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We study a two-dimensional electron system in a magnetic field with a fermion hard-core interaction and
without disorder. Projecting the Hamiltonian onto thenth Landau level, we show that the Hartree-Fock theory
is exact in the limitn→`, for the high-temperature, uniform density phase of an infinite system; for a
finite-size system, it is exact at all temperatures. In addition, we show that a charge-density wave arises below
a transition temperatureTt . Using Landau theory, we construct a phase diagram which contains both unidi-
rectional and triangular charge-density wave phases. We discuss the unidirectional charge-density wave at zero
temperature and argue that quantum fluctuations are unimportant in the large-n limit. Finally, we discuss the
accuracy of the Hartree-Fock approximation for potentials with a nonzero range such as the Coulomb inter-
action.@S0163-1829~96!03831-3#

I. INTRODUCTION

In a two-dimensional electron system~2DES! in a strong
magnetic field, the fractional quantum Hall effect1 may be
observed when electrons partially fill the lowest (n50) Lan-
dau level. In this paper we consider what happens if it is a
high Landau level that is partially occupied. The large-n
limit generates a problem that we can, in part, solve exactly.
To this extent, the high Landau level limit is analogous to the
limit of high dimensions for spin models2 or the Hubbard
model.3

Electron states in lower excited Landau levels (n51,2)
have received some attention in the past,4 and recently
Aleiner and Glazman5 have derived an effective interaction
for electrons in high Landau levels, taking into account the
wave-vector-dependent dielectric constant due to screening
by lower, fully occupied levels. Using this interaction, Fo-
gler, Koulakov, and Shklovskii6 ~FKS! have studied a 2DES
in a weak magnetic field at zero temperature, within the
framework of the Hartree-Fock approximation. For a filling
fraction n of the partially filled Landau level nearn51/2,
they find a phase of fully occupied~incompressible! regions
alternating with regions of unoccupied orbitals. These re-
gions are translationally invariant in one dimension
~‘‘stripes’’ !. At lower filling fractions, these stripes break up
and there is a phase of fully occupied islands~‘‘bubbles’’! on
a triangular lattice in an otherwise empty system. The width
of the stripes and the lattice constant are each of order of the
Larmor radius. Experimental consequences of this structure,
in particular for tunneling into the 2DES, have been investi-
gated extensively by FKS.

Both the interest and the difficulty of studying electron
correlations in a partially filled Landau level stem from the
fact that the single-particle problem is macroscopically de-
generate. Interactions set the only important energy scale and
the problem is intrinsically non-perturbative. In thenth Lan-
dau level, however, a small parameter does appear, which
manifests itself in the existence of two new length scales
besides the magnetic length,l5A\/(eB): lF52p/kF
52p l /An, the Fermi wavelength, and the Larmor radius,
RL' lA2n, the size of the smallest wave packet that can be
constructed in thenth Landau level. We use this small pa-

rameter,n21, to obtain a problem that is amenable to exact
solution.

We consider a 2DES assuming that the partially filled
Landau level is spin polarized. Using a fermion hard-core
potential of strengthv!\vc as a model interaction between
the electrons, we are able to resum perturbation theory at
high temperatures, forn→`. (\vc5\eB/m is the cyclotron
energy and from here on, we setl[\[1.)

We find that, for the high-temperature phase, the Hartree-
Fock approximation is exact in the large-n limit ~Sec. III B!;
for a system on a cylinder of finite circumference, it remains
exact down to zero temperature~Sec. III A! and the eigen-
states are single Slater determinants of Landau orbitals. The
high-temperature phase is unstable towards the formation of
a charge-density wave~CDW! of wavelengthlmin.2.9RL
~Sec. III D!. We construct a phase diagram for the system
using a Landau expansion~Sec. IV!. We find that there exist
both a unidirectional CDW, nearn51/2, and a triangular
CDW away fromn51/2.

Our work hence generalizes to finite temperatures the re-
sults obtained by FKS at zero temperature. It also represents
a generalization of the study of charge-density waves in the
lowest Landau level by Fukuyama, Platzmann, and
Anderson.7 In particular, we show for the first time that the
transition from the uniform state nearn51/2 is to a unidi-
rectional rather than triangular CDW.

We also ~Sec. VI! compare the theories with hard-core
and finite-range potentials. It emerges that the Hartree-Fock
approximation isnot exact for potentials of finite rangeR
~Sec. VI A! even in the large-n limit. We show, however,
that corrections to the Hartree-Fock approximation are gov-
erned by the parameterR/ l , which is small in the weak-field
limit investigated by FKS. For potentials whereR/ l is not
small, we demonstrate explicitly that there exist uniform
density states which, for these interactions, have a cohesive
energy of the same order as that of the CDW states. It there-
fore remains possible that the ground state in high Landau
levels may depend on details of the interaction, and may not
necessarily have CDW order.

II. THE HAMILTONIAN

We start by considering the Hamiltonian projected onto
one spin orientation for thenth Landau level:
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† creates an electron in the Landau orbital
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(n)(r ) of thenth Landau level with pseudomomen-

tum p, cp
(n)(r )5L21/2eipxf (n)(x2p), where f (n) is the

nth harmonic oscillator wave function. Periodic boundary
conditions are applied in they direction for a system size
L. Also, an(q

2/2)5@vn(q
2/2)#25@Ln(q

2/2)e2q2/4#2, Ln
being thenth Laguerre polynomial. The Fourier transform of
the potential isṼ(q)5*d2reiq–rV(r ), and all quantitiesf̃
with a tilde are to be understood as the Fourier transform of
the functionf . To derive~2.1!, we have used8
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We represent the vertexM (m,l ), which is independent of
k, as in Fig. 1.

In this paper we consider primarily the simplest possible
potential: a contact interaction for fermions. In the lowest
Landau level this interaction is known to reproduce much of
the physics of the fractional quantum Hall effect9 and the
Laughlin wave function10 is known to be its exact11 ground
state atn51/3. It is highly singular at the origin in real space
but has a well-behaved Fourier transform

ṼHC~q!52vq2, ~2.4!

v being the interaction strength.
In addition, in Sec. VI we discuss the screened Coulomb

interactionVAG recently derived by Aleiner and Glazman,5

as well as two simple finite-range potentials,V1 andV2 . The
potential VAG ~2.5! is an effective intra-Landau level-
interaction potential which takes into account the presence of
lower, fully occupied Landau levels through the dielectric
constanteAG . It has the following important features: there
is little screening forq&n21 and q*1, but for q;n21/2,
eAG;RL /aB . In weak magnetic fields, this is very large, of
order n1/2, whereas in strong fields,eAG'1 for all q. The
explicit form of VAG is

ṼAG~q!5
2pe2

4pe0keAG~q!q
,

where

eAG~q!511
2

qaB
@12J0

2~qRL!#, ~2.5!

J0 is the Bessel function,aB5\24pe0k/(me2) is the Bohr
radius, andk is the relative permittivity.

The two finite-range potentials we consider are of range
R. One potential is boxlike, nonzero, and constant up to a
distanceR and zero for larger distances; the other one decays
exponentially with a decay lengthR. We takelF!R!RL .
The Fourier transforms of these potentials are

Ṽ1~q!5v1R
2J1~qR!/qR,Ṽ2~q!5v2R

2~11q2R2!23/2,
~2.6!

where thev i are the strengths. Potentials of a finite range
arise, for example, if there is a metallic gate close to the
two-dimensional electron system which effectively screens
the interaction at distances larger than the 2DES-gate sepa-
ration.

III. THE LIMIT n˜`

A. The vertexM „m,l …

We first investigate qualitatively the behavior of the indi-
vidual matrix elements. To do so, we replacean(q

2/2) by its
WKB envelope,12 normalized to be consistent with
*0

`@LN(x)#
2e2xdx51. We setan(q

2/2)50 for q2.8n, and
for q2,8n

anS q22 D5
2

p

1

Aq2~8n2q2!
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This is an asymptotic expression away fromq50 and
q5A8n. In the vicinity of these points, we have used the
following expressions:13

anS q22 D5J0
2~qA2n!, q2!n, ~3.2!

anS q22 D5FGS 23D181/3G
22

n22/3,

q228n!n1/3. ~3.3!

In considering the envelope only, we neglect the rapid oscil-
lations ofan(q

2/2), since the potential does not have struc-
ture on this scale.

To estimateM (m,l ) for the hard-core potential we rescale
qx5A8nQx and find

M ~m,l !5
2p

L
2E

0

A12 l2/8ndQx

2p
A8nF2vSQx

21
l 2

8nD G
3cos~QxmA8n!

1

AQx
2@12~Qx

21 l 2/8n!#
. ~3.4!

For largen, the oscillating cosine suppresses allM (m,l ) for
whichm@n21/2.

The consequences of these simplifications are particularly
clear if we consider a system on a cylinder of finite circum-

FIG. 1. Interaction vertexM (m,l ).
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ferenceL. Then,m52pa/L, with a integer, so that, in the
limit n→` with L fixed, onlyM (m50,l ) is nonzero.14 The
Hamiltonian in this limit thus consists only of exchange
terms (m50). It is therefore diagonal in a basis of Slater
determinants of Landau orbitals. The charge density of any
single such Slater determinant is independent of they coor-
dinate. The problem of finding the ground state is therefore
reduced to finding the unidirectional charge-density wave
which is lowest in energy, and the Hartree-Fock approxima-
tion for this system is exact.

Note that the spatial dependence of the exchange interac-
tion is as follows:M (m50,l ) varies little as a function of
l for u l u,2RL . For u l u.2RL , the cyclotron orbits do not
overlap. The effective range of the contact interaction is
therefore determined by the spatial extent of the wave func-
tions and is thus of order of the Larmor radius.

It is interesting to compare our conclusions with those of
Rezayi and Haldane,15 who considered a similar problem in
the lowest Landau level. They found by numerical diagonal-
ization that a single Slater determinant of Landau orbitals is
the ground state if the magnetic length is much larger than
the circumference of the cylinder. In the system we consider,
the important length scale isRL and the limiting behavior is
reached forL!RL .

B. Diagrammatic analysis

We now turn to the infinite system and show by means of
a diagrammatic analysis that, in the absence of symmetry
breaking, the Hartree-Fock approximation is exact for the
hard-core potential, in the high-temperature phase, in the
limit n→`. To do this, we group all diagrams for the self-
energy into three classes~Fig. 2!: first, those diagrams which
contain neither closed fermion loops nor crossed interaction
lines ~classA); second those which do not contain closed
fermion loops but do contain crossed interaction lines~class
B); and third those which contain closed fermion loops
~classC).

For the analysis of then dependence of these diagrams,
we note that the sum over Matsubara frequencies and the

integral over intermediate states decouple: the bare propaga-
torsGvm ,k

(0) which are diagonal in the pseudomomentumk,

are the same for all states in a given Landau level , since
Gvn ,k
(0) 5$ ivm2@en(k)2m#%215@ ivm2(e2m)#21 . There

is non dependence in the propagators since the dependence
on n in en is absorbed into ann-dependent chemical poten-
tial m. Therefore only the behavior of the integrals over in-
termediate states has to be considered when taking the large-
n limit.

For a diagram in the first class with one interaction line,
the integral over intermediate states is

(
qy

M ~0,qy!52
8vn
p2 E

0

1 Q2dQ

A12Q2 52
2vn
p

. ~3.5!

This class of diagrams in fact makes the leading contribution
to the self-energy forn→` and hence we scalev with n so
that vn is constant. Next we sum all the diagrams in this
class; in Appendix A we establish an upper bound of
(vn)xn22/3 to the contribution from other diagrams, which
vanishes forn→`. The sole exception are the diagrams
which contain only Hartree loops~Fig. 3! and interaction
lines which do not cross; these vanish for our potential since

Ṽ HC(0)50. If this were not the case, we would have to
compare their contribution with that of the Fock diagrams
when considering what to retain for largen.

C. The self energySk

We sum the diagrams which do not vanish asn→` using
the Dyson equation~Fig. 4!, noting that the absence of a
Hartree contribution reduces it to the one in Fig. 5 so that

Sk5(
l ,nl

M ~0,l !

b

2eiEnl0
1

iEnl
2~e2m!

3(
p

F (
m,nm

2M ~0,m!

b S 21

iEnm
2~e2m! D 2G p

5
2n( l52`

` M ~0,l !

12bn~12n!( l52`
` M ~0,l !

. ~3.6!

For the hard-core potential,( l5-`
` M (0,l ) is negative@Eq.

~3.5!#, and the self-energy has no poles.
We see thatSk is independent ofk, because of the trans-

lational invariance of the system; to keep the filling fraction

FIG. 2. The three classes of diagrams.

FIG. 3. Hartree loop. The solid line is a full propagator.

FIG. 4. Dyson equation for the self-energy.

FIG. 5. The self-energy for the high-temperature phase.
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n fixed, Sk will be compensated by an equal shift in the
chemical potential. Hence, to leading order inn, the one-
particle propagator remains unchanged.

D. The Bethe-Salpeter equation

The two-particle vertexG, on the other hand, is affected
by the interaction. An analysis like the one above applies
also to the perturbation expansion ofG, and in the end we
only have to sum ladder diagrams illustrated in Fig. 6.17 The
Bethe-Salpeter equation~Fig. 7!, in the limit n→`, is

G~q,v!5M ~0,q!2(
l ,l

M ~0,l !

b

21

i ~v1l!2~e2m!

3
21

i ~l!2~e2m!
G~q2 l ,v!. ~3.7!

Note that, because the constituent vertexM (m,l ) and the
propagators are independent of the pseudomomentumk and
the Matsubara frequenciesV andd, so isG.

For vÞ0 the sum over l yields 0 and
G(q,v)5M (0,q). Forv50

G~q,0!5M ~0,q!1bn~12n!(
l
M ~0,l !G~q2 l ,0!,

G̃~s!5
M̃ ~0,s!

12M̃ ~0,s!bn~12n!
, ~3.8!

where G̃ and M̃ are Fourier transforms ofG(q,0) and
M (0,q) with respect toq. 2pM̃ is in fact the Fock potential
~5.5!.

The two-particle vertex is divergent at a temperature
T5M̃ (0,s)n(12n). This indicates an instability towards the
formation of a charge-density wave at a wave vectorpmin
whereM̃ (0,pmin) is largest. We discuss the phase diagram of
the charge-density waves in Sec. IV. Had we chosen the

potential to be attractive, the system would phase separate
into a fully occupied and an empty region below the critical
temperature.

IV. CHARGE-DENSITY WAVE INSTABILITY
AND THE PHASE DIAGRAM

In the preceding section we have shown that the uniform
system is unstable to formation of a CDW with a wave vec-
tor p min at a temperatureT25n(12n)U(pmin), with
U(p)5ũF(p)/(2p). In Sec. V B we find for the hard-core
interaction thatpmin.2.16/RL . For a general potential, re-
placing ũF by 2ũHF52ũH1ũF ~5.4! in these and subse-
quent expressions yields a general analysis of the CDW
phase diagram for a Hamiltonian in the Hartree-Fock ap-
proximation.

The problem of charge-density waves in the lowest Lan-
dau level has been studied extensively,18 and Fukuyama,
Platzmann, and Anderson7 ~FPA! have obtained the same
expression for the transition temperature using second-order
perturbation theory with a Hartree-Fock Hamiltonian. These
authors also show that, within Hartree-Fock theory, a
second-order transition atT2 is preempted by a first-order
transition at a higher temperatureT1 to a triangular CDW.

In the following, we extend the work by FPA to thenth
Landau level.19 In the spirit of Landau theory, FPA expand
the free energy in powers of the order parameterd1 for the
triangular phase using a diagrammatic calculation described
in Refs. 20 and obtain

dF15NU~Q!~aud1u21bud1u31cud1u4!, ~4.1!

where the coefficients are given by

a53@12n~12n!u#,

b522u2n~12n!u122nucosSA34 Q2D ,
c5u3n~12n!H 92 F 5122S n2

1

2D
2G1F12cosSA32 Q2D G

3F6S n2
1

2D
2

2
1

2G J . ~4.2!

Here,Q is the wave vector of the triangular phase deter-
mined below,u5U(Q)/T, andN is the number of states in
the system. By the same method, we find the free energy for
the unidirectional CDW:

dF25NU~Q!~Aud2u21Cud2u4!,

where the coefficients are

A5a/3 and C5u3n~12n!F181
1

2 S n2
1

2D
2G . ~4.3!

The temperature at which the first-order transition occurs
from the uniform phase to a triangular CDW is

T15T2
U~Q!

U~pmin!
S 11

ecos2@~A3/4!Q2#

f1gcos2@~A3/4!Q2#
D , ~4.4!

FIG. 6. Ladder diagrams for the two-particle propagator. The
solid lines denote full propagators.

FIG. 7. Bethe-Salpeter equation forG. Greek letters denote
Matsubara frequencies.
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where e5 8
27 (n2 1

2 )
2, f5 7

361 5
3 (n2 1

2 )
2,g5 2

92 8
3 (n2 1

2 )
2.

T1 is found by maximizing~4.4! with respect toQ. For high
Landau levels, this calculation simplifies as follows. Since
Q;pmin;n21/2, cos2@(A3/4)Q2#.1. Hence, for largen,
T1 is obtained by setting Q5pmin . Therefore
T15T2@11e/( f1g)# is always larger thanT2 , except for
n51/2, where there is a triple point:T15T2[Tt . In the re-
mainder of the calculation, we can set cos2@(A3/4)Q2#51
andU(Q)5U(p min), thereby removing the second term in
brackets in~4.2!.

We now turn to the question of which phase is present for
T,Tt . Since our expression for the free energy is valid only
for smalld, we consider the neighborhood of the triple point.
Minimizing dF1,2 with respect tod1,2, we find that the uni-
directional CDW is more favorable atn51/2 for T just be-
low Tt . As the filling fraction is lowered at constantT, there
is a first-order phase transition to the triangular CDW. When
n is lowered even further, the uniform density state becomes
more favorable. We have also examined competition be-
tween the striped phase and a square CDW, using the expres-
sion derived by Gerhardts and Kuramoto;18 we find that at

n5 1
2 for T just belowTt, the square CDW has a higher free

energy than the unidirectional one forn→`. The resulting
phase diagram is displayed in Fig. 8 forn<1/2. The results
for n.1/2 follow from particle-hole symmetry. The emer-
gence of the unidirectional CDW can be explained from the
expansion of the free energy as follows. Asn approaches
1/2, b tends to zero. The gain ofdF1 relative todF2 due to
its larger second-order coefficient,a53A, which is almost
zero nearTt , is offset by the cost incurred due to its larger
fourth-order coefficientc.C, and the unidirectional CDW is
energetically more favorable.

As the temperature is lowered far belowT1 , the order
parameter grows and our expansion ceases to be valid. An
additional difficulty is that higher harmonics will start to play
a role: the density profile must be constructed by occupying
states in thenth Landau level, and must in particular not
require a filling fraction larger than one at any point. In Sec.
V B we show that the cost for higher harmonics is small. We
therefore expect that these considerations alter only the shape
of the CDW without changing its structure or periodicity. In

this way, we expect competing unidirectional and triangular
patterns to persist at wave vectorpmin down to zero tempera-
ture.

If we extrapolate the phase-separation lineT12 beyond the
range of validity of our expansion toT50, we obtain a phase
diagram~Fig. 9! with a first-order transition atn50.35 for
T50. This is close to the valuen50.39 obtained numeri-
cally by FKS, separating the unidirectional pattern from the
triangular one.

V. ZERO-TEMPERATURE ANALYSIS

A. The effective Hartree potential

We start this section with a general remark concerning the
Hartree-Fock approximation for a Hamiltonian projected
onto a single Landau level. MacDonald and Girvin21 have
shown, using analyticity in the lowest Landau level, that the
Fock potential can be expressed solely in terms of electron
density as a function of position. This result is in fact not a
consequence of the special analyticity properties of the wave
functions in the lowest Landau level: if the Hamiltonian is
projected onto any single Landau level, the Hartree-Fock en-
ergy is simply1

2*d
2qṼeff(q)uñ(q)u2, whereñ(q) is the Fou-

rier transform of the electron density and the effective poten-
tial is

Ṽeff~q!5Ṽ~q!2Ṽeff
F ~q!, ~5.1!

Ṽeff
F ~q!5

ũHF~q!

an~q
2/2!

5
1

an~q
2/2!

E d2p

2p
Ṽ~p!e2 ip–qanS p22 D .

~5.2!

The crucial point is that after projection, the density matrix
in the Landau orbital basis,rk,k8, can be expressed in terms
of ñ(q). Details of the derivation of~5.2! are given in Ap-
pendix B.

B. Self-consistent equations

The diagrammatic analysis of Sec. III B applies to the
high-temperature phase where the electron liquid has a uni-
form density. For that case, the Hartree-Fock approximation
is exact asn→`. We now allow for symmetry breaking and
solve the self-consistent set of equations depicted in Fig 4.
For a system on a cylinder of finite circumference, we have
shown that the Hartree-Fock eigenstates have a probability

FIG. 8. Phases near the triple point. The solid line,T1 , separates
the uniform and triangular phases, the short dashes,T2 , are the
spinodal line and the long dashes,T12, separate the triangular and
unidirectional phase.

FIG. 9. Phase diagram as in the previous figure. The dotted line
is an extrapolation ofT12.
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density that is translationally invariant in they direction and
hence that it is sufficient to allow the self-energy to depend
on one coordinate only.~The infinite system is discussed
further in Sec. V C.! The Dyson equation reads

Sk5
1

2p(
l
E dEF2M ~ l2k,0!

i

E2Sk2~e2m!

1M ~0,l2k!
i

E2Sk2~e2m!G
5(

l
@M ~ l2k,0!2M ~0,l2k!#^nl&,

where^nk&52Q„Sk1(e2m)… is the occupancy of the Lan-
dau orbitaluk& andQ is the Heaviside step function. This
gives

S̃~p!5
1

2p
ũHF~p!ñ~p!, ~5.3!

where

ũH~p!5Ṽ~p!anS p22 D52~vn!
p2an~p

2/2!

n
, ~5.4!

2ũF~p!52E q dq Ṽ~q!anS q22 D J0~pq! ~5.5!

.4~vn!1F2S 32 ;1,2;22np2D , ~5.6!

1F2 being a hypergeometric function.
Note that the Fock potential~5.5! follows directly from

~5.2! as it must. The factor ofan(p
2/2) arises from the ma-

trix elements of the potential between states in thenth Lan-
dau level. Equations~5.4! and~5.5! were obtained by FKS,6

who considered the interaction between guiding centers of
coherent states in thenth Landau level.

The asymptotic expression~5.6! for ũF(p) holds as long
as p!An, and depends onp only via the productpRL ,
indicating that the important length scale for the exchange
potential isRL . The functionsũH(p) and2ũF(p) for the
hard-core potential are plotted in Fig. 10 forn520. The

main features are the following. In the range where
uũHF(p)u is largest, ũF(p)/ũH(p);n2; the absolute mini-
mum of 2ũF(p) is constant~given the rescaling which
keeps vn constant! whereas that ofũH(p) vanishes as
n22/3. Hence, for largen, the Hartree potential is insignifi-
cant.

Following the analysis by FKS, we expect to find a peri-
odic sequence of fully occupied and empty stripes of Landau
orbital guiding centers, the periodicity of which is given by
the prominent first minimum atpmin of 2ũF(p). With
pmin.2.16/RL , the wavelength is approximately
l min.2.9RL, about 10% larger than that found by FKS for
the potentialṼAG . The origin of this difference lies in the
fact that our contact interaction is less hostile to density
variations on large length scales than a Coulomb interaction.

Higher harmonics do not destabilize this CDW, because
the oscillations ofũF(p) are incommensurate withpmin , and
because the principal minimum is very pronounced.

C. Ground state in a system of infinite size

A detailed study of Hartree-Fock ground states for a sys-
tem of electrons interacting via the screened Coulomb poten-
tial ṼAG has been carried out by FKS. While it is likely that
their conclusions apply to a system with the hard core poten-
tial, we are unable to make exact statements either about the
lowest-energy Hartree-Fock state or about the importance of
quantum fluctuations around a Hartree-Fock state at zero
temperature.

The Hartree-Fock problem is simplified in principle by
the result of Sec. V A: we need to find the Fourier transform
of the electron density, ñ(q), that minimizes
*d2qṼ eff(q)uñ(q)u2, subject to the constraint thatñ(q)
arises from occupation only of states within thenth Landau
level. In fact, this constraint is very hard to incorporate into
a rigorous approach. Despite these obstacles, FKS, studying

ṼAG , have proposed very plausible candidates for the ground
state on the basis of persuasive physical arguments, sup-
ported by extensive numerical calculations. They find a uni-
directional CDW ground state forn near 1/2, and a triangu-
lar CDW for n away from 1/2. Our results at finite
temperature, described in Sec. IV, mirror the conclusions of
FKS at zero temperature.

In addition to the difficulty of showing rigorously whether
the states discovered by FKS lie at the global minimum of
the Hartree-Fock energy, there is a second problem in an
exact treatment. It is to show whether quantum fluctuations
around the Hartree-Fock state are important.

As a restricted illustration of this difficulty, we consider
fluctuations starting from a stripe state. Referring to Fig. 11,
there are nonvanishing matrix elements connecting the stripe

FIG. 10. ũH(p) and2ũF(p). The unit ofp is the inverse mag-
netic length; the unit of energy is arbitrary.

FIG. 11. Two near degenerate statesuA&,uB& with nonvanishing
matrix element̂ AuVHCuB&.

54 5011EXACT RESULTS FOR INTERACTING ELECTRONS IN . . .



state to a state slightly higher in energy with two electrons at
the edges moved by an infinitesimal distance (d&lF) into
the empty regions. For a system on a finite cylinder, these
matrix elements are absent due to the discrete locations for
the centers of Landau orbitals. For the infinite system, how-
ever, this problem persists, and we address it as follows. The
self-energySk ~5.3! will not be changed noticeably by
changes in orbital occupation at the edges of the stripes be-
cause their width is only a fractionn21 of the total stripe
width, andSk varies slowly across the edge. After lineariz-
ing Sk around the edge, the excitations of Fig. 11 acquire a
linear dispersion relation. The problem of one isolated stripe
then corresponds to a Luttinger liquid,22,23where one edge of
the stripe provides the left-moving fermions and the other,
the right-moving ones. As a result, sharp edges in orbital
occupation are smoothed out,23 but only over a fraction of
the stripe width that vanishes for largen. It seems likely that
this feature of the behavior should persist for a system of
many stripes and hence that quantum fluctuations around the
stripe state are unimportant for a contact potential.

VI. COMPARISON WITH BEHAVIOR
FOR FINITE-RANGE POTENTIALS

A. Diagrammatic analysis

If the two-particle interaction has a finite range, the dia-
grammatic analysis described in Appendix I does not sim-
plify in the same way as for the hard-core potential. To dem-
onstrate the essential differences, we consider, as an example
of a finite-range potential,V2 ~2.6!. For simplicity, we in-
clude a ‘‘neutralizing background’’ so thatṼ2(0)50.

Consider first the exchange diagram withk interaction
lines (A in Fig. 2!. Its contribution to the self-energy scales
with n as @( lM (0,l )#k;@v2R/RL

k #k, whereRL;n1/2. We
show below that diagrams with crossed interaction lines (B
in Fig. 2! or k21 closed fermion loops (C in Fig. 2!, make
a contribution of the same order to the self-energy. Therefore
these diagrams cannot be discarded for largen. We empha-
size that, having projected the Hamiltonian onto a single
Landau level, the interaction strength sets the only energy
scale. As previously, we choose this scale to be our unit of
energy, settingv2R/RL51.

We now show for the casek52 that all three diagrams in
Fig. 2 have the samen-dependence for largen. We denote
the integrals over intermediate states byI A ,I B , and I C and
obtain

I A5F E qdqw~q!G2, I B5E qdq@w~q!#2,

I C5E E q1dq1q2dq2J0~q1q2!w~q1!w~q2!, ~6.1!

wherew(q)5Ṽ(q)an(q
2/2). It can easily be checked that

the main contribution to these integrals arises from the re-
gion whereq is of order 1. In this region,w(q);n21/2.
ThereforeI A and I B are of the same order. The Bessel func-
tion J0(q1q2) in I C oscillates slowly in this region so that
I C , also, makes a contribution of the same order inn.

The analysis can be extended to allk. The crucial differ-
ence between finite range and the hard-core interactions is
the following. While the contribution toI A ,I B , andI C aris-

ing from the regionq;1 does not differ in both cases, the
dominant contribution for the hard-core interaction arises
from q@1, and here the dependence onn of I A ,I B and I C
differs. By contrast, for finite-range potentials,Ṽ(q) falls off
for q@R21;1, and the large-q region never contributes.
Since this feature is common to all finite-range potentials, we
expect the above argument to be applicable generally. In
particular, forṼAG , assuming that divergences arising in in-
tegrals such as in Eq.~A.6! are removed by screening for
q&n21/2, we reach the same conclusions up to logarithmic
corrections. Hence the Hartree-Fock approximation for
finite-range potentials is not exact even asn→`, and omits
diagrams of the same order inn as those retained.

Nevertheless, as the range of the potential is increased
from zero, corrections to the Hartree-Fock approximation are
governed by the small parameterR/ l . For the second order
diagrams, this can be seen as follows. Consider first the in-
tegralsI A andI C. The integralI C is effectively cut off by the
oscillations of the Bessel function whenq1q2@1, whereas
the integrand ofI A is not cut off until q;R21, so that
I c/I A is parameterically small inR/ l . Similarly, the contribu-
tion of the regionR*q*1 to I B compared with its contri-
bution toI A is parametrically small inR/ l , and it is from this
region that the dominant contribution toI A arises.

The conditionR/ l!1 is fulfilled for the screened Cou-
lomb interaction,VAG, for weak fields: taking the effective
range ofVAG to beaB, aB/ l;1/10 inGaAs for a magnetic
field B;70 mT.

One can ask, nonetheless, whether there in fact exist any
competitors to a CDW ground state even forR/ l*1. We
consider one such example: the Tao-Thouless state at filling
fraction n51/t, in which one int Landau orbitals is occu-
pied in a regular fashion. It is of interest because it is quali-
tatively different from the CDW states, having a uniform
charge density, and it is sufficiently simple to allow detailed
calculation. We find the cohesive energy of the Tao-Thouless
state scales asvn21/2. For comparison, the cohesive energies
of the CDW ground states with the interactionsV2 and
VAG scale asvn21/2. The nature of the true ground state in
high Landau levels with interactions other than a contact
potential therefore appears to be open and may depend on
the details of the interaction.

Tao and Thouless calculated the cohesive energy of their
state in the random-phase approximation~RPA!. The starting
point of the self-consistent calculation is as follows: it is
assumed that the energy for an occupied Landau orbital is
hp and for an empty orbital ishh . This determines a gap,
D5hh2hp . The RPA series is then summed to obtain ex-
pressions forhp andhh in terms ofD. These equations are
solved self-consistently. Generalizing the work of Tao and
Thouless16 to higher Landau levels and to a wave-vector-
dependent dielectric constant yields the equation

D5hh2hp5E
0

` w~q!2qdq

@D2t212tDw~q!#1/21Dt12w~q!

2E
0

`S 12
2

t D w~q!2qdq

Dt12w~q!
. ~6.2!

We wish to know the scaling ofD, and hence of the cohesive
energy, withn. By considering the behavior of the integrand
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as n→`, assumingD5D0n
a ~with D0 independent ofn),

we finda simply by comparing powers ofn on both sides of
~6.2!. We find thata521/2 for any fixedt.

Thus, the cohesive energy of the CDW in the Hartree-
Fock approximation has the same order as the cohesive en-
ergy of the uniform density Tao-Thouless state.

B. Influence of the potential range on the structure
of the charge-density waves

Even within the Hartree-Fock approximation, there are
significant differences in the structure of the charge-density
waves formed with hard-core or finite-range interactions.
Near half filling, FKS find a state of alternating incompress-
ible ~fully occupied! and empty stripes of Landau orbitals for
small and moderaten. Asymptotically for largen, however,
they find that the stripes break up into narrower stripes.
When the guiding center density of these narrower stripes is
coarse grained, a sinusoidal oscillation in density at wave
vectorpmin results. The origin of the breakup of the stripes
lies in the fact that, forn→`, the energy cost for higher
harmonics in guiding center density outweighs the gain due
to the fundamental one. This happens because it is the Har-
tree potential which sets the energy scale for higher harmon-
ics, while the scale for the energy of the fundamental har-
monic is set by the Fock potential. At largen, the Hartree
potential is parametrically larger than the Fock potential. The
higher harmonics are avoided by the breakup into narrower
stripes, which establishes a quasisinusoidal density distribu-
tion. For the hard-core potential, this does not occur; rather,
due to the vanishing ofũH(p), the energy cost for higher
harmonics does not grow relative to the fundamental one as
n→`.

In order to see whether the breakup found by FKS is a
general feature of potentials with nonzero range, we investi-
gate the two simple finite-range potentials introduced in Eq.
~2.6!. In both cases, we find thatũiH(q)5Ṽi(q)an(q

2/2) re-

mains of orderv i for q of ordern
21/2 asn→`. For ũi F, this

is not the case. The integralũ i F(p)5*q dq Ṽi(q)an(q
2/

2)J0(pq) is effectively cut off atq5R21, and we find for
largen

ũF~p!

ũH~p!
;

1

RRL
5n21/2. ~6.3!

Since the fall off of Ṽ(q), and hence of the integral for
ũF(p), above a wave vectorq;R21 is a feature of all finite-
range potentials, we expect the stripes to break up when
RL@R. If the effective range of the Coulomb potential is
taken to be the Bohr radius, this condition corresponds to
r s

215kFaB /A2@1, which is where FKS indeed found the
destruction of the wide stripes to occur.

We note that, for finite-range potentials, there also exist
other, quite different routes by which stripes may become
unstable. For example, for the potentialV1 , ũHF(p) has
minima of comparable depth atp;n21/2 and atp;R21.
Then, it may be more advantageous to build a correlated
state where correlations on the scaleR are as important as or
more important than correlations on scales ofRL .

Finally, it should be remarked that the transition to a
charge-density wave will become increasingly hard to ob-

serve forn→`, since the transition temperature, being pro-
portional to ũF , decreases with increasingn essentially as
n21/2.

VII. SUMMARY

In this paper we have considered electrons in a high Lan-
dau level interacting via a hard-core potential and found that
this is a rare example of a many-body problem in more than
one dimension which is, at least in part, exactly solvable.

The focus of our work is the extent to which it is possible
to obtain mathematically controlled conclusions in the high
Landau level limit. This turns out to be very dependent on
the form of the two-particle interaction potential. For the
hard-core potential, we have shown that Hartree-Fock theory
is exact and found a transition to both unidirectional and
triangular charge-density waves at finite temperatures. For
interactions of finite rangeR, this is not the case. Nonethe-
less, for short-range interactions,R/ l can be used as a small
parameter for calculating corrections to the Hartree-Fock ap-
proximation. ForR/ l*1, we argue that there exist uniform
density states which may be competitors with the charge-
density waves for the ground state.

In the context of the lowest Landau level, work with the
hard-core potential has yielded some significant conceptual
simplifications while retaining the essential physical features
of the problem.9 Whether this is also the case in high Landau
levels will ultimately have to be settled by experiment.
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APPENDIX A: BOUNDS ON THE CONTRIBUTION
FROM NON-HARTREE-FOCK DIAGRAMS

We compare then dependence of the three types of dia-
grams illustrated in Fig. 2 for each orderk of the interaction.
For the first class of diagrams (A in Fig. 2!, it follows from
Eq. ~3.5! that theirn dependence is

~vn!k. ~A1!

In the second class of diagrams (B in Fig. 2!, those with
crossed interaction lines, we use an analysis following work
by Benedict and Chalker24 on the scattering of electrons in
high Landau levels with disorder.

Consider the diagram with two crossed lines
~Fig. 12! which corresponds to the integral
**dq1ydq2yM (q2y ,q1y)M (2q1y ,q2y). From this, we can
guess the general structure for the integral over intermediate
statesI x for r interaction lines. It is

FIG. 12. Diagram with two crossed interaction lines.
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I x5E )
i51

r

dqiyM ~Qi ,qiy!, ~A2!

whereQi5( j51
r Zi j qjy with Zi j50 if the interaction linesi

and j do not cross and11(21) if they cross andi starts to
the left ~right! of j .

We obtain an upper bound onuI xu by first picking a pair
t,u such thatZtu51 and then relabeling indices such that
t51 andu52. Then

uI xu<U E )
j53

r

dqjyI 12M ~Qj ,qjy!U,
I 12[E )

i51

2

dqiyM ~a11q2y ,q1y!M ~a22q1y ,q2y!.

Theai are independent ofq1y ,q2y , so that we can use the
Cauchy-Schwarz inequality to obtain

uI 12u<E E dq1ydq2yuM ~q1y ,q2y!u2, ~A3!

uI xu<E )
i53

r

dqiyuM ~Qi ,qiy!u E E dq1ydq2yuM ~q1y ,q2y!u2,

~A4!

uI xu<E )
i53

r

dqiyuM ~0,qiy!u E E dq1ydq2yuM ~q1y ,q2y!u2.

~A5!

The last line follows sinceuM (0,l )u<uM (m,l )u for the
hard-core potential. The integrals overqiy( i>3) are now
decoupled and give the same contribution as~A.1!. The re-
maining n dependence is fully contained inuI 12u
<(2p)22*qdq@Ṽ(q)an(q

2/2)#2. For our potential,
@Ṽ(q)an(q

2/2)# is monotonically increasing up to the turn-
ing point atq5A8n where it is proportional to (vn)n22/3.
Replacing one of the factors@Ṽ(q)an(q

2/2)# in I 12 by this
upper bound, the remaining integral is given by Eq.~3.5!, so
that I 12, and henceI x , vanishes at least asn

22/3 compared to
the exchange diagram with the same number of interaction
lines. Therefore all diagrams containing crossed interaction
lines and no fermion loops make a vanishing contribution as
n→`.

Next, consider the class of diagrams containing closed
fermion loops (C in Fig. 2!. First examine those which con-
tain Hartree loops~Fig. 3! only. A Hartree loop gives
rise to an integration of the form(mM (m,0)5
(2p)22**dqxdmṼ(qx)an(qx

2/2)e2 iqxm50, since ṼHC(0)
50. Similarly, all other diagrams containing Hartree loops

vanish for our potential, a fact unrelated to the large-n limit.
Note that this is no longer the case in a state with broken
translational symmetry.

Finally, we turn to those diagrams which contain at least
one non-Hartree fermion loop such as the one in Fig. 13.
Each of those loops gives rise to an integral over the loop
pseudomomentums, which leads to a d function
d(q1x1q2x2q3x). Similarly, pseudomomentum conserva-
tion gives rise to a corresponding condition on theqiy . The
integral over intermediate statesI L of diagrams containing
k interaction lines andL non-Hartree loops is then bounded
above by

uI Lu<US )
j51

k2L E dqi
2p D S )

j51

k

an~Qi !Ṽ~Qi !D U, ~A6!

whereQi5( j51
k- l Yi jqj and Yi j50,61 is fixed by the con-

straints imposed by thed functions. This is an upper bound
since we have left out the oscillatory term in the expression
for the vertex.

We can again replace theuan(Qi)Ṽ(Qi)u by an upper
bound and finally obtain uI Lu;(vn)k(n22/3)L;n22L/3.
Hence these diagrams also make a vanishing contribution as
n→`.

APPENDIX B: CALCULATION
OF THE FOCK POTENTIAL

We start by writing the Fourier transform of the real space
density, ñ(q), in terms of the density matrixrk,k8 in the
Landau orbital basis.

ñ~q!5(
k,k8

^k8ueiq–ruk&rk,k8

5
L

2p S E dkeikqxrk,k1qyDexpS iqxqy2 DvnS q22 D
[

L

2p
r̃~qx ,qy!expS iqxqy2 DvnS q22 D . ~B1!

This can be inverted to giver̃(qx ,qy), and hencerk,k8, in
terms ofñ(q).

The Fock potential in terms of the real space density ma-
trix r(r ,r 8) is

VF~r ,r 8!5V~r2r 8!r~r ,r 8!. ~B2!

Substituting forrk,k8 from ~B1! gives

VF~r ,r 8!5(
k,qy

V~r2r 8!^r 8uk&^k1qyur &rk,k1qy
~B3!

and

^luVFum&5(
k,qy

E d2p

~2p!2
^ l ueip–ruk&^k1qyue2 ip–rum&

3rk,k1qy
Ṽ~p! ~B4!

5E d2q

~2p!2
ñ~q!^ l ue2 iq–rum&Ṽeff

F ~q!, ~B5!

where the Fock potential is

Ṽeff
F ~q!5

1

an~q
2/2!

E d2p

2p
Ṽ~p!e2 ip–qanS p22 D . ~B6!

FIG. 13. Closed fermion loop.
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