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Polaritons are formed when the electromagnetic field couples to excitons in a semiconductor. In their
high-quality semiconductor quantum microcavities, Fisheret al.5 observe an unexpected decrease in the po-
lariton linewidth~the full width at half maximum! near resonance. This paper uses Green’s-function methods
to show how the exciton linewidth and the cavity losses combine together, and that they can give a polariton
linewidth reduced below that of either of its components. The quantum well disorder is described as a spatially
varying potential due to both alloy fluctuations and well width variation, which causes the exciton component
to become broadened.@S0163-1829~96!07931-3#

I. INTRODUCTION

The interaction between the electromagnetic field in semi-
conductor microcavities and quantum well excitons is a topic
of active research.1–4 Polaritons are formed when the elec-
tromagnetic field couples to excitons in a semiconductor pro-
ducing a coherent superposition of the photon and exciton
modes. In a quantum structure, where a microcavity is
coupled to a quantum well exciton, these polaritons are lo-
calized by the well layer in the growth direction, but uncon-
fined in the in-plane direction. If the exciton is tuned through
the cavity frequency, resonant coupling effects cause anti-
crossing or level repulsion between the polaritons to occur.

The energies of the polaritons depend mainly on the cav-
ity mode and exciton energies. An uncoupled cavity mode
has some spectral width because of its losses. An uncoupled
exciton is broadened because it is affected by losses due to
recombination and by imperfections and other disorder in the
quantum well. When the reflectivity spectrum of the system
is measured, each polariton has a dip around its central fre-
quency, with a particular line shape and linewidth. The naive
expectation might well be that the linewidth of the polaritons
would be just that of the weighted averages of the indepen-
dent cavity and exciton linewidths, where the weights are the
probabilities of the cavity mode and exciton components.

In contrast to this, the observations by Fisheret al.5 in
their high-quality semiconductor structures show a marked
decrease in the spectral full width at half maximum~FWHM!
of the polaritons near resonance–the polariton linewidths are
seen to be less than the average values. Well disorder is by
far the largest contributor to the width of the exciton in these
results because of the alloy fluctuations in the well material
and interface fluctuations at the well edges.

These results motivated us to develop a simple theoretical
model that combines~in Sec. V! the effects of the losses
from the microcavity~Sec. III! and the disorder in the quan-
tum well ~Sec. IV! in a systematic way, while properly al-
lowing for the superposition of cavity and exciton that makes
up each polariton. The theory can not only predict ‘‘less than
average’’ linewidths like those seen in the experiments of
Fisheret al., but makes the more dramatic prediction that the
polariton linewidth can in fact be less than that of either the
cavity or exciton. Other theories that consider the broadening

of polaritons are found in Refs. 6 and 7. The first of these
includes Gaussian disorder and dispersion, but does not de-
rive a method of combining the cavity and disorder broaden-
ing. The second considers a different system to that in this
paper, with isolated excitons and no cavity mode dispersion.

The theory in this paper starts with an idealized polariton
system, to which we add cavity losses and then well disor-
der. A Green’s function method is used, where the polariton
linewidth is calculated by first adding a simple loss interac-
tion. Following this, we add the exciton scattering interaction
caused by a random potential that varies with position in the
quantum well. The disorder term is based on that used by
Glutsch and Bechstedt,8 and here we incorporate their exci-
ton theory into one which describes the polariton spectrum.
The theory presented here is intended to demonstrate the
physics clearly, and so is more approximate than is strictly
necessary. However, the character of the predictions are not
significantly affected.

II. AN IDEAL POLARITON

A polariton consists of an exciton coupled to a cavity
mode. A full model would include a description of the dif-
ferent types of excitons, and their excited states, as well as
all the cavity modes and the couplings between these. How-
ever, in practice we know that excitons will only couple to a
cavity mode if they have matching wave vectors. Also, for
low excitation strengths only the lowest-energy exciton is
significant. Further, maintaining the low level of excitation
means that the exciton can be adequately described as a bo-
son. This is because the low density of excitons means that
any phase space filling9 or exciton-exciton scattering pro-
cesses are unlikely to occur. This means we can consider an
‘‘ideal polariton,’’ consisting of an idealized quantum well
exciton, an idealized cavity mode, and the exciton to cavity
mode coupling term between the two. To express the exact
coupling term in a simple form, we use the10 coulomb gauge,
the dipole approximation, and the rotating wave approxima-
tion.

The resulting model consists of two harmonic oscillator
boson modes, one for the exciton, and one for the cavity
mode. These are coupled together by the cavity-exciton in-
teraction. In the Schro¨dinger picture it is
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where ē†(k), ē(k) are the exciton mode operators and
ā†(k), ā(k) are the operators for the field in the cavity
mode. The parameterA(k) is the coupling between the cav-
ity mode and the exciton. It is in units of frequency, and is
equal to half the splitting between the pair of polaritons at
resonance, that is, whenV(k)5v(k). The variablek corre-
sponds to the in-plane wave vector of the modes.

This two-mode system can be diagonalized, and then be
written in terms of new polariton operators, which describe
the two new polariton modes that can be used in place of the
original exciton and cavity modes. To diagonalize, we derive
the Heisenberg equations for the system. These Heisenberg
operators are generated from the Schro¨dinger operators by
the HamiltonianH̄P0. The new operators are

ê~k;t !5exp~ iH̄ P0t/\!ē~k!exp~2 iH̄ P0t/\!,

â~k;t !5exp~ iH̄ P0t/\!ā~k!exp~2 iH̄ P0t/\!, ~2.2!

and the equations of motion are

d

dt
â~k;t !52 iv~k!â~k;t !2 iA~k!ê~k;t !,

d

dt
ê~k;t !52 iA~k!â~k;t !2 iV~k!ê~k;t !. ~2.3!

This model could be easily extended to include the effects
of cavity losses, but for clarity we will add the losses as an
interaction in the next section. This makes it possible to de-
scribe both interactions, the cavity losses and the well disor-
der on an equal footing, and using the same method. It also
means that the mechanism for combining the two broadening
effects results naturally from the theory. The solution of the
equations of motion is just a simple eigenvalue problem. The
two eigenvalues~or energies! of the eigenmodes~the polari-
tons! are

2e06~k!5V~k!1v~k!6A@V~k!2v~k!#214A~k!2.
~2.4!

These two polaritons are just the dressed states of the
coupled cavity-exciton mode system. They are distinguished
by a label6 denoting the upper (1) or lower (2) polariton
branch, and their wave numberk. If we introduce the opera-
tors p̄6

† (k), p̄6(k) to describe the polaritons, the eigenvec-
tors of the system describe how the cavity and exciton op-
erators combine to form the polariton operators. The
polariton operators for the coupled cavity-exciton system
are p̄6

† (k), p̄6(k). The cavity and exciton modes have
coupled together to form two new polariton modes. The po-
lariton operators in the interaction picture generated by the
ideal H̄P0 Hamiltonian are related to the exciton and cavity
operators by the following expressions:

ê~k;t !5d1~k! p̂1~k;t !1d2~k! p̂2~k;t !,

â~k;t !5c1~k! p̂1~k;t !1c2~k! p̂2~k;t !, ~2.5!

where

d6~k!57c7~k!56
1

A2
A16sin@a~k!#,

tan@a~k!#5
V~k!2v~k!

2A~k!
. ~2.6!

The interaction picture operators for the ideal polariton
can be related to equivalent Schro¨dinger picture operators:

p̂6~k;t !5exp~ iH̄ P0t/\! p̄6~k!exp~2 iH̄ P0t/\!

5 p̂6~k;0!exp@2 i e06~k!t#, ~2.7!

and so the Schro¨dinger picture Hamiltonian in terms of
the polariton operators is

H̄P05\(
k

@e01~k! p̄1
† ~k! p̄1~k!1e02~k! p̄2

† ~k! p̄2~k!#.

~2.8!

The Green’s-functions for a polariton in the idealized sys-
tem is denotedG06(k;t2t8) or G06(k;l) when fourier-
transformed into the frequency domain. IfT̂ is the time-
ordering operator, the Green’s-function is defined as

^T̂p̂6~k;t ! p̂6
† ~k8;t8!&5dkk8G06~k;t2t8!. ~2.9!

III. LOSSES IN THE OPTICAL CAVITY

A model of the real polariton must include the effect of
the cavity losses. In this section we expand the effect of the
cavity losses as a Taylor series in ideal polariton Green’s
functionsG06 . In Green’s-function calculations, the losses
are typically inserted by simply adding an imaginary part to
the mode frequency. This contrasts with more systematic ap-
proaches using reservoir techniques,11 but these do not apply
directly to Green’s function methods. However, similar
methods can be used by adding a suitable interaction term
and applying approximations equivalent to those used in the
reservoir techniques.

However, here we introduce an idealized scattering model
which leads to the same predictions of a Lorentzian line
shape and exponential decay. We do this by simply adding
an imaginary part to the frequency, which we treat as an
interaction. This enables us to easily combine the loss and
quantum well disorder interactions together in Sec. V.

This model of the losses correctly predicts the exponential
decay of the correlations in the cavity mode. However, it
does not include the noiselike effects caused by the loss cou-
pling individual quanta out of the cavity mode at random
times. Despite this, it can still give the correct answers be-
cause the cavity mode-exciton mode coupling is linear,
which contrasts with the situation in nonlinear systems
where this does not hold~for example see Refs. 12 and 13!.

The Hamiltonian in the Schro¨dinger picture of a polariton
system that includes the cavity losses is
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H̄PL5H̄P01\V̄PL ,

V̄PL5(
k
V̄L~k!5(

k
2 ig~k!ā †~k!ā~k!. ~3.1!

As in the previous section, we use the interaction picture
generated by the idealH̄P0 Hamiltonian. The interaction
Hamiltonian is

V̂PL~ t !5(
k
V̂L~k;t !5(

k
2 ig~k!â†~k;t !â~k;t !.

~3.2!

The form of the cavity loss term can be easily rewritten in
terms of the polariton operators using Eq.~2.5!. Before pro-
ceeding further, we will restrict this calculation to the case
where the two polaritons are widely separated as compared
to the linewidth caused by the losses. This is not a necessary
approximation, but it does make the following calculations
much simpler. Since this theory is motivated by a desire to
explain the general principle of how the broadening interac-
tions combine together, this simplicity is an advantage. First
we will convert the exact cavity loss term into the polariton
operators. The result is

V̂L~k;t !52 ig~k!â†~k;t !â~k;t !

52 ig~k!@c1* ~k! p̂1
† ~k;t !1c2* ~k! p̂2

† ~k;t !#

3@c1~k! p̂1~k;t !1c2~k! p̂2~k;t !#. ~3.3!

For widely separated polaritons, the time varying expo-
nential terms due to the difference in the energies of the two
polaritons will oscillate rapidly@note Eq.~2.7!#. For times
much longer than the period of this rapid oscillation, the
oscillations will average to zero. The remaining loss term is
just

V̂L~k;t !'2 ig~k!@c1* ~k!c1~k! p̂1
† ~k;t ! p̂1~k;t !

1c2* ~k!c2~k! p̂2
† ~k;t ! p̂2~k;t !#. ~3.4!

The convenience of this approximation is now easy to see.
The exciton interaction due to the cavity losses has no terms
coupling the upper and lower polaritons together. Conse-
quently, the effect of the loss decomposes into two indepen-
dent parts — one for the upper polariton, and another for the
lower polariton.

We can now write the interaction Hamiltonian for either
of the polaritons as

V̂L6~ t !52 i(
k
c6* ~k!c6~k!g~k! p̂6

† ~k;t ! p̂6~k8;t !.

~3.5!

We now represent the Green’s functions for the polariton
affected by the cavity lossesGL6 ~the ‘‘lossy polariton’’! in
terms of the Green’s functions of the unaffected polariton
G06 . To do this we expand the Green’s functions for the
lossy polaritonGL6 in a Taylor series in powers of the ma-
trix elements of the loss interactionV̂L6 . The Taylor series
for this Green’s function is

GL6~k;t2t8!5 (
m50

`

GL6
~m!~k;t2t8!, ~3.6!

GL6
~m!~k;t2t8!5K T̂p̂6~k;t !)

j51

m F2 i (
kj ,t j

p̂6
† ~kj ;t !c6* ~kj !c6~kj !g~kj ! p̂6~kj8;t !G p̂6

† ~k;t8!L . ~3.7!

Once the expectation value of this is taken, Wick’s theo-
rem can be applied to expand the 2(m11)th order moments
over the vacuum state into a sum of products of all unique
pairings of second-order moments. Note that for Wick’s
theorem to apply, the quantum expectation value needs to be
taken over the vacuum state. In this case, thep̂6(t),p̂6

† (t8)
operators can be viewed as creating the polariton we are
attempting to describe out of this vacuum att8, then destroy-
ing it again at the later timet. The application of Wick’s
theorem leaves us with a single fully connected term of each
order. The disconnected terms are reassigned to become part
of the vacuum contribution for lower-order terms.

The single remaining connected term hasm11 terms like
p̂6p̂6

† and these becomem11 factors ofG06 from Eq.
~2.9!. Similarly, we can see from Eq.~3.7! that every one of
them factors of2 ig is associated with one likeuc6u2. This
means that the final result is identical to the expression ob-
tained for just a cavity mode with losses — except that the
decay rate of the polariton is a factor ofuc6u2 smaller. After

transforming the terms into frequency space, we find the
Green’s function Taylor series for the lossy polariton spec-
trum is

GL6
~m!~k,l!5@2 i uc6~k!u2g~k!#mG06~k;l!m11. ~3.8!

The spectral function contains the amount and type of
broadening added to the polariton by the cavity losses. The
Lehman representation14 expresses this lossy Green’s func-
tion in powers of the unperturbed Green’s function:

GL6~k;l!5 (
m50

`

SL6
~m!~k!G06~k;l!m11. ~3.9!

The calculated expression for the lossy polariton can be
converted into this form, and gives the spectral moments

SL6
~m!~k!5@2 i uc6~k!u2g~k!#m11, ~3.10!
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which are just those for a Lorentzian of width
sL65uc6(k)u2g(k). The spectral function can therefore be
written

SL6~k,l!5
sL6

p

1

l21sL6
2 . ~3.11!

As expected, this has shown that the losses have a Lorent-
zian spectral function, which gives rise to a Lorentzian cav-
ity mode spectrum. For an uncoupled cavity mode we can
easily recover the standard result in the limit asc6(k)→1.
How the decay rateg(k) varies with in-plane wave vector
k is not considered here, but has been treated by Citrin.15 In
the system considered here, the simple model of the loss has
given us the same answers as a more rigorous treatment
would have, as was noted above.

IV. DISORDER IN THE QUANTUM WELL

A model of the real polariton must also include the effect
of the well disorder. In this section we expand the effect of
the well disorder as a Taylor series in the Green’s functions
of the lossy polaritonGL6 . Following the approach of Glut-
sch and Bechstedt,8 we use a Gaussian model of the disorder,
where the matrix elements that couple excitons of different
in-plane momenta have a random Gaussian distribution. This
type of disorder term can result from a model of the quantum
well which has small Gaussian fluctuations in its width and
depth. We assume that the scale of the disorder is small
enough so that the matrix elements ared correlated in space.

In this section the final approximation we will make is to
assume a dispersionless polariton. Calculations including
dispersion could be done numerically, but here we are inter-
ested mainly in the fraction of the disorder that affects the
polarition, and in how the broadening due to disorder com-
bines with the cavity loss linewidth. We leave such calcula-
tions for subsequent work.

The Hamiltonian in the Schro¨dinger picture of a polariton
system that includes the well disorder is

H̄PE5H̄PL1\V̄PE , V̄PE5(
k

(
k8

V̄E~k2k8!.

~4.1!

Using the interaction picture generated by the idealH̄P0
Hamiltonian, the interaction Hamiltonian is

V̂PE~ t !5(
k

(
k8

V̂E~k2k8;t !

5(
k

(
k8

ṼE~k2k8!ê†~k;t !ê~k;t !. ~4.2!

The well disorder is assumed to cause a Gaussian varia-
tion to the exciton energies, so the properties ofṼE(k2k8)
are controlled by its variance. An average over all space, or
over all possible configurations of the random potential, is
denoted̂ •••&space. The variance is

^ṼE~k12k2!ṼE~k32k4!&space

5c̃E~k12k2!d~k12k2 ,k32k4!. ~4.3!

The well disorder term can be easily rewritten in terms of
the polariton operators using Eq.~2.5!. This step assumes
that the loss interaction has not affected the composition of
the polariton — that is, that the coefficientsd6(k),c6(k)
derived in the section on the ideal polariton remain valid for
the polariton with cavity losses added. It is consistent with
the widely separated polariton or rotating wave type approxi-
mation used when adding the losses. An important conse-
quence is that it allows us to add the effects of disorder to the
lossy polariton in the same way as we have added the effects
of cavity loss to the ideal polariton — without requiring new
coefficientsc68 ,d68 for the fraction of cavity mode and exci-
ton mode in the lossy polariton to be calculated.

Before proceeding we restrict this calculation to the case
where the two polaritons are widely separated as compared
to their linewidth caused by the disorder. First we will con-
vert the exact exciton disorder term into the polariton opera-
tors. The result is

V̂E~k2k8;t !5ṼE~k2k8!ê†~k;t !ê~k8;t !5ṼE~k2k8!

3@d1* ~k! p̂1
† ~k;t !1d2* ~k8! p̂2

† ~k;t !#

3@d1~k! p̂1~k;t !1d2~k8! p̂2~k;t !#.

~4.4!

For widely separated polaritons, the time-varying expo-
nential terms due to the difference in the energies of the two
polaritons will oscillate rapidly@note Eq.~2.7!#. For times
much longer than the period of this rapid oscillation, the
oscillations will average to zero. The remaining disorder
term is just

V̂E~k2k8;t !'ṼE~k2k8!$d1* ~k!d1~k8! p̂1
† ~k;0! p̂1~k8;0!

3exp@2 i @e10~k8!2e10~k!#t#

1d2* ~k!d2~k8! p̂2
† ~k;0! p̂2~k;0!

3exp@2 i @e20~k8!2e20~k!#t#%. ~4.5!

Just as in the case of the cavity loss interaction, the con-
venience of this approximation is easy to see. The exciton
interaction due to the well disorder has no terms coupling the
upper and lower polaritons together. Consequently, the effect
of the disorder decomposes into two independent parts —
one for the upper polariton, and another for the lower polar-
iton.

We can now write the interaction Hamiltonian for either
of the polaritons as

V̂E6~ t !5(
k

(
k8

p̂6
† ~k;t !@d6* ~k!d6~k8!ṼE~k2k8!#

3 p̂6~k8;t !. ~4.6!

The Green’s functions for the whole system, including the
well disorder and the cavity losses is denoted
G6(k1 ,k2 ;t2t8). Again following Ref. 8 we neglect parts
of the Green’s function that have elements that represent
transitions that end with a different wave numberk8 than
their startingk. We justify this by noting that for reflectivity
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measurements, the incoming light has a fixedk. Since the
measured intensity is dominated by elastically scattered
light, this has the samek.

We now represent the Green’s functionsG6 for the po-
lariton affected by the well disorder and losses~the ‘‘real
polariton’’! in terms of the Green’s functions of the lossy
polaritonGL6 . To do this we expandG6 in a Taylor series
in powers of the matrix elements of the disorder interaction
V̂E6 . The Taylor series for this Green’s function, to be av-
eraged over all possible spatial configurations of the disor-
der, is

G6~k0 ;t2t8!5 (
m50

`

GL6
~m!~k0 ;t2t8!, ~4.7!

G6
~m!~k0 ;t2t8!

5K T̂p̂6~k0 ;t !K )
j51

m F2 i3 (
kj ,kj8,t j

p̂6
† ~k;t !d6* ~kj !d6~kj8!

3ṼE~kj2kj8! p̂6~k8;t !G L
space

p̂6
† ~k0 ;t8!L . ~4.8!

Once the expectation value of this is taken, Wick’s theo-
rem can be applied to expand the (m11)th order moments
into a sum of products of all unique pairings of second-order
moments. Note that for Wick’s theorem to apply, the quan-
tum expectation value needs to be taken over the vacuum
state. In this case, the addedp̂6(k0 ;t),p̂6

† (k0 ;t8) operators
can be viewed as creating the polariton we are attempting to
describe att8, and then destroying it at the later timet.

Any term in the expansion of the Green’s function has
only one unique term that is fully connected after Wick’s
theorem has been applied to the operator expression. The
disconnected terms are reassigned to become part of the
vacuum contribution for lower-order terms. This leaves the
evaluation of the spatial average for the remaining term. In
general, for amth order disorder term, the result is a sum of
(m21)!! products of second-order terms. Whenm is odd,
the unpaired disorder term means that the average, and hence
the entire term, is zero.

This is similar to the expression obtained for an exciton
interacting just with the disorder.8 The difference is that each
second order disorder term has a factor likeud6u4 associated
with it, so the width of the polariton caused by the disorder is
ud6u2 smaller than the width of the exciton. After transform-
ing the terms into frequency space, and in thedispersionless
limit, the terms in the Taylor series for the Green’s function
are

G6
~m!~k0 ;l!5~m21!!! @ ud6~k0!u4cE~0!#m/2

3GL6~k0 ;l!~m11!. ~4.9!

The spectral function contains the amount and type of
broadening added to the polariton by the disorder in the
quantum well. The Lehman representation14 expresses this
disordered Green’s function in powers of the Green’s func-
tion for the lossy polariton:

G6~k0 ;l!5 (
m50

`

SE6
~m!~k0!GL6~k0 ;l!m11. ~4.10!

The calculated expression for the polariton under the in-
fluence of the quantum well disorder can be converted into
this form. For even values ofm the calculated expression for
the polariton can be converted into this form, and gives the
spectral moments

SE6
~m!~k0!5~m21!!! @ ud6~k0!u4cE~0!#m/2. ~4.11!

This is just that for a Gaussian spectral function with vari-
ancesE6

2 5ud6(k0)u4cE(0). Thespectrum can therefore be
written

SE6~k0 ;l!5
1

A2psE6
2

exp@2l2/2sE6
2 #. ~4.12!

Although the exciton is nearly dispersionless, the cavity
mode is not. As a result the polariton dispersion is not neg-
ligible, and largely depends on the fraction of cavity mode in
it. One way of visualizing the effects of dispersion is to think
about the spatial extent or the localization of the wave func-
tions. This approach is useful in seeing how much of the
disorder potential the polariton will feel. The total wave
function of the exciton consists of an electron-hole~relative
motion! part and a center of mass~combined motion! part.
The electron-hole wave function is localized down to the
exciton Bohr radius of about 10 nm. The center-of-mass
wave function is localized to about 1 nm, because the exci-
ton has a small dispersion, and correspondingly large effec-
tive mass. This means that the exciton ‘‘size’’ is dominated
by the electron-hole size of about 10 nm. In contrast, the
cavity mode has a large dispersion and correspondingly
small effective mass, and so is very delocalized. This means
that in a polariton the delocalization due to the photon will
almost always dominate that due to the electron-hole wave
function. Consequently, the size of the polariton depends
mainly on the fraction of photon in it.

Including dispersion in the theory adds significant com-
plications. The well disorder is effectivelyd correlated with
respect to the size of the polariton, so the dispersion occurs
in the ‘‘white noise’’ limit discussed by Halperin,16 who
used an approach based on the Schro¨dinger equation in one
dimension. The spectrum of a dispersive particle in a random
potential undergoes what has been called ‘‘motional narrow-
ing,’’ or center-of-mass averaging. This can be visualized in
terms of the localization of a particle — a delocalized par-
ticle averages over more of the fluctuating potential and so it
sees a smaller variation in average potential. Different-sized
polaritons will undergo different amounts of averaging, and
will therefore see different levels of disorder fluctuations.

Existing calculations~such as Refs. 16 and 17! present
numerical results for the disorder broadening that are asym-
metric with a nontrivial functional form. The spectral func-
tions calculated are narrower than that predicted purely on
the basis of the variance of the well disorder — this is due to
the delocalization ~or ‘‘motional narrowing’’ discussed
above. For a polariton, this narrowing will vary as its degree
of localization changes according to its composition. The
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spectral function also has a wide tail in the higher-energy
half, which has a Boltzmann character, and contrasts with the
Gaussianlike nature of the rest of the spectral function. The
size of this tail increases for larger disorder strengths, but
decreases for largerk.

Another effect caused by the dispersion is due to the scat-
tering of the polariton into states of different in-plane mo-
mentum~different k). These have a different energy, so the
d6(k) values are different. The sum over allk values when
working out the dispersive equivalent of Eq.~4.9! is compli-
cated not only by the change of the Green’s functions with
k, but by the change ind6(k) also.

If we ignore the cavity loss term, Halperin’s calculation
can be extended to the case of polaritons6 in a two-
dimensional quantum well. The calculation shows how the
amount of broadening of the polariton due to the disorder
changes with the composition of the polariton. The result
differs somewhat from theud6u2 we have calculated from the
dispersionless case. The difficulties of treating the effects of
delocalization ~or dispersion! using this Green’s-function
method have so far prevented us from including it in this
theory directly. In any case, the delocalization adds extra
narrowing, and will not destroy the narrowing predicted by
these calculations — and does not affect the way the two
kinds of broadening mechanism are combined in the next
section.

V. THE POLARITON SPECTRUM

This section shows how the two causes of broadening
combine together. The previous two sections showed indi-
vidually what fractions of the cavity loss and quantum well
disorder will contribute to to give the total polariton width.
The mechanism for combining them is shown here to be a
convolution. Together with the fractions of the two broaden-
ings, this gives rise to ‘‘less than average’’ linewidths for the
polaritons. The models of the loss and well disorder interac-
tions are chosen to correspond to a polariton in a quantum
well microcavity, but this convolution result is general, and
holds for other combinations or types of interaction.

Consider a polariton in an lossy cavity, but with an ideal
quantum well, only the cavity mode contributes linewidth.
The losses will cause the cavity mode, and hence the polar-
iton, to be broadened into a Lorentzian peak with a FWHM
of 2uc6(k)u2g(k). Alternatively, consider a polariton with a
perfect cavity but with some quantum well disorder. The
well disorder will cause the exciton, and hence the polariton,
to be broadened into a Gaussian peak with a FWHM of
2A2ln(2)ud6(k)u2AcE. In either case, one polariton will get
narrower, and the other wider as the system is tuned through
resonance. At resonance, whereud6(k)u5uc6(k)u51/A2,
the width will be one half of the maximum value.

Now consider the polariton affected by both losses and
well disorder. The Green’s function of the ideal polariton is
G06(k;l). When the cavity losses are added to this system,
this is broadened out by the spectral function of the cavity
loss. The Green’s function for this lossy polariton is given by
Sec. III, and is

GL6~k;l!5E dLSL6~k;L!G06~k;L1l!. ~5.1!

In Sec. IV we calculated the effect of the well disorder on
the lossy polariton. The Green’s function for the resulting
‘‘real’’ polariton is then just the Green’s function for the
lossy polariton broadened out by the spectral function of the
well disorder. With the same method as above, this is

G6~k;l!5E dL8SE6~k;L8!GL6~k;L81l!. ~5.2!

By combining these two equations together, the real po-
lariton Green’s functionG6 can be expressed in terms of the
ideal polariton Green’s functionG06 and the two spectral
density functions for the cavity lossesSL6 and the well dis-
orderSE6 . This is

G6~k;l!5E dDS6~k;D!G06~k;D1l!,S6~k;D!

5E dL8SE6~k;L8!SL6~k;D2L8!. ~5.3!

An additional step could add the effect of homogeneous
broadening of the exciton if it were necessary. The spectral
function would be calculated in a similar way as for the
effect of the cavity losses, and would add an extra convolu-
tion into the calculation of the polariton spectral function.
However, here we consider the case where the homogeneous
broadening of the exciton is negligible compared to its inho-
mogeneous broadening — a valid approximation for real
systems.

Far away from resonance the polaritons will correspond
almost completely to uncoupled exciton and cavity modes.
As a result, of the two resonances that would be observed,
one would correspond to that of the cavity mode and have
Lorentzian shape with FWHM 2g, and the other would cor-
respond to the exciton with a Gaussian line shape with
FWHM 2.35AcE.

As the exciton frequency is increased, the lower polariton
gains some component from the cavity mode. As a result, its
spectral peak loses some of its Gaussian nature, and gains a
Lorentzian component. The converse happens to the upper
polariton. Figure 1 shows how the line shape of the polariton
varies as it changes from being all cavity mode~the narrow,
higher peak! into being all exciton~the lowest peak!. Be-
tween these two extremes, the curve is a mixture of Lorent-
zian and Gaussian shapes.

To get a qualitative picture of this result, imagine a sys-
tem where the polariton was affected by both cavity losses
and well disorder, but where the well disorder caused a ho-
mogeneous broadening. In this kind of polariton, the width
of the polariton would be due to the convolution of two
Lorentzians, and would be

2uc6~k!u2g~k!1ud6~k!u2AcE. ~5.4!

We can see that the resulting polariton width is just the
weighted average of the two linewidths. Exactly at resonance
both polaritons will have the same width, the average of the
two linewidths of the uncoupled cavity mode and uncoupled
exciton.

Now imagine a system where again the polariton was af-
fected both by cavity losses, and well disorder, but where the
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cavity losses were inhomogeneous. In this kind of polariton,
the width of the polariton would be due to the convolution of
two Gaussians, and by adding the variances we would get a
width of

2A2ln~2!@ uc6~k!u4g~k!21ud6~k!u4cE#1/2. ~5.5!

At resonance we can see that the resulting polariton width
is less than the average of the two linewidths. For equal
cavity and exciton widths, the polariton width would be just
1/A2 of the average of the two widths.

Having done these two simple cases, we turn our attention
to the more realistic case — the polariton affected by homo-
geneous cavity losses and by inhomogeneous well disorder.
The Fourier convolution theorem gives an expression for the
polariton spectral functionS6 as a fourier transform of

S̃6~k;t!5S̃E6~k;t!S̃L6~k;t!

5
1

2p
exp@2uc6~k!ug~k!utu2t2ud6~k!u4cE/2#.

~5.6!

The combination of the Lorentzian cavity losses with the
Gaussian disorder will give a result somewhere between the
two limits of a double Lorentzian and double Gaussian dis-
cussed briefly above. Unfortunately there is no analytic ex-
pression forS6 , and so the analysis must be done numeri-
cally. However, it is clear that the convolution of the two
different broadenings from the cavity losses and quantum
well disorder will give a polariton linewidth reduced below
the previously expected average value — a prediction of
‘‘narrower than average’’ polariton lines that is consistent
with the observations of Fisheret al.5 Figure 2 shows the

FIG. 2. FWHM for polariton spectra due to the effects of cavity
loss and disorder. The double Lorentzian and double Gaussian
FWHM’s are also plotted for comparison to the real polariton. A
range of loss and disorder strengths are covered.

FIG. 1. The polariton line shape at five different detunings. The
tall Lorentzian peak corresponds to when the polariton is cavity
mode only, and the broad Gaussian to exciton only. The parameters
areg51.00 andc51.70, so that the disorder FWHM is twice the
loss FWHM. The components vary according to the fractions de-
fined by the dispersionless model, but the graph is still similar in
character to that for a dispersive case.
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three types of curve for different cavity loss and disorder
strengths.

At this point it is also appropriate to make a short com-
ment about the effect of dispersion discussed at the end of
Sec. IV. The asymmetry caused by the Boltzmann tail will
tend to broaden the polariton out slightly, more than would
otherwise be the case. However, this effect is likely to be
rather small, and it will not destroy the narrowing. The de-
localization of the polariton will cause some extra narrowing
not included in calculations in this paper.

Figure 2 demonstrates two important points. First, the
Lorentzian cavity mode and Gaussian exciton linewidth
curve does lie between the double Lorentzian and double
Gaussian curves, and thus exhibits this ‘‘narrower than aver-
age’’ behavior. Also, theminimumlinewidth of the polariton
can be reduced below that of either of its two components.
This is not very marked for widely differing exciton and
cavity widths, but there is a more than 15% reduction in the
case of evenly matched linewidths in Fig. 2~b!.

VI. CONCLUSION

This theory shows how the spectral broadening due to
different interactions combines together to give the total line
shape and width of the coherent superposition of cavity
mode and exciton that is a polariton in a microcavity quan-

tum well. The interactions have different spectral functions
which areconvolvedtogether to give the resulting polariton
spectral function. The two broadening interactions included
were the cavity losses, which cause homogeneous broaden-
ing of the cavity mode; and disorder in the quantum well,
which causes an inhomogeneous, and approximately Gauss-
ian, broadening in the exciton. The widths of the contribu-
tions from each interaction were reduced according to the
fraction of cavity mode or exciton in the polariton. The re-
sults predict narrower than average polaritons like those seen
by Fisheret al.5 This behavior is most noticeable when the
cavity loss and the disorder are of a similar size. In fact, in
this regime there can be polarition linewidthreduction, a
more significant effect than the observed narrower than av-
erage polaritons.

Although dispersion was not included, a consideration of
its likely effects showed that the delocalization~or motional
narrowing! it causes will enhance the narrowing effect and
not degrade it. The convolution mechanism still occurs in a
model that includes dispersion, and such a theory would just
provide a more accurate spectral function from the disorder
in the quantum well. To summarize, one of the causes of
polariton linewidth narrowing is explained by the model pre-
sented here. The next step is to attempt a calculation that can
combine both this and the dispersion into a single consistent
calculation.
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