

IV. THE EFFECTS OF CRYSTALLINITY

So far we have neglected the effects of crystallinity accu-
mulated in the sum in Eq.~4!, and now we determine their
importance. In the undeformable limit these effects are un-
important over a wide range of temperatures between the
roughening transition temperature of the terrace and the
roughening phase transition temperature of the vicinal inter-
face. The latter is very low:10,2 a single step is a one-
dimensional object, and thus has its roughening transition
temperature atT50. The nonelastic part of the interstep in-

teraction will make the roughening temperature finite but it
will remain low in the dilute limit. We are always assuming
that the interstep distance is much larger than the period of
the in-plane crystallinity, and therefore from now on we ig-
nore very weak effects of commensurability of interstep
spacingn21 and lattice periodicityr21 along the terrace.

When the crystal is deformable, a surface elastic deforma-
tion can induce its own potential commensurate with the
interstep spacing; the effect will be the strongest when the
period of this potential is the same as that of the step array.
We can determine whether the surface deformation happens
by calculating the system free energy and showing that it is
decreased.

A. Effective Hamiltonian

The instability is implicit in thep5q561 terms of the
sum in ~4!. Dropping the rest we rewrite~4! as follows:

H5E
z<0

dx dy dz
1

2 (
j ,k

s jkujk1
1

2 E dx dy@K1~]v/]x!21K2~]v/]y!212rnV~]v/]x!]ux /]x#

12rnVE dx dy cos@2p~n2r!x2nv1rux#. ~11!

The oscillatory dependence onx in the last term will inte-
grate to zero ifv andux are slowly varying. However, when
there is a static surface distortion

ux5u0~x!5d sin 2p~n2r!x, ~12!

with some small amplituded ~to be determined!, the inte-
grand has a nonoscillatory part that acts like a commensurate
potential for the steps, which can be found by expanding in
powers ofd. There are still oscillatory terms, but these will
be dropped.

The cross-gradient term in~11! couples the distortion of
the lattice~12! to the step array. This shifts the equilibrium
positions of the steps, requiring the introduction of a new
step displacement field

w5v1rnVu0 /K1 , ~13!

which eliminates the term linear in]v/]x.
The distortion ~12! costs elastic energy, which can be

evaluated from the first term of Eq.~8!. There will also be
some change of the elastic energy associated with redistribu-
tion of steps~13!. Putting all this together and neglecting the
fluctuations of the elastic degrees of freedom@see the discus-
sion after Eq.~8!#, we reduce Eq.~11! to the form with
diagonal harmonic part

H5 1
2 E dx dyFK1~]w/]x!21K2~]w/]y!222pr2nVd

3~11n2V/K1!E dx dy cos 2pnw1E dx dyEel~d!,

~14a!

where

Eel~d!5
pEun2ru
2~12s2! F12

2p~rnV!2un2ru~12s2!

K1E
Gd2.

~15a!

The expression in the square brackets of~15a! may become
negative implying an instability even in the continuum limit.

However, the sign and the value of the correction to unity
in ~15a! are not reliable, because the wave number of the
distortion~12! does not belong to the domaink,n, which is
the range of validity of the dependent onv part of the Hamil-
tonian~4!. We will assume that the leading-order terms~in a
small-V limit ! dominate the physical behavior, so that Eqs.
~14a! and ~15a! can be reduced to

H5 1
2 E dx dyFK1~]w/]x!21K2~]w/]y!2

22pr2nuVudE dx dy cos 2pnw1E dx dyEel~d!,

~14b!
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Eel~d!5
pEun2ru
2~12s2!

d2[ 1
2Ad

2, ~15b!

whereA plays a role of generalized elastic constant. In the
prefactor of the cosine term in~14b! we have writtenuVu
instead ofV because the sign of this term can be reversed by
a homogeneous shift of the fieldw. Thus regardless of the
sign of the step-atom interactionV, commensuration of the
step array with the surface deformation lowers the system
energy; this lowering can compensate for the increase of the
elastic energyEel(d). The resulting decrease in the energy
will now be calculated, regardingd to be a fixed parameter.
This gives a free-energy expansion similar to that of the Lan-
dau theory for phase transitions,11 with d being the order
parameter. Then we will discuss the conditions under which
the free-energy minimum occurs for nonzerod.

B. The case of zero temperature

The easiest case to analyze is that of zero temperature
when there are no fluctuations. Puttingw50 in ~14b! and
taking into account~15b! we find the system energy per unit
area as a function of the distortion amplituded:

E~d!5 1
2Ad

222pr2nuVud. ~16!

This expression has a minimum at

deq52pr2nuVu/A ~17!

and the value of the energy at the minimum is

E~deq!522~pr2nuVu!2/A. ~18!

We conclude that in the deformable case~AÞ`! the effects
of crystallinity induce an instability~12! at zero temperature,
for an arbitrarily small magnitude of the interactionV.

C. The nature of distorted state

The energy gain of commensuration in~16! is linear ind,
implying a nonzero generalized force acting on the undis-
torted lattice, which can only be balanced by the elastic re-
storing force at finited. Therefore we can safely conclude
that the distorted state is stable at least at sufficiently low
temperatures~explicit criteria will be derived below!.

In the undeformable limit~ux50! and with no commen-
suration between the interstep spacingn21 and the lattice
periodicity along the terracer21, the Hamiltonian~4! is sym-
metric with respect to an infinitesimal shift of the fieldv. If
n andr are commensurate, then necessarily this symmetry is
broken at zero temperature, and we are inside the flat phase.
However, this effect of commensurability becomes irrelevant
above the corresponding roughening transition temperature,
which is very low. Therefore for an incommensurate ratio
n/r at any temperature or for a commensurate ratio above the
roughening transition temperature of the vicinal interface,
the system is translationally invariant—physically this means
that the step array can be displaced along the terrace without
any energy cost. Moreover, at finite temperature, the step
array can be considered as a two-dimensional classical crys-
tal of lines with only algebraic correlations present,12 and the
steps would wander freely.

For a deformable crystal at sufficiently low temperature
the surface distortion~12! arises spontaneously due to the
strongly relevant cosine term in~14b!. Translational symme-
try in w will be broken, true long-range order of step posi-
tions sets on, and step wandering will be strongly suppressed
on length scales exceeding the correlation lengthsjx andjy ,
which can be estimated~at zero temperature! by expanding
the cosine function to second order inw, and using the ex-
pression~17! for deq:

jxn>~K1 /r
2nuVudeq!1/2>~K1A!1/2/r2nuVu, ~19a!

jyn>~K2 /r
2nuVudeq!1/2>~K2A!1/2/r2nuVu. ~19b!

This would suggest that the distorted state is not qualitatively
different from the ordinary flat phase.2

However, another important feature of the traditional flat
phase is its response to a weak external force:2 at T50 there
is no response at all, while at finite temperature the interface
advances exponentially slowly via a two-dimensional nucle-
ation mechanism. This is not the case for our distorted phase.
The breaking of translational symmetry means that the step
array cannot move relative to the commensurate potential
created by the surface distortion, but these are not rigidly
fixed in space and can move together, for example, under
conditions of crystal growth.

Indeed a translation of the lattice distortion would
correspond to having in ~12! an extra phasew:
ux5d sin 2p@(n2r)x1w#. Then all the transformations fol-
lowing Eq. ~12! can be repeated with the result that the field
w in the argument of the cosine in Eqs.~14! would be re-
placed byw1(w/n). Thus we can shift the position of the
minima of the distortion-induced potential freely with no
cost in energy, allowing the step array itself to move. Thus
without impurities~both on the surface and in the bulk!, the
vicinal interface in the distorted state can grow continuously,
as can the rough vicinal interface in the undeformable limit.2

The difference is that the surface wave~12! moves when the
train of steps does~but with a different velocity, because this
is the moirépattern of steps and atoms; the long-wavelength
part of the induced potential does move with the steps!. This
is rather similar to the physical picture of electronic transport
via charge-density-wave motion in quasi-one-dimensional
materials.13

D. Finite temperatures

To study the case of finite temperature we introduce the
space and field variables

x5x1 , y5x2~K2 /K1!
1/2, nw5W, ~20!

which bring the field-dependent part of the Hamiltonian
~14b! into the standard sine-Gordon form

H/T5
1

2

p

g E d2x~¹W!22dn2E d2x cos2pW, ~21!

where we have introduced the dimensionless parameters

g5
pTn2

~K1K2!
1/2, ~22!
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d5
2pr2uVud

Tn
~K2/K1!

1/2. ~23!

The parameterg ~22! is the ratio of the temperature to a
characteristic energy of the step array. However,g is also the
exponent that describes the algebraic decay of density corre-
lations in the two-dimensional crystal of steps.6

In certain casesg ~22! can be calculated explicitly. The
form of the Hamiltonian~1! implies that the elastic constant
K1 can be expressed in terms of the macroscopic compress-
ibility of the step array

K15n2d2F/dn2, ~24!

whereF(n) is the free energy of the step crystal, while the
constantK2 is the bending rigidity and can be expressed in
terms of the stiffness coefficientg of individual step

K25gn. ~25!

When the underlying interstep interactions decay faster than
1/x2, the free energyF(n) has the small-n expansion2

F~n!5a1bn1p2T2n3/6g1••• , ~26!

whereb is the step free energy. Equations~22!, ~24!, ~25!,
and ~26! lead to theuniversal result g51 first derived
by Schulz14 in the context of the commensurate-
incommensurate transition in two dimensions. The universal
valueg51 can be approached in the vicinal limitn→0 from
both above and below depending on underlying interactions.

If direct interstep interactions contain an inverse-square
tail, then for several special values of the amplitude of the
inverse-square interaction the exponentg has been calculated
by Sutherland15 who found for a marginal attractive case that
g52. For even stronger values of inverse-square attraction
the collection of steps is totally unstable against a collapse
that allows us to argue that the domaing.2 is unphysical.
Therefore for what follows only the range 0<g<2 will be
considered.

The parameterd ~23! is the dimensionless strength of the
commensurate potential induced by the distortion~12!; it is
conveniently regarded as a measure of distortion~12! as it is
linear both ind and uVu.

The evolution of the parameters of the Hamiltonian under
a renormalization-group transformation is given by the Ko-
sterlitz equations16

dd

d
5~22g!

da

a
, ~27a!

dg52g3d2
da

a
, ~27b!

dF52
T2n2

K2
d2

da

a3
, ~27c!

where the last equation describes the contribution to the free
energyF of the short-wavelength degrees of freedom that
have been integrated out. Nonuniversal numerical factors of
order unity dependent on the cutoff procedure have been
dropped from~27b! and ~27c!. Herea is the current length
scale and Eqs.~27! are valid as long asd(a)!1. The mac-

roscopic behavior of the system is determined by the solution
of Eqs.~27! in the limit a→` where the ‘‘initial’’ scalea0 is
set by the interstep distancen21 and the initial value for
d(a05n21) is given by the parameterd ~23!.

As we have already noted, the physically interesting val-
ues ofg belong to the range 0<g<2, and according to~27a!
the induced potentiald(a) is relevantwhenever the param-
eterg is less than 2. Then translational symmetry is broken,
and the thermal fluctuations will be suppressed on scales
exceeding the correlation lengthj, which we will take to be
the scalea at whichd(a)51. For scales less thanj, d(a)!1
and ~for g,2! we can ignore the renormalization ofg de-
scribed by Eq.~27b!. Then the solution to~27a! has the form

d~a!5d~na!22g, ~28!

where we used the initial conditiond(a05n21)5d. This de-
termines the correlation lengthj via the definitiond~a5j!
51:

jn>d21/~22g!5F2pr2uVud
Tn

~K2 /K1!
1/2G21/~22g!

. ~29!

This can be compared with Eq.~19a! by puttingg50 in the
exponent of~29!, leading to the same dependence onr2uVud.
The extra factor (K2/K1)

1/2 in ~29! is unimportant—it is due
to the change of variable~20!, y5x2(K2/K1)

1/2; but there is
a remaining difference in the prefactors of~29! and ~19a!.
This is not too surprising, because the caseT50 is outside
the range of the perturbative renormalization groupd!1, and
merely means that as the temperature goes down, the depen-
dence~29! ~in terms of the original variablesx and y! will
cross over to~19a!. We have no theory for the crossover;
however, the important point is that the exponent of the de-
pendence~29! is reproduced exactly for 0<g,2 already in
the limit d!1. The exponent of~29! diverges approaching
g52 implying an essential singularity; this can be studied
taking into account the renormalization ofg ~27b!.

To find the free-energy gain of commensuration
of the step array and surface distortion~12! we integrate
Eq. ~27c! with d(a)5d(na)22g ~28! from a05n21 to
j5n21d21/(22g) ~29!. Omitting an overall undetermined fac-
tor of order unity, we find for the free energy change

Fcom52
T2n4

K2

1

2~12g!
@d2/~22g!

•d2#. ~30a!

The case ofg51 is obviously marginal; the limit atg51 is

Fcom5
T2n4

K2
d2lnd. ~30b!

Equation~30a! can be compared with the second term of the
zero-temperature result~16!: puttingg50 in the exponent of
~30a!, and remembering thatd ~23! is linear in uVud, we see
that ~30a! and ~16! agree that there is a term in the free
energy that is linear inuVud.

The functional form~30! suggests that it would be more
convenient to regardd ~23! ~instead ofd! as an order param-
eter.
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E. Marginal caseg51

For the marginalg51 case we combine~30b! with ~15b!
and expressd in terms of d ~23!. As a result the Landau
expansion in terms of the order parameterd will have the
form

F~d!5
T2n4

K2
S d2

l2 1d2ln d D , ~31a!

l25
~12s2!r2~rnV!2

Eun2ruK1
. ~31b!

Here the parameterl ~which we assume is very small,l!1!
represents the dimensionless strength of the effects of stric-
tion, and we dropped all the numerical constants of order
unity.

Looking at ~31a! we see that the effects of commensura-
bility ~the d2 ln d term! lower the free energy more than the
elastic energy~proportional tod2! raises it. Equation~31a! is
minimized for

deq5expS 2
1

l22
1

2D>exp~21/l2! as l→0. ~32!

Substituting this into~31a! and ~29! ~evaluated atg51!, we
find

F~deq!>2
T2n4

K2
exp~22/l2!, ~33!

j~deq!n>exp~1/l2!. ~34!

We conclude that the usual rough phase of steps is unstable
against a spontaneous transition into the StDW phase for an
arbitrarily small striction couplingl. The essential singulari-
ties in ~32!–~34! are indicative of the marginal case. In-view
of the zero-temperature results of Sec. IV B we can expect
that forg<1, an arbitrarily small striction coupling turns the
ordinary rough phase of the steps immediately into the StDW
phase. We note that Eqs.~31!–~34! have direct analogs in the
context of the classical treatment of the Peierls effect for free
fermions.17

F. The case ofgÞ1

For gÞ1 we will have instead of~31a!

F~d!5
T2n4

K2
F d2

l22
1

2~12g!
~d2/~22g!2d2!G . ~35!

Minimizing with respect tod we find for the equilibrium
order parameter

deq5F S ~12g!

l2 11D ~22g!G2~22g!/2~12g!

. ~36!

For g51 this reduces to Eq.~32!; for g,1 andl→0 it sim-
plifies to

deq>l~22g!/~12g!. ~37!

Substituting this in~35! and ~29!, we find

F~deq!>2
T2n4

K2
l2/~12g!, ~38!

j~deq!n>l21/~12g!. ~39!

We see that extrapolated to the caseg50, both~38! and~39!
predict the same dependence onV and the elastic constants
of the crystal as do the zero-temperature results~18! and
~21!.

For g.1 Eq. ~36! predicts a finitedeq only for

l2.lc
25g21, ~40!

while for l2<l c
2, the free energy~35! is minimized by

deq50. We conclude that forg.1 and sufficiently weak
striction couplingl2,l c

2, the ordinary rough phase of steps
is stable with respect to the distortion~12!. When the stric-
tion coupling exceeds a critical value~40!, a phase transition
into the StDW phase takes place with exponents that can be
read from Eq.~36!. The critical value~40! is small for g
close to unity, which is within the range of the small-l
theory we have presented. A better theory is necessary to
find critical lc away fromg51; however, we claim that all
the exponents we found so far are exact.

For g approaching 2 we would have to take into account
the renormalization ofg described by Eq.~27b! to find a
meaningful limit of Eq.~35!. However, there are factors that
come into play at smallerg that make this unnecessary. The
nontrivial power@2/~22g!# in the expansion~35! increases
with g and is greater than 2 forg.1. The first term of~35!
~quadratic ind! comes from the harmonic approximation, but
a cubic anharmonicity term proportional tod3 certainly can-
not be neglected for 2/~22g!>3. The presence of a cubic
anharmonicity term in the free-energy expansion implies that
the character of the phase transition between the rough phase
of steps and the StDW phase will change from second order
@as described by~36!# to first order atg around 4/3. The
exact conditions depend on the relative strength of the anhar-
monicity term; usually the effects of anharmonicity are nu-
merically weak so that in any case we expect only a weak
first-order transition.

Figure 1 shows a schematic phase diagram of the system
in terms of the exponentg ~22! versus the dimensionless
striction couplingl2 ~31b!. The solid curve is the second-
order line, while the broken line suggests the locus of the
first-order phase transitions between the rough phase of steps
~shaded area! and StDW phase.

We can now conclude that the continuum treatment of
Sec. III was valid only inside the rough phase.

V. CONCLUSIONS

We have demonstrated that the combined effect of stric-
tion and crystallinity can lead to the existence of a thermo-
dynamic phase of vicinal interfaces, the step-density-wave
phase, analogous to the Peierls phase of one-dimensional
quantum systems, over a wide range of parameters.

The underlying Hamiltonian~4! with some undetermined
phenomenological parameters is valid beyond the vicinal ap-
proximation, and the exponentg ~22! is also a well-defined
quantity, so that we believe that the Peierls mechanism of
distortion can be operative for most crystalline unidirectional
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orientations. In the case we have considered, steps running in
they direction, the geometry implied a unidirectional distor-
tion ~12!. However, a more complicated bidirectional distor-
tion seems possible for more general underlying geometries.
The only case for which the Peierls mechanism of surface
distortion may not be operative is that of the lowest Miller
index interfaces.

Our findings may have relevance to experimentally ob-
served equilibrium crystal shapes. A free-energy expansion
of the form ~26! for the step array in the vicinal limit
implies2 that the macroscopic shape of the curved interface
near a flat edge has the form

y5const3~x2xc!
3/2, ~41!

wherexc is the edge position. Experimental observation of
this dependence is still a subject of controversy: in some
cases, such as equilibrium gold crystals, the intersection of

the facets with the curved areas occurs in the form of sharp
edges.18 Recent precise measurements of the equilibrium
crystal shape of hcp4He crystals19 report on the observation
of a vicinal interface state below a critical step density that
does not support the prediction~41! either.

The cubic term of the free energy expansion~26! comes
from the entropic repulsion of wandering steps. In the StDW
phase step wandering is suppressed and the term cubic in
step densityn may or may not be present. Naively we expect
that in this case the leading contribution to the free energy
that is nonlinear inn would be the total energy gain due to
surface distortion. For example, we found that this contribu-
tion is quadratic inn @see Eq.~18!# for low temperatures,
thus implying that

F~n!5a1bn2const3n2. ~42!

Sàenz and Garcia20 postulated an expansion of this form to
describe the appearance of sharp edges in the equilibrium
shape of small gold crystals in the vicinity of~111! facets.
We note that in the StDW phase the negativen2 term cannot
be interpreted as an effective 1/x attractive interaction be-
tween steps, as it originates from collective effects~there is
no 1/x attraction just between two well-separated steps!.
Moreover, the presence of such interactions has~almost!
been ruled out theoretically21 even though it describes the
experimental data20 well.

We will not claim that the StDW phase can explain these
experimental discrepancies, since we constructed the expan-
sion ~42! by hand. However, it is clear that the StDW phase
has peculiar properties and needs to be further studied. There
is extensive literature on the transitions involving changes in
morphology of vicinal interfaces,22 and maybe this is the
domain where the StDW phase has a chance to be observed.
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