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Exact results for interacting electrons in high Landau levels
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We study a two-dimensional electron system in a magnetic field with a fermion hard-core interaction and
without disorder. Projecting the Hamiltonian onto thé Landau level, we show that the Hartree-Fock theory
is exact in the limitn—oo, for the high-temperature, uniform density phase of an infinite system; for a
finite-size system, it is exact at all temperatures. In addition, we show that a charge-density wave arises below
a transition temperatur€,;. Using Landau theory, we construct a phase diagram which contains both unidi-
rectional and triangular charge-density wave phases. We discuss the unidirectional charge-density wave at zero
temperature and argue that quantum fluctuations are unimportant in thenléirge- Finally, we discuss the
accuracy of the Hartree-Fock approximation for potentials with a nonzero range such as the Coulomb inter-
action.[S0163-18206)03831-3

I. INTRODUCTION rameter,n "1, to obtain a problem that is amenable to exact

di ional el . solution.
In a two-dimensional electron systef@DES in a strong We consider a 2DES assuming that the partially filled

magnetic field, the fractional quantum Hall effechay be | andau level is spin polarized. Using a fermion hard-core
observed when electrons partially fill the lowestH0) Lan-  potential of strengtly <% w, as a model interaction between
dau level. In this paper we consider what happens if it is ahe electrons, we are able to resum perturbation theory at
high Landau level that is partially occupied. The large- high temperatures, far—«. (A w.=%eB/m s the cyclotron
limit generates a problem that we can, in part, solve exactlyenergy and from here on, we det#i=1.)

To this extent, the high Landau level limit is analogous to the  We find that, for the high-temperature phase, the Hartree-
limit of high dimensions for spin modéior the Hubbard ~Fock approximation is exact in the largelimit (Sec. Il B);
model3 for a system on a cylinder of finite circumference, it remains

Electron states in lowier excited Landau leveio-1.2) - S8 G B 280, ETCE Eoes, o S rbitals, The
have received some attention in the pastnd recently 9 :

Aleiner and Glazmahhave derived an effective interaction high—temperatu're phase is unstable towards the formation of
for electrons in high Landau levels, taking into account thed: charge-density waveCDW) of wavelengthi pin=2.9R,
) SN .r‘gassec. Il D). We construct a phase diagram for the system

wave-vector-dependent dielectric c_onsta_nt _due to screeni ing a Landau expansidSec. IV). We find that there exist
by lower, fully occupied Ievel_s. Using this interaction, FO- hoth a unidirectional CDW, near=1/2, and a triangular
gler, Koulakov, and_ Sh_klovsl?il(FKS) have studied a.2D.ES CDW away fromv=1/2.
in a weak magnetic field at zero temperature, within the oy work hence generalizes to finite temperatures the re-
framework of the Hartree-Fock approximation. For a filling syits obtained by FKS at zero temperature. It also represents
fraction v of the partially filled Landau level near=1/2, 3 generalization of the study of charge-density waves in the
they find a phase of fully occupie@hcompressibleregions  Jowest Landau level by Fukuyama, Platzmann, and
alternating with regions of unoccupied orbitals. These reAnderson’ In particular, we show for the first time that the
gions are translationally invariant in one dimensiontransition from the uniform state near=1/2 is to a unidi-
(“stripes”). At lower filling fractions, these stripes break up rectional rather than triangular CDW.
and there is a phase of fully occupied islaftisubbles”) on We also(Sec. V) compare the theories with hard-core
a triangular lattice in an otherwise empty system. The widthand finite-range potentials. It emerges that the Hartree-Fock
of the stripes and the lattice constant are each of order of th@pproximation isnot exact for potentials of finite rang®
Larmor radius. Experimental consequences of this structuréSec. VI A) even in the larger limit. We show, however,
in particular for tunneling into the 2DES, have been investi-that corrections to the Hartree-Fock approximation are gov-
gated extensively by FKS. erned by the paramet&/I, which is small in the weak-field

Both the interest and the difficulty of studying electron limit investigated by FKS. For potentials wheR¢| is not
correlations in a partially filled Landau level stem from the Small, we demonstrate explicitly that there exist uniform
fact that the Sing'e_partic'e prob|em iS macroscopica”y de_dens|ty states Wh|Ch, for these |nteraCt|0nS, have a cohesive
generate. Interactions set the only important energy scale arfergy of the same order as that of the CDW states. It there-
the problem is intrinsically non-perturbative. In théh Lan-  fore remains possible that the ground state in high Landau
dau level, however, a small parameter does appear, whidgvels may depend on details of the interaction, and may not
manifests itself in the existence of two new length scaledlecessarily have CDW order.
besides the magnetic length=\#/(eB): Ag=2m/kg
=2ml/\n, the Fermi wavelength, and the Larmor radius,
R_~1+/2n, the size of the smallest wave packet that can be We start by considering the Hamiltonian projected onto
constructed in theath Landau level. We use this small pa- one spin orientation for thath Landau level:

II. THE HAMILTONIAN
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where

k+1 +m 2
i} ..... foeen- i ac(®) =1+ -[1-J3(aRU)] 25

Jo is the Bessel functiorgg=7%24meqx/(mMe?) is the Bohr
radius, andk is the relative permittivity.
The two finite-range potentials we consider are of range
1 R. One potential is boxlike, nonzero, and constant up to a
=_ 2 (rq|V| pk)a?agakap distanceR and zero for larger distances; the other one decays
2rap exponentially with a decay lengtR. We takeAc<R<R, .
The Fourier transforms of these potentials are

FIG. 1. Interaction verte (m,l).

2
d - .
) V(@) =v1R*I1(qR)/AR Vo(q) =v,R¥(1+¢°R%) %2,
2.6

where thev; are the strengths. Potentials of a finite range
arise, for example, if there is a metallic gate close to the
(2.2) two-dimensional electron system which effectively screens
the interaction at distances larger than the 2DES-gate sepa-

:% fd|f(2 )2V(Q)an

Xe_iqua(qy_l)al+lal+mak+m+lak (2'1)

=

_ t
= 52 M(m,Dak, ak; maks me 18k -

T . _ration.
Here, a, creates an electron in the Landau orbital
(rlpy=y{V(r) of the nth Landau level with pseudomomen- L THE LIMIT  n—sco
tum p, ¢p”)(r) L~ Y2%eP*¢(M(x—p), where ¢ is the
nth harmonic oscillator wave function. Periodic boundary A. The vertex M(m, 1)

conditions are applied in thg direction for a system size  We first investigate qualitatively the behavior of the indi-
L. Also, an(9%/2)=[w,(9%/2)]?=[L,(g%/2)e 4 ’4]2 L, vidual matrix elements. To do so, we replaggq®/2) by its
being thenth Laguerre polynomial. The Fourier transform of WKB envelopel?> normalized to be consistent with
the potential isV(q)=/d2re'®"V(r), and all quantitiest fo[LN(X)]2 “*dx=1. We seta,(¢?/2)=0 for g*>8n, and
with a tilde are to be understood as the Fourier transform ofor g*<8n

the functionf. To derive(2.1), we have used

, N (f)ZE; (3.
g 2] 7 J’(8n—a?) '

. 277 . '
(k'|€'9T|Kk) = T5(|<'—k—qy)e['qx<'<+k )]lzan(?). (2.3
This is an asymptotic expression away frog=0 and
We represent the vertel (m,l), which is independent of q=+/8n. In the vicinity of these points, we have used the

k, as in Fig. 1. following expressions?
In this paper we consider primarily the simplest possible 5
potential: a contact interaction for fermions. In the lowest q 2
Landau level this interaction is known to reproduce much of <_) =Jiavan), a*<n, @32
the physics of the fractional quantum Hall effeend the
Laughlin wave functio is known to be its exatt ground q? 2\ a7 s
state atv= 1/3. Itis highly singular at the origin in real space an(?) _{ ( )18 n ==
but has a well-behaved Fourier transform
_ g°—8n<n'? (3.3
Vic(a) = —v?, (2.4 o o
In considering the envelope only, we neglect the rapid oscil-
v being the interaction strength. lations of a,(g?%/2), since the potential does not have struc-
In addition, in Sec. VI we discuss the screened Coulomhure on this scale.
interactionV xg recently derived by Aleiner and Glazman, To estimateM (m,I) for the hard-core potential we rescale

as well as two simple finite-range potentials, andV,. The  g,=8nQ, and find
potential Vg (2.5 is an effective intra-Landau level-

interaction potential which takes into account the presence Ol\/l 2_772 Vi-12/8nd Qx \/—[ |2
lower, fully occupied Landau levels through the dielectric T QX
constante,g . It has the following important features: there
is little screening forq=n~! and q=1, but forg~n"2 1
eac~ R /ag. In weak magnetic fields, this is very large, of X cog Q,my/8n) J > (3.4
ordern®?2, whereas in strong fieldgag~1 for all q. The Q1= (Qu+1%8n)]
explicit form of Vg is For largen, the oscillating cosine suppresseshl{m,!) for
) which ms>n~—%2
VAG(Q) 2me The consequences of these simplifications are particularly

Amegkepc(d)q’ clear if we consider a system on a cylinder of finite circum-
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FIG. 4. Dyson equation for the self-energy.

FIG. 2. The three classes of diagrams. integral over intermediate states decouple: the bare propaga-

, , _ tors G°) |, which are diagonal in the pseudomomentiam
ferenceL. Then,m=2mal/L, with « integer, so that, in the m’ . . .
limit n—c with L fixed, onlyM(m=0,) is nonzero* The &€ the same for all states in a given Landau level , since

Hamiltonian in this limit thus consists only of exchange Gl k={iom=[en(k)—pl} *=lion—(e=p)]"* . There
terms =0). It is therefore diagonal in a basis of Slater is non dependence in the propagators since the dependence
determinants of Landau orbitals. The charge density of angn n in €, is absorbed into an-dependent chemical poten-
single such Slater determinant is independent ofytlwor-  tial x. Therefore only the behavior of the integrals over in-
dinate. The problem of finding the ground state is therefordermediate states has to be considered when taking the large-
reduced to finding the unidirectional charge-density waven limit.
which is lowest in energy, and the Hartree-Fock approxima- For a diagram in the first class with one interaction line,
tion for this system is exact. the integral over intermediate states is

Note that the spatial dependence of the exchange interac- 5
tion is as follows:M(m=0,) varies little as a function of S M(0gy) = - &)_nfl QdQ  2un 35
| for [I|<2R_. For [I|>2R,, the cyclotron orbits do not o Y 7 JoJ1-0Q? T '
overlap. The effective range of the contact interaction is
therefore determined by the spatial extent of the wave funcThis class of diagrams in fact makes the leading contribution
tions and is thus of order of the Larmor radius. to the self-energy fon— and hence we scate with n so

It is interesting to compare our conclusions with those ofthatvn is constant. Next we sum all the diagrams in this
Rezayi and Haldan®,who considered a similar problem in class; in Appendix A we establish an upper bound of
the lowest Landau level. They found by numerical diagonal{vn)*n~2? to the contribution from other diagrams, which
ization that a single Slater determinant of Landau orbitals iganishes forn—o. The sole exception are the diagrams
the ground state if the magnetic length is much larger thamvhich contain only Hartree loop&Fig. 3) and interaction
the circumference of the cylinder. In the system we considerjnes which do not cross; these vanish for our potential since
the important length scale B, and the limiting behavior is v/ ,(0)=0. If this were not the case, we would have to
reached folL <R, . compare their contribution with that of the Fock diagrams

when considering what to retain for large

B. Diagrammatic analysis

o C. The self energys,
We now turn to the infinite system and show by means of el

a diagrammatic analysis that, in the absence of symmetry We sum the diagrams which do not vanistnas « using
breaking, the Hartree-Fock approximation is exact for thethe Dyson equatioriFig. 4), noting that the absence of a
hard-core potential, in the high-temperature phase, in th&lartree contribution reduces it to the one in Fig. 5 so that
limit n—o. To do this, we group all diagrams for the self- o

energy into three classéBig. 2): first, those diagrams which M(0J]) —e'En0

contain neither closed fermion loops nor crossed interaction zkzg B iE,—(e—p)

lines (classA); second those which do not contain closed o !

fermion loops but do contain crossed interaction lifeass —M(0,m) -1 21p
B); and third those which contain closed fermion loops XE 2 ; —
p | mnp, B IEn —(e—u)
(classC). m
For the analysis of the@ dependence of these diagrams, -3 _ .M(0))

we note that the sum over Matsubara frequencies and the (3.9

T1-Bu(l-»z~ M)
For the hard-core potential,__.M(0]) is negative[Eqg.
m (3.95)], and the self-energy has no poles.
We see thad,, is independent ok, because of the trans-
lational invariance of the system; to keep the filling fraction

FIG. 3. Hartree loop. The solid line is a full propagator. FIG. 5. The self-energy for the high-temperature phase.
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potential to be attractive, the system would phase separate

p .k+? , o into a fully occupied and an empty region below the critical
E E """" E temperature.
Vo
Kk :k+:Q : k+q IV. CHARGE-DENSITY WAVE INSTABILITY
AND THE PHASE DIAGRAM

In the preceding section we have shown that the uniform
system is unstable to formation of a CDW with a wave vec-
tor pmin at a temperatureT,=v(1—v)U(Pmin), With
v fixed, 3, will be compensated by an equal shift in the Y(P)=Ugr(p)/(2m). In Sec. VB we find for the hard-core
chemical potential. Hence, to leading orderrin the one- Intéraction thapn,,=2.16/R, . For a general potential, re-

particle propagator remains unchanged. placingUg by —Upr=—Uy+Ug (5.4) in these and subse-
guent expressions yields a general analysis of the CDW

phase diagram for a Hamiltonian in the Hartree-Fock ap-
proximation.

The two-particle verteX’, on the other hand, is affected  The problem of charge-density waves in the lowest Lan-
by the interaction. An analysis like the one above appliesiau level has been studied extensivElyand Fukuyama,
also to the perturbation expansion I6f and in the end we Platzmann, and Andersbr{fFPA) have obtained the same
only have to sum ladder diagrams illustrated in Fig/ &he  expression for the transition temperature using second-order

FIG. 6. Ladder diagrams for the two-particle propagator. The
solid lines denote full propagators.

D. The Bethe-Salpeter equation

Bethe-Salpeter equatidifrig. 7), in the limit n—oo, is perturbation theory with a Hartree-Fock Hamiltonian. These
authors also show that, within Hartree-Fock theory, a
r —MOg-3 M(0/) -1 second-order transition &t, is preempted by a first-order
(9, 0) (0.) = B i(wt+N)—(e—pn) transition at a higher temperatufe to a triangular CDW.
In the following, we extend the work by FPA to timh
« -1 r(g—1.0) 37 Landau level?® In the spirit of Landau theory, FPA expand
iN)—(e—u) -l ). ' the free energy in powers of the order parametefor the

] triangular phase using a diagrammatic calculation described
Note that, because the constituent verddxm,|) and the in Refs. 20 and obtain

propagators are independent of the pseudomomektand

the Matsubara frequenci€ and 8, so isT. SF1=NU(Q)(a|81/*+b[s1[*+clah), (4.0
For w#0 the sum over A yields 0 and - .
I'(q,0)=M(03). For o=0 where the coefficients are given by

a=3[1-v(1l-w)u],
r(q,0>:M(o,q>+ﬁv<1—v)EI M(OHT(q—1,0),

b=—2u?p(1— V)|l—2V|C05<\/T§Q2):

~ M(0.s)
I'(s)= , (3.9
1-M(0,8)Bv(1—v) 9/ 5 2 V3
~ - c=ur(1-v)| =|==—| v— =] [+|1—cog —Q?
where I' and M are Fourier transforms of'(q,0) and 2|12 2 2
M (0,g) with respect tay. 277M is in fact the Fock potential 1\2 1
(5.5. X|6| v— E) - E } (42)

The two-particle vertex is divergent at a temperature

T=M(0,ss)»(1—v). This indicates an instability towards the Here, Q is the wave vector of the triangular phase deter-
formation of a charge-density wave at a wave vegqigf,  mined below,u=U(Q)/T, andN is the number of states in
whereM (0,pmin) is largest. We discuss the phase diagram ofthe system. By the same method, we find the free energy for
the charge-density waves in Sec. IV. Had we chosen tht¢he unidirectional CDW:

SF,=NU(Q)(A| 8,2+ C|8,]Y),

o+Q O+A  O+d where the coefficients are

k  k+q
%\e 1 2
z I A=a/3 and C=u’p(1-v)|+=|v— = 4.3
<< 8 2 2
k k+q k  k+l k+q . . o
Q A ) The temperature at which the first-order transition occurs

from the uniform phase to a triangular CDW is

u(Q) ( eco[ (1/3/4)Q?]

FIG. 7. Bethe-Salpeter equation fdr. Greek letters denote T +
f+gcog[(v3/4Q?]

=T
Matsubara frequencies. e U (Pmin)

) , (4.9
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T/0(0) o
0.2
0.15
0.1
0.05
0.5 o :

0.1 0.2 0.3 0.4 0.5

filling fraction

filling fraction

FIG. 8. Phases near the triple point. The solid lifig, separates FIG. 9. Phase diagram as in the previous figure. The dotted line
the uniform and triangular phases, the short dasfhigs,are the is an extrapolation of ,.

spinodal line and the long dashds,,, separate the triangular and
unidirectional phase. this way, we expect competing unidirectional and triangular
patterns to persist at wave vecmy,;,, down to zero tempera-
ture.

If we extrapolate the phase-separation ling beyond the

where e= % (v—3)%f= %+ 3(r—3)%0=5-3(v—3)%
Ty is found by ma_><|m|zmg4._4) W't.h respect tQ. For h'gh range of validity of our expansion fb= 0, we obtain a phase
Landau levels, this calculation simplifies as follows. Smcediagram(Fig 9) with a first-order transition at=0.35 for
—1/2 29 ' '
Q~Pmin~n " cos[(y3/4)Q*]=1. Hence, for largen,  T_0 This is close to the value=0.39 obtained numeri-

T, s obtained by setting Q=pmin. Therefore g1y by FKS, separating the unidirectional pattern from the
T1=Ty[1+e/(f+g)] is always larger thaT,, except for  triangular one.

v=1/2, where there is a triple poiiit;=T,=T,. In the re-

mainder of the calculation, we can set %ds/3/4)Q?]=1 V. ZERO-TEMPERATURE ANALYSIS
andU(Q)=U(p min), thereby removing the second term in
brackets in(4.2).

We now turn to the question of which phase is present for We start this section with a general remark concerning the
T<T,. Since our expression for the free energy is valid onlyHartree-Fock approximation for a Hamiltonian projected
for small 8, we consider the neighborhood of the triple point. onto a single Landau level. MacDonald and GifVimave
Minimizing &F; , with respect to; ,, we find that the uni- shown, using analyticity in the lowest Landau level, that the
directional CDW is more favorable at=1/2 for T just be-  Fock potential can be expressed solely in terms of electron
low T,. As the filling fraction is lowered at constafit there ~ density as a function of position. This result is in fact not a
is a first-order phase transition to the triangular CDW. Whergonsequence of the special analyticity properties of the wave
v is lowered even further, the uniform density state become&unctions in the lowest Landau level: if the Hamiltonian is
more favorable. We have also examined competition beProjected onto any single Landau level, the Hartree-Fock en-
tween the striped phase and a square CDW, using the exprezgy is simply3/d®qVex(q)[N(a)|?, wheren(q) is the Fou-
sion derived by Gerhardts and Kuramdfowe find that at  rier transform of the electron density and the effective poten-

»=1 for T just belowT,, the square CDW has a higher free tial is
energy than the unidirectional one for~«. The resulting v i _OF
phase diagram is displayed in Fig. 8 fe<1/2. The results Vei(@)= V(@) = Ver(a), .
for v>1/2 follow from particle-hole symmetry. The emer- _ Tpe(a) 1 d?p~ _ 2
gence of the unidirectional CDW can be explained from the Vi(q)= S = > —V(p)e'p‘qan( )
: an(q92)  an(q2)) 2m
expansion of the free energy as follows. Asapproaches (5.2
1/2, b tends to zero. The gain &F, relative todF, due to ] o o T
its larger second-order coefficiert=3A, which is almost The crucial point is that after projection, the density matrix
zero nearT,, is offset by the cost incurred due to its larger in the Landau orbital basigy i, can be expressed in terms
fourth-order coefficient>C, and the unidirectional CDW is ©0f N(q). Details of the derivation of5.2) are given in Ap-
energetically more favorable. pendix B.
As the temperature is lowered far belolwy, the order
parameter grows and our expansion ceases to be valid. An
additional difficulty is that higher harmonics will start to play =~ The diagrammatic analysis of Sec. Il B applies to the
a role: the density profile must be constructed by occupyindrigh-temperature phase where the electron liquid has a uni-
states in thenth Landau level, and must in particular not form density. For that case, the Hartree-Fock approximation
require a filling fraction larger than one at any point. In Sec.is exact asi—. We now allow for symmetry breaking and
V B we show that the cost for higher harmonics is small. Wesolve the self-consistent set of equations depicted in Fig 4.
therefore expect that these considerations alter only the shaf@r a system on a cylinder of finite circumference, we have
of the CDW without changing its structure or periodicity. In shown that the Hartree-Fock eigenstates have a probability

A. The effective Hartree potential

B. Self-consistent equations
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O Y et aa s O G AN ’ ” ”
FIG. 11. Two near degenerate staad$,|B) with nonvanishing
---------- Hartree term matrix element{A|Vyd|B).
(-1) *Fock term
B main features are the following. In the range where
p [Uye(p)| is largest,Ug(p)/Uy(p)~n®; the absolute mini-
o 5 7 6 5 1o 12 12 mum of —Ug(p) is constant(given the rescaling which

keepswvn constant whereas that ofuy(p) vanishes as
n~23. Hence, for largen, the Hartree potential is insignifi-
FIG. 10.Ty(p) and—Ug(p). The unit ofp is the inverse mag- cant.
netic length; the unit of energy is arbitrary. Following the analysis by FKS, we expect to find a peri-
odic sequence of fully occupied and empty stripes of Landau
density that is translationally invariant in tlyedirection and  orbital guiding centers, the periodicity of which is given by
hence that it is sufficient to allow the self-energy to dependhe prominent first minimum ap, of —Ug(p). With
on one coordinate only(The infinite system is discussed pm,i,=2.16R,, the wavelength is approximately

further in Sec. V O. The Dyson equation reads N min=2.9R, about 10% larger than that found by FKS for
. the potentialV,g. The origin of this difference lies in the
Ek=i2 de[—M(I—kO) : fact that our contact interaction is less hostile to density
279 E=2—(e— ) variations on large length scales than a Coulomb interaction.

Higher harmonics do not destabilize this CDW, because

+M(0) —K) the oscillations ofiz(p) are incommensurate with,,, and
' E-3—(e—nw) because the principal minimum is very pronounced.
= El [M(I=k,0) =M (0l =K)J(ny), C. Ground state in a system of infinite size

__ L (e— ; ) A detailed stu_dy of ngtreg-Fock ground states for a sys-
B ey () 5 e oceupaney f 1 Lo of electons tractng via e creend Cotlomb per
gives tial _VAG has peen carried out by FKS: While it is likely that

their conclusions apply to a system with the hard core poten-
- 1_ _ tial, we are unable to make exact statements either about the
2(p)= 55, Urr(P)N(pP), (5.3 lowest-energy Hartree-Fock state or about the importance of
quantum fluctuations around a Hartree-Fock state at zero
where temperature.

The Hartree-Fock problem is simplified in principle by
~ = p? pZan(p?/2) the result of Sec. V A: we need to find the Fourier transform
Un(p)=V(p)an| 5 |==(vn) n N the electron density, Ti(q), that minimizes

Jd2qV ¢4(a)[N(0)|?, subject to the constraint thai(q)
- ~ q? arises from occupation only of states within thiéh Landau
—Ur(p)= _f q dq V(Q)an(j)‘lo(p@ (5.5 Jevel. In fact, this constraint is very hard to incorporate into
a rigorous approach. Despite these obstacles, FKS, studying

3 5 VAG, have proposed very plausible candidates for the ground
24(11”)1':2(5;1:2;—2”9 ) (5.6 state on the basis of persuasive physical arguments, sup-
ported by extensive numerical calculations. They find a uni-
1F2 being a hypergeometric function. directional CDW ground state far near 1/2, and a triangu-

Note that the Fock potentidb.5) follows directly from  Jar CDW for v away from 1/2. Our results at finite
(5.2 as it must. The factor of,(p?/2) arises from the ma- temperature, described in Sec. IV, mirror the conclusions of
trix elements of the potential between states inrntieLan-  FKS at zero temperature.

dau level. Equationg5.4) and (5.5 were obtained by FKS, In addition to the difficulty of showing rigorously whether
who considered the interaction between guiding centers ohe states discovered by FKS lie at the global minimum of
coherent states in theth Landau level. the Hartree-Fock energy, there is a second problem in an

The asymptotic expressidis.6) for Ug(p) holds as long exact treatment. It is to show whether quantum fluctuations
as p<.n, and depends op only via the productpR,_, around the Hartree-Fock state are important.

indicating that the important length scale for the exchange As a restricted illustration of this difficulty, we consider
potential isR, . The functionsuy(p) and —ug(p) for the fluctuations starting from a stripe state. Referring to Fig. 11,
hard-core potential are plotted in Fig. 10 for=20. The there are nonvanishing matrix elements connecting the stripe
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state to a state slightly higher in energy with two electrons aing from the regiong~1 does not differ in both cases, the
the edges moved by an infinitesimal distandesf\g) into ~ dominant contribution for the hard-core interaction arises
the empty regions. For a system on a finite cylinder, thesérom g>1, and here the dependence wrof | ,,lg and ¢
matrix elements are absent due to the discrete locations fejiffers. By contrast, for finite-range potentiaié(q) falls off

the centers of Landau orbitals. For the infinite system, howfor q>R~'~1, and the larger region never contributes.
ever, this problem persists, and we address it as follows. Thgince this feature is common to all finite-range potentials, we
self-energyXy (5.3 will not be changed noticeably by expect the above argument to be applicable generally. In
changes in orbital occupation at the edges of the stripes b‘f:‘)'articular, fOfVAG, assuming that divergences arising in in-
cause their width is only a fraction™ ! of the total stripe tegrals such as in EqA.6) are removed by screening for
width, and,, varies slowly across the edge. After lineariz- g=n~Y2 we reach the same conclusions up to logarithmic
ing 3y around the edge, the excitations of Fig. 11 acquire &grrections. Hence the Hartree-Fock approximation for
linear dispersion relation. The problem of one isolated Stripefinite-range potentials is not exact evenras =, and omits
then corresponds to a Luttinger liquiti>>where one edge of diagrams of the same order inas those retained.

the stripe provides the left-moving fermions and the other, Nevertheless, as the range of the potential is increased
the right-moving ones. As a result, sharp edges in orbitalrom zero, corrections to the Hartree-Fock approximation are
occupation are smoothed diitbut only over a fraction of governed by the small paramet@fl. For the second order
the stripe width that vanishes for large It seems likely that  gjagrams, this can be seen as follows. Consider first the in-
this feature of the behavior should persist for a system OfegraIsIA andl .. The integral ¢ is effectively cut off by the

many stripes and hence that quantum fluctuation_s around th&ssijlations of the Bessel function wheng,>1, whereas
stripe state are unimportant for a contact potential. the integrand ofl , is not cut off untilg~R~%, so that

I /1, is parameterically small iR/l. Similarly, the contribu-

VI. COMPARISON WITH BEHAVIOR tion of the regionR=q=1 to |5 compared with its contri-

FOR FINITE-RANGE POTENTIALS bution tol , is parametrically small ifR/l, and it is from this
region that the dominant contribution g arises.

The conditionR/1<1 is fulfilled for the screened Cou-

If the two-particle interaction has a finite range, the dia-jomp interactionV g, for weak fields: taking the effective
grammatic analysis described in Appendix | does not simyange ofV,g to beag, ag/l ~1/10 in GaAs for a magnetic
plify in the same way as for the hard-core potential. To dem<ie|g B~70 mT.
onstrate the essential differences, we consider, as an example one can ask, nonetheless, whether there in fact exist any
of a finite-range potentialy, (2.6). For simplicity, we in- competitors to a CDW ground state even RH=1. We
clude a “neutralizing background” so that,(0)=0. consider one such example: the Tao-Thouless state at filling

Consider first the exchange diagram wikhinteraction  fraction v= 1/, in which one int Landau orbitals is occu-
lines (A in Fig. 2). Its contribution to the self-energy scales pied in a regular fashion. It is of interest because it is quali-
with n as [Z;M(0)]*~[v,R/RE]*, whereR.~n'2 We tatively different from the CDW states, having a uniform
show below that diagrams with crossed interaction lir®s ( charge density, and it is sufficiently simple to allow detailed
in Fig. 2) or k—1 closed fermion loops in Fig. 2, make calculation. We find the cohesive energy of the Tao-Thouless
a contribution of the same order to the self-energy. Thereforstate scales asn™ 2. For comparison, the cohesive energies
these diagrams cannot be discarded for larg&V/e empha- of the CDW ground states with the interactiok’s and
size that, having projected the Hamiltonian onto a singleV g scale awn™ 2 The nature of the true ground state in
Landau level, the interaction strength sets the only energhigh Landau levels with interactions other than a contact
scale. As previously, we choose this scale to be our unit opotential therefore appears to be open and may depend on
energy, setting,R/R =1. the details of the interaction.

We now show for the cade=2 that all three diagrams in Tao and Thouless calculated the cohesive energy of their
Fig. 2 have the same-dependence for large. We denote state in the random-phase approximati&®PA). The starting
the integrals over intermediate stateslhylg, andl- and  point of the self-consistent calculation is as follows: it is
obtain assumed that the energy for an occupied Landau orbital is

2 7, and for an empty orbital isy,. This determines a gap,
J qqu\(Q)} : IB:J qdgw(a)]?, A= 7y~ 71,. The RPA series is then summed to obtain ex-
pressions forp, and 7y, in terms of A. These equations are
solved self-consistently. Generalizing the work of Tao and
lc_f fqldqlqquzJO(qu)W(ql)w(qZ)’ ©D  Thoulest 1o higher Lgndau levels gnd to a wave-vector-
dependent dielectric constant yields the equation

A. Diagrammatic analysis

IA:

Wherew(q)=V(q)an(q2/2). It can easily be checked that

the main contribution to these integrals arises from the re-  \_  _  _ [~ w(q)*qdg

gion whereq is of order 1. In this regionw(q)~n~*2 e | [AZ2+ 2tAw(q) ]2+ At+ 2w(q)
Thereforel , andl g are of the same order. The Bessel func-

tion Jo(g10,) in I oscillates slowly in this region so that _fw( 2| w(g)*qdg 6.2
I, also, makes a contribution of the same ordenin 0 t) At+2w(q)’ )

The analysis can be extended tolallThe crucial differ-
ence between finite range and the hard-core interactions \&/e wish to know the scaling &, and hence of the cohesive
the following. While the contribution tb,,lg, andl aris-  energy, withn. By considering the behavior of the integrand
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asn—oo, assumingA =Agyn® (with A, independent of), q q
we find & simply by comparing powers af on both sides of 1% Y
(6.2. We find thata= — 1/2 for any fixedt. ™

Thus, the cohesive energy of the CDW in the Hartree- c : i /k - E .
Fock approximation has the same order as the cohesive en- Ty Kty Sy
ergy of the uniform density Tao-Thouless state.

FIG. 12. Diagram with two crossed interaction lines.

B. Influence of the potential range on the structure

. serve forn—oo, since the transition temperature, being pro-
of the charge-density waves

portional toUg, decreases with increasimg essentially as
Even within the Hartree-Fock approximation, there aren™ %2
significant differences in the structure of the charge-density
waves formed with hard-core or finite-range interactions. VIl. SUMMARY
Near half filling, FKS find a state of alternating incompress- ) . ) .
ible (fully occupied and empty stripes of Landau orbitals for !N this paper we have considered electrons in a high Lan-
small and moderate. Asymptotically for largen, however, dau level interacting via a hard-core potential and found that
they find that the stripes break up into narrower stripesthis is a rare example of a many-body problem in more than
When the guiding center density of these narrower stripes i@n€ dimension which is, at least in part, exactly solvable.
coarse grained, a sinusoidal oscillation in density at wave 1he focus of our work'is the extent to which it is possible
vector py,, results. The origin of the breakup of the stripes © obtain math.emancelly controlled conclusions in the high
lies in the fact that, fom—oo, the energy cost for higher Landau level limit. This tgrns'out to be very dependent on
harmonics in guiding center density outweighs the gain dudhe form of the _two-partlcle interaction potential. For the
to the fundamental one. This happens because it is the Hap@rd-core potential, we have shown that Hartree-Fock theory
tree potential which sets the energy scale for higher harmor{S €xact and found a fransition to both unidirectional and
ics, while the scale for the energy of the fundamental harlriangular charge-density waves at finite temperatures. For
monic is set by the Fock potential. At large the Hartree interactions of finite rang®, this is not the case. Nonethe-
potential is parametrically larger than the Fock potential. Thd€SS, for short-range interactior®8/l can be used as a small
higher harmonics are avoided by the breakup into narroV\,epara_rneter for calculating corrections to the Hart_ree—Feck ap-
stripes, which establishes a quasisinusoidal density distripd2roximation. ForR/I=1, we argue that there exist uniform
tion. For the hard-core potential, this does not occur; ratheldensity states which may be competitors with the charge-
due to the vanishing dfi,,(p), the energy cost for higher density waves for the ground state.

harmonics does not grow relative to the fundamental one as !N the context of the lowest Landau level, work with the
N—s 0. hard-core potential has yielded some significant conceptual

In order to see whether the breakup found by FKS is simplifications while retaining the essential physical features
general feature of potentials with nonzero range, we investi©f e problent. Whether this is also the case in high Landau

gate the two simple finite-range potentials introduced in Eqglevels will ultimately have to be settled by experiment.
(2.6). In both cases, we find thﬁ'gH(q)=Vi(q)an(q2/2) re-

mains of ordew; for q of ordern™*?asn—. Ford; , this ACKNOWLEDGMENTS

is not the case. The integrai (p):fq qu(q)an(qzl One O.f' US(JTC) |S. grateful to L. Glazmqn and B. I.
2)3,(pq) is effectively cut off aFt —R-1 and we find for Shklovskii for helpful discussions and for copies of Refs. 5
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’JH(p) RR =n ’ 6.3 APPENDIX A: BOUNDS ON THE CONTRIBUTION
FROM NON-HARTREE-FOCK DIAGRAMS

Since the fall off ofV(q), and hence of the integral for
Ur(p), above a wave vecta~R ™1 is a feature of all finite-
range potentials, we expect the stripes to break up whe ; 4 g .
RLgR.plf the effective rgnge of the IOCoulomb poten?ial is ~Or the first clas_s of d|agram$\(|n_ Fig. 2), it follows from
taken to be the Bohr radius, this condition corresponds &9 (3.5) that theirn dependence is

ro*=kgag/\/2>1, which is where FKS indeed found the (on)k. (A1)
destruction of the wide stripes to occur.

We note that, for finite-range potentials, there also exist In the second class of diagramB (n Fig. 2), those with
other, quite different routes by which stripes may becomecrossed interaction lines, we use an analysis following work
unstable. For example, for the potentd, Une(p) has by Benedict and Chalkét on the scattering of electrons in
minima of comparable depth gt~n~%2 and atp~R™%.  high Landau levels with disorder.

Then, it may be more advantageous to build a correlated Consider the diagram with two crossed lines
state where correlations on the scRlare as importantas or (Fig. 12 which corresponds to the integral
more important than correlations on scalesRpf. J/ddy,ddayM(dzy,01y)M(—01y,02y). From this, we can

Finally, it should be remarked that the transition to aguess the general structure for the integral over intermediate
charge-density wave will become increasingly hard to ob-statesl, for r interaction lines. It is

We compare theé dependence of the three types of dia-
rams illustrated in Fig. 2 for each ordeof the interaction.
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vanish for our potential, a fact unrelated to the largkmit.

® q Note that this is no longer the case in a state with broken
©_>3_y translational symmetry.
T Finally, we turn to those diagrams which contain at least
qu ]\ one non-Hartree fermion loop such as the one in Fig. 13.
\"q Each of those loops gives rise to an integral over the loop
2y pseudomomentums, which leads to a é function
0(QixtUox—0sx). Similarly, pseudomomentum conserva-
FIG. 13. Closed fermion loop. tion gives rise to a corresponding condition on the. The
integral over intermediate statés of diagrams containing
r k interaction lines and. non-Hartree loops is then bounded
|x:f |H1 daiyM(Q; . Giy), (A2)  above by
k—L da k
whereQ;=2{_,Z;;q;, with Z;;=0 if the interaction lines N ( 11 fﬂ) ( 11 an(Qi)v(Qi)) ‘ (AB)
andj do not cross and-1(—1) if they cross and starts to =1 27)\j=1

the left (right) of j.

We obtain an upper bound dh,| by first picking a pair
t,u such thatZ,,=1 and then relabeling indices such that
t=1 andu=2. Then

where Q=3!!,Y;;q; and Y;;=0,+1 is fixed by the con-
straints imposed by thé functions. This is an upper bound
since we have left out the oscillatory term in the expression
for the vertex.

We can again replace th|mn(Qi)V(Qi)| by an upper

;
; i K(p—2/3\L _ n—2L/3
| gf dg ol MO )| bound and finally obtain|l |~ (vn)*(n _3) ~n— 2,
I 11:[3 Ay M(Q; . ) Hence these diagrams also make a vanishing contribution as
2 n—oo,
|125f [T dayM(a;+dzy,01,)M(ay— sy ,0ay)- APPENDIX B: CALCULATION
=1 OF THE FOCK POTENTIAL

Thea, are independent af,, ,qs,, , SO that we can use the We start by writing the Fourier transform of the real space
1 y y

Cauchy-Schwarz inequality to obtain density, n(q), in terms of the density matriyy, in the
Landau orbital basis.

||12|$f jdqudq2y|M(qu:q2y)|21 (A3) n(g=2> (k'€ |K) py
k,k’
r
L . i0,q q?
||x|$J' |:1_[3 dgiy|M(Q; vqiy)|f qulydq2y|M(quvq2y)|2: :ﬂ( f dkékqxpk’kﬂy)ex[( ; y)um(;)
(Ad) . )
L - 10xq q
r , Eﬁp(qx,qy)ex[<—£ Y wn(i). (B1)
le|<fi1:[3dqiy|M(0,qiy)|J J dyddzy M (A1y,Gay) %
(A5) This can be inverted to give(dy,q,), and hence, y, in
terms ofn(q).
The last line follows sincelM(0,))|<|M(m,I)| for the The Fock potential in terms of the real space density ma-

hard-core potential. The integrals ovey, (i=3) are now trix p(r,r’) is

decoupled and give the same contribution(Asl). The re- — ) )

maining n dependence is fully contained inl;y VE(r,r)=V(r—r’)p(r,r’). (B2)
<(2m)~?fqddV(q)an(q*/2)]?. For our potential, Substituting forp, s from (B1) gives

[V(9) @n(g?/2)] is monotonically increasing up to the turn-

ing point atq=y/8n where it is proportional toyn)n~ 22, VR = S V(=1 [K)K Gyl pres g, (BI)
Replacing one of the factofd/(q) @,(q%/2)] in 14, by this k.ay Y
upper bound, the remaining integral is given by E15), so

and
thatl ;,, and hencé, , vanishes at least as % compared to P
the exchange diagram with the same number of interaction <||\/F|m>:2 f p2<||eip-r|k><k+ qy|efip~r|m>
lines. Therefore all diagrams containing crossed interaction kay J (27)
lines and no fermion loops make a vanishing contribution as =
ot P J X piiera, V(D) (B4)
Next, consider the class of diagrams containing closed 42
fermion loops C in Fig. 2). First examine those which con- - J' _qzﬁ(q)<||efiqu|m>VFﬁ(q), (B5)
tain Hartree loops(Fig. 3 only. A Hartree loop gives (2m) €

(2m) %[ fda,dmV(q,) an(gZ/2)e =m=0, since Vy(0)

VEaqe— | EPY —ip-q p_2
=0. Similarly, all other diagrams containing Hartree loops Verl(@)= Vip)e i) (B6)

an(9%2)) 2=
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