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The entropic corrections to the flux-line energy of extreme type-II superconductors are computed using a
schematic dual Villain model description of the flux quanta. We find that the temperature profile of the lower
critical field vanishes polynomially at the transition with an exponentn>2/3 in the isotropic case, while it
exhibits an inflection point for the case of weakly coupled layers in parallel magnetic field. It is argued that
vestiges of these effects have already been observed in high-temperature superconductors.@S0163-
1829~96!02425-3#

It is well known that type-II superconductors allow mag-
netic fields to penetrate in the form of flux lines quantized in
units of the flux quantum,F05hc/2e, for field values above
the lower critical field given byHc1(T)54p«(T)/F0 ,
where «(T) denotes the flux-line free energy per unit
length.1 The London approximation yields
«0(T)5(F0/4plL)

2ln lL/j for this free energy, where both
the London penetration length,lL , and the coherence length,
j, vary as (Tc02T)21/2 near the critical temperature,Tc0,
within the Ginzburg-Landau mean-field approximation. Spa-
tial fluctuations of a flux line act toreducethis mean-field
line tension, however, particularly near the transition tem-
perature. Such entropic corrections to the lower critical field
have been computed2,3 and observed4–6 in the case of high-
temperature superconductors, where fluctuation effects are
important due to the short coherence lengths and the large
transition temperatures that characterize these materials.

In this paper, we shall recompute the flux-line tension of
extreme type-II superconductors~lL@j! in the absence of
magnetic field utilizing the so-called ‘‘frozen’’ limit of lat-
tice superconductors first studied by Peskin.7–9 The principle
idea here is to exploit the duality of quantized magnetic flux
lines in superconductors to confining strings of electric flux
in pure lattice gauge theories. Hence, only the entropic cor-
rection to the line tension due to flux-line wandering is ac-
counted for. The energy functional for three-dimensional
~3D! superconductors may be expressed as7
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1
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@DmAn~r !2DnAm~r !#2, ~1!

wheref(r ) is the phase of the order parameter on a cubic
lattice with spacinga8.j, and where the magnetic flux
threading the plaquette at siter perpendicular to the
m5x,y,z direction readsFm(r )5(F0/2p)(n,gemngDnAg .
Also, Dmf(r )5f(r1m̂)2f(r ) is the lattice difference op-
erator. A ‘‘frozen’’ superconductor~FZS! is simply the ther-
modynamic state in the limit of infinite phase rigidity,rs→`.
This means that the London penetration length is small in
comparison to the effective lattice constant,a8, and hence
that flux lines do not interact. In particular, upon making the

gauge transformationAm5Am8 1Dmf, we immediately see
that this limit impliesAm8 52pmm , wheremm(r ) is an inte-
ger field. Therefore, the energy functional~1! reduces to
EFZ5( r ,m(2e0)

22[2pnm(r )]
2, wherenm(r ) is the integer

field describing unit line segments of quantized flux travers-
ing the plaquette~r ,m! and satisfying the continuity equation

(
m

Dmnmur50, ~2!

i.e., nm5(n,gemngDnmg . The universality class of the tran-
sition into the normal state thus falls within that of thein-
verted3D XY model.7–9 Employing this schematic descrip-
tion of flux lines in the absence of external magnetic field,
with an effective lattice constanta8*lL , we shall demon-
strate below that the lower critical field vanishes as
Hc1}(Tc2T)n near the transition in ‘‘frozen’’ lattice super-
conductors, where the exponentn>2/3 corresponds to that of
the 3D XY model. Via an anisotropic version of this FZS
model,10 we shall also show that the temperature profile for
the parallel lower critical field in superconducting films with
weakly coupled layers has an inflection point. Last, we argue
that these effects are realized in high-temperature supercon-
ductors in the critical regime.4–6

Isotropic superconductor. Let us then describe the zero-
field thermodynamics of flux lines in 3D superconductors via
the energy functional

EFZ /kBT5b(
r ,m

nm
2 ~r ! ~3!

along with constraint~2!, wherenm(r ) is the integer field
that represents a unit line segment of magnetic flux quanta
threading the plaquette~r ,m!. The energy scale above is set
by the mean-field flux-line free energy,«0(T)
5(F0/4pl0)

2(12T/Tc0), and the effective lattice constant,
a8, yieldingb5a8«0(T)/kBT. Here,l0 is on the order of the
zero-temperature London penetration length, whileTc0 de-
notes the mean-field critical temperature. We presume that
the lattice constant satisfiesa8*lL , which ensures that the
magnetic flux is quantized on the scale of an elementary
plaquette. To compute the dimensionless flux-line tension,s,
we shall place a unit monopole-antimonopole pair separated
by a large distanceR@a8 along a principle axis of the cubic
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lattice. The partition function for the FZS system~3! in the
presence of such an external monopole charge configuration,
p(r )5d r ,02d r ,Rx̂ , therefore reads

Z@p#5 (
$nm~r !%

P rdF(
m

DmnmU r2p~r !G
3exp~2EFZ /kBT!. ~4!

Yet sinceZ[p]/Z[0]}e2bsR coincides with the correlation
function of the dual 3DXY model in the Villain form,7

C(R)}e2R/ j̄ , the dimensionless flux-line free energy is then
related to the correlation length,j̄, of the latter by
s5(bj̄)21. ~Henceforth,R and j̄ are given in units ofa8.!
This implies that the line tension varies ass5s0~b2bc!

n

near the critical temperature, wheren>2/3 is the critical ex-
ponent corresponding to the divergent correlation length of
the 3D Villain model.7 Here,bc>3/2 is the critical tempera-
ture of the latter,9 while s0 is another nonuniversal constant
of order unity. Since the dimensions of a typical flux loop are
set by the divergent correlation length,j̄, short-range inter-
actions among the flux lines on the scale of thefinitemean-
field penetration length should be irrelevant at criticality.
This validates the FZS limit~3!. The flux-line tension~or
Z[p]/Z[0] ! can also be computed at low temperature by
permitting maximum transverse excursions in the line of one
lattice spacing in any of the remaining 2~d21! directions,
where d53 gives the dimension of the cubic lattice. This
yields

s>122~d21!b21e2b, ~5!

which agrees with the low-temperature dependence of the
interface tension in the two-dimensional~2D! Ising model
for the cased52,11 as it should.

The mean-field flux-line free energy in the ‘‘frozen’’ su-
perconductor model@~2! and ~3!# is therefore renormalized
down by spatial fluctuations to «(T)5«0(T)s(b)
}(b2bc)

n near the critical temperature,
Tc5(T c0

211bcT 0
21)21, which is determined by the condi-

tion b5bc . Here, the energy scalekBT05a8~F0/4pl0!
2 sets

the size of the critical regime,dTc5Tc02Tc;T c0
2 /T0 . In

Fig. 1, we plot the predicted profile of the lower critical field
vs temperature, which is determined by the flux-line tension
in zero field viaHc154p«/F0 in the case of extreme type-II
superconductors. Here, we have interpolated between the
low temperature and critical behaviors discussed previously.
Last, we mention that al transition is also expected in the
specific heat vs temperature.7,9

Layered superconductor (film). Consider now an aniso-
tropic FZS model made up ofN weakly coupled square lat-
tices separated by the same effective lattice constanta8*l0,
with an energy functional given by

EFZ /kBT5b(
l51

N

(
r

un~r ,l !u21gb (
l51

N21
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r
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along with constraint~2!. Here,n5(nx ,ny), r and l , respec-
tively, denote the in-plane and layer indices, whileg@l de-
notes the anisotropy parameter.1 The smallest energy scale is
set by the mean-field in-plane flux-line tension,1 g21«0(T),

and the lattice constant, yieldingb5g21«0(T)a8/kBT. The
author has recently studied this model in the context of the
dual XY model in the Villain form with a finite number of
weakly coupled layers,10 where he finds a superfluid ordering
transition at~inverted! temperaturebc;p/4, followed by a
layer-decoupling transition at higher~inverted! temperature
b
*

52p. Very similar results were obtained previously by
Korshunov in his approximate study of the infinite-layer
case.12,13Specifically, the in-plane field may be expressed as
n~r ,l !5n8~r ,l !2n2~r ,l !1n2~r ,l21!, along with constraints
“•n85p and “•n25nz , where p(r ) again represents the
monopole distribution and“5(Dx ,Dy). Employing the po-
tential representationn252“F factorizes the partition func-
tion ~4! into Z5ZCGP l51

N ZDG
( l ) in the limit g→`,10 where

ZDG
( l ) is the partition function for the 2D discrete Gaussian

model14 that describes thel th layer isolated from its neigh-
bors ~nz50!, while the interlayer Coulomb gas factor reads

ZCG@p#5 (
$nz~r ,l !%

expH 2b(
l51

N

(
r ,r8

@nz~r ,l21!2nz~r ,l !

12p~r ,l !#G~2!~r2r 8!@nz~r 8,l21!2nz~r 8,l !#

2gb (
l51

N21

(
r
nz
2~r ,l !J , ~7!

with the boundary layers set tonz~r ,0!505nz~r ,N!. Here,
G~2!52¹22 is the Green’s function for the square lattice.
Notice that flux lines passing vertically through all of the
layers make no contribution to the energy functional above.15

In the limit of extreme anisotropyg→`, we thus find that
ZDG
( l ) and ZCG, respectively, exhibit an inverted Kosterlitz-

Thouless~KT! transition atb5bc and a Coulomb gas
16 tran-

sition atb5b
*
;10bc .

To compute the parallel flux-line tension, we again place
unit oppositely charged monopoles separated by a large dis-
tanceR@a8 along a principle axis of a given layerl . Since
the corresponding intralayer correlation function of the dual
Villain model factorizes intoC(R)5Ci(R)C'(R), where

FIG. 1. Shown is a temperature profile forHc1 ~solid line! char-
acteristic of isotropic extreme type-II superconductors in the critical
regime ~shaded area!. Notably,Hc1 deviates from the mean-field
result ~dashed line! in an activated manner, and it approaches the
transition temperature by following a polynomial law with exponent
n>2/3 ~see Ref. 7!.
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Ci~R!5ZDG
~ l ! @p#/ZDG

~ l ! @0#5~r 0 /R!h iexp~2R/ j̄ i!

and

C'~R!5ZCG@p#/ZCG@0#5~R/r 0!
h',

we obtain that the dimensionless parallel line tension is given
by s5~bj̄ i!

21, wherej̄ i denotes the correlation length of the
2D Villain model16 dual to the former discrete Gaussian
model.10,14 Hence, this line tension vanishes as
s5s0 exp@2A0/(b2bc)

1/2# just below the critical
temperature,14 Tc5(T c0

211bcgT 0
21)21, where s0 and A0

again are nonuniversal constants of order unity. A similar
temperature dependence for the parallel lower-critical field in
layered superconductors has been obtained via a fermion
analogy for the Lawrence-Doniach model.13 The low-
temperature behavior of the parallel line tension, on the other
hand, is determined by Eq.~5! for d52. Although the corre-
sponding parallel flux-line free energy,
« i(T)5g21«0(T)s(b), is renormalized down with respect
to the mean-field result just like in the isotropic case, we also
observe that it must have an inflection point as a function of
temperature just below the transition, where it vanishes ex-
ponentially. This is displayed by the parallel lower-critical
field (H c1

i ) in Fig. 2, which interpolates between the low-
temperature and critical behaviors. The exponential suppres-
sion ofH c1

i nearTc indicates that critical flux-line wander-
ing is extremely violent in two dimensions.

Concerning the lower critical fieldH c1
' perpendicular to

the layers, classical electrodynamics dictates that it must
vanish in the present film geometry. However, we may fix
the ends of a vertical flux line at the boundary layers
@nz(r ,0)5d r ,05nz(r ,N)# and compute its mean-squared dis-
placement

ū l
25(

rÞ0
r 2^nz~r ,l !nz~0,l !& Y(

rÞ0
^nz~r ,l !nz~0,l !&

at a given layerl . In the limit of extreme anisotropy,g→`, it
becomes sufficient to consider the double-layer case,N52.
Since the charge correlation function for the 2D Coulomb
gas ~7! satisfies16 ^nz(0)nz~r !&}2r22b/p, we obtain ū2

5a82@b2~12!b*
#/~b2b

*
!. Exactly the same result is also ob-

tained for pancake vortices in the absence of Josephson cou-
pling between layers3,17 if the in-plane London penetration
length lL is chosen for the lattice constanta8. The latter
choice ensures flux quantization at all temperatures. It also
indicates that an elementary segment of vertical flux line,
nz561, corresponds to astackof pancakes. We may there-
fore interpret the lower transition temperature,
T
*

5(T c0
211b

*
gT 0

21)21, determined byb5b
*

52p as an
evaporation point for vertical flux lines~see Fig. 2!, sinceū2

diverges forT.T
*
. If g is now presumed to be large but

finite, however, we must then require that the perpendicular
magnetic field exceed the decoupling crossover field atT

*
,18

B
*
';F0 /g

2d2. This guarantees that the distance between
neighboring stacks of pancake vortices be within the Joseph-
son penetration length,gd. Here d measures the distance
between adjacent Josephson-coupled planes in the underly-
ing Lawrence-Doniach model for layered superconductivity,1

which is essentially an anisotropic version of Eq.~1!. The
former condition excludes the possibility that a well-defined
Josephson vortex connects displaced stacks of pancake vor-
tices in adjacent layers, an effect that is not accounted for by
the present factorization of the layered FZS model~6! into
parallel and perpendicular parts. Last, we note that compat-
ibility with the present FZS model requires that the physical
length scales satisfygd@a8*l0.

The above results for the FZS model~6! are in apparent
contradiction with those of the more general anisotropic lat-
tice superconductor model~1! obtained by Korshunov,12 who
finds that layers decouple at a temperature tenfoldgreater
than the superfluid KT transition. This paradox is resolved
by observing~i! that the lattice constant in such models is on
the order of the coherence length,j!lL , and ~ii ! that such
decoupling of layers naturally coincides with the vanishing
of the parallel lower-critical field here. Notice this means that
in the regimeT

*
,T,Tc , a Meissner phase exists for in-

plane magnetic fields while each layer isresistive, a feature
which has been observed experimentally.6,13The latter, how-
ever, is then consistent with the ‘‘evaporation’’ of vertical
flux lines atT

*
obtained here. Last, we mention that the line

tension for parallel vortices can be computed directly from
the double-layerXY model,10 where one recovers the previ-
ous exponential temperature dependence shown in Fig. 2.19

Again, this demonstrates the consistency of the present re-
sults with those obtained from model~1! in the extreme
type-II limit, lL→`, which is precisely theXY model.

High-temperature superconductors. Let us now apply the
above theory to the oxide superconductors, which are ex-
treme type-II ~lL/j;100! with observable fluctuation
effects.1–6 Consider first bulk YBa2Cu3O72y, which may be
classified as a 3D superconductor with strong anisotropy,1

g;10. Thescaledisotropic FZS model~3! predicts a width
in temperature for critical fluctuations~see Fig. 1! on the
order ofdTc;gT c0

2 /T0 , where againkBT05(F0/4pl0)
2a8.

Assuming typical parametersTc0;100 K anda8;l0;103

Å, we obtaindTc;0.5 K. This estimate is consistent with
recent Hc1 measurements performed by Pastorizaet al.,4

FIG. 2. The parallel lower critical field characteristic of extreme
type-II superconducting films that are composed of weakly coupled
layers is plotted as a function of temperature near the phase transi-
tion. Notice that it vanishes exponentially beyond the inflection
point just belowTc . Notice also that the low-temperature transition
at T* , which marks where perpendicular flux lines ‘‘evaporate,’’
lies well inside the mean-field regime.
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who observe fluctuation effects of Fig. 1 to within this scale.
If we suppose, however, thata8;lL(T)5l0(Tc0/dTc)

1/2,
which ensures flux quantization at all temperatures, then we
obtain a much more modest estimate ofdTc;2.5 mK for the
size of the critical region. Also, the exponentn52/3 pre-
dicted here for the critical temperature dependence of the
lower critical field is consistent with the critical temperature
dependence of the London penetration lengthlL per the
~neutral! 3D XY model;1 i.e., Hc1}l L

22, with
lL}(Tc2T)21/3. The latter critical temperature dependence
has been observed in recent penetration depth measurements
on this class of high-temperature superconductors.20

The oxide superconductor Bi2Sr2CaCu2O8, on the other
hand, may be classified as a layered superconductor with
extreme anisotropy,1 g;100. The layered FZS model~6!
also predicts a fluctuation regime on the order of
dTc;gT c0

2 /T0 wide in temperature. Taking the previous val-
ues forl0 andTc0, then the choicea8;l0 results indTc;5
K, which is on the order of the effect~see Figs. 1 and 2!
observed by Brawneret al.5 and by Wanet al.6 in their mea-
surements of the field of first penetration,Hp , along the~per-
pendicular! c axis for this material. On the other hand, the
choice a8;lL(T)5l0(Tc0/dTc)

1/2 for the lattice constant
with the same parameter values results in a smaller estimate
dTc;0.25 K for the size of the critical region. More inter-
estingly, Wanet al.also observe an inflection point inHp vs
T on this scale. This may be a vestige of the same prediction
made here for the parallel lower critical field if geometrical
demagnetization effects are presumed to be strong. In par-
ticular, only parallel flux lines contribute to the total line free
energy at temperaturesT

*
,T,Tc , since the perpendicular

flux lines have by then ‘‘evaporated.’’ This scenario requires,
of course, that the perpendicular magnetic field exceed the
decoupling crossover scale,18 B

*
';F0 /lJ

2, wherelJ repre-
sents the Josephson penetration length. Since this scale is
known to diverge exponentially asT approaches the decou-
pling transition temperatureTc from below,19 the former
crossover scale should be negligibly small in that regime. At
the evaporation point~T5T

*
!, however, we have that

lJ;gd. This implies a decoupling crossover field of ap-
proximately 1 kG in the present case,1 whered515 Å. A
direct measurement of the parallel lower critical field in this
material would clearly be very useful. Last, we mention that

Wanet al.have fit their results for the 2D–3D crossover line
of c-axis-aligned flux lines to6 Hm}(b2bc)

n, with n50.68.
The latter exponent is precisely that predicted forHc1 vsT in
the isotropic FZS model~3!, which suggests thatHm is re-
lated in some way tobulk Hc1 along thec axis.

Finally, we note that the Coulomb gas model~7! for ver-
tical flux-line segments indicates that the evaporation transi-
tion at b215b

*
21;bc

21/10 occurring in the limitg→` is
renormalized down tob215e0

2(N21)b
*
21 for g finite, where

e021}e22gb
* is the polarization at the transition point due

to flux-line–anti-flux-line excitations in between consecutive
layers. Hence, flux-line ‘‘evaporation’’ in clean layered su-
perconductors is driven to lower temperature as thec-axis
thickness increases.21 If we presume the existence of strong
columnar pins, however, then such isolated flux-line–anti-
flux-line excitations between layers are suppressed, resulting
in an unrenormalized flux-line evaporation transition. Pre-
cisely this effect has been observed in high-temperature su-
perconductors, where the melting-evaporation-irreversibility
line moves up in temperature upon the introduction of co-
lumnar pins.22

In summary, we have elucidated the critical behavior of
the flux-line tension in both isotropic and layered extreme
type-II superconductors~j→0! utilizing the so-called ‘‘fro-
zen’’ limit of a lattice model.7–9 Notably, we predict an in-
flection point near the transition for the parallel lower critical
field as a function of temperature in layered superconducting
films. Vestiges of this effect have already appeared in
quasi-2D oxide superconductors.6 It is important to remark
that fluctuations in the magnitude of the superconducting
order-parameter are entirely neglected within this approach,
contrary to a recent treatment of the same problem.23 This is
generally a valid approximation when effects due to the nor-
mal cores are negligible, like in the present limitj→0, and in
quasi-2D systems, where phase fluctuations drive critical
properties.
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