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Theory of optical spectra of exciton condensates

H. Chu and Y. C. Chang
Department of Physics and Materials Research Laboratory, University of lllinois at Urbana-Champaign,
1110 West Green Street, Urbana, lllinois 61801-3080
(Received 27 December 1995

We present theoretical calculations of optical absorption-gain spectra for condensed excitons in both three
dimensional(3D), 2D, and quasi-2D systeniappropriate for semiconductor quantum wels functions of
the electron-hole pair density and temperature. The ladder diagram contribution to the vertex fi@xdiimm
effecy is included in our calculation. We found that fluctuations cannot destroy the condensation of excitons in
2D at finite temperatures as opposed to a theory of free bosons and the case of Cooper pairs in superconduc-
tivity. Such a difference is attributed to the fact that electrons and holes carry opposite charges as opposed to
the same charges carried by the Cooper pairs in the case of superconductivity. Our studies show that the
effects of exciton Bose condensation on the absorption-gain spectra remain present for temperatures up to
130 K for a 2D system with exciton binding energy of 30-40 m&ppropriate for ZnSe systeims
[S0163-182696)08531-1

[. INTRODUCTION then calculate optical absorptiggain spectra including the
exciton effect for 3D, 2D, and quasi-2D syste(appropriate
Recently there has been renewed interest in Bose-Einstefar semiconductor quantum wellsFinally we will show that
condensations generated by the observation of such phenoffiictuations cannot destroy the condensation of excitons in
ena in exciton systerhand atomic systerisvith very weak 2D at finite temperature as opposed to a theory of free
interboson interactions. The condensation of composit®0sons and the case of Cooper pairs in superconductivity.
bosons is thoroughly studied for Cooper pairs in the phenomSuch a difference is attributed to the difference in the signs
ena of superconductivityand of excitons in optically excited Of carrier charges, electrons and holes are oppositely charged
Semiconductoréfg Qua”tative behavior of exciton con- in contrast to the case of Superconductivity where we have
densed systems has been analyzed in the high- and low-spin electrons and down-spin electrons. This leads to the
density limits. However, a realistic quantitative study of ex-difference in the interparticle interactions.
citon condensations at finite temperature is still lacking. This
is of particular importance in light of recent advances of Il. BCS THEORY FOR EXCITONS
semiconductor lasers in the blue-green rediimewhich the ) ]
exciton condensation will play a role in the lasing mecha- In the BCS theory, the inverse of the Green's function
nism at least at lower temperatures 100 K). The gap equa- for electrons and holes in the exciton system is written in the
tion for ideal two-dimensional 2D and quantum wejuasi- 22 matrix form
2D) systems aff=0 has been solved numerically in Ref.7.

Recently, Flafteet al. studied the optical properties @it=0 ko— €1(K) — Ay
without including the exciton effectin this paper, we not G ko, k)= , 1)
only consider the finite-temperature effects but also include —Ay Ko+ €2(k)

the exciton effectladder diagram contribution to the vertex where ko,k denote the frequency and wave vector,

function) in calculating the optical spectra. It is found that c _ _ _ =

. . e L - e1(K)=ge.(k)— uq and e;x(k)=ep(k) — u, are the electron
e e 0ecTPL G hle enerincludin e seleneiy correctpmes:

. sured with respect to their corresponding chemical poten-
densate exists. tials and respectivelyA, is the off-diagonal part of
Our calculation is based on the BCS mean-field theory i lel K2, g (k i " denendent
which the phase symmetry is broken; i.e., the condensatnl.je self-energy matriz. (k), which 1S reqL_Jenc_ym_lepen en
state is a superposition of states with different particle numi” the Hart_r ee-Fogk mean-field approx_lmatlofa. (ko.k) .
bers. In optically excited semiconductor systems, the numbel?ecomes diagonalized under the Bogoliubov transformation.
of electron-hole pairs does not have to be conserved, while
the total number of electrons is conserved. In this case the G_l(kO:k):Ul(kO_55k_Ek73)Ukv 2
symmetry breaking is induced by the optical field. It has
been shown that the effect of the external optical pump fieldvhere e,=[€;(k)+ €,(k)1/2, dex=[€1(k)— ex(k)]/2, Eﬁ
is to introduce equivalent chemical potential under the so=e2+ A2 is the renormalized energy, akht is the transfor-
called rotating-wave approximation, though the validity of mation matrix defined as
such an approximation may be questionable.
We shall first solve the gap equation for 2D systems with

: » . . - T
different densities with a wide range of temperatures. We Uk=UxTo—vkT2, Ug=UxTot kT2,
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with u2—v2= e /Ey, 2uwy=A/Ey. €, e, Ay, p1, and  terms of their average and difference. Together with the gap
u, are to be determined from the gap equation selfequation, which is obtained from equating the off-diagonal
consistently. Here we introduce the notationg=1, parts in Eq.(3), we obtain the complete set of self-consistent
T\ =Ty, T3=T,, and7,=—i7,, wherer,, 7,, andr, are  equations:
the usual Pauli matrices. f,#0 the symmetry is broken.
To make our theory applicable for both superconductivity 1 €
. : s o M q
and exciton condensation, we adopt the following general€x= ek—g—% Vs(k=q)1 1= [1=ny(@) =@z,
q

form (in terms of the Nambu notationg$or the interaction ©6)
Hamiltonian,
! W e Se= 50— S+ =3 Velk—q)ny(@)-ny(@], ()
Hin=53 [ dx dy Vo y) g0 g0 o) mpty):. = O6out 3.2 Velk=alno(@—ny()],

Here ¢ is a two-component field operator. In the case of 1 A
superconductivity, we only keep they; term, while in the A== Vs(k—q)[1—ny(q)—no(q)]=, (8)
case of the exciton system, we only keep #gegerm (in the 2% Eq

original conduction-band and valence-band picts® that

Ef=ectAZ, 9
1 — —
Him=§f dx dy V(X=y):4(X) (X) ¢(y) h(y):.
_ _ > ny(k)=2 ny(k). (10
Ignore the frequency dependence in the screening effect, k k
}in{\jg:lg;m term in the self-energfpr the exciton systen In solving these equations, the easiest approach is to first fix

the exciton chemical potentiad. However,5u must be var-
ied to ensure that Eq10) holds. This is the most difficult
. part of our problem. If the masses of the conduction band
E(k)—%q Vs(k=a)G(ko.q). ) and valence band are equal, then E&.and (10) will not
] _ ) be needed and the numerical computation will be much
Here Vg(k—q) is the Fourier transform of the statically easier. Since the qualitative behavior of exciton condensation
screened electron-electron interaction, which is considered ig insensitive to the difference in electron and hole effective
scalar in the above matrix equation. masses, we shall only consider the equal-mass case at finite
At finite temperatures, the integration oveyis replaced  temperatures in the present paper.TAt 0, it can be easily
by a summation over the Matsubara frequenciesshown that it is still self-consistent to assume that=0 so
ko—i(2n+1)7/ B (B=1/kgT). Carrying out the summation thatn,(k)=n,(k)=0, so the results are independent of the
yields electron-to-hole mass ratio after the energy is scaled accord-
ing to the exciton Rydber¢Ry).
n.(k) 0 At zero temperature, there is no unpaired electrons and
0 1— ) Uy, holes, we therefore ignore the screening effect. At finite tem-
N (k) . : .
peratures, there is strong screening effect due to unpaired
where n; (k)= 1/(e:B(Ek+ de) 4 1) and ny(k)= 1/(eﬁ(Ek—5€k) electrons and holes, we shall therefore include the screening
+1). Substituting this result into E¢3) yields for the diag-  in the above self-consistent equations. If we ignore the lad-
onal part der diagram, the long-wavelength limit of the polarization
(density-density correlationfunction can be expressed as
(derivations will be given in the next section when the vertex

1 LT
e1(K)=€3(K) = py— EE Vs(k— Q)[ n1(q)—na(q)+1 function is discussed
q

> G(ko,k>=—UI(
ko

_[1_n1(q)_n2(q)]§], (4) H0=—2; dn(k)/dEk=2B; e AE/(1+e PEx)2,
q
The screened interaction is then written as

_ 0 1
e2(k)= &3(k)~ 2~ 52 Vslk Q)[nz(Q) ny(q)+1 Ve(@) =V (14 TToV),
€ whereV, is the bare interaction. In an ideal 2D system, the
—[1—n1(Q)—nz(Q)]E—], (5  bare interaction is written aa/q (a is a constant and the
4 screened interaction will be written ag(q+ ally). There is
Whereeg(k) and eg(k) are the electron and hole band ener-no screening at =0. This can be explained by the fact there
gies in the absence of the optical field. The last term in eachre no free electrons and holes in the present approximation
of the two equations is just the Hartree-Fock exchange emat T=0 since they all form pairs and are condensed. There
ergy. It is more convenient to express these two equations iare no free charge carriers in large distance scale since exci-
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FIG. 1. 3D plot for chemical potential and electron-hole pair
density vs temperature of the exciton condensate in an ideal 2Iae
system with static screening.

FIG. 2. 3D plot for chemical potential and electron-hole pair
nsity vs temperature of the exciton condensate in an ideal 2D
system without screening.

tons are neutral and therefore screening is very ineffectiv
When T>0, there will be thermally excited free electrons
and holes and the screening becomes finitg=a0. How-
ever, at short distancesvhich correspond tag>0), the

8s also important to point out that without including the

screening effect, the transition temperature is much higher
and the solution is much more stable. For comparison, we
R ; present the results of our calculations with no screening ef-
screening is indeed possible even wien0. Hence we are o in Fig. 2. It can be seen that the transition temperature is
still underesﬂmatmg_ screening effects at finifevhen there ., ch higher(about a factor 2 which is expected since the

are condensed excitons. We shall not be too concerned Qyiaraction is stronger without screening. The other noted

this since a truly satisfactory theory should also include bothyjgference is that the phase transition is much smoother com-
dynamical screening and vertex correctidmsiich must be  hareq o the case with screening. This can be explained as

guided by Ward-Takahashi identitlesSuch an ambitious  ¢5)10\s. Consider the case with screening, as we lower the

task will be left as a subject of future research. temperature from abovE, to belowT., the pair condensa-
The screening and pairing depend on each other and thgy,,"tends to suppress screening, which in tumn reinforces

are determined by solving the set of self-consistent equgsyngensation, thus giving rise to a sharper phase transition.
tions. In the numerical solution of the gap equations, we fix

the exciton chemical potential and the temperature and solve
the problem iteratively. A 3D plot of the chemical potential
versus temperature and density is in Fig. 1 for an ideal 2D To calculate optical spectra, we use the ladder diagrams,
exciton system where the masses of the conduction band amgllowing the recipes proposed by Baym and Kadaridth
valence band are assumed equal. The screening effect duedasure that the correlation function satisfies the conservation
unpaired electrons and holes is included. In this plot, theéaw and qualitatively good optical spectra. For instance,
temperature is measured in units of Ry/ Throughout there must exist an exciton mode whose energy approaches
this paper, the energy unit is exciton Rydberg,=Ry8.6  that of the condensed exciton energy, which is equal to the
eVX (u*/mg)/ €3, where u* is the effective electron-hole chemical potential at wave vectér=0 in accord with the
reduced masan, is the bare electron mass, awlg is the  so-called Goldstone theorem.

static dielectric constant of the semiconductor. The total pair For optical transition processes the interaction Hamil-

Ill. OPTICAL SPECTRA

density is defined as tonian is written as
1 €
No=2 5 1—[1—2n<q)]E—ﬂ 2 Po(k) (@ gbict B ) =2 Pq(K)
q
and it is measured in units ofg? where ag=0.529 x(ﬁ+qr+¢k+%r‘¢k+q),

A X eol(u*Img). For GaAs(ZnSe, we have Ry=4 meV _ .

(17 me\) andag~150 A (45 A). The phase transition tem- where Py(k) is the mqmentum matrix element between
perature can be identified for each density on the plot, whicijtatesk andk+q andy is a two-component field operator,
increases when the density of the electron-hole pair is in{@k. D). ) - , ) , ,
creased. At larger densities the transition becomes very sharp 1h€ absorption coefficient is proportional to the imagi-
and becomes first-order-like. In the course of our calculation/'&y Ppart of the current-current correlation functiarq),

we find that the solution is rather sensitive to the initial input Wich can be written in terms ?f the three-point vertex func-
for the various parameters. A bad initial input can lead to 0N [here denoted by'4(K)] as

solution with no condensation of excitons. This is very much

different from the zero-temperature calculation where any 0 "

initial setup of the parameters can lead to the solution with w(q)=Tr Ek [T GKTo(K)G(k—a)f. (1)
condensation of excitons whenever such a solution does ex-

ist. Our calculation shows that the highest transition temperaHere, for simplicity, we have introduced the 4-vector nota-
ture is around 30 K130 K) for GaAs(ZnSe 2D system. It  tionsg=(qg,q) andk=(kg,k). The subscripg for I" cor-
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responds to the 4-vector of the incident photon in the opticalvhere C*=u,u,¥v,v, and S*=v,u,*v,u,;. Here the
transition processl'® is the bare vertex function, which is subscripts 1 and 2 are abbreviations for the wave vedtors
simply Fg(k)qu(k) 7=, where +(—) corresponds to the and k+q, respectively. Let&;(K)=E,+ e, and &,(k)
absorption(emission process. Since both the Green'’s func- =E,— de,, we get after summation over the Matsubara fre-
tion and the vertex function arex22 matrices it is important quencies

to keep them in the correct order. In the ladder diagram
approximation[I'y(k) satisfies the following equation:

Al A
> G(k)(ro,~rg>e<k—q>=UI<TO,73>( )uz,
0 ’ ’ ko A2 Al
Pa(k=Tqk)+2 2, | 12 G(K)Tg(k")
Kk’ ko
. B: B,
XG(k'—q)7i [Vi(k—=K'). (12 > G(K)(72,71)G(k—q)=U](75,71) 5. g Y2
ko 2 1
Here again, we only keep the, term for excitons and the where
74 term for Cooper pairs.
To explicitly calculate the vertex functiai,(k), we need
the following relations for the Bogoliubov' transformation _1f (k) —ny(k—a)  _ na(k)—ny(k—q)
matrices 1272 go— &k +Eu(k—a) " GotE(k)—Ex(k—a) )’
: cC -sS
Ui(70,72)U2=(70,72) s ¢ ) B 1(1—n2(k)—n1(k—q)_1—n1(k)—n2(k—q))
= -+ .
L2721 got (k) +E1(k—0a) * do—Ex(K) — E(k—q)
cr s Write the vertex function ab = (and similarly f
T _ rite the vertex function a§ =2 ,y,7, (and similarly for
Ui(71,73)Us (7-1’7-3)(—8+ C*)’ the bare vertex functionwe have

cCT S o0 0 A, 0 0 A,
-S C 0 0 0 B, B, 0
2 GIT(Gk-=(r02.7.7)| o 5 v _gil| o B, B, 0
0 0 st c*/\A, 0 0 A
cC -S 0 0\ /7
S C- 0 01| v
0 0o ¢ s ||y
0 0 -S* c*/\y;
=7S1(K) Aq(K)Sq(K) ¥q(K).

Note thatS' can be obtained fror§ by reversing the signs of 1

bothv, andv,. The equation for the vertex function is then Ar2=— 2 B,=0.

2Ek 3 2

dn1+dn2) _l_nl(k)_nz(k)
de;, —ds,) T

R R . - . R In the case of equal mas&,=0 andA;=—dn(k)/dEy. To

Yo(k)=Y3(K)+ 2> Shk)Aq(K)Sy(k")Vs(k—k') ¥g(K"). calculatell,, we only need to keep the term proportional to
k' 70 andy,. If we ignore the ladder diagram contribution, then

For a numerical calculation of the ladder diagram at arbitraryyo,=1, and the polarization can be expressed as

wave vector and frequency, it is still quite complex. We shall

consider only two special cases.

(1) Let gg=0 and then setj—0: This allows us to cal- o=—2>, dn(k)/dE,.

culate the long-wavelength limit of the screening, since the k

polarization(density-density correlatigrfunction is related

to the vertex function via the same equation & with the (2) Let q=0 andqy#0 (hereqq is defined as the energy

bare vertex function replaced lry. We have difference between the photon energy and the chemical po-
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tential u): C=1, S =0, C=C"=u2—vi=¢/E,, and trum, since the system has rotational symmetry. Thus, we
S=S*=2uw,=A,/E,. This is a case of interest for calcu- ¢an integrat_e out the _angle betwelerand k' gnd obtain a
lating the optical spectra. Since the photon wave vegtor N€W H matrix whose indices are the magnitudeskoénd
associated with the transition energies in a semiconductor & - ‘;50 mesh points df andk’ with a cutoff corresponding
typically much smaller compared with the exciton Bohr ra-t0 kc=100 Ry will be used to define thd matrix numeri-
dius, we can assume that=0. We then haved;=A,=0. cally. Second, the inverse of the new matrig - Hy) can

Let wy=2E, andN,=1-n;(k) —n,(k), we have be written as> VSkV(qS—WV)*ls;i,, whereS is a similarity

matrix that diagonalizel andw, denotes the eigenvalues of
0 H.
For the optical absorption process, we have
— + +

> G(KT(K)G(K) @72+ Go(Cy1HSy3) ) Iok)=P(k)7"; thus, we set y{=—3=P,/2 and
ko Cldoy2— wk(Cy1+Sys)] ¥9=93=0. The absorption coefficient is given by the imagi-

S doys— wk(Cyi+Sys)] nary part of the coefficient of " =(7,—7,)/2 in Eq. (13)

(13 multiplied by P(k), viz.,

We then have the following equations:

1
a(do)=—Im>, P*(k)N,| C,Gy+ q—(Fk+ 0 Gy)
R 0

Nkr

72(K) = 2 Ve(k—k') ———{doF i — 72(K ) i} , ,
K’ Jo— @y For comparison, we shall also calculate the optical spectra
— Y9(k) without the exciton effects. In this casg, will be replaced
LE by 72 in Eg. (13) and the absorption coefficient reduces to
K+ 3 Vek=K') 2 = 72(K' o} N [ oe e’
T T g—wp, NTRTTERT (g —ImS [Pk 2 z[ﬂwEk 1+(—k H
X Qo—wi | Ex Ex
=y1(k),
In the zero-temperature limit, this reduces to the expression
N considered in Ref. 9 except that hetg also includes the
L k’ B , Hartree-Fock exchange energy. In realistic systems, all exci-
73(k)+% Vstkk )qé—wi, Se{@wFie = 72(k) do} tations have a finite lifetime, which can be simulated by let-
ting qo—do+iA, whereA is the half-width of the broaden-
= yg(k), ing. Throughout the paper, the broadening parameter used is

A=0.5 Ry. Note aijp=0 (when the photon energy equals
), the functionG, contains a singularity of the typeof{
due to the Goldstone modé&he condensate stateThe
imaginary part of this gives rise to a function
Fk+z Vo(k—k')(CiCr + SS )N G =F2, (14) 2q0A/(q§_+A2) _ when ~we make _the substitution

K OJo—Jot1A. This result is unphysical, since the term repre-
sents equal emission and absorption at the same energy and
it should give zero contribution. To remedy this, we simply

where Fy=Cyy1(k)+Scys(k). Denote FJ=C,3(k)
+Sc¥3(k) and Gy=(wF—doy2)/(d5— wg); we have

oF— (03— 02)G— >, Ve(k—k' )Ny (Fir+ 0 Gyr) locate the Goldstone mode and remove it dontribution
K’ in our numerical calculation.
= 73(k)do. (15) Figure 3 shows the calculated zero-temperature absorp-
tion spectra of the exciton condensate in the 3D system with
Substitute Eq(14) into Eq. (15); we obtain input chemical potentialg.=—1, —0.5, 0, 0.5, and 1 Ry.

The corresponding densities for these curves are
Noz0,0.022,0.049,0.079,0.1ag3 For comparison results

2~ _ _ L 0
GG kz ik G kE [ = Vs(k=K )N 1F,, both with and without the exciton effect are shown. In the
plot, a negative absorption coefficient indicates gain. At the

—%)’g(k), zero-density limit, only the spectrum with the exciton effect

is shown and it is the same as the absorption spectrum of a

where hydrogenic exciton in 3D, which has an exciton peak at
E=-1 Ry and goes as/E at the high-energy limit. As
Huor = [w8(k—p)—Vs(K—p)Np][w,8(p—K’) expected the exciton effect is quite significant in both the

p absorption and gain. When the exciton effect is included, a
_ U sharp exciton peak is seen in the absorption spectra followed
Vs(P=K)(CpCh+SScr)Nic 1. by a secondary peak, which is caused by the singularity in
Gy can be solved by inverting the matr'qé—Hkk,. Two  the joint density of stateB(E) of the quasiparticles due to
facts will be used to simplify the computation. First, only the the formation of a gap. Note that if we ignore the wave-
s-like component ofG, will contribute to the optical spec- vector dependence of the gag, then
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FIG. 3. Absorption spectra of the exciton condensate in 3D with  FIG. 4. Absorption spectra of the exciton condensate in 2D with
input chemical potentialge=—1,—0.5, 0, 0. 5, and 1 Ry. Solid input chemical potentialg.=—4, —3.5, =3, —2.5, and—2 Ry.
curves: with the exciton effect. Dotted curves: without the excitonT=0 K. Solid curves: with the exciton effect. Dotted curves: with-
effect. The curves with exciton peaks located at higher energiegut the exciton effect. The curves with exciton peaks located at
correspond to highep.. The corresponding densities for these higher energies correspond to higher The corresponding densi-

curves areNo=0,0.022,0.049,0.079,0.142° . ties for these curves aid,=0,0.084,0.164,0.240,0.344° .
gain. Without the exciton effect, the gain peaks at around
D(E)= Ek: S(E—2Ey) = Ek: 5(e—2¢€)/|dE,/dey —9 Ry, whereas with the exciton effect, the position shifts to
around —7 Ry for the densities considered here. It is ex-
«<E/E—2A pected that when the full screening effect is included, the

result should be somewhere between the two. In either case,
asE—2A. This singularity is further enhanced by the exci- Jasing below the free exciton line is predicted, consistent
ton effect. We have also confirmed numerically that the enwith the experimental observatiofis.
ergy separation between the secondary peak and the exciton The quasi-2D system can be realized in semiconductor
peak is very close to the average value of the gag .2 quantum wells. The interaction for a quasi-2D system can be
Without the exciton effect, the singularity is quite weak andwell approximated by the fornv(q)=a/q(1+qb) with b
the peak structure has been smeared out by the broadeningking a parameter comparable to the size of the quantum
The gain always occurs below the exciton peak, which is dugyell.12 Note that the additional factor (dbg) behaves like a
to the recombination of an exciton in the condensate whilghort-range screening of the 2D Coulomb potential. Figures
shaking an exciton into one of the excited noncondensatg and 6 show the calculated zero-temperature absorption

states. The position of maximum gain is also roughly 2 spectra of the exciton condensate in two different quasi-2D
below the exciton peak.

Figure 4 shows the calculated zero-temperature absorp-
tion spectra of the exciton condensate in the ideal 2D system
with input chemical potentialg.=—4,—3.5,—3,—2.5, and
—2 Ry. The corresponding densities for these curves are
N0=0,0.084,0.164,0.240,0.3&@2. At the zero-density
limit, the absorption spectrum of a hydrogenic exciton in 2D
(which has an exciton peak &= -4 Ry and a steplike
spectrum at the high-energy linits reproduced. The ab-
sorption coefficient is normalized so that the step height is 1
at the high-energy limit. The exciton effect is found to be
even more significant in the 2D case as demonstrated by the
stronger exciton peaks. The secondary péakfinite densi-
ties) is again caused by the singularity in the joint density of
statesD(E) of the quasiparticles. In this case

D(E)xE/JE?—4A2,

) ] ) FIG. 5. Absorption spectra of the exciton condensate in
which shows a stronger singularity than the 3D case. Alquasi-2D with input chemical potentialg=(—2.03+0.5n) Ry;
though this singularity is further enhanced by the excitonn=0,1,2,3,4 and interaction parameter 0.255. T=0 K. Solid
effect, it is still prominent even without the exciton effect. A curves: with the exciton effect. Dotted curves: without the exciton

major difference between the results with and without theeffect. The corresponding densities for these curves are approxi-
exciton effect is the prediction of the position of maximum matelyN,=0,0.083,0.156,0.223,0.285°.

4 b Quasi-2D

Absorption Coefficients (Arb. Units)
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Absorption Coefficients (Arb. Units)
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FIG. 6. Absorption spectra of the exciton condensate in FIG. 7. Absorption spectra of the exciton condensate in 2D with
quasi-2D with input chemical potentialg=(—1.54+0.5n) Ry; approximately the same densit9.2 a;?), but different tempera-
n=0,1,2,3,4 and interaction parameter0.5a5. T=0 K. Solid tures (T=0.375, 0.525, 0.675 Rigg). Solid curves: with the exci-
curves: with the exciton effect. Dotted curves: without the excitonton effect. Dotted curves: without the exciton effect. The curves
effect. The corresponding densities are approximatelywith maximum gain located at higher energies correspond to higher
No=0,0.082,0.149,0.210,0.2672. T.

systems with input chemical potentigis= —Eg+0.5 n Ry;  trum (this can happen when one exciton recombines while
n=0,1,2,3,4, wherég is the exciton binding energy in the breaking up the other exciton during the progess
zero-density limit. Eg are 2.03 and 1.54 Ry for these  Figure 7 shows the calculated absorption spectra with and
two cases. Note that exciton binding energies in typicawithout exciton effect for a fixed density at three different
quantum wells are in the range of 2.5 Ry. The temperatureswith equal separationstwo belowT. and one
corresponding densities for these curves axg=0, aboveT.. The static screening due to the unpaired electrons
0.083,0.156,0.223,0.2865 2 for b=0.25%; in Fig. 5 and and holes is included. The overall shape is not much differ-
No=0,0.082,0.149,0.210,0.2642 for b=0.5a5 in Fig. 6. €Nt in the two cases withf<T., whereas a significant
As expected, the main features are similar to the ideal 20¥hange is noticed whem>T,, reflecting the phase transi-
case, with weaker exciton effect as the value oftihgaram- ~ tion. As long asT<T¢, the position at maximum gain shifts
eter increases. Without the exciton effect, the gain spectrdP Py about 1 Ry when the exciton effect is included. The
are quite broad. With the exciton effect the gain spectra bePosition of the exciton peak in the absorpticgain) spec-
come narrower and the position of maximum gain shifts tolfum shifts upward with increasing temperature, since it is
higher energy. This is due to the fact that the density of state$€d to the chemical potential in our theory, which increases
for the excited exciton states tends to pile up near the miniwith T (below what would be the value if a free Fermi gas
mum excitation energy, which is less thaa 2vhen the ex-  theory was used, however, see Fig. In contrast, for
citon effect is included. At low densities T> T the chemical potential decreases with increasing tem-

(0.1a52<Ny<0.2a52 or 5x 10!t cm™2<Ny<10'2 cm~2  Perature similar to the Fermi gas system. Hor T, the
for ZnSe systemsasing below the free excitofFE) line s~ condensation effects have vanished, but the exciton effect

predicted. Just above the critical densiyelow which the ~émains present.

gain is zerg, the position of maximum gain is estimated
(according to our theobyto be around +2 Ry (or 17-34 V. FLUCTUATION EFFECTS ON BOSE CONDENSATION

meV for ZnSg below the FE line for most semiconductor It is well known that boson condensation is not favorable

quantum-well systems. This position shifts up toward the F&, |, gimensions. One remaining question is whether there

Imt;as the denfllt)g/_mcreafses gror:n t?e ;”técal density. 1S still boson condensation at finite temperature for excitons
xperimentally, it was found that for Znse quantum-well , 5 gy ctures. We will present in the following the analy-

systems, lasing does occur at about 15 meV below th2e fre&5s that shows that boson condensation is indeed possible for

. T . o
exciton absorption line for a density arounck 0™ cm 2. electron-hole systems only. The same analysis shows that

This is consistent with the results obtained here. However, tQondensation of Cooper pairs is not possible. The main dif-
make a quantitative comparison between theory and experfy ance is the form of the interaction, which has already been

ment, one must also consider the following factdd: the  ninteq out earlier. In the Cooper pairing case, fluctuations

laser emission spectrum may arise from excitons localized, e from the vertex correction while in the exciton conden-
by interface roughness as proposed in Ref. 2,8, the ShorE;'ations, fluctuations come from the dressed interaction.

range screening ignored in the calculation may cause the |t paq peen shown thitthe current conservation leads to
exciton gain peak to shift toward lower energy so the result,, following Ward-Takahashi identity:

is closer to that without the exciton effect, and a4 the
biexciton states, which are ignored in the present calculation, " . 1
may also contribute to a below-exciton peak in the gain spec- 9.I'g(k)=7G""(k) =G *(k=a)r,
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where 7= 7, for the exciton case and= 3 for the super-
conductivity casel'* are the three-point vertex functions
related to the charge density and currentJ with

p(X)=y(x) T4(x). For the exciton system at zero momen-

tum  transfer =0 and qy—0, we have
Fgozo(k) =9G~Y(Kk)/ 9ko= 79, Which is finite. Therefore ver-

tex correction is not important as far as the gap equation is

concerned. However, since= 53 for Cooper pairs, the off-
diagonal elements oFgO(k) are proportional to 2&,/qo,

which diverges as|p— 0; therefore, the vertex correction is

very important. Including the vertex correction in the gap

equation would not allow a nonzero solution ff . Thus,

q q
,Pq(®) 1=ni_g+N(w)
20 El—(E_qt )’

+f dewdgV2(q)q

X Ek+

Ek,q+(1)6k )
Eq <9

1 A
A=052 V(k=g)[1-2n(a)]g
q q

Bose condensation cannot exist in 2D for the Cooper pairs.

For the exciton system, we shall ignore the vertex function

and consider other fluctuation effects.

. pg®) 1-n(q)+N(w)
+f dw% VE(a)q 2% EE—(Ek—q’I'w)Z

A careful analysis also shows that the dressed interaction

would not cause any divergence in the Cooper pair conden-
sations. Compared to the vertex correction, the fluctuation
effect of fully dynamically dressed interaction is more im-

Ek—q+ w

X
Exq

Ak+ O'Ak_q

portant for the exciton system. In the following we will ana- A careful analysis shows that there is no divergence in the
lyze the dressed interaction for the excitons and show that jap equation whethev(0)= const orV(q)=1/q at small

will not destroy the Bose condensation. Assume that the). For smallq andw, pq(w) is sharply peaked at the plasma

density-density correlation is rewritten in the general form

. pq(w)
H(Q)—qu dwm,

where the factog? is put in according to the sum rule for the

imaginary part of the density-density correlation function so

that

J’ dwwlmIl(q,w)<Nyg?,

frequency wq. For the ideal 2D systenV(q)«1/q and
plasma frequency goes like,xq'/2 The integral ovew in

the above equation leads to a divergent term of the order
Lwg=q2. [Note thatN(w) — 1/w asw—0]. Finally, carry-

ing out the momentum integration leads to a finite result,
which goes likefdg/qY2~2q'/2,

V. SUMMARY

In summary we have solved the Bose condensation of
excitons at finite temperatures including the static screening
effects and calculated the optical absorptigain spectra
including the exciton effedtvertex correctiop For ideal 2D
systems, the Bose condensation can exist Up=£&0 K (130

where N, is the total pair density and independent of theK) for GaAs (ZnSe parameters. For typical quantum wells

wave vector.

(quasi-2D systensthe transition temperatures are expected

With the vertex correction ignored, the self-energy correct0 be somewhat lower. The optical spectra for 3D, 2D, and

tion beyond Hartree-Fock theory is given by

2<°><k>=§ V2(q)II(q) 7G(k—q) 7

_ 2 2 Pal@) 1= (k=) +N(w)
_jdeqV(Q)q 20 K- (Ergt )’

Ek—q+ w
X (€k—qm3t oAk _q71) |

Ex_q

ko+

where py()=pg(w)+pq(—w) and N(w)=1/(ef*—1).

quasi-2D systems at zero temperature are studied, and the
exciton effect gives rise to significant modification to both
the absorption and gain spectra. For quasi-2D systems lasing
below the free exciton line is predicted and the position of
maximum gain is consistent with experimental observation.
The temperature dependence of the optical spectra for the
ideal 2D system is examined, and the spectrum shows a
marked change when the temperature moves adrgssn-
dicating the significant effect of the Bose condensation on
optical spectra. These effects should be experimentally ob-
servable. By including the fluctuation effects, we have also
shown that Bose condensation of excitons is possible for
two-dimensional systems contrary to the case of Cooper-pair
condensation.

Here we are only concerned with the exciton system, we

chooser= 19 ando=1. If the Cooper pair condensation is
of interest, we shall simply set=7; and o=—1 in the

ACKNOWLEDGMENTS

above equation. The self-energy is meaningful only when the This work is supported by Office of Naval Research under
frequency is replaced by the on-shell energy. Including theContract N00014-90-J-1267 and the University of lllinois

3. (9(E,) contribution to the self-consistent equatid¢ésand
(8), we obtain

Materials Research Laboratory through Contract No. NSF/
DMR-89-20538.



5028 H. CHU AND Y. C. CHANG 54

1 J.L. Lin and J.P. Wolfe, Phys. Rev. Leftl, 1222(1993. 8], Ding, M. Hagerott, T. Ishihara, H. Jeon, and A. V. Nurmikko,
2M.H. Anderson, J.R. Ensher, M.R. Mathews, C.E. Wieman, and Phys. Rev. B47, 10 528(1993, and references therein.
E.A. Cornell, Scienc®69, 1981995. 9M.E. Flatfe E. Runge, and H. Ehrenreich, Appl. Phys. L&8,
°R.J. Schrieffer,Theory of SuperconductivityBenjamin, New 13131995.
, York, 1964. . ' 10G. Baym and L. P. Kadanoff, Phys. Rel24, 287 (1961).
L.V. Keldysh and A.N. Kozlov, Zh. Esp. Teor. Fiz.54, 978  1llgee for example, G. D. MahaNlany-Particle PhysicgPlenum,
(1968 [Sov. Phys. JETR7, 521(1968)]. New York, 1982.
°R. Zimmermann, Phys. Status Solidi7, 191(1976. 12G. D. Sanders and Y. C. Chang, Phys. Re\33 1300(1987).
°C. Comte and P. Nozes, J. PhysParig 43, 10691982. 8H. Chu, H. Umezawa, and F.C. Khanna, Phys. Lettl94, 174

”X. Zhu, P.B. Littlewood, M.S. Hybertsen, and T.M. Rice, Phys.

(1994.
Rev. Lett.74, 1633(1995.



