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The combined effect of striction and crystallinity can produce a state for vicinal crystalline interfaces, which
we call the step-density-wavStDW) phase due to its resemblance to the charge-density-wave phase of
one-dimensional conductors. This phase arises due to a spontaneous periodic distortion of the surface com-
mensurate with the steps, which creates a potential that localizes them. In many cases of interest the energy
gain of step localization is greater than the energy cost of the elastic distortion, thus favoring the StDW phase.
There is true long-range translational order of the step positions relative to the surface distortion, which makes
the StDW phase similar to traditional smooth interfaces. The surface distortion and associated step waves are
not fixed rigidly in space, however, but only relative to each other. Therefore, in the absence of pinning by
impurities, the combined system of steps with associated surface elastic distortion can move freely in response
to an external forcéfor example, under crystal growth conditigorso that in this respect it resembles a rough
interface. In this paper we demonstrate the existence of the StDW phase and study the phase transitions
between the rough phase of wandering steps and the StDW j&8@463-182806)07231-]

[. INTRODUCTION induced effective electron-electron interaction is analogous
to the elasticity-mediated interstep interaction found in con-
This paper will study the phase diagram for a vicinal sur-tinuum elasticity theory. We will extend our analogy to
face: a crystal interface having wide terraces of a low Millershow that a vicinal interface of wandering steps can exhibit a
index face separated by elementary steps. These steps indUReierls-like state, driven by a spontaneous surface deforma-
an elastic deformation in the bulk of the crystal, and this intion commensurate with the average interstep spacing, which
turn produces a long-range interaction between the stepswe call thestep-density-wavéStDW) phase.
Since the steps are actually a structure of the crystal, their In Sec. Il we derive a long-wavelength Hamiltonian de-
shape and location are discrete on the scale of the lattice, seribing a vicinal interface on a deformable crystal. In Sec.
that in order to regard them as interacting objects of lineafll we demonstrate how this Hamiltonian describes the con-
topology we will have to introduce a periodic potential at thetinuum limit. In Sec. IV we show how a surface elastic de-
atomic scale. We will show that a combination of the effectsformation can |ower the System free energy: first we ana'yze
of defo.rmability and crystallinity can If—:-ad to a new thermo- 5 low-temperature limit using elementary arguments, and
dynamic state of the crystal surface, in addition to the well-c|aify the nature of the distorted state. Then the case of finite

understood rough and smooth phaSes. temperatures is studied using a renormalization-group ap-
Our insight into the behavior of this system was based o roach, leading to a phase diagram and a discussion of the
an analogy between the steps and the world lines of a one-

. . . X o . ature of the possible phase transitions. Section V presents
dimensional electronic liquid placed in a periodic ion lattice. P P P

This system has the following properties: when the lattice i gtr)]g;sgsspeculatlons on possible experimental relevance of our

undeformable, the quantum system is either a metal or Mo
insulator; the insulating phase occurs when the filling factor
is rational and quantum fluctuations are sufficiently weak.
When the ion lattice is deformable the electron-ion interac-
tion induces an effective electron-electron interaction, and II. LONG-WAVELENGTH HAMILTONIAN
there is another mechanism, first noticed by Pefetdsmake
an insulator out of the one-dimensional quantum system that A vicinal surface will have a set of on average parallel
does not depend on having a rational filling factor: the latticeand uniformly spaced steps of linear density We will
distorts spontaneously so that it is modulated at the Fermihoose a coordinate system such that the average slope is
wave vector, creating a commensurate potential for the ele@longx (the steps are parallel 49, and the outward normal
trons. is the z direction. We will describe the conformation of the

In our analogy, the quantum fluctuations of the electronsnmth step(regarded as a continuous linear objéatated near
are equated to the thermal fluctuations of the steps, the metakm/n by its displacement (x,y) in the x direction. The
is equivalent to the rough phase of the wandering steps, aretoms in the crystal are displaced from the lattice sitds
the Mott insulator becomes the flat phase in which the stepkattice spacingp™?) by a displacement fieldi(x,y,z). The
are locked in by in-plane periodicity. The deformation- interacting steps are described by a Hamiltonian of the form
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1 ) ) ness coefficient&; andK,. The Hamiltonian(1) is valid on
Hsteps=5 f dx dy[K1(dv/dx)“+Ky(dvldy)“] scales that exceed the mean interstep distanceprovided
that step wandering is smalldv/dx|,|dv/dy|<1) and that

the temperaturd is below the roughening phase transition
+j dyj% Vim/n+v(m/n,y) temperature of the terrace. This Hamiltonian can be put into
_ _ continuum form by representing the sums using the Poisson
—ilp=uxjlp,y,z=0)], (1) sum rule* which replacesn/n—x, j/p—x’, while keeping

whereV(x) is a function that represents the effects of atom-track of the higher Fourier components of the sum. Assum-
icity: it attempts to align themth step with thejth atomic ~ ing the integralV=J”_V(x)dx is finite allows us to ap-
row on the surface. The gradient part(@f describes a trans- ProximateV(x) =V4(x), thus giving in the long-wavelength
lationally invariant anisotropic interface with positive stiff- limit

1
Hsieps™ 5 f dx dy[K(dvlax)?+Ky(dvldy)?]

+pnVY, | dx dy[1—(dv/dx)][1—(duy/dx)]exp2mi[(ng—pp)X—nguv + ppuy]. )
p.q

The combination®i[1— (dv/dx)] and p[1—(du,/dx)] in (2) describe how the displacements alter density of steps and atoms.
The p=qg=0 term of the sun{2) contains a term independent of the derivativesox anddu,/dx, as well as terms linear

in them. These terms can be dropped: xheéerivatives of the fields andu, represent the fluctuations in the step and atom

density about homogeneity, and so we must impabe dy(dv/dx) = fdx dy(du,/dx)=0 if the step and atom density are to

be correctly specified by and p, respectively. Then

1
Hsieps™ 5 f dx Ay K, (dvldx)%+Ky(dvldy)2+ 2pnV(dvl dx) du, /9]

+pnVY," | dx dyexp2mi[(ng—pp)x—ngu+ppuy], &)
p.q

where the symboE’ means that the terms correspondingpte =0 have been removed from the sum. Finally we have to
take into account elastic deformation in the bulk of the crystal induced by the coupling with the step displacementfield
corresponding energy is given by, = [,<odx dy dZ3; (oiUi, whereo;, andu;, are the components of the stress and
strain tensors respectively, and are related by Hooke’s law=[E/(1+ o)][ uj+ o/(1— 20)2,u;; 6] with E and o being
Young's modulus and Poisson’s ratio, respectively. Combitig, with (3) we get the total Hamiltonian of the system

1 1
Hzf dx dy dzz > ot 5 f dx dy[Ky(dvlax)2+Ky(dvldy)2+ 2pnV(dvl dx) duy  ox]
z<0 ik

ﬂLanpZ,1 'f dx dyexp2wi[(ng—pp)X—nNqu + ppUy]. (4

When the interstep distancé * is commensurate with the be understood from a phenomenological point of view. A
lattice periodicityp ! in the x direction (i.e., nq=pp) and  short-ranged interaction between the steps and terrace atoms
the crystal is undeformabl@l,=0), the most relevant terms gives rise to a gradient coupling betwaeandu, (regarding
of the sum in(4) are those with smallegi andp, namely, two systems as continuous megia the term
those reducing to 2nVfdx dycos2rnqu; dropping the 2pnV(dv/dx)(du,/dx) in (4) is the lowest-order term of this
rest brings(4) to an anisotropic version of the sine-Gordon type. Since each subsystem consists of discrete elementary
problem analyzed by Villain, Grempel, and Lapujoulbite  objects(steps and atomswith some average spacing, each
connection with the roughening phase transition of highcreates an effective periodic potential for the other popula-
Miller index crystal faces. tion, and the effect is described by the sum4in

LyuksyutoV considered a Hamiltonian similar @) in
the context of the closely related p.roblem of solitons of the Il CONTINUUM LIMIT
commensurate phase on an elastic substrate; however, the
effects described below were overlooked. The parameteV entering Eq.(4) can be regarded phe-

The nonharmonic terms of the Hamiltonié#) represent nomenologically as the amplitude of the step-atom interac-
the moirepattern of the step and atom periodicities and cartion. However, it is a poorly defined quantity since the steps
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are not objects that can literally exert or experience a forcemated by multiplying the elastic energy dendiggadratic in
The physical meaning of can be understood by going to k) by the thickness of the layer|k| wherein the energy is
the continuum limit. accumulated.

Let us assume that the discreteness effects accumulated in The significance of having the elastic energy linealkin
the sum in(4) can be neglected; later we will find when this is that thermal fluctuations do not destroy the long-range
assumption is justified. Then the part of the Hamiltoni{dn translational order of the atomic positions along the crystal
dependent only on the elastic degrees of freedom reads asterface—the surface inherits the long-range order of the

follows: three-dimensional crystlit has an important simplifying
1 consequence for what follows: fluctuations of the figldan
_ - . be neglected and their effect is manifested only in the tem-
Her= Lgodx dy dZZ % TikUik perature dependence of the elastic constémsuming that

we are far away from the melting pojnt

The elastic degrees of freedom can now be eliminated
from (8): this is equivalent to a minimization ovei(k) and
subsequent evaluation @8) at the minimum. This gives us

+pnvf dx dy(dv/aox)(duy/ox). (5)

Let us consider the case that the fielddepends only on
x—this means that the interface consists of straight steps of 2

- dk
varying density. Introducing Fourier transformsxraccord- Hel/L=— 7 (an)Zf — |k|*v(k)v(—k) (93
ing to the rulef (x) = [ (dk/27) f(k)expikx, reducess) to E 2m
dk 1 n? v v
He|/L=Lsodz 55% oij(k,2)u;;(—k,2) = f dx dx o VX=X = (9b)
dk 2(1—0?) (pV)?
—_— 2 — = —
+anf o kv (k)u(—k), (6) U(x)= — 2 asx—x. (90

wherelL is the system size in thg direction. The coupling Equation(9b) describes a nonlocal interaction between the
betweenv andu, in Egs.(5) and (6) implies that the pres- gradientsiv/dx and dv/dx’ at points separated by the dis-
ence of a vertical profil@v/dx induces a finite lateral strain tance|x-x’|. Since displacement of the steps along the ter-
du,/ dx; to eliminate the elastic degrees of freedom fr@)  race gives rise to a vertical shift of the interface, there is a
we have to solve a two-dimensional elasticity probleme |ocal surface slopa@b dv/dx (whereb is the step height
ignore for now they dependencewith the boundary condi- and then Eq(9b) can be interpreted as describing an inter-
tion u,(k,z=0)=u(k). The equations of equilibrium in the action between slopes; in turn, E@c) has the meaning of

bulk are an inverse-square interaction between steps mediated by the
effects of strictior>>—the steps of the same sign repel each
% aszzo (7a other while the steps of opposite signs attract, regardless of
Ix gz the sign of the parametat.

Previous continuum treatmenhfs did not determine
uniguely the sign of the interstep interaction for oppositely
oriented steps: the step was treated as a localized surface
. , , force distributionf§’ (x) where the vectof lies in thex—z
Two boundary conditions must be given to determine theplane:fx describes a local stretch of the surfdieis inde-
solution uniquely, one of which is the specified value nengent of the step sigmvhile f, is a local torque that tends
u,(k,z=0)=u(k). In his treatment, Lyuksyutdiselected as 4 yyist the crystal(it changes its sign if the step direction

the second boundary conditian(z=0)=0, which incor- o\ erser The standard way to present the interaction of
rectly asserts the absence of any force parallel to the surfacgteps 1 and 2 separated by a distands to write it ad?
We will instead user,(z=0)=0 (no normal forcg It can

be shown that this is equivalent to choosingk,z=0) so as 2(1—a?) f;-f,
to minimize the elastic energy of the bulk. Uia(Xx)= 7 (9d)
Under these conditions E¢6) simplifies to

o N o _
ox 0z

0. (7b)

7E X

where the vector$, and f, describe the force distribution
associated with the steps 1 and 2. Comparing this with Eq.
(9¢) we conclude thati) f,=0, i.e., there is no local stretch
dk associated with the stefij) f,=p|V/|, i.e., we have identi-

2t 2 _ fied the phenomenological parame¥rintroduced in Eg.
+anf 2w Kolku(—k). ® (2). However, it is also true that,=ab where « is the
surface tension of the terraéé;then we can write

E dk
He|/|-:4(1—_027 f pye [klu(k)u(—k)

The |k| dependence in the first term ¢8) implies a long-
range interaction via the bulk of the crystal. It can be under- p|V|=ab. (10)
stood as follows: a surface deformation having a wave num-

berk decays in the bulk over a distance of orddk(l/so that ~An important feature of10) that attests to the coherence of
most of the elastic energy is confined in a well-defined layethe approach is that there is no dependence on the elastic
of this thickness; the total energy per unit area can be estproperties of the bulk, something that should have been ex-
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pected from the outset. We note that in E4).the parameter teraction will make the roughening temperature finite but it
V also controls the strength of the effects of crystallinity, andwill remain low in the dilute limit. We are always assuming
one should be able to describe the problem of the rougheninipat the interstep distance is much larger than the period of
phase transition of a high Miller index face in the undeform-the in-plane crystallinity, and therefore from now on we ig-
able limit using it. This is indeed the case, as taking thenore very weak effects of commensurability of interstep

undeformable limit does not affect E(LO). spacingn ! and lattice periodicity ! along the terrace.
When the crystal is deformable, a surface elastic deforma-
IV. THE EFFECTS OF CRYSTALLINITY tion can induce its own potential commensurate with the

o interstep spacing; the effect will be the strongest when the
So far we have neglected the effects of crystallinity acCuperiod of this potential is the same as that of the step array.
mulated in the sum in Eq4), and now we determine their \ve can determine whether the surface deformation happens

?mportance. In the gndeformable limit these effects are Unpy calculating the system free energy and showing that it is
important over a wide range of temperatures between thgegcreased.

roughening transition temperature of the terrace and the
roughening phase transition temperature of the vicinal inter-
face. The latter is very low?? a single step is a one-
dimensional object, and thus has its roughening transition The instability is implicit in thep=q= *=1 terms of the
temperature al =0. The nonelastic part of the interstep in- sum in(4). Dropping the rest we rewritel) as follows:

A. Effective Hamiltonian

1 1
H=f dx dy dz; > Tiljct 5 j dx dy[Kq(dvlax)%+Ky(avldy)?+2pnV(dvl 9x) duy/ 9X]
z<0 .k

+2anJ dx dyco§2n(n—p)x—nv+puy]. (11

The oscillatory dependence onin the last term will inte- L ) ) )
grate to zero i andu, are slowly varying. However, when H= Ef dx dy Ky(aw/9x)“+Ky(dwldy)“—2mp“nVd
there is a static surface distortion

><(1+n2V/K1)f dx dy cos 2zrnw+j dx dyZg(d),
Uy=Ug(X)=d sin 27 (n—p)X, (12 (143

with some small amplitudel (to be determined the inte- where

grand has a nonoscillatory part that acts like a commensurate

2 2
potential for the steps, which can be found by expanding in ¢ )— 7E[n—p| [ _2@(pnV)in—p|(1-0o )}dz.
powers ofd. There are still oscillatory terms, but these will ~ °© 2(1-0%) KiE
be dropped. (159

The cross-gradient term i(l1) couples the distortion of
the lattice(12) to the step array. This shifts the equilibrium
positions of the steps, requiring the introduction of a new’®
step displacement field

The expression in the square bracketg1ida may become
gative implying an instability even in the continuum limit.
However, the sign and the value of the correction to unity
in (159 are not reliable, because the wave number of the
distortion(12) does not belong to the domaka<n, which is

the range of validity of the dependent ompart of the Hamil-
tonian(4). We will assume that the leading-order tertirsa
smallV limit) dominate the physical behavior, so that Egs.
(143 and (159 can be reduced to

w=v+pnVuy/Ky, (13

which eliminates the term linear ifv/dx.

The distortion(12) costs elastic energy, which can be
evaluated from the first term of E¢8). There will also be
some change of the elastic energy associated with redistribu-
tion of stepq13). Putting all this together and neglecting the
fluctuations of the elastic degrees of freedm®e the discus- —27Tp2n|v|df dx dycos 2rnw+ f dx dyEq(d),
sion after Eq.(8)], we reduce Eq(11l) to the form with
diagonal harmonic part (14b

H:%j dx dy{Kl(aw/aX)ZJr Ka(awl dy)?
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7E[n—p| o 1 For a deformable crystal at sufficiently low temperature
Eel(d)= 2(1=0?) d°=3Ad", (15b  the surface distortior{12) arises spontaneously due to the

strongly relevant cosine term {i4b). Translational symme-
whereA plays a role of generalized elastic constant. In thetry in w will be broken, true long-range order of step posi-
prefactor of the cosine term ifl4b) we have written|V| tions sets on, and step wandering will be strongly suppressed
instead ofV because the sign of this term can be reversed bpn length scales exceeding the correlation lengfrend ¢, ,
a homogeneous shift of the field. Thus regardless of the which can be estimatetht zero temperatuyeoy expanding
sign of the step-atom interactiov, commensuration of the the cosine function to second orderwn and using the ex-
step array with the surface deformation lowers the systenpression(17) for dgg:
energy; this lowering can compensate for the increase of the

elastic energyé,(d). The resulting decrease in the energy &n=(K1/p®n|V]deg*=(K;A)¥p?n|V|, (193
will now be calculated, regarding to be a fixed parameter.
This gives a free-energy expansion similar to that of the Lan- En=(Ky/p?n|V|dey %= (K,A) Y4 p%n|V]. (19D

dau theory for phase transitiohswith d being the order
parameter. Then we will discuss the conditions under whic
the free-energy minimum occurs for nonzeto

Hl'his would suggest that the distorted state is not qualitatively
different from the ordinary flat phage.
However, another important feature of the traditional flat
phase is its response to a weak external féraeT =0 there
is no response at all, while at finite temperature the interface
The easiest case to analyze is that of zero temperatuavances exponentially slowly via a two-dimensional nucle-
when there are no fluctuations. Putting=0 in (14b) and  ation mechanism. This is not the case for our distorted phase.
taking into account15b) we find the system energy per unit The breaking of translational symmetry means that the step

B. The case of zero temperature

area as a function of the distortion amplitudie array cannot move relative to the commensurate potential
created by the surface distortion, but these are not rigidly
E(d)=%Ad2—277p2n|V|d. (16) fixed in space and can move together, for example, under

conditions of crystal growth.
Indeed a translation of the lattice distortion would
correspond to having in(12) an extra phase ¢:

This expression has a minimum at

— 2
deq=2mp"n|V|/A 17 u,=d sin 2a{(n— p)x+¢]. Then all the transformations fol-
and the value of the energy at the minimum is lowing Eqg.(12) can be repeated with the result that the field
w in the argument of the cosine in Eq4.4) would be re-
E(deg=—2(mp?n|V|)2A. (18)  Pplaced byw+(¢/n). Thus we can shift the position of the

minima of the distortion-induced potential freely with no
We conclude that in the deformable cdge*x) the effects cost in energy, allowing the step array itself to move. Thus
of crystallinity induce an instability12) at zero temperature, without impurities(both on the surface and in the bylkhe

for an arbitrarily small magnitude of the interactidh vicinal interface in the distorted state can grow continuously,
as can the rough vicinal interface in the undeformable lfmit.
C. The nature of distorted state The difference is that the surface waie?) moves when the
] o ) train of steps doeéut with a different velocity, because this
The energy gain of commensuration(it6) is linear ind, 5 the moirepattern of steps and atoms: the long-wavelength

implying a nonzero generalized force acting on the undispart of the induced potential does move with the stephis
torted lattice, which can only be balanced by the elastic rejs rather similar to the physical picture of electronic transport

storing force at finited. Therefore we can safely conclude yig charge-density-wave motion in quasi-one-dimensional
that the distorted state is stable at least at sufficiently lowyaterialst?

temperaturegexplicit criteria will be derived beloyw

In the undeformable limitu,=0) and with no commen-
suration between the interstep spacimg' and the lattice
periodicity along the terrace %, the Hamiltonian(4) is sym- To study the case of finite temperature we introduce the
metric with respect to an infinitesimal shift of the fieldIf =~ space and field variables
n andp are commensurate, then necessarily this symmetry is
broken at zero temperature, and we are inside the flat phase. X=X1, Y=X(Ko/K)Y% nw=W, (20
However, this effect of commensurability becomes irrelevant
above the corresponding roughening transition temperatur
which is very low. Therefore for an incommensurate ratio
n/p at any temperature or for a commensurate ratio above the 1
roughening transition temperature of the vicinal interface, H/T=-12 f dzx(VW)Z—énzf dx cos2rW, (21)
the system is translationally invariant—physically this means 29
that the step array can be displaced along the terrace Withouth . . .
any energy cost. Moreover, at finite temperature, the steﬁ’ ere we have introduced the dimensionless parameters

array can be considered as a two-dimensional classical crys-

D. Finite temperatures

hich bring the field-dependent part of the Hamiltonian
14b) into the standard sine-Gordon form

2

tal of lines with only algebraic correlations preséhand the g= an (22)
steps would wander freely. (K1K2)
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277p2|V|d 2 roscopic behavior of the system is determined by the solution
=5 (K/KY™ (23 of Egs.(27) in the limit a— where the “initial” scalea, is
set by the interstep distange ! and the initial value for
The parameteg (22) is the ratio of the temperature to a §ao=n"1) is given by the parametet (23).

characteristic energy of the step array. Howeyes also the As we have already noted, the physically interesting val-
exponent that describes the algebraic decay of density corretes ofg belong to the range9g=<2, and according t¢279
lations in the two-dimensional crystal of stéps. the induced potentiad(a) is relevantwhenever the param-

In certain caseg (22) can be calculated explicitly. The eterg is less than 2. Then translational symmetry is broken,
form of the Hamiltonian(1) implies that the elastic constant and the thermal fluctuations will be suppressed on scales
K, can be expressed in terms of the macroscopic compresexceeding the correlation lenggh which we will take to be
ibility of the step array the scalea at which §(a) =1. For scales less thah &a) <1

- ) and (for g<2) we can ignore the renormalization gfde-
Ki=n“d“F/dn, (24 scribed by Eq(27b). Then the solution t6278 has the form

whereF(n) is the free energy of the step crystal, while the
constantk, is the bending rigidity and can be expressed in s(a)=8(na)* 9, (28
terms of the stiffness coefficient of individual step
where we used the initial conditiof(a,=n"')=4. This de-
K,=yn. (250  termines the correlation length via the definition&(a=¢)

L . . =1:
When the underlying interstep interactions decay faster than

1/x?, the free energ¥ (n) has the smalk expansiof 2p?V[d _1z-g)

én=gs Y2 9= T (K, /K )2 . (29

F(n)=a+ Bn+72T2n%6y+--- , (26)
where 8 is the step free energy. Equatio(®2), (24), (25),
and (26) lead to theuniversal result g=1 first derived
by Schul2* in the context of the commensurate-
incommensurate transition in two dimensions. The univers

valueg=1 can be approached 'in the vicinal Ii.rmit—?o from' a remaining difference in the prefactors @9) and (193.
both above and below deper_ldlng on “f?de”y'_”g INteractionSry;iq s not too surprising, because the case0 is outside
If direct interstep interactions contain an inverse-square, . range of the perturbative renormalization grét, and

tail, then for several special values of the ampliiude of themerely means that as the temperature goes down, the depen-
inverse-square interaction the expongititas been calculated dence(29) (in terms of the original variables andy) wil

by Sutherlantf who found for a marginal attractive case that cross over to(193. We have no theory for the crossover;

g=2. For even stronger values of inverse—sq_uare attraCtioﬂowever, the important point is that the exponent of the de-
the collection of steps is totally unstal_ale against a C_:OIIapS%endence(Zg) is reproduced exactly for6g<2 already in
thr?t aiclowsf us t?] argf;ulia that ﬂ}e dhomagn>2 IS inphy”ygal. the limit 5<1. The exponent of29) diverges approaching
Therefore for what follows only the range<gy=<2 will be g=2 implying an essential singularity; this can be studied

considered. s o
. . . taking into account the renormalization @f(27b).
The parameted (23) is the dimensionless strength of the Tog find the free-energy gain o? (cor21mensuration

commensurate potential induced by the distortid8); it is of the step array and surface distortiéh?) we integrate

conveniently regarded as a measure of distorti® as it is Eq. (270 with 8(a)=56(na)2 9 (28) from aozn—l to

linear both ind and|V]. o =n"15 Y279 (29). Omitting an overall undetermined fac-
The evol_uthn of the parameters O.f th(_e Ha}mlltoman undetor of order unity, we find for the free energy change

a renormalization-group transformation is given by the Ko-

sterlitz equation®

This can be compared with E¢L9a by puttingg=0 in the

exponent 0f29), leading to the same dependencepdiv|d.
he extra factor K,/K;)*2in (29) is unimportant—it is due
o the change of variabl0), y=x,(K./K,;)¥? but there is

Foom=— LAl [67279). 57] (30a
dé da com K, 2(1—9) ’
—=(2-9 —, (279
The case ofy=1 is obviously marginal; the limit ag=1 is
da
dg=-g%8* —, (27b) T2n*
a Feomi=—— 6Iné. (30b)
K2
T?n?  da
dF=- K, o Pk (279 Equation(30a can be compared with the second term of the

zero-temperature result6): puttingg=0 in the exponent of
where the last equation describes the contribution to the fre€80a), and remembering that (23) is linear in|V|d, we see
energy F of the short-wavelength degrees of freedom thatthat (309 and (16) agree that there is a term in the free
have been integrated out. Nonuniversal numerical factors afnergy that is linear ifVv|d.

order unity dependent on the cutoff procedure have been The functional form(30) suggests that it would be more
dropped from(27b) and (270). Herea is the current length convenient to regard (23) (instead ofd) as an order param-
scale and Eq927) are valid as long a$(a)<1. The mac- eter.
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E. Marginal caseg=1

For the marginab=1 case we combin&0b) with (15b
and expresdl in terms of § (23). As a result the Landau
expansion in terms of the order paramegewill have the
form

T2n4 2 )
F(8)= < 2+ on 5), (31a
_ 2\ 2 2
)\22(1 a“)p“(pnV) (31b)

E[n—p[Ky

Here the parametex (which we assume is very smal<1)
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T2n4
Floed ==~ A1), (39
E(Segn=\"H170), (39

We see that extrapolated to the cgse0, both(38) and(39)
predict the same dependence \érand the elastic constants
of the crystal as do the zero-temperature res(® and
(22).

For g>1 Eq. (36) predicts a finited,q only for

A2>N2=g—1, (40)

while for A\?<\?2, the free energy(35) is minimized by

represents the dimensionless strength of the effects of stri@eq:o_ We conclude that fog>1 and sufficiently weak
tion, and we dropped all the numerical constants of ordestriction coupling\?<\ 2, the ordinary rough phase of steps

unity.

is stable with respect to the distortigh2). When the stric-

_Looking at(31a we see that the effects of commensura-tion coupling exceeds a critical vali¢40), a phase transition
bility (the 6% In & term) lower the free energy more than the into the StDW phase takes place with exponents that can be

elastic energyproportional tod®) raises it. Equatioti31a is
minimized for

1 1
Seq™ exp( -z 5) =exp(—1/\?) asA—0. (32

Substituting this intd31g and (29) (evaluated ag=1), we
find

24
F(Segd=— K exp(— 2/\?), (33
2
E(Segn=exp(1\?). (34)

read from Eq.(36). The critical value(40) is small forg
close to unity, which is within the range of the small-
theory we have presented. A better theory is necessary to
find critical A, away fromg=1; however, we claim that all
the exponents we found so far are exact.

For g approaching 2 we would have to take into account
the renormalization ofy described by Eq(27b to find a
meaningful limit of Eq.(35). However, there are factors that
come into play at smallgg that make this unnecessary. The
nontrivial power[2/(2—g)] in the expansion(35) increases
with g and is greater than 2 fagg>1. The first term 0f(35)
(quadratic ind) comes from the harmonic approximation, but
a cubic anharmonicity term proportional & certainly can-
not be neglected for Z—g)=3. The presence of a cubic

We conclude that the usual rough phase of steps is unstablgharmonicity term in the free-energy expansion implies that
against a spontaneous transition into the StDW phase for afe character of the phase transition between the rough phase
arbitrarily small striction coupling.. The essential singulari- f steps and the StDW phase will change from second order
ties in (32)—(34) are indicative of the marginal case. In-view [as described by36)] to first order atg around 4/3. The

of the zero-temperature results of Sec. IV B we can expecixact conditions depend on the relative strength of the anhar-
that forg=<1, an arbitrarily small striction coupling turns the monicity term; usually the effects of anharmonicity are nu-

phase. We note that E(81)—(34) have direct analogs in the fjrst-order transition.

context of the classical treatment of the Peierls effect for free

fermions®’
F. The case ofg#1
For g#1 we will have instead o313

52 1
N 2(1-g) !

T2n4
Kz

F(6)=

52279 — 52)}. (35)

Minimizing with respect toé we find for the equilibrium
order parameter

((1—9) 1

eq— (2—9) (36)

—(2-9)/2(1-9)
A }

For g=1 this reduces to Eq32); for g<1 and\—0 it sim-
plifies to
o=\ 27010,

37
Substituting this in(35) and(29), we find

Figure 1 shows a schematic phase diagram of the system
in terms of the exponeng (22) versus the dimensionless
striction couplingA? (31b). The solid curve is the second-
order line, while the broken line suggests the locus of the
first-order phase transitions between the rough phase of steps
(shaded argaand StDW phase.

We can now conclude that the continuum treatment of
Sec. Il was valid only inside the rough phase.

V. CONCLUSIONS

We have demonstrated that the combined effect of stric-
tion and crystallinity can lead to the existence of a thermo-
dynamic phase of vicinal interfaces, the step-density-wave
phase, analogous to the Peierls phase of one-dimensional
guantum systems, over a wide range of parameters.

The underlying Hamiltoniat4) with some undetermined
phenomenological parameters is valid beyond the vicinal ap-
proximation, and the exponengt(22) is also a well-defined
quantity, so that we believe that the Peierls mechanism of
distortion can be operative for most crystalline unidirectional
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/\i\
At

FIG. 1. Schematic phase diagram of the system in terms of the
correlation exponeng (22) vs the dimensionless strength of the
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the facets with the curved areas occurs in the form of sharp
edges® Recent precise measurements of the equilibrium
crystal shape of hcfHe crystals® report on the observation

of a vicinal interface state below a critical step density that
does not support the predictigdl) either.

The cubic term of the free energy expansi@6) comes
from the entropic repulsion of wandering steps. In the StDW
phase step wandering is suppressed and the term cubic in
step densityy may or may not be present. Naively we expect
that in this case the leading contribution to the free energy
that is nonlinear im would be the total energy gain due to
surface distortion. For example, we found that this contribu-
tion is quadratic inn [see Eq.(18)] for low temperatures,
thus implying that

F(n)=a+ Bn—constx n®. (42)

striction coupling\® (31b). The shaded area corresponds to theSzenz and Garcfd postulated an expansion of this form to
ordinary rough phase of steps. The rest is the step-density-wavgescribe the appearance of sharp edges in the equilibrium
phase. The solid part of the phase transition line corresponds to tl"gnape of small gold crystals in the vicinity ¢f11) facets.
second-order phase transition, and the broken line is a weak firs{y/e note that in the StDW phase the negaﬁ,\%&erm cannot

order transition.

be interpreted as an effectivexlattractive interaction be-
tween steps, as it originates from collective effethere is

orientations. In the case we have considered, steps running fy) 1x attraction just between two well-separated steps

they direction, the geometry implied a unidirectional distor-
tion (12). However, a more complicated bidirectional distor-

Moreover, the presence of such interactions felsnos)
been ruled out theoreticafly even though it describes the

tion seems possible for more general underlying geometrie%xperimental daf8 well.

The only case for which the Peierls mechanism of surface \ye will not claim that the StDW phase can explain these
distortion may not be operative is that of the lowest Miller experimental discrepancies, since we constructed the expan-

index interfaces.

sion (42) by hand. However, it is clear that the StDW phase

Our findings may have relevance to experimentally 0b1,45 peculiar properties and needs to be further studied. There
served equilibrium crystal shapes. A free-energy expansiofy eytensive literature on the transitions involving changes in

of the form (26) for the step array in the vicinal limit
implies’ that the macroscopic shape of the curved interfac

near a flat edge has the form

312
)5

y=constX (Xx—Xx (41

morphology of vicinal interface€ and maybe this is the

®lomain where the StDW phase has a chance to be observed.
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