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We present theoretical calculations of optical absorption-gain spectra for condensed excitons in both three
dimensional~3D!, 2D, and quasi-2D systems~appropriate for semiconductor quantum wells! as functions of
the electron-hole pair density and temperature. The ladder diagram contribution to the vertex function~exciton
effect! is included in our calculation. We found that fluctuations cannot destroy the condensation of excitons in
2D at finite temperatures as opposed to a theory of free bosons and the case of Cooper pairs in superconduc-
tivity. Such a difference is attributed to the fact that electrons and holes carry opposite charges as opposed to
the same charges carried by the Cooper pairs in the case of superconductivity. Our studies show that the
effects of exciton Bose condensation on the absorption-gain spectra remain present for temperatures up to
130 K for a 2D system with exciton binding energy of 30–40 meV~appropriate for ZnSe systems!.
@S0163-1829~96!08531-1#

I. INTRODUCTION

Recently there has been renewed interest in Bose-Einstein
condensations generated by the observation of such phenom-
ena in exciton systems1 and atomic systems2 with very weak
interboson interactions. The condensation of composite
bosons is thoroughly studied for Cooper pairs in the phenom-
ena of superconductivity3 and of excitons in optically excited
semiconductors.4–9 Qualitative behavior of exciton con-
densed systems has been analyzed in the high- and low-
density limits. However, a realistic quantitative study of ex-
citon condensations at finite temperature is still lacking. This
is of particular importance in light of recent advances of
semiconductor lasers in the blue-green regime8 in which the
exciton condensation will play a role in the lasing mecha-
nism at least at lower temperatures (,100 K!. The gap equa-
tion for ideal two-dimensional 2D and quantum well~quasi-
2D! systems atT50 has been solved numerically in Ref.7.
Recently, Flatte´ et al. studied the optical properties atT50
without including the exciton effect.9 In this paper, we not
only consider the finite-temperature effects but also include
the exciton effect~ladder diagram contribution to the vertex
function! in calculating the optical spectra. It is found that
the exciton effect is essential in determining the absorption
or gain spectra at low temperatures where the exciton con-
densate exists.

Our calculation is based on the BCS mean-field theory in
which the phase symmetry is broken; i.e., the condensate
state is a superposition of states with different particle num-
bers. In optically excited semiconductor systems, the number
of electron-hole pairs does not have to be conserved, while
the total number of electrons is conserved. In this case the
symmetry breaking is induced by the optical field. It has
been shown that the effect of the external optical pump field
is to introduce equivalent chemical potential under the so-
called rotating-wave approximation, though the validity of
such an approximation may be questionable.

We shall first solve the gap equation for 2D systems with
different densities with a wide range of temperatures. We

then calculate optical absorption~gain! spectra including the
exciton effect for 3D, 2D, and quasi-2D systems~appropriate
for semiconductor quantum wells!. Finally we will show that
fluctuations cannot destroy the condensation of excitons in
2D at finite temperature as opposed to a theory of free
bosons and the case of Cooper pairs in superconductivity.
Such a difference is attributed to the difference in the signs
of carrier charges, electrons and holes are oppositely charged
in contrast to the case of superconductivity where we have
up-spin electrons and down-spin electrons. This leads to the
difference in the interparticle interactions.

II. BCS THEORY FOR EXCITONS

In the BCS theory,5 the inverse of the Green’s function
for electrons and holes in the exciton system is written in the
232 matrix form

G21~k0 ,k!5S k02e1~k! 2Dk

2Dk k01e2~k!
D , ~1!

where k0 ,k denote the frequency and wave vector,
e1(k)[«c(k)2m1 and e2(k)[«h(k)2m2 are the electron
and hole energies~including the self-energy correction! mea-
sured with respect to their corresponding chemical poten-
tials,m1 andm2, respectively.Dk is the off-diagonal part of
the self-energy matrixS(k), which is frequency independent
in the Hartree-Fock mean-field approximation.G21(k0 ,k)
becomes diagonalized under the Bogoliubov transformation.

G21~k0 ,k!5Uk
†~k02dek2Ekt3!Uk , ~2!

where ek5@e1(k)1e2(k)#/2, dek5@e1(k)2e2(k)#/2, Ek
2

5ek
21Dk

2 is the renormalized energy, andUk is the transfor-
mation matrix defined as

Uk5ukt02vkt2 , Uk
†5ukt01vkt2 ,
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with uk
22vk

25ek /Ek , 2ukvk5D/Ek . ek , dek , Dk , m1, and
m2 are to be determined from the gap equation self-
consistently. Here we introduce the notationst051,
t15tx , t35tz , and t252 i ty , wheretx , ty , and tz are
the usual Pauli matrices. IfDkÞ0 the symmetry is broken.

To make our theory applicable for both superconductivity
and exciton condensation, we adopt the following general
form ~in terms of the Nambu notations! for the interaction
Hamiltonian,

H int5
1

2(i E dx dyV~x2y!:c̄~x!t ic~x!c̄~y!t ic~y!:.

Here c is a two-component field operator. In the case of
superconductivity, we only keep thet3 term, while in the
case of the exciton system, we only keep thet0 term ~in the
original conduction-band and valence-band picture! so that

H int5
1

2E dx dyV~x2y!:c̄~x!c~x!c̄~y!c~y!:.

Ignore the frequency dependence in the screening effect,
the dominant term in the self-energy~for the exciton system!
is given by

S~k!5 (
k0 ,q

VS~k2q!G~k0 ,q!. ~3!

Here VS(k2q) is the Fourier transform of the statically
screened electron-electron interaction, which is considered a
scalar in the above matrix equation.

At finite temperatures, the integration overk0 is replaced
by a summation over the Matsubara frequencies
k0→ i (2n11)p/b (b[1/kBT). Carrying out the summation
yields

(
k0

G~k0 ,k!52Uk
†S n1~k! 0

0 12n2~k!
DUk ,

where n1(k)51/(eb(Ek1dek)11) and n2(k)51/(eb(Ek2dek)

11). Substituting this result into Eq.~3! yields for the diag-
onal part

e1~k!5e1
0~k!2m12

1

2(q VS~k2q!H n1~q!2n2~q!11

2@12n1~q!2n2~q!#
eq
Eq

J , ~4!

e2~k!5e2
0~k!2m22

1

2(q VS~k2q!H n2~q!2n1~q!11

2@12n1~q!2n2~q!#
eq
Eq

J , ~5!

wheree1
0(k) ande2

0(k) are the electron and hole band ener-
gies in the absence of the optical field. The last term in each
of the two equations is just the Hartree-Fock exchange en-
ergy. It is more convenient to express these two equations in

terms of their average and difference. Together with the gap
equation, which is obtained from equating the off-diagonal
parts in Eq.~3!, we obtain the complete set of self-consistent
equations:

ek5ek
02

m

2
2
1

2(q VS~k2q!H 12@12n1~q!2n2~q!#
eq
Eq

J ,
~6!

dek5dek
02dm1

1

2(q VS~k2q!@n2~q!2n1~q!#, ~7!

Dk5
1

2(q VS~k2q!@12n1~q!2n2~q!#
Dq

Eq
, ~8!

Ek
25ek

21Dk
2 , ~9!

(
k
n1~k!5(

k
n2~k!. ~10!

In solving these equations, the easiest approach is to first fix
the exciton chemical potentialm. However,dm must be var-
ied to ensure that Eq.~10! holds. This is the most difficult
part of our problem. If the masses of the conduction band
and valence band are equal, then Eqs.~8! and ~10! will not
be needed and the numerical computation will be much
easier. Since the qualitative behavior of exciton condensation
is insensitive to the difference in electron and hole effective
masses, we shall only consider the equal-mass case at finite
temperatures in the present paper. AtT50, it can be easily
shown that it is still self-consistent to assume thatdm50 so
that n1(k)5n2(k)50, so the results are independent of the
electron-to-hole mass ratio after the energy is scaled accord-
ing to the exciton Rydberg~Ry!.

At zero temperature, there is no unpaired electrons and
holes, we therefore ignore the screening effect. At finite tem-
peratures, there is strong screening effect due to unpaired
electrons and holes, we shall therefore include the screening
in the above self-consistent equations. If we ignore the lad-
der diagram, the long-wavelength limit of the polarization
~density-density correlation! function can be expressed as
~derivations will be given in the next section when the vertex
function is discussed!

P0522(
k
dn~k!/dEk52b(

k
e2bEk/~11e2bEk!2.

The screened interaction is then written as

VS~q!5Vq /~11P0Vq!,

whereVq is the bare interaction. In an ideal 2D system, the
bare interaction is written asa/q (a is a constant!, and the
screened interaction will be written asa/(q1aP0). There is
no screening atT50. This can be explained by the fact there
are no free electrons and holes in the present approximation
at T50 since they all form pairs and are condensed. There
are no free charge carriers in large distance scale since exci-
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tons are neutral and therefore screening is very ineffective.
When T.0, there will be thermally excited free electrons
and holes and the screening becomes finite atq50. How-
ever, at short distances~which correspond toq.0), the
screening is indeed possible even whenT50. Hence we are
still underestimating screening effects at finiteq when there
are condensed excitons. We shall not be too concerned by
this since a truly satisfactory theory should also include both
dynamical screening and vertex corrections~which must be
guided by Ward-Takahashi identities!. Such an ambitious
task will be left as a subject of future research.

The screening and pairing depend on each other and they
are determined by solving the set of self-consistent equa-
tions. In the numerical solution of the gap equations, we fix
the exciton chemical potential and the temperature and solve
the problem iteratively. A 3D plot of the chemical potential
versus temperature and density is in Fig. 1 for an ideal 2D
exciton system where the masses of the conduction band and
valence band are assumed equal. The screening effect due to
unpaired electrons and holes is included. In this plot, the
temperature is measured in units of Ry/kB . Throughout
this paper, the energy unit is exciton Rydberg, Ry513.6
eV3(m* /m0)/e0

2, wherem* is the effective electron-hole
reduced mass,m0 is the bare electron mass, ande0 is the
static dielectric constant of the semiconductor. The total pair
density is defined as

N05(
k

1

2 F12@122n~q!#
eq
Eq

G
and it is measured in units ofaB

22 where aB50.529
Å 3e0 /(m* /m0). For GaAs~ZnSe!, we have Ry'4 meV
~17 meV! andaB'150 Å ~45 Å!. The phase transition tem-
perature can be identified for each density on the plot, which
increases when the density of the electron-hole pair is in-
creased. At larger densities the transition becomes very sharp
and becomes first-order-like. In the course of our calculation,
we find that the solution is rather sensitive to the initial input
for the various parameters. A bad initial input can lead to a
solution with no condensation of excitons. This is very much
different from the zero-temperature calculation where any
initial setup of the parameters can lead to the solution with
condensation of excitons whenever such a solution does ex-
ist. Our calculation shows that the highest transition tempera-
ture is around 30 K~130 K! for GaAs ~ZnSe! 2D system. It

is also important to point out that without including the
screening effect, the transition temperature is much higher
and the solution is much more stable. For comparison, we
present the results of our calculations with no screening ef-
fect in Fig. 2. It can be seen that the transition temperature is
much higher~about a factor 2!, which is expected since the
interaction is stronger without screening. The other noted
difference is that the phase transition is much smoother com-
pared to the case with screening. This can be explained as
follows. Consider the case with screening, as we lower the
temperature from aboveTc to belowTc , the pair condensa-
tion tends to suppress screening, which in turn reinforces
condensation, thus giving rise to a sharper phase transition.

III. OPTICAL SPECTRA

To calculate optical spectra, we use the ladder diagrams,
following the recipes proposed by Baym and Kadanoff,10 to
ensure that the correlation function satisfies the conservation
law and qualitatively good optical spectra. For instance,
there must exist an exciton mode whose energy approaches
that of the condensed exciton energy, which is equal to the
chemical potential at wave vectork50 in accord with the
so-called Goldstone theorem.

For optical transition processes the interaction Hamil-
tonian is written as

(
k

Pq~k!~ak1q
† bk1bk

†ak1q![(
k

Pq~k!

3~ c̄k1qt
1ck1c̄kt

2ck1q!,

where Pq(k) is the momentum matrix element between
statesk andk1q andck is a two-component field operator,
(ak ,bk).

The absorption coefficient is proportional to the imagi-
nary part of the current-current correlation functionp(q),
which can be written in terms of the three-point vertex func-
tion @here denoted byGq(k)# as

11

p~q!5TrH(
k

@Gq
0~k!#†G~k!Gq~k!G~k2q!J . ~11!

Here, for simplicity, we have introduced the 4-vector nota-
tions q5(q0 ,q) andk5(k0 ,k). The subscriptq for G cor-

FIG. 1. 3D plot for chemical potential and electron-hole pair
density vs temperature of the exciton condensate in an ideal 2D
system with static screening.

FIG. 2. 3D plot for chemical potential and electron-hole pair
density vs temperature of the exciton condensate in an ideal 2D
system without screening.
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responds to the 4-vector of the incident photon in the optical
transition process.G0 is the bare vertex function, which is
simply Gq

0(k)5Pq(k)t
6, where1(2) corresponds to the

absorption~emission! process. Since both the Green’s func-
tion and the vertex function are 232 matrices it is important
to keep them in the correct order. In the ladder diagram
approximation,Gq(k) satisfies the following equation:

Gq~k!5Gq
0~k!1(

i
(
k8

F t i(
k08

G~k8!Gq~k8!

3G~k82q!t i GVi~k2k8!. ~12!

Here again, we only keep thet0 term for excitons and the
t3 term for Cooper pairs.

To explicitly calculate the vertex functionGq(k), we need
the following relations for the Bogoliubov transformation
matrices

U1
†~t0 ,t2!U25~t0 ,t2!SC2 2S2

S2 C2 D ,
U1
†~t1 ,t3!U25~t1 ,t3!S C1 S1

2S1 C1D ,

where C6[u1u27v1v2 and S6[v1u26v2u1. Here the
subscripts 1 and 2 are abbreviations for the wave vectorsk
and k1q, respectively. LetE1(k)[Ek1dek and E2(k)
[Ek2dek , we get after summation over the Matsubara fre-
quencies

(
k0

G~k!~t0 ,t3!G~k2q!5U1
†~t0 ,t3!SA1 A2

A2 A1
DU2 ,

(
k0

G~k!~t2 ,t1!G~k2q!5U1
†~t2 ,t1!SB1 B2

B2 B1
DU2 ,

where

A1,25
1

2 S n1~k!2n1~k2q!

q02E1~k!1E1~k2q!
7

n2~k!2n2~k2q!

q01E2~k!2E2~k2q! D ,

B1,25
1

2 S 12n2~k!2n1~k2q!

q01E2~k!1E1~k2q!
7
12n1~k!2n2~k2q!

q02E1~k!2E2~k2q! D .
Write the vertex function asG5(mgmtm ~and similarly for
the bare vertex function!, we have

(
k0

G~k!Gq~k!G~k2q!5~t0 ,t2 ,t1 ,t3!S C2 S2 0 0

2S2 C2 0 0

0 0 C1 2S1

0 0 S1 C1

D S A1 0 0 A2

0 B1 B2 0

0 B2 B1 0

A2 0 0 A1

D
3S C2 2S2 0 0

S2 C2 0 0

0 0 C1 S1

0 0 2S1 C1

D S g0

g2

g1

g3

D
[t̂Ŝq

†~k!Âq~k!Ŝq~k!ĝq~k!.

Note thatŜ† can be obtained fromŜ by reversing the signs of
bothv1 andv2. The equation for the vertex function is then

ĝq~k!5ĝq
0~k!1(

k8
Ŝq
†~k8!Âq~k8!Ŝq~k8!VS~k2k8!ĝq~k8!.

For a numerical calculation of the ladder diagram at arbitrary
wave vector and frequency, it is still quite complex. We shall
consider only two special cases.

~1! Let q050 and then setq→0: This allows us to cal-
culate the long-wavelength limit of the screening, since the
polarization~density-density correlation! function is related
to the vertex function via the same equation as~11! with the
bare vertex function replaced byt0. We have

A1,252
1

2 S dn1dE1
6
dn2
dE2D , B15

12n1~k!2n2~k!

2Ek
, B250.

In the case of equal mass,A250 andA152dn(k)/dEk . To
calculateP0, we only need to keep the term proportional to
t0 andg0. If we ignore the ladder diagram contribution, then
g051, and the polarization can be expressed as

P0522(
k
dn~k!/dEk .

~2! Let q50 andq0Þ0 ~hereq0 is defined as the energy
difference between the photon energy and the chemical po-
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tential m): C251, S250, C[C15uk
22vk

25ek /Ek , and
S[S152ukvk5Dk /Ek . This is a case of interest for calcu-
lating the optical spectra. Since the photon wave vectorq
associated with the transition energies in a semiconductor is
typically much smaller compared with the exciton Bohr ra-
dius, we can assume thatq50. We then haveA15A250.
Let vk[2Ek andNk[12n1(k)2n2(k), we have

(
k0

G~k!G~k!G~k!S 0

2vkg21q0~Cg11Sg3!

C@q0g22vk~Cg11Sg3!#

S@q0g22vk~Cg11Sg3!#

D .
~13!

We then have the following equations:

g2~k!2(
k8

VS~k2k8!
Nk8

q0
22vk8

2 $q0Fk82g2~k8!vk8%

5g2
0~k!,

g1~k!1(
k8

VS~k2k8!
Nk8

q0
22vk8

2 Ck8$vk8Fk82g2~k8!q0%

5g1
0~k!,

g3~k!1(
k8

VS~k2k8!
Nk8

q0
22vk8

2 Sk8$vk8Fk82g2~k8!q0%

5g3
0~k!,

where Fk[Ckg1(k)1Skg3(k). Denote Fk
0[Ckg1

0(k)
1Skg3

0(k) andGk[(vkFk2q0g2)/(q0
22vk

2); we have

Fk1(
k8

VS~k2k8!~CkCk81SkSk8!Nk8Gk85Fk
0 , ~14!

vkFk2~q0
22vk

2!Gk2(
k8

VS~k2k8!Nk8~Fk81vk8Gk8!

5g2
0~k!q0 . ~15!

Substitute Eq.~14! into Eq. ~15!; we obtain

q0
2Gk2(

k8
Hk,k8Gk85(

k8
@vkdk,k82VS~k2k8!Nk8#Fk8

0

2q0g2
0~k!,

where

Hkk85(
p

@vkd~k2p!2VS~k2p!Np#@vpd~p2k8!

2VS~p2k8!~CpCk81SpSk8!Nk8#.

Gk can be solved by inverting the matrixq0
22Hkk8 . Two

facts will be used to simplify the computation. First, only the
s-like component ofGk will contribute to the optical spec-

trum, since the system has rotational symmetry. Thus, we
can integrate out the angle betweenk and k8 and obtain a
new H matrix whose indices are the magnitudes ofk and
k8. 450 mesh points ofk andk8 with a cutoff corresponding
to kC

25100 Ry will be used to define theH matrix numeri-
cally. Second, the inverse of the new matrix (q0

22Hkk8) can
be written as(nSkn(q0

22wn)
21Sn,k8

21 , whereS is a similarity
matrix that diagonalizesH andwn denotes the eigenvalues of
H.

For the optical absorption process, we have
G0(k)5P(k)t1; thus, we set g1

052g2
05Pk/2 and

g0
05g3

050. The absorption coefficient is given by the imagi-
nary part of the coefficient oft15(t12t2)/2 in Eq. ~13!
multiplied byP(k), viz.,

a~q0!}2Im(
k

P* ~k!NkFCkGk1
1

q0
~Fk1vkGk!G .

For comparison, we shall also calculate the optical spectra
without the exciton effects. In this case,gm will be replaced
by gm

0 in Eq. ~13! and the absorption coefficient reduces to

a~q0!}2Im(
k

uP~k!u2
Nk

q0
22vk

2 H q0ekEk
12EkF11S ek

Ek
D 2G J .

In the zero-temperature limit, this reduces to the expression
considered in Ref. 9 except that hereek also includes the
Hartree-Fock exchange energy. In realistic systems, all exci-
tations have a finite lifetime, which can be simulated by let-
ting q0→q01 iL, whereL is the half-width of the broaden-
ing. Throughout the paper, the broadening parameter used is
L50.5 Ry. Note atq050 ~when the photon energy equals
m), the functionGk contains a singularity of the type 1/q0

2

due to the Goldstone mode~the condensate state!. The
imaginary part of this gives rise to a function
2q0L/(q0

21L2) when we make the substitution
q0→q01 iL. This result is unphysical, since the term repre-
sents equal emission and absorption at the same energy and
it should give zero contribution. To remedy this, we simply
locate the Goldstone mode and remove its 1/q0

2 contribution
in our numerical calculation.

Figure 3 shows the calculated zero-temperature absorp-
tion spectra of the exciton condensate in the 3D system with
input chemical potentialsm521, 20.5, 0, 0.5, and 1 Ry.
The corresponding densities for these curves are
N050,0.022,0.049,0.079,0.112aB

23 For comparison results
both with and without the exciton effect are shown. In the
plot, a negative absorption coefficient indicates gain. At the
zero-density limit, only the spectrum with the exciton effect
is shown and it is the same as the absorption spectrum of a
hydrogenic exciton in 3D, which has an exciton peak at
E521 Ry and goes asAE at the high-energy limit. As
expected the exciton effect is quite significant in both the
absorption and gain. When the exciton effect is included, a
sharp exciton peak is seen in the absorption spectra followed
by a secondary peak, which is caused by the singularity in
the joint density of statesD(E) of the quasiparticles due to
the formation of a gap. Note that if we ignore the wave-
vector dependence of the gapDk , then
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D~E!5(
k

d~E22Ek!5(
k

d~e22ek!/udEk /deku

}E/AE22D

asE→2D. This singularity is further enhanced by the exci-
ton effect. We have also confirmed numerically that the en-
ergy separation between the secondary peak and the exciton
peak is very close to the average value of the gap 2Dk .
Without the exciton effect, the singularity is quite weak and
the peak structure has been smeared out by the broadening.
The gain always occurs below the exciton peak, which is due
to the recombination of an exciton in the condensate while
shaking an exciton into one of the excited noncondensate
states. The position of maximum gain is also roughly 2D
below the exciton peak.

Figure 4 shows the calculated zero-temperature absorp-
tion spectra of the exciton condensate in the ideal 2D system
with input chemical potentialsm524,23.5,23,22.5, and
22 Ry. The corresponding densities for these curves are
N050,0.084,0.164,0.240,0.314aB

22 . At the zero-density
limit, the absorption spectrum of a hydrogenic exciton in 2D
~which has an exciton peak atE524 Ry and a steplike
spectrum at the high-energy limit! is reproduced. The ab-
sorption coefficient is normalized so that the step height is 1
at the high-energy limit. The exciton effect is found to be
even more significant in the 2D case as demonstrated by the
stronger exciton peaks. The secondary peak~for finite densi-
ties! is again caused by the singularity in the joint density of
statesD(E) of the quasiparticles. In this case

D~E!}E/AE224D2,

which shows a stronger singularity than the 3D case. Al-
though this singularity is further enhanced by the exciton
effect, it is still prominent even without the exciton effect. A
major difference between the results with and without the
exciton effect is the prediction of the position of maximum

gain. Without the exciton effect, the gain peaks at around
29 Ry, whereas with the exciton effect, the position shifts to
around27 Ry for the densities considered here. It is ex-
pected that when the full screening effect is included, the
result should be somewhere between the two. In either case,
lasing below the free exciton line is predicted, consistent
with the experimental observations.8

The quasi-2D system can be realized in semiconductor
quantum wells. The interaction for a quasi-2D system can be
well approximated by the formV(q)5a/q(11qb) with b
being a parameter comparable to the size of the quantum
well.12 Note that the additional factor (11bq) behaves like a
short-range screening of the 2D Coulomb potential. Figures
5 and 6 show the calculated zero-temperature absorption
spectra of the exciton condensate in two different quasi-2D

FIG. 3. Absorption spectra of the exciton condensate in 3D with
input chemical potentialsm521,20.5, 0, 0. 5, and 1 Ry. Solid
curves: with the exciton effect. Dotted curves: without the exciton
effect. The curves with exciton peaks located at higher energies
correspond to higherm. The corresponding densities for these
curves areN050,0.022,0.049,0.079,0.112aB

23 .

FIG. 4. Absorption spectra of the exciton condensate in 2D with
input chemical potentialsm524, 23.5, 23, 22.5, and22 Ry.
T50 K. Solid curves: with the exciton effect. Dotted curves: with-
out the exciton effect. The curves with exciton peaks located at
higher energies correspond to higherm. The corresponding densi-
ties for these curves areN050,0.084,0.164,0.240,0.314aB

22 .

FIG. 5. Absorption spectra of the exciton condensate in
quasi-2D with input chemical potentialsm5(22.0310.5n) Ry;
n50,1,2,3,4 and interaction parameterb50.25aB . T50 K. Solid
curves: with the exciton effect. Dotted curves: without the exciton
effect. The corresponding densities for these curves are approxi-
matelyN050,0.083,0.156,0.223,0.286aB

22 .
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systems with input chemical potentialsm52EB10.5 n Ry;
n50,1,2,3,4, whereEB is the exciton binding energy in the
zero-density limit. EB are 2.03 and 1.54 Ry for these
two cases. Note that exciton binding energies in typical
quantum wells are in the range of 1.522.5 Ry. The
corresponding densities for these curves areN050,
0.083,0.156,0.223,0.286aB

22 for b50.25aB in Fig. 5 and
N050,0.082,0.149,0.210,0.267aB

22 for b50.5aB in Fig. 6.
As expected, the main features are similar to the ideal 2D
case, with weaker exciton effect as the value of theb param-
eter increases. Without the exciton effect, the gain spectra
are quite broad. With the exciton effect the gain spectra be-
come narrower and the position of maximum gain shifts to
higher energy. This is due to the fact that the density of states
for the excited exciton states tends to pile up near the mini-
mum excitation energy, which is less than 2D when the ex-
citon effect is included. At low densities
(0.1aB

22,N0,0.2aB
22 or 531011 cm22,N0,1012 cm22

for ZnSe systems! lasing below the free exciton~FE! line is
predicted. Just above the critical density~below which the
gain is zero!, the position of maximum gain is estimated
~according to our theory! to be around 122 Ry ~or 17234
meV for ZnSe! below the FE line for most semiconductor
quantum-well systems. This position shifts up toward the FE
line as the density increases from the critical density.

Experimentally,8 it was found that for ZnSe quantum-well
systems, lasing does occur at about 15 meV below the free-
exciton absorption line for a density around 731011 cm22.
This is consistent with the results obtained here. However, to
make a quantitative comparison between theory and experi-
ment, one must also consider the following factors:~1! the
laser emission spectrum may arise from excitons localized
by interface roughness as proposed in Ref. 2,8, the short-
range screening ignored in the calculation may cause the
exciton gain peak to shift toward lower energy so the result
is closer to that without the exciton effect, and and~3! the
biexciton states, which are ignored in the present calculation,
may also contribute to a below-exciton peak in the gain spec-

trum ~this can happen when one exciton recombines while
breaking up the other exciton during the process!.

Figure 7 shows the calculated absorption spectra with and
without exciton effect for a fixed density at three different
temperatures~with equal separations!, two belowTc and one
aboveTc . The static screening due to the unpaired electrons
and holes is included. The overall shape is not much differ-
ent in the two cases withT,Tc , whereas a significant
change is noticed whenT.Tc , reflecting the phase transi-
tion. As long asT,Tc , the position at maximum gain shifts
up by about 1 Ry when the exciton effect is included. The
position of the exciton peak in the absorption~gain! spec-
trum shifts upward with increasing temperature, since it is
tied to the chemical potential in our theory, which increases
with T ~below what would be the value if a free Fermi gas
theory was used, however, see Fig. 1!. In contrast, for
T.Tc the chemical potential decreases with increasing tem-
perature similar to the Fermi gas system. ForT.Tc , the
condensation effects have vanished, but the exciton effect
remains present.

IV. FLUCTUATION EFFECTS ON BOSE CONDENSATION

It is well known that boson condensation is not favorable
in low dimensions. One remaining question is whether there
is still boson condensation at finite temperature for excitons
in 2D structures. We will present in the following the analy-
sis that shows that boson condensation is indeed possible for
electron-hole systems only. The same analysis shows that
condensation of Cooper pairs is not possible. The main dif-
ference is the form of the interaction, which has already been
pointed out earlier. In the Cooper pairing case, fluctuations
come from the vertex correction while in the exciton conden-
sations, fluctuations come from the dressed interaction.

It has been shown that13 the current conservation leads to
the following Ward-Takahashi identity:

qmGq
m~k!5tG21~k!2G21~k2q!t,

FIG. 6. Absorption spectra of the exciton condensate in
quasi-2D with input chemical potentialsm5(21.5410.5n) Ry;
n50,1,2,3,4 and interaction parameterb50.5aB . T50 K. Solid
curves: with the exciton effect. Dotted curves: without the exciton
effect. The corresponding densities are approximately
N050,0.082,0.149,0.210,0.267aB

22 .

FIG. 7. Absorption spectra of the exciton condensate in 2D with
approximately the same density~0.2 aB

22), but different tempera-
tures (T50.375, 0.525, 0.675 Ry/kB). Solid curves: with the exci-
ton effect. Dotted curves: without the exciton effect. The curves
with maximum gain located at higher energies correspond to higher
T.
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wheret5t0 for the exciton case andt5t3 for the super-
conductivity case.Gm are the three-point vertex functions
related to the charge densityr and current J with
r(x)[c̄(x)tc(x). For the exciton system at zero momen-
tum transfer q50 and q0→0, we have
Gq050
0 (k)5]G21(k)/]k05t0, which is finite. Therefore ver-

tex correction is not important as far as the gap equation is
concerned. However, sincet5t3 for Cooper pairs, the off-
diagonal elements ofGq0

0 (k) are proportional to 2Dk /q0,

which diverges asq0→0; therefore, the vertex correction is
very important. Including the vertex correction in the gap
equation would not allow a nonzero solution forDk . Thus,
Bose condensation cannot exist in 2D for the Cooper pairs.
For the exciton system, we shall ignore the vertex function
and consider other fluctuation effects.

A careful analysis also shows that the dressed interaction
would not cause any divergence in the Cooper pair conden-
sations. Compared to the vertex correction, the fluctuation
effect of fully dynamically dressed interaction is more im-
portant for the exciton system. In the following we will ana-
lyze the dressed interaction for the excitons and show that it
will not destroy the Bose condensation. Assume that the
density-density correlation is rewritten in the general form

P~q!5q2E dv
rq~v!

~q01 i0!22v2 ,

where the factorq2 is put in according to the sum rule for the
imaginary part of the density-density correlation function so
that

E dvvImP~q,v!}N0q
2,

whereN0 is the total pair density and independent of the
wave vectorq.

With the vertex correction ignored, the self-energy correc-
tion beyond Hartree-Fock theory is given by

S~c!~k!5(
q

V2~q!P~q!tG~k2q!t

5E dv(
q
V2~q!q2

r̄q~v!

2v

12n~k2q!1N~v!

k0
22~Ek2q1v!2

3Fk01 Ek2q1v

Ek2q
~ek2qt31sDk2qt1!G ,

where r̄q(v)5rq(v)1rq(2v) and N(v)51/(ebv21).
Here we are only concerned with the exciton system, we
chooset5t0 ands51. If the Cooper pair condensation is
of interest, we shall simply sett5t3 and s521 in the
above equation. The self-energy is meaningful only when the
frequency is replaced by the on-shell energy. Including the
S (c)(Ek) contribution to the self-consistent equations~6! and
~8!, we obtain

ek5ek
02

1

2(q V~k2q!F12@122n~q!#
eq
Eq

G
1E dvdqV2~q!q2

r̄q~v!

2v

12nk2q1N~v!

Ek
22~Ek2q1v!2

3S ek1
Ek2q1v

Ek2q
ek2qD ,

Dk5s
1

2(q V~k2q!@122n~q!#
Dq

Eq

1E dv(
q
V2~q!q2

r̄q~v!

2v

12n~q!1N~v!

Ek
22~Ek2q1v!2

3S Dk1sDk2q

Ek2q1v

Ek2q
D .

A careful analysis shows that there is no divergence in the
gap equation whetherV(0)5 const orV(q)}1/q at small
q. For smallq andv, rq(v) is sharply peaked at the plasma
frequency vq . For the ideal 2D systemV(q)}1/q and
plasma frequency goes likevq}q

1/2. The integral overv in
the above equation leads to a divergent term of the order
1/vq

3}q3/2. @Note thatN(v)→1/v asv→0#. Finally, carry-
ing out the momentum integration leads to a finite result,
which goes like*dq/q1/2'2q1/2.

V. SUMMARY

In summary we have solved the Bose condensation of
excitons at finite temperatures including the static screening
effects and calculated the optical absorption~gain! spectra
including the exciton effect~vertex correction!. For ideal 2D
systems, the Bose condensation can exist up toT530 K ~130
K! for GaAs ~ZnSe! parameters. For typical quantum wells
~quasi-2D systems!, the transition temperatures are expected
to be somewhat lower. The optical spectra for 3D, 2D, and
quasi-2D systems at zero temperature are studied, and the
exciton effect gives rise to significant modification to both
the absorption and gain spectra. For quasi-2D systems lasing
below the free exciton line is predicted and the position of
maximum gain is consistent with experimental observation.
The temperature dependence of the optical spectra for the
ideal 2D system is examined, and the spectrum shows a
marked change when the temperature moves acrossTc , in-
dicating the significant effect of the Bose condensation on
optical spectra. These effects should be experimentally ob-
servable. By including the fluctuation effects, we have also
shown that Bose condensation of excitons is possible for
two-dimensional systems contrary to the case of Cooper-pair
condensation.
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9M.E. Flatté, E. Runge, and H. Ehrenreich, Appl. Phys. Lett.66,
1313~1995!.

10G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 ~1961!.
11See, for example, G. D. Mahan,Many-Particle Physics~Plenum,

New York, 1981!.
12G. D. Sanders and Y. C. Chang, Phys. Rev. B35, 1300~1987!.
13H. Chu, H. Umezawa, and F.C. Khanna, Phys. Lett. A191, 174

~1994!.

5028 54H. CHU AND Y. C. CHANG


