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Critical behavior of the flux-line tension in extreme type-Il superconductors
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The entropic corrections to the flux-line energy of extreme type-ll superconductors are computed using a
schematic dual Villain model description of the flux quanta. We find that the temperature profile of the lower
critical field vanishes polynomially at the transition with an expongr®/3 in the isotropic case, while it
exhibits an inflection point for the case of weakly coupled layers in parallel magnetic field. It is argued that
vestiges of these effects have already been observed in high-temperature superconfifots3-
182996)02425-3

It is well known that type-Il superconductors allow mag- gauge transformatioﬁ\M=A;L+ A, ¢, we immediately see
netic fields to penetrate in the form of flux lines quantized inthat this limit impliesA’ =2mm,,, wherem,(r) is an inte-
units of the flux quantumCI)0= hc/2e, for field values above ger field. Therefore, the energy functiondl) reduces to
the lower critical field given byHc (T)=4me(T)/Qo,  E,==, (2e) ?[27n,(r)]% wheren,(r) is the integer
where &(T) denotes the flux-line free energy per unit field describing unit line segments of quantized flux travers-
length: ~ The  London  approximation  yields ing the plaquettér,u) and satisfying the continuity equation
so(T)=(<I>O/47-r)\,_)2In N\ /& for this free energy, where both
the London penetration lengtk, , and the coherence length,

& vary as Te—T) Y2 near the critical temperaturd,., > Aun,l =0, @
within the Ginzburg-Landau mean-field approximation. Spa- a

tial fluctuations of a flux line act teeducethis mean-field e, N,==, ,€.,,A,m,. The universality class of the tran-
line tension, however, particularly near the transition tem-ition into the normal state thus falls within that of time
perature. Such entropic corrections to the lower critical fieldyerted3D XY model’~° Employing this schematic descrip-
have been computédand observeti®in the case of high-  tion of flux lines in the absence of external magnetic field,
temperature superconductors, where fluctuation effects aigith an effective lattice constart’ =\, , we shall demon-
important due to the short coherence lengths and the larggirate below that the lower critical field vanishes as
transition temperatures that characterize these materials. H_,o(T.—T)” near the transition in “frozen” lattice super-

In this paper, we shall recompute the flux-line tension ofconductors, where the exponerst2/3 corresponds to that of
extreme type-Il superconductots, >¢) in the absence of the 3D XY model. Via an anisotropic version of this FZS
magnetic field utilizing the so-called “frozen” limit of lat- model*° we shall also show that the temperature profile for
tice superconductors first studied by PeskiiThe principle  the parallel lower critical field in superconducting films with
idea here is to exploit the duality of quantized magnetic fluxweakly coupled layers has an inflection point. Last, we argue
lines in superconductors to confining strings of electric fluxthat these effects are realized in high-temperature supercon-
in pure lattice gauge theories. Hence, only the entropic corductors in the critical regim&:®
rection to the line tension due to flux-line wandering is ac-  |sotropic superconductorLet us then describe the zero-
counted for. The energy functional for three-dimensionalfield thermodynamics of flux lines in 3D superconductors via

(3D) superconductors may be expressetl as the energy functional
E=psr2 {1—-co§A,¢(r)—A, (D]} Erz/keT=B (1) &)
M ru
1 along with constrain{2), wheren ,(r) is the integer field
=5 S AAM-AAOE @ g (2 x(1) g

that represents a unit line segment of magnetic flux quanta
threading the plaquetté,.). The energy scale above is set
where ¢(r) is the phase of the order parameter on a cubidy the mean-field flux-line free energy,eq(T)
lattice with spacinga’>¢, and where the magnetic flux =(®g/4m\o)%(1—T/T,), and the effective lattice constant,
threading the plaquette at site perpendicular to the a’, yielding 8=a’eq(T)/kgT. Here,\q is on the order of the
M=X,y,z direction re:adscpﬂ(r)=(CIDO/27T)EV176MWAVAT zero-temperature London penetration length, whilg de-
Also, A ,¢(r) = ¢(r + un) — ¢(r) is the lattice difference op- notes the mean-field critical temperature. We presume that
erator. A “frozen” superconductofFZS) is simply the ther-  the lattice constant satisfi@s =\, which ensures that the
modynamic state in the limit of infinite phase rigidipg—.  magnetic flux is guantized on the scale of an elementary
This means that the London penetration length is small irplaquette. To compute the dimensionless flux-line tension,
comparison to the effective lattice constaat, and hence we shall place a unit monopole-antimonopole pair separated
that flux lines do not interact. In particular, upon making theby a large distanc®>a’ along a principle axis of the cubic
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lattice. The partition function for the FZS syste@) in the

|

presence of such an external monopole charge configuration, :

p(r)= 60— & rx, therefore reads 0.06 He E

|

|

Zpl= 2 T2 Aun, r—p<r>} o (sowoptc otk |

n,(r Y2 A r |

I H :

Xexp(—Egz/kgT). 4 :

|

Yet sincez[p]/Z[0] <e #°R coincides with the correlation 002 | E

function of the dual 3DXY model in the Villain form’ !

C(R)xe F¢ the dimensionless flux-line free energy is then ':

related to the correlation lengthé, of the latter by 0.00 L
o=(B¢) L. (Henceforth,R and ¢ are given in units of’.) ’ . T, T,

This implies that the line tension varies asoy(8—8.)"
near the critical temperature, W_heﬁ&Z/S is the eritical ex- FIG. 1. Shown is a temperature profile tdg, (solid line) char-
ponent c_orr_espondlr;g to the divergent correlation length ofqteristic of isotropic extreme type-Il superconductors in the critical
the 3D Villain model. Here, 3.=3/2 is the critical tempera- yegime (shaded area Notably, H.; deviates from the mean-field
ture of the latte, while oy is another nonuniversal constant result (dashed lingin an activated manner, and it approaches the
of order unity. Since the dimensions of a typical flux loop aretransition temperature by following a polynomial law with exponent
set by the divergent correlation lengtf, short-range inter-  ,=2/3 (see Ref. .
actions among the flux lines on the scale of fime mean-
field penetration length should be irrelevant at criticality. and the lattice constant, yielding=y teq(T)a'/kgT. The
This validates the FZS limit3). The flux-line tension(for  author has recently studied this model in the context of the
Z[p]/Z[0]) can also be computed at low temperature bydual XY model in the Villain form with a finite number of
permitting maximum transverse excursions in the line of onaveakly coupled layer¥ where he finds a superfluid ordering
lattice spacing in any of the remainingd2-1) directions, transition at(inverted temperature8,~ /4, followed by a
where d=3 gives the dimension of the cubic lattice. This layer-decoupling transition at highg€inverted temperature
yields B, =2m. Very similar results were obtained previously by
Korshunov in his approximate study of the infinite-layer
o=1-2(d-1)p e ¥, () case?'3specifically, the in-plane field may be expressed as
n(r,)=n'(r,l)=n_(r,I)+n_(r,| =1), along with constraints
%-n’zp and V-n_=n,, where p(r) again represents the
monopole distribution an¥ =(A,,A). Employing the po-
. . . . " tential representation_ = —V® factorizes the partition func-
The mean-field flux-line free energy in the “frozen” su- i 4) into Z=7 N () in the limit %10 Wh
perconductor mod€l(2) and (3)] is therefore renormalized '3? ( ) into e CGH'=1, pc 1N the fimi Y= w ere-
down by spatial fluctuations to &(T)=eq(T)o(B) Zps |54the partltlo_n function for the 2D dlscrete Gau_ssmn
“(B—Be)" near the critical temperature, model* that deecnbes_théth layer isolated from its neigh-
T.=(Tod+B.ToY L which is determined by the condi- bors(n,=0), while the interlayer Coulomb gas factor reads
tion B=p;. Here, the energy scaI%T0=a’(d>0/4g)\o)2 sets N
the size of the critical regimedT =T o~ T.~T&/ Ty In _ _ o
Fig. 1, we plot the predicted profilce of {)he Iéwercgriti%al field ZCG[p]_{nZ exp{ ’82‘1 2‘ [n(r,1 = 1) =ny(r1)
vs temperature, which is determined by the flux-line tension ’

which agrees with the low-temperature dependence of th
interface tension in the two-dimension@D) Ising model
for the cased=2!! as it should.

Zr'

in zero field viaH ., =4ms/®, in the case of extreme type-I| +2p(r,DIGP(r—r")[n,(r' 1 —1)—nyr",1)]
superconductors. Here, we have interpolated between the N—1

low temperature and critical behaviors discussed previously. _ 2

Last, we mention that a transition is also expected in the 7'B|:21 Zr nz(r.he, @)

specific heat vs temperatufé.

Layered superconductor (filmConsider now an aniso- With the boundary layers set ta,(r,0)=0=n,(r,N). Here,
tropic FZS model made up & weakly coupled square lat- G®?=-V"2 is the Green’s function for the square lattice.
tices separated by the same effective lattice constami,, Notice that flux lines passing vertically through all of the
with an energy functional given by layers make no contribution to the energy functional abGve.

y In(l)the limit of extreme anisotropy—oe, we thus find that
Zh and Zqg, respectively, exhibit an inverted Kosterlitz-

EFz/kBT=,3|21 > In(r.)|?+ ?’ﬁzl 2 Ing(r.? Thguless(KT) transition at3= 3, and a Coulomb ga&tran-
T T (6 Sition atp=p,~105.

To compute the parallel flux-line tension, we again place
along with constrain(2). Here,n=(n,,n,), r andl, respec-  unit oppositely charged monopoles separated by a large dis-
tively, denote the in-plane and layer indices, whjlel de-  tanceR>a’ along a principle axis of a given layér Since
notes the anisotropy parametéfhe smallest energy scale is the corresponding intralayer correlation function of the dual
set by the mean-field in-plane flux-line tensfor; 'ey(T),  Villain model factorizes intaC(R)=C,(R)C, (R), where

N—-1
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FIG. 2. The parallel lower critical field characteristic of extreme
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at a given layet. In the limit of extreme anisotropyy—oe, it
becomes sufficient to consider the double-layer chise2.
Since the charge correlation function for the 2D Coulomb
gas (7) satisfies® (n,(0)n,(r))=—r 2¥" we obtain u?
=a'qB—(3)B,1(B—B,). Exactly the same result is also ob-
tained for pancake vortices in the absence of Josephson cou-
pling between layers” if the in-plane London penetration
length A, is chosen for the lattice constaat. The latter
choice ensures flux quantization at all temperatures. It also
indicates that an elementary segment of vertical flux line,
n,==1, corresponds to stackof pancakes. We may there-
fore interpret the lower transition temperature,
T,=(Tot+ B, ¥Tob) L, determined by=pB, =27 as an
evaporation point for vertical flux linesee Fig. 2, sinceu?
diverges forT>T, . If yis now presumed to be large but
finite, however, we must then require that the perpendicular

type-Il superconducting films that are composed of weakly couplednagnetic field exceed the decoupling crossover fierﬂ*zilf8

layers is plotted as a function of temperature near the phase transl_?,i ~®,/y?d?. This guarantees that the distance between
tion. Notice that it vanishes exponentially beyond the inﬂeCtiOl’]neighboring stacks of pancake vortices be within the Joseph-
point just belowT . Notice also that the low-temperature transition ggn penetration lengthyd. Here d measures the distance

at T,., which marks where perpendicular flux lines “evaporate,” petween adjacent Josephson-coupled planes in the underly-

lies well inside the mean-field regime.

Ci(R)=Z84 p)/ZUL[01=(ro/R) Mexp( —RI&)

and

Ci(R)=Zcd pl/Zcd 0]=(R/ro) ™,

we obtain that the dimensionless parallel line tension is give
by o=(8¢&,) %, where¢, denotes the correlation length of the
2D Villain modef® dual to the former discrete Gaussian
modell®!* Hence, this line tension vanishes as
o=0oexd—Ay/(B—BJYY just below the critical
temperaturé? T.=(T o'+ B.yTo ) "1, where oy and A,

again are nonuniversal constants of order unity. A simila?
temperature dependence for the parallel lower-critical field irf
layered superconductors has been obtained via a fermio

analogy for the Lawrence-Doniach mod&l.The low-
temperature behavior of the parallel line tension, on the oth
hand, is determined by E¢p) for d=2. Although the corre-
sponding parallel flux-line free energy,
sH(T)=y’lsO(T)a(ﬁ), is renormalized down with respect

to the mean-field result just like in the isotropic case, we aIsJ
observe that it must have an inflection point as a function o

temperature just below the transition, where it vanishes e
ponentially. This is displayed by the parallel lower-critical
field (H.;) in Fig. 2, which interpolates between the low-

temperature and critical behaviors. The exponential suppre

sion of H; nearT, indicates that critical flux-line wander-
ing is extremely violent in two dimensions.

Concerning the lower critical fielth s, perpendicular to
the layers, classical electrodynamics dictates that it mu

vanish in the present film geometry. However, we may fix
the ends of a vertical flux line at the boundary layers

[n(r,0)= 6, p=n,(r,N)] and compute its mean-squared dis-
placement

uf=2>

r#0

r2(n,(r,1Hn,(0})) /;O<nz(r,|)nz(0,l)>

€

X_

ing Lawrence-Doniach model for layered superconducti¥ity,
which is essentially an anisotropic version of Efj). The
former condition excludes the possibility that a well-defined
Josephson vortex connects displaced stacks of pancake vor-
tices in adjacent layers, an effect that is not accounted for by
the present factorization of the layered FZS mod®linto
parallel and perpendicular parts. Last, we note that compat-
ibility with the present FZS model requires that the physical
jength scales satisfyd> a'=\g.

The above results for the FZS modé) are in apparent
contradiction with those of the more general anisotropic lat-
tice superconductor modél) obtained by Korshuno¥? who
finds that layers decouple at a temperature tenfplehter
than the superfluid KT transition. This paradox is resolved
y observing(i) that the lattice constant in such models is on
he order of the coherence lengi\, , and(ii) that such
ecoupling of layers naturally coincides with the vanishing
of the parallel lower-critical field here. Notice this means that
jn the regimeT, <T<T,, a Meissner phase exists for in-
plane magnetic fields while each layerrésistive a feature
which has been observed experimentéfly The latter, how-
ever, is then consistent with the “evaporation” of vertical
lux lines atT, obtained here. Last, we mention that the line
fension for parallel vortices can be computed directly from
the double-layeiX Y model® where one recovers the previ-
ous exponential temperature dependence shown in Fiy. 2.
Again, this demonstrates the consistency of the present re-
§_ults with those obtained from modé€l) in the extreme
type-Il limit, A, —o0, which is precisely theX'Y model.

High-temperature superconductoiset us now apply the
above theory to the oxide superconductors, which are ex-

dreme type-Ii (A /é~100 with observable fluctuation

effects!~® Consider first bulk YBgCu;0;_,, which may be
classified as a 3D superconductor with strong anisotfopy,
v~10. Thescaledisotropic FZS mode(3) predicts a width

in temperature for critical fluctuationee Fig. 1 on the
order of ST~ yT 2,/ Ty, where agairkgTo= (P o/4mhg)?%a’.
Assuming typical parameter,,~100 K anda’~\,~10°

A, we obtain 6T,~0.5 K. This estimate is consistent with
recent H,, measurements performed by Pastorizal.,*
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who observe fluctuation effects of Fig. 1 to within this scale.Wanet al. have fit their results for the 2D—3D crossover line
If we suppose, however, that' ~\ (T)=\(Tco/8T)Y%  of c-axis-aligned flux lines tH (8~ B.)*, with v=0.68.
which ensures flux quantization at all temperatures, then w&he latter exponent is precisely that predictedHigy vs T in
obtain a much more modest estimatesdi.~2.5 mK for the  the isotropic FZS mode(3), which suggests thatl,, is re-
size of the critical region. Also, the exponent2/3 pre- |ated in some way tdulk H.; along thec axis.

dicted here for the critical temperature dependence of the Finally, we note that the Coulomb gas mo@®l for ver-

dependence of the London penetration length per Fhe tion atﬂ—lzﬂ;1~ﬁc—1/10 occurring in the limity—s is

1 —2

(neutra) 3P1/3 XY model, i, Heoh ", with 0ok ed down t@ t=e, N"VB. ! for yfinite, where

N o<(T,—T) ™= The latter critical temperature dependence 1xe- 2% is th larizati t:h ¢ i int d
has been observed in recent penetration depth measuremefies. ~* € IS Ihe poiarization at the transition point due

on this class of high-temperature supercondudrs. to ﬂux-line—anti-flux-_line excitation_s in I?etween consecutive
The oxide superconductor fr,CaCyOg, on the other layers. Hence, _qux—I_lne “evaporation” in clean Iayere(_j Su-
hand, may be classified as a layered superconductor witRérconductors is driven to lower temperature as drexis
extreme anisotropy, y~100. The layered FZS modgb)  thickness increasés.If we presume the existence of strong
also predicts a fluctuation regime on the order ofcolumnar pins, however, then such isolated flux-line—anti-
6T~ yT 2,/ T, wide in temperature. Taking the previous val- flux-line excitations between layers are suppressed, resulting
ues for\g and T, then the choica’~\, results inéT,~5  in an unrenormalized flux-line evaporation transition. Pre-
K, which is on the order of the effedsee Figs. 1 and)2 cisely this effect has been observed in high-temperature su
observed by Brawnest al> and by Waret al® in their mea-  perconductors, where the melting-evaporation-irreversibility

surements of the field of first penetratidt, , along the(per-  line moves up in temperature upon the introduction of co-
pendiculay ¢ axis for this material. On the other hand, the lumnar pins?
choice a’ ~\ | (T)=Nq(To/ 8T) " for the lattice constant In summary, we have elucidated the critical behavior of

with the same parameter values results in a smaller estimatfe flux-line tension in both isotropic and layered extreme
5TC~025 K for the size of the critical region. More inter- type-ll Superconductor$§_>0) ut|||z|ng the so-called “fro-
estingly, Waret al. _also observe an _inflection point ki, VS zen” limit of a lattice model’"® Notably, we predict an in-
T on this scale. This may be a vestige of the same predictioflection point near the transition for the parallel lower critical

made herg fqr the parallel lower critical field if geometrical o4 as a function of temperature in layered superconducting
demagnetization effects are presumed to be strong. In pay

cul | llel flux I i h Lline f iims. Vestiges of this effect have already appeared in
ticular, only parallel flux lines contri 'ute to the tota IN€ Iree quasi-2D oxide superconductdtst is important to remark
energy at temperaturés, <T<T,, since the perpendicular

flux h b then 4" Thi ; " that fluctuations in the magnitude of the superconducting
ux lines have by then "evaporated.” This scenario requires,, qo - sarameter are entirely neglected within this approach,

of course, that the perpendicular magnetic field exceed th@ontrary to a recent treatment of the same profi2fhis is

. 1 2
decoupling crossover SC"’%B*_N(DO/)‘J' where, repre-  generaily a valid approximation when effects due to the nor-
sents the Josephson penetration length. Since this scale 4$;] cores are negligible, like in the present ligit:0, and in

known to diverge exponentially %approaclges the decou- guasi-2D systems, where phase fluctuations drive critical
pling transition temperaturd,. from below;” the former Properties.

crossover scale should be negligibly small in that regime. Al
the evaporation poinfT=T,), however, we have that The author is indebted to H. Safar, M. Maley, S. Fleshler,

A\ ;~yd. This implies a decoupling crossover field of ap- G. Gilmer, and L. Bulaevskii for valuable discussions. This

proximately 1 kG in the present caSeyhered=15 A. A work was performed under the auspices of the U.S. Depart-
direct measurement of the parallel lower critical field in this ment of Energy, and was supported in part by National Sci-
material would clearly be very useful. Last, we mention thatence Foundation Grant No. DMR-9322427.
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