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By mapping the relativistic version of the Chern-Simons-Landau-Ginzburg theory in 211 dimensions to the
three-dimensional~3D! lattice Villain x-y model coupled with the Chern-Simons gauge field, we investigate
phase transitions of Chern-Simons bosons in the limit of strong coupling. We construct algebraically exact
duality and flux attachment transformations of the lattice theories, corresponding to analogous transformations
in the continuum limit. These transformations are used to convert the model with arbitrary fractional Chern-
Simons coefficienta to a model witha either zero or 1. We show that, unless the corrections of cubic and
higher power in momenta, irrelevant near corresponding fixed points, render the phase transition first order, the
phase transition in the original model is either in the 3Dx-y or a ‘‘fermionic’’ universality class.
@S0163-1829~96!06428-4#

INTRODUCTION

As one changes the external magnetic field, the Hall con-
ductance of a system of two-dimensional electrons jumps
from one quantized value to another, while the longitudinal
conductance displays a peak. The zero temperature localiza-
tion length diverges in transition points, indicating the
second-order quantum phase transitions. Remarkably,
experiments1–3 show that these phase transitions are univer-
sal, i.e., the critical exponents governing the divergence of
the localization length are the same for integer and fractional
transitions. It has also been found4 that the critical resis-
tances for integer and fractional phase transitions are univer-
sal as well. Finally, a brilliant recent experiment by Shahar
et al.5 demonstrates a precise duality mapping of nonlinear
current-voltage characteristics between the insulating and
fractional quantum Hall sides of the transition, where carriers
are respectively electrons and fractionally charged quasipar-
ticles. One of the most challenging problems in the quantum
Hall effect is to understand the universality of the transitions.

Apparently, there is a conceptual difference between the
physics of the integer and the fractional quantum Hall re-
gimes. In the former case the quasiparticles are fermions;
their localization transition is believed to be a one-particle
problem. The physics is understood quasiclassically as
quantum-tunneling-assisted percolation,6–8 while the nonlin-
ear s model with a topological term9 provides the field-
theoretical formalism to study this problem. On the other
hand, excitations above the fractional quantum Hall effect
ground state, given with extreme precision by inherently
many-body Laughlin’s wave functions,10 have an infinite-
range statistical interaction that seems to invalidate the usual
one-particle localization theory. Field theoretically, this in-
teraction can be described in terms of the Chern-Simons
gauge field coupled to either bosons11,12 or fermions.13–16

Using the bosonic description, called the Chern-Simons-
Landau-Ginzburg~CSLG! theory12 of the quantum Hall ef-
fect, Kivelson, Lee, and Zhang~KLZ ! proposed17 a global
phase diagram of the quantum Hall effect. The original prob-
lem of interacting electrons in a large magnetic field is
mapped onto the problem of bosons in zero or weak uniform

magnetic field, interacting via the Chern-Simons gauge field.
Information about the filling factor is contained only in the
coefficient of the Chern-Simons term. The electromagnetic
response functions in the CSLG theory can be expressed
solely in terms of response functions of the bosonic field and,
therefore, the different quantum Hall transitions are in the
same universality class if the critical exponents of the boson
superfluid to insulator phase transition are independent of the
Chern-Simons coefficient.

On the basis of the CSLG theory in the random-phase
approximation~RPA!, KLZ argued that the critical expo-
nents of Hall transitions are universal; they predicted values
for critical conductances that have been recently confirmed
experimentally.4 However, since the Chern-Simons term is a
marginal operator by naı¨ve power counting, it could in prin-
ciple change the critical exponents. If this happens, the tran-
sition will no longer be universal. Therefore, it is highly
desirable to check the idea of universality in some specific
field-theoretical calculation. Unfortunately, it is very hard to
treat the full interacting problem in the presence of disorder.
For this reason the analysis is often restricted to toy models
that nevertheless share some essential features with real
quantum Hall systems.

The most spectacular feature of the quantum Hall system
is the symmetry of the phase diagram, and there are several
field-theoretical models with a similar symmetry. A broad
class of such models has been introduced by Shapere and
Wilczek,18 who generalized the construction of Cardy and
Rabinovici19,20 and constructed four- and two-dimensional
self-dual models consisting of mutually dual discrete Abelian
gauge lattice models coupled via theu term. A similarly
constructed 211-dimensional model with the Chern-Simons
term was analyzed by Rey and Zee.21 Lütken and Ross22,23

discussed the symmetry of fixed points of a self-dual two-
dimensional clock model, and argued that the corresponding
groupSL(2,Z) describes the symmetry of all fixed points of
the quantum Hall system. This statement is analogous to the
law of corresponding states;17 unfortunately, so far no deri-
vation of the field-theoretical realization of this symmetry
group for the quantum Hall system is known.

The question of whether phase transitions in the system of
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Chern-Simons bosons can even in principle be universal is so
general that the answer for virtually any such model would
be interesting. Particularly, one can study the phase transi-
tion driven by the amplitude of an external periodic potential
at commensurate filling instead of that driven by disorder. It
is known24 that the system of bosons at fillings commensu-
rate with external periodic potential can be mapped onto the
x-y model. In the quantum Hall problem one arrives25 at an
x-y model minimally coupled with the Chern-Simons term in
zero average magnetic field. Within this model one can natu-
rally address the question of whether the order-disorder tran-
sition is altered by coupling with the Chern-Simons term
and, if so, whether there is an additional universality class, or
the phase transition continuously depends on the Chern-
Simons coupling. Even though this is an artificial model, its
successful analysis will undoubtedly shed some light on the
universality of the real quantum Hall phase transitions.

Wen and Wu25 used the representation of the thex-y
model in terms of the relativistic complex-valued scalar field
with quartic interaction, especially convenient for perturba-
tional expansion. They also used the 1/N expansion, known
to work for ordinary bosons, to regularize the perturbational
series in three dimensions. Within the second loop approxi-
mation Wen and Wu found that although the phase transition
remains of the second order, the critical exponents of the
x-y model are continuously changed by the Chern-Simons
coupling.

Soon after that, we pointed out26 that the 1/N expansion
artificially suppresses the gauge fluctuations in this model,
and the result of Wen and Wu is not likely to hold in the
physical limit ofN51. Our alternative calculation26 was per-
formed in the vicinity of a nominal tricritical point of the
theory, where the quartic interaction is absent and one has to
keep the six-field coupling. The effective theory in the vicin-
ity of the tricritical point is renormalizable in three dimen-
sions~3D!, and allows a systematic loop expansion, exactly
as the theory with four-field interaction is renormalizable in
four dimensions where the quartic coupling is dimensionless.
The presence of the Chern-Simons coupling, also dimension-
less in 3D, does not introduce any classically divergent quan-
tities, but it already has a dramatic effect at the second loop
level, changing the transition from the second to the first
order. This is similar to the statement27 that the phase tran-
sition in clean type-I superconductors becomes weakly first
order due to fluctuations of the electromagnetic field. In our
case, since the theory without the quartic interaction is mas-
sive, it remains massive in some finite region of values of the
quartic coupling. Thus, within the perturbative region of the
relativistic complex scalar field model, the transition is of
first order even for some nonzero values of the quartic cou-
pling.

This conclusion obtained in the vicinity of the Gaussian
fixed point of the scalar sector was not in formal contradic-
tion with the result of Wen and Wu obtained near the
strongly coupled fixed point~formally accessed with the
1/N expansion,! but it reopened the question about the uni-
versality of phase transitions of scalar fields coupled with the
Chern-Simons field. The results of both calculations indicate
that the Chern-Simons interaction is arelevantperturbation
to the scalar theory with strong short-range repulsion, and
that some kind of nonperturbative analysis is necessary.

The goal of this paper is to address the question of uni-
versality of phase transitions in relativistic Chern-Simons
bosons without the limitations of the perturbation theory. We
access the strong-coupling limit of the Chern-Simons bosons
using the Villain form of thex-y model minimally coupled
with the Chern-Simons gauge field. For this model we for-
mulate the exact duality and flux attachmenttransformations
with usual properties in the continuum limit, and build the
Haldane-Halperin28,29 hierarchy of models related by these
nonlocal transformations. We show that in the absence of an
external magnetic field the universality class of phase transi-
tion in the strong-coupling limit is determined by the Chern-
Simons couplinga5p/q. When eitherp or q is even, the
phase transition is in the universality class of the order-
disorder transition in the usual three-dimensionalx-y model.
When bothp andq are odd, the system in the vicinity of a
critical point ~if any! is equivalent to thex-y model with the
Chern-Simons couplinga51, corresponding to the Fermi
statistics. We believe that our result is exact, and that it ap-
plies at least for fractions with small enough denominators
q. With increasing denominators the terms formally irrel-
evant near thex-y critical point grow, effectively limiting the
number of fractions with expected universality.

Unlike previous works30–35 analyzing lattice Chern-
Simons models, we derive algebraically exact flux attach-
ment and duality transformations. Thus we avoid the prob-
lem of relevance or irrelevance of the higher order in
momenta terms appearing in different lattice definitions of
the Chern-Simons coupling. Instead, we construct an exact
transformation to the theory with zeroa, equivalent to the
usual 3Dx-y model with finite lattice temperature. For this
theory the algebra of local critical operators is known, and
the formal irrelevance of extra terms does not require addi-
tional proof.

The paper is organized as follows. We derive the exact
duality transformation for the Villain form of thex-y model
in Sec. I, and the exact flux attachment transformation in
Sec. II. These transformations have a correct naive con-
tinuum limit, and work for lattice theories with gauge cou-
pling of the most general form. In Sec. III we construct the
sequence of such transformations leading to the Villainx-y
model with a Chern-Simons coupling of either zero or one,
and utilize known properties of the usualx-y model to build
the phase diagram of the original model.

I. GENERALIZED DUALITY

Particles in a superfluid repel each other at short dis-
tances. At very small temperatures most of the particles are
in the same quantum state, characterized by the condensate
wave functionC(x,t)5c expiu, where both the amplitude
c and the phaseu are real-valued functions. Slow phase
rotations have an extremely small energy, implying the ex-
istence of a linear sound mode.

Another important kind of excitation in superfluids are
vortices in two dimensions, or vortex lines in three dimen-
sions. They are characterized by a nontrivial phase of the
condensate wave function gained along any surrounding con-
tour. Far enough from the center of the vortex the gradient of
the phase is small, and the superfluid densityc2 is close to
its nonperturbed value. Although the reduced density in the
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core region near the center of the vortex costs some energy,
the total energy of a single vortex is mostly determined by
the twisted phase in the area outside the core, and any two
vortices have a long-range logarithmic interaction.

Quite differently, vortices in superconductors have only
short-range interactions~just like particles in a superfluid!:
the extra phase is easily screened by the vector potential.
Instead, the conserved particle currents in normal phase in-
teract logarithmically through their magnetic fields just like
vortices in a superfluid. This analogy can be formulated
more precisely as aduality between type-II superconductors
in the London limit, where the penetration length of the mag-
netic field is large compared to the coherence length and the
strong-coupling limit of the Ginzburg-Landau model. In this
limit of strong coupling one can completely neglect the den-
sity fluctuations, considering only the phasesun as degrees
of freedom. The core energy of the vortices can be regular-
ized by redefining the theory at the lattice. The resultingx-
y model is a collection of classical spinssn5(cosun ,sinun)
with nearest-neighbor interaction of the form
sisj5cos(ui2uj). It turns out that a reverse transformation
from thex-y model to the strongly coupled superfluid is also
possible.36 This two-way analogy has been confirmed by
comparing the results of numeric computations in the lattice
x-y model with corresponding analytical results for thef4

theory.
The partition function of thex-y model,

Zx-y5E dun
2p

exp(
cos~un1m2un!

T
, ~1!

is periodic with respect to the phasesun and, at least in the
strong-coupling limit where the lattice temperature37 T is
small, is mainly determined by the vicinity of maxima of the
expression in the exponent. The shape of these maxima can
be simulated using the Villain form of thex-y model,

exp
cos~un1m2un!

T
→(

m
exp2

~un1m̂2un22pmnm̂!2

2T

originally proposed by Berezinskii,38 and later independently
and in greater detail investigated by Villain.39

Peskin40 proved that duality transforms the Villainx-y
model into a so-called frozen superconductor, or the zero-
temperature limit of the Villainx-y model coupled to the
Maxwell field. This rigorous analysis has been extended by
Kleinert,36 who analyzed the lattice superconductor in a wide
region of parameters using the Villain approximation, and
achieved quantitative agreement41 with numerical simula-
tions. These model computations eventually led42–44 to an
understanding of the complete phase diagram of supercon-
ductors in the dual representation. Later Lee and Fisher45,46

and Lee and Zhang47 applied this duality transformation to
the anyon superconductivity and the quantum Hall effect.

We are interested in a very similar class of models,
namely, the strong-coupling limit of relativistic Chern-
Simons bosons. The idea is to follow the successful example
of a superconductor and examine nonperturbative properties
of this model at the lattice using the Villain form of thex-
y model coupled to the Chern-Simons gauge field. There are
several48,31,32,35different gauge-invariant definitions of the
lattice Chern-Simons coupling, and, in order to keep the

analysis as universal as possible, we consider the three-
dimensional Villainx-y model

Z@A#5)
nm

E
2p

p dun
2p

3 (
m52`

`

exp2
~nmun2Anm22pmnm!2

2T
, ~2!

Z5E expS 2
1

2
AnmKnn8

mn An8nDZ@A#)
n,r

dAnr , ~3!

at the cubic lattice, minimally coupled to the gauge field
Anm with some generic, possibly nonlocal kernelKnn8

mn , or
Kmn(k)5K(k) in the momentum representation. By thege-
neric Chern-Simons couplingwe shall imply that in the con-
tinuum limit K must be an antisymmetric matrix linear in
momenta.

The summation over linksm in ~2,3! is performed only in
the positive directionm̂; the phasesun are defined in the
nodes, while both the integer-valued fieldmnm and the gauge
field Anm are defined at the links of three-dimensional cubic

lattice. We use the notationsnm f n5 f n1m̂2 f n and ñm f n
5 f n2 f n2m̂ for the forward and backward lattice differences,
respectively, and imply the summation over repeated indices.

It will be convenient to specify the Fourier expansion of
vector fields in the form

Anm5
1

AN
E E E

2p

p d3k

~2p!3
Am~k!eikm/2eik•rn ~4!

~no summation inm) to emphasize their location at the links
of the lattice. With this definition the gradientnm f n
5ñm f n1m̂ or Pm f (k) in the momentum representation is a

vector, while the divergenceñmAnm5nmAn2m̂m or
PmAm(k) is a scalar field, as one would expect from the
geometrical interpretation of the lattice fields. We shall use
the vectorPm52 sin(km/2) to define different functions of
lattice momentum. For example, the kernel of the local in the
gauge-field Chern-Simons term used in Refs. 48, 31, and 32
can be written as Kmn5«mnrPrQ0/2pa, with
Q05cos(mkm/2, and in Sec. II we shall define the Chern-
Simons term with the kernelKmn5«mnrPr/2paQ0 , provid-
ing for the local coupling between the gauge-invariant scalar
currents on the lattice.

Let us treat the actionZ@A# as the Villainx-y model in
the presence of some external gauge fieldA, and follow the
derivation40 of the duality transformation for this model.
While the integration in phasesun is performed over re-
stricted intervals, the gauge transformation

un→un12pNn

~5!
mnm→mnm1Nn1m̂2Nn

does not change the integrand of~2!. One can extend the
integration region inun to the infinite interval by simulta-
neously constraining the fieldmnm to avoid overcounting.
This can be done, for example, by applying the usual gauge
condition
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05(
m

~mn1m̂m2mnm!. ~6!

Now introduce an auxiliary fieldbnm by writing

Z@A#5)
n
E

2`

` dun
2p )

m
S T

2p D 1/2E dbnm

3(
mnm

expF2
T

2
bnm
2 1 ibnm~nmun2Anm22pmnm!G .

~7!

The integration byun can be done after regrouping the terms
in the exponent,

E
2`

` dun
2p

e2 iunñmbnm5d~ñmbnm!, ~8!

the resulting constraint being merely the lattice version of the
equation¹–b50 indicating that the fieldb is a pure curl,

bnm5«mnrñnan2 r̂r . ~9!

So far the only difference from the duality
transformation40 for the purex-y model is the presence of the
product2 ibnmAnm in the exponent of~7!. This extra term in
the action is responsible for important additional symmetry.
Indeed, the original gauge field in the full partition function
~3! can be integrated away,

Z5)
nm

S T

2p D 1/2E
un ,bnm

(
mnm

eibnm~nmun22pmnm!

3expF2
1

2 E d3k

~2p!3
bm~2k!~Tdmn1Kmn

21!bm~k!G ,
~10!

and, since the fieldb is transverse, it is clear that the partition
functionZ depends only on the transverse combination

Tdmn
t 1Kmn

21 , ~11!

indicating the exact equivalence of any two models with the
parameters satisfying the relationship

T1dmn
t 1K1mn

215T2dmn
t 1K2mn

21 , ~12!

where dmn
t 5dmn2 P̂mP̂n denotes the transverse part of the

Kronecker symbol, andP̂n[Pn /uPu is the unit vector. This
reparametrization changes both the gauge and scalar cou-
plings; it is an exact symmetry of the partition function of the
Villain x-y model or any correlators that do not involve the
gauge field directly. These are the only physical correlators
as long as we treat the Chern-Simons field as an auxiliary
field needed to define the fractional statistics49 for the par-
ticles. Since the lattice temperatureT measures the strength
of the local repulsion, relationship~12! implies that a part of
this repulsion can be mediated by the gauge field if its propa-
gator has a nonzero symmetric part.

One may further verify that the system averages taken in
the presence of any number of vortex-antivortex pairs
expi(un2un8), as well as the monopoles dual to them, do not

depend on a particular selection of parametrization. More-
over, although at the tree level the properties of quasiparti-
cles appear to be changed, any correlators involving the
gauge-invariant current retain their values. This can be
checked by performing the same transformation in the pres-
ence of an additional external gauge fieldA0: the reparam-
etrization does not affect the minimal gauge coupling with
this external field.

Having established the reparametrization symmetry~12!
of the complete model~2! and ~3!, let us resume the trans-
formations of the partition function~7!. As usual, the field
anr introduced in~9! is defined up to a gauge transformation

anm→anm1~ln1m2ln! ~13!

with arbitrary ln ; for simplicity we imply the Coulomb

gaugeñmanm50 for all our gauge fields. The integration
over un results in

Z@A#5E
a
(
m

e2Tbnm
2 /222p ibnmmnm2 iAnmbnm, ~14!

or, after regrouping the second term in the exponent,

Z@A#5E
a
(
m

e2Tbnm
2 /212p ianmMnm2 iAnmbnm, ~15!

where the integer-valued vorticity is defined as

Mnm5«mnr~mn1m̂1 n̂r2mn1m̂r!. ~16!

Since the vorticity is locally conserved,

(
m

~Mnm2Mn2mm!50, ~17!

we may exchange the summation overmnm for a sum over
Mnm subject to condition~17!. This integer-valued constraint
can in turn be removed by additional phasesun ,

d0,ñmMnm
5E

2p

p dun
2p

eiunñmMnm. ~18!

To finish the transformation of the dual model toward the
Villain form analogous to the original model~2! and ~3!,
Peskin40 introduced a convergence factor

15 lim
t→0

expF2
t

2
Mnm

2 G ~19!

into Eq. ~15! and transformed the resulting sum

lim
t→0

(
M

e2tMnm
2 /212p ianmMnm1 iunñmMnm ~20!

with the Poisson summation formula

(
M52`

`

eiwM2tM2/25S 2p

t D 1/2 (
m52`

`

e2~w22pm!2/2t. ~21!

After rescaling the gauge fields 2panm5Ãnm ,
2pbnm5B̃nm , the dual action can be finally written as
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Z@A#5 lim
t→0

)
n
E

2p

p dun
2p )

m
E dÃnm

3(
m

expF2
1

2t
~nmun22pmnm2Ãnm!2

2
i

2p
AnmB̃nm2

T

8p2 B̃m
2 G . ~22!

Again, we can integrate away the original gauge fieldAnm to
obtain the final form of the dual action,

Z5 lim
t→0

E
Ã,u

(
m

expF2
1

2t
~nmun22pmnm2Ãnm!2

1
1

8p2 Ã2kP3~T1K21!3PÃkG , ~23!

where the appropriate summation in each term of the expo-
nent is implied. In accord with our previous conclusion, the
action depends only on the transverse part of the combina-
tion (K211Td t)mn . In addition, the dual model has a form
of ~2! and~3! with zero lattice temperaturet50 and the dual
gauge kernel50

K̃05
TP22P3K213P

~2p!2
5

P2

~2p!2
~T1K21!, ~24!

where only the transverse part enters because of the gauge
fixing for the field Ã. The dual model has the same form as
the original one and, since the additional gauge field was
introduced as an auxiliary field, this model has the same
reparametrization freedom~12!. Therefore, the most general
form of the dual model with the lattice temperatureT̃ and the
gauge kernelK̃ satisfies the equation

T̃1K̃21501K̃0
215

~2p!2

P2 ~K211T!21, ~25!

or, more symmetrically,

~T1K21!~ T̃1K̃21!5
~2p!2

P2 . ~26!

An alternative direct derivation of the finite-temperature dual
action, as well as the vortex-monopole mapping explicitly
relating the scalar sectors of the two models is provided in
Appendix A. This algebraically exact mapping proves that
dual models of the form~2! and ~3! related by the general-
ized duality~26! are equivalent, being just two different rep-
resentations of the same model.

To provide an example of the duality in the presence of
the Chern-Simons coupling, let us consider the simplest lin-
ear in momenta form of the gauge kernel

Kmn~k!5
1

2pa
«mnrPr . ~27!

While this definition is very well convergent toward the con-
tinuum limit, and generally looks like a plausible definition
of the Chern-Simons kernel, it is actually nonlocal in a co-

ordinate representation. The conventional duality transfor-
mation results in the zero-lattice-temperature model~23!
with the gauge kernel

K̃0
mn~k!52

a

2p
«mnrPr1

T

~2p!2
@P2dmn2PmPn#,

~28!

analogous to the frozen superconductor.40 The two terms
here are a nonlocal Chern-Simons term of the same form as
~27!, and the usual lattice Maxwell action. The zero lattice
temperature implies a zero tree level propagator for the mat-
ter field, in analogy with the dual theory12 of nonrelativistic
continuum bosons coupled to a purely statistical Chern-
Simons gauge field. However, already in the RPA approxi-
mation, the dynamics of the dual gauge fieldÃ, associated
with the nonzero dimensionful chargee25(2p)2/T, renders
this propagator finite, therefore introducing some nonzero
lattice temperature for the dual matter field.

Let us try to understand this result using our generalized
duality transformation~26!. Specifically, we want to find a
form of the dual model with a purely statistical gauge field,
so that all dynamics would be associated with the scalar
field.

To simplify the subsequent algebra, it is convenient to
introduce special notation for typical matrices appearing in
the expressions. The matricesdmn

t 5dmn2 P̂mP̂n and
@ Î #mn5«mnrP̂r commute with each other, while
@ Î 2#mn52dmn

t . Algebraically, the symmetric matrixdmn
t is

equivalent to unity, whileÎ plays a role ofi5exp(ip/2).
Since we always assume a transverse gauge, it is possible not
to write dmn

t at all, and treatÎ as a commuting number. In
these notations the dual gauge kernel~28! can be written as

K̃052 Î
aP

2p
1

TP2

~2p!2
,

so that the corresponding inverse matrix in the transverse
gauge is just

1

K̃
1T̃ 5

~25! 1

K̃0

5
~2p!2

22p ÎaP1TP2

'
2p Î

aP S 12
Î TP

2pa
••• D 5

2p Î

aP
1

T

a2 1••• . ~29!

Naively, the first term of the expansion may be associated
with the inverse of the modified dual Chern-Simons kernel,
while the second constant term plays a role of the dual tem-
perature. We notice that while theChern-Simons term is the
same as the one in the representation with T50, the F2 term
has been traded for the nonzero lattice temperature T˜

5T/a2 in the scalar sector.
In reality, we cannot just discard the extra terms denoted

by ellipsis in Eq.~29!, but we certainly have the freedom to
choose the valueT̃5T/a2 for the dual temperature as long
as the general duality condition~26! is satisfied. With this
particular choice the exact dual gauge kernel becomes
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K̃52
ÎaP

2p

1

Î x1~11 Î x!21
, ~30!

where we denotedx5TP/2pa. The exact kernelK̃ differs
from the truncated dual kernel

2
a

2p
«mnrPr[2

a

2p
@ Î #mnP

only by corrections of the higher orderÃO(P3)Ã, so that in
the naive continuum limit the dual gauge fieldÃ does not
have anyF2 term or associated dynamics.

It is tempting to propose that, as long as these corrections
are small, as terms of higher order in momenta they should
be irrelevant, and that the scaling properties of both the trun-
cated and exact forms of the dual theory should be equiva-
lent, with their corresponding critical indices equal. Then,
using the previously established mapping between theories
that are dual as specified by Eq.~26!, one could conclude
that the two models with gauge kernels of the form~27! and
the corresponding parameters (T,a) and (T/a2,21/a)
should also be equivalent at large scales. The first statement
is, however, not so obvious because the Chern-Simons theo-
ries are intrinsically nonlocal, and the critical dimensions of
different operators may substantially differ from their classi-
cal values. We shall prove the legitimacy of this procedure in
Sec. III.

Along with the dimensionless parametera we carried out
a transformation of the classically irrelevant dimensionful
lattice temperatureT. Clearly, since the values of the lattice
momentumP are limited from the above, the small values of
the ratioT/uau5T̃/uãu ensure the smallness ofx, so that the
effect of higher-order irrelevant terms is negligible, and the
bare value of the lattice temperatureT should be meaningful.
Remarkably, in the presence of the Chern-Simons term the
duality transformation does not lead to a reversion44,51of the
temperature axis characteristic of the duality between the su-
perconductor and the superfluid. In our case only the Chern-
Simons coupling constant is inverted, while the scalar sector
may remain in the strong-coupling regime.

The physical properties of excitations in the generalized
x-y model are revealed by their coupling with external fields
in 211 dimensions. Luckily, the introduction of the addi-
tional external gauge fieldeA0 does not influence the exact
procedure of the duality transformation; now it results in the
partition function ~22! up to the substitution
Anm→Anm1eA0nm . Integration over the original gauge field
A and a proper shift of the dual gauge fieldÃ results in the
frozen model~23! with additional minimal coupling to the
external field

2
e

a

1

11 Î x
A0 , x5

TP

2pa

and the constant term

e2

4pa
A0~2k!

Î P

11 Î x
A0~k! ~31!

in the exponent. These two terms remain intact in reparam-
etrized models with nonzero lattice temperatures.

It is clear that the model describes particles with the
charge ẽ52e/a, while the momentum-dependent term
11 Î x in the denominator of the coupling can be regarded as
a form factor indicating the finite size of excitations and the
presence of the Magnus force. Term~31!, dependent only on
the external gauge field, shows that the duality transforma-
tion produced the condensate with the charge density

2e2ñ3A0/2pa52e2B0/2pa determined by the external
magnetic fieldB0 . More specifically, if the original theory
had the average charge densityr, the total charge density of
excitations in the dual representation is given by

r̃5r2
e2B0

2pa
. ~32!

One flux quantum of the magnetic field binds the charge
e/a, or exactly one quasiparticle in the dual representation.
Since the duality translates the original quasiparticles with
chargee into vortices with unit vorticity, this condensate can
be also interpreted as the average vorticity 1/a per quasipar-
ticle in the dual model.

Certainly, the external magnetic field does not simplify
the lattice model at all: even the one-particle Hofstadter
spectrum in the magnetic field is very complicated. How-
ever, if both the magnetic field and particle density are small
at the scale of the lattice, only the filling factors of electrons
n52pr/e2B and quasiparticlesñ52pr̃/ẽ 2B are important.
In this case Eq.~32! becomes

ñ5a~an21!. ~33!

II. PERIODICITY IN CHERN-SIMONS COUPLING

Nonrelativistic continuum models display periodicity in
the Chern-Simons coupling because geometrically this cou-
pling is just the linking number between the trajectories of
quasiparticles. As long as this linking number remains an
integer, equal increments in the Chern-Simons coefficient re-
sult in the total shift of the phase of the partition function by
integer multiples of 2p. This is always so when quasiparti-
cles avoid each other—for example, if they are fermions or if
they have strong hardcore repulsion. Although thex-y model
is already in the limit of pointlike strong repulsion as viewed
from the corresponding continuum model, the current lines
can intersect or even join each other, and special effort is
needed to define a Chern-Simons action that is periodic in its
coupling. In this section we find such a definition and use it
to derive the exact transformation analogous to the flux at-
tachment transformation in the continuum, valid for an arbi-
trary form of the lattice Chern-Simons action.

The current of quasiparticles in thex-y model is defined
as the field canonically conjugated with the gradients of
phasesnmun . Since the partition function is periodic in
these phases, they are cyclic variables and the current is in-
teger valued. As one would expect, the current operator is
not diagonal in terms of the phasesun ; it is more convenient
to deal with currents in the special current representation. In
the Villain approximation the explicit form of this represen-
tation can be obtained with the inverse of the Poisson sum-
mation formula~21!. The integration over phasesun ensures
the conservation of the currentMnm , and the partition func-
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tion ~2! and ~3! rewritten in terms of this current becomes

Z5(
M

d0,ñmMnm
E
dA
e2TMnm

2 /22 iM nmAnm2AnmKnn8
mn

An8n/2.

~34!

It is important to emphasize that the transformation to the
integer current representation~34! did not change the gauge
field A in any way, so that the gauge kernelKnn8

mn in Eqs.~3!
and ~34! is exactly the same.

The linking number between lattice current flow lines
does not have a natural geometrical meaning at intersection
points and therefore cannot be uniquely defined to fit all
intuitive requirements. There is, however, no difficulty in
defining the linking number for any two conserved fields
Mnm and Nnm determined on mutually dual lattices since
they never intersect. Formally, this coupling can be intro-
duced via the solutiona0 of equations

«mnrnmann
0 5Nn2 r̂r , ñnann

0 50 ~35!

asN5(Mnmanm
0 . Since the fieldNnm is defined on the links

of the dual lattice~or at the plaquettes of the primary lattice,!
the auxiliary fieldann

0 is defined on the links of the primary
lattice, and the summation is well defined. One can prove
that this definition is indeed the integer-valued linking num-
ber by rewriting the conserved currentMnm as a superposi-
tion of some numbernl of directed loopsLi , i51, . . . ,nl
carrying unit current each. This splits the expression forN
into a number of sums over independent closed loops, and by
the Stokes theorem each of them is exactly equal to the~in-
teger! flux of currentN through the surface delimited by the
corresponding loop; obviously the totalN is the integer-
valued linking number.

Now let us define the regularized integerself-linkingnum-
ber of the integer-valued currentM in exactly the same way
but with additional identificationMnm[Nnm . This identifies
neighboring parallel links of the original and dual lattices
mutually displaced in the direction~1,1,1! by half a period.
This displacement, uniquely determining the integer-valued
regularized linking number, is revealed in Fourier represen-
tation, where the auxiliary equations~35! take the form

«mnr~eikm21!eikn/2an
0~k!5e2 ikr/2M r~k!,

~12e2 ikn!an
0~k!50,

~no summation inr) or, somewhat more symmetrically,

«mnrPma
0

n5 ie2 i ~kx1ky1kz!/2M r , Pnan
0~k!50. ~36!

Solving these equations with respect to auxiliary fielda0, we
obtain the regularized self-linking number in Fourier repre-
sentation

N5Tra0m~2k!Mm~k!5 i Tr«mnrMm~2k!
Q0Pn

P2 M r~k!,

where the original exponent expi/2(mkm in ~36! was re-
placed withQ0[Q0(k)5cos(mkm/2, allowing for the sym-
metry of the total sum. The exponent of the linking number
N can be further transformed to form a gauge coupling

exp2 ipaN→E
da
exp(

k
2 iM m~2k!am~k!

1a~2k!
Î P

4paQ0
a~k!, ~37!

with an additional transverse fluctuating fielda introduced as
the Hubbard-Stratonovich field. Clearly, the gauge coupling
has exactly the form of that in~34! with the gauge kernel

Kmn~k!5«mnr
Pr

2paQ0
. ~38!

The momentum expansion of this kernel starts with a linear
antisymmetric term and has no quadratic in the momenta
part; therefore, it corresponds to the Chern-Simons term in
the long-distance limit. The apparent singularity of this
gauge kernel at the planekx1ky1kz5p does not lead to
any divergences, but merely suppresses fluctuations of the
field a in the vicinity of this plane. One can totally avoid
introducing a somewhat unpleasant division by zero by con-
sidering periodic lattices with an odd number of lattice nodes
in each direction, so that at any finite system size the singu-
larity of the kernel is never reached. This also eliminates the
problem of a zero functional denominator arising from inte-
gration over the transverse part of the gauge fielda in ~37!.

Consider model~34! with the specific form of the gauge
kernel~38!. This partition function is convergent at all posi-
tive lattice temperaturesT even though the second term can
be zero for certain configurations. One can use the Poisson
summation formula to rewrite the model in the form~2! and
~3! depending only on the phasesu. By construction, this
model is a periodic function ofa with the periodna52, so
that any two models with the couplings related by

a→a12m, T→T ~39!

are absolutely equivalent to each other. Definitely, this peri-
odicity is precisely the flux attachment symmetry as it was
formulated for nonrelativistic systems. It is important to
mention that none of the previously considered
definitions48,31–34of the lattice Chern-Simons term provide
for this property; this is why we needed to construct yet
another form of the Chern-Simons coupling. The flux attach-
ment transformation changes the properties of the gauge
field, but our main interest is to understand the effect of the
fractional statistics on the dynamics of the scalar field; we
use theauxiliary Chern-Simons field only to get rid of the
nonlocal interaction.

Even though one can construct other forms of gauge cou-
pling leading to the same symmetry of the partition function,
these forms are very special; generic gauge couplings do not
reveal the exact flux attachmentsymmetry. Moreover, it is
easy to check that this property is not even preserved by the
duality transformation~26!. Therefore, we need to define the
flux attachmenttransformationto display the same periodic-
ity ~39! at least in the continuum limit for some broad class
of possible lattice Chern-Simons terms.

In order to do this, let us introduce the trivial phase
2pmN proportional to the integer-valued self-linking num-
berN in addition to the already present in Eq.~34! gauge
coupling with the gauge kernelK. Clearly, this trivial phase
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does not change the partition function, and yet, after rewrit-
ing the introduced term as the additional gauge coupling~37!
and integrating away one of the gauge fields, we obtain the
same model but with the gauge kernel

K85SK212
4pmÎQ0

P D 21

. ~40!

The resulting model is rigorously equivalent to the original
model with the gauge kernelK, and it is convergent at any
nonzero lattice temperatureT.

The long-range properties of the flux-attached gauge ker-
nel ~40! depend on the properties of the original kernelK. If
K has the Chern-Simons form, i.e., if its momentum expan-
sion starts with the linear in momenta term
Kmn;«mnrkr/2pa, the expansion of the gauge kernelK8
has the same form with the coefficienta85a12m. In the
particularly simple case when the matrix structure of the
gauge kernelKmn is the combination ofdmn

t and @ Î #mn , we
may further simplify the flux attachment transformation by
defining the form factorQ throughK5 Î PQ21/2pa. Then
the appropriately defined form factorQ8 for the kernelK8 is
determined simply as the linear combination

Q85
aQ12mQ0

a12m
. ~41!

Earlier we adjusted the lattice temperature to obtain the
purely statistical Chern-Simons field without any dynamics
in the naive continuum limit, the appropriate lattice gauge
kernel having no quadratic terms in the small momentum
expansion. This is equivalent to the expansion of the form
factor Q(k)511O(k2), k→0; obviously this property is
preserved by Eq.~41!.

Before discussing the implications of this flux attachment
transformation on the universality of the phase transitions in
Chern-Simons models, let us reflect on the fact that the de-
rived expression~40! is an exact symmetry of any lattice
model with the integer-valued current, moreover, it is valid
not only for Villain models, but also for the usualx-y models
minimally coupled with with some fluctuating gauge field. If
the original model has no long-range interaction between the
quasiparticles, it is in the universality class of thex-y model,
while the transformed model has a Chern-Simons term with
the gauge kernel~38! and the couplinga52m. The duality
transformation results in the model of the same form with the
lattice temperatureT̃5T/4m2 and Chern-Simons coupling
ã521/2m, the small momentum expansion being valid as
long asTP!4pm. The continuum limit of this model is that
of scalar particles coupled with the even-denominator Chern-
Simons field; yet this theory is rigorously equivalent to the
original x-y model.

A completely different situation arises if we try to add
such additional Chern-Simons interaction to a lattice super-
conductor described by the same model~2! and~3! but with
quadratic in momenta gauge kernelK. Qualitatively, the in-
teraction introduced with the CS coupling is working inde-
pendently of the original one. In the coordinate representa-
tion this additional interaction between current lines decays
as 1/r at large distances; in order to have any effect it should
not be screened by the original interaction. However, current

lines in the normal state already have the magnetic interac-
tion logarithmic at large distances, and the additional cou-
pling cannot have any effect on the long-distance physics: it
will not be visible at all at some finite scale.

Although this statement appears to be rather evident, in
some cases the form of interaction at large distances may not
be obvious. For example, Schultka and Manousakis52 consid-
ered the 3Dx-y model with the Chern-Simons coupling in-
troduced forvortices instead of the real charges. Numeri-
cally, the phase transition in this model is in thex-y
universality class for all values of the Chern-Simons cou-
pling, and this was interpreted as explicit proof of the uni-
versality of phase transitions in the Chern-Simons theories.
We do not agree with this interpretation: clearly, the model
dual to thex-y model is the frozen lattice superconductor,
and the CS coupling between the vortices of the original
model is just the extra coupling between the currents of the
dual theory. But the currents in the normal state of the su-
perconductor already have long-range magnetic interaction;
the additional coupling is screened, and the large distance
behavior is effectively merely that of the originalx-y model.
This statement can be obtained more rigorously from the
small-momentum expansion of the combined gauge kernel
derived in Appendix B.

III. LAW OF CORRESPONDING STATES

For the Villain x-y model ~2! and ~3! with fractional sta-
tistics a introduced by coupling to an auxiliary gauge field
with the kernel obeyingKmn5«mnrkr/2pa1O(k3) at small
momenta, we found that the exact duality transformation
@~26!, T̃5T/a2# and flux attachment transformation@~40!,
T85T# have very natural and simple forms,

ã521/a, T̃5T/a2,

a85a12m, T85T,

in terms of the Chern-Simons coefficienta. Although a
fully describes the gauge coupling only in the limit of small
momenta, we would like to check whether these relation-
ships are meaningful by themselves at least for some values
of the lattice temperatureT and the Chern-Simons coupling
a.

In the continuum, the duality and flux attachment trans-
formations can be used to ‘‘unwind’’ the Chern-Simons cou-
pling with the fractional parametera05p0 /q0 . Shifting a0
by an appropriate even integer number, we can always sat-
isfy inequalities 21,a085a012m0<1. If a0851, or
a0850, we cannot proceed any further with our transforma-
tions and should stop. Otherwise the duality transformation
yields a1521/a085p1 /q1 with the integer denominator
0,q1,q0 . Repeating such transformations, in a finite num-
ber of stepsn,q0 we arrive at eitheran851 or an850 with
the final lattice temperatureTn5q0

2T0 given simply by the
denominatorq0 of the original Chern-Simons coupling.
Since both the shift and duality transformation preserve the
parity of the sum of the numerator and denominator ofa, it
is clear that any fraction with this sum odd~i.e., either nu-
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merator or denominator is an even number! will lead to
an50, and the original fraction with bothp andq odd will
result inan51.

In the former case the final theory is just the purex-y
model without any additional coupling. Up to a finite renor-
malization correction, the phase-transition temperature in
this model is just that in the usual Villainx-y model,41

Tn;T VXY53.03. We immediately obtain values

T0S a5
p0
q0

D;
TVXY
q0
2 ~42!

of the phase-transition temperatures in the Villain Chern-
Simons models with either the numerator or denominator
given by even numbers, as plotted in Fig. 1 with solid lines.
Similarly, once the phase-transition temperature in a single
x-y model with ‘‘fermionic’’ Chern-Simons couplinga51
is known, one can use the same relationship to obtain the
approximate values of the phase-transition temperatures for
all ‘‘fermionic’’ fractions with both the numerator and de-
nominator odd.

Let us rectify the outlined procedure by using the exact
duality ~26! and the flux attachment~40! transformations at
every step, starting with the local theory with the gauge ker-
nel ~38! and the initial parametersa0 andT0 . The partition
function with this gauge kernel is periodic with respect to the
couplinga0 , and we can safely assume that 0,ua0u,1. The
dual model has the lattice temperatureT15T0 /a0

2.T0 and
the gauge kernel

K1[K̃05
Î P

2pa1

1

Î x01~Q01 Î x0!
21

, ~43!

where x05PT0/2pa0 , ux0u<T0 /pua0u and the the dual
coupling a1521/a0 . It is convenient to rewrite the dual
gauge kernel as

K15
Î P

2pa1Q1
, ~44!

by introducing the next level form factor

Q15 Î x01
1

Q01 Î x0
. ~45!

A similarly introduced form factor of the CS coupling result-
ing from the flux attachment transformation~40! can be ex-
pressed merely as

Q185
a1Q112m1Q0

a112m1
, ~46!

wherea112m15a18 is the resulting gauge coupling; obvi-
ously, both transformations preserve the small momentum
expansion of the form factorQ(k)511O(k2). At the nth
stepan becomes an integer, and the universality class of the
resulting theory is determined by the parity ofan .

If this number is an even integer, the final shift similar to
~46! results in the gauge kernelsingular at small momenta,
and the long-distance gauge interaction is suppressed. The
remaining short-range interaction between the currents per-
turbs thex-y critical point, and one can prove that it is irrel-
evant in this point by simple power counting. As formally
irrelevant, this additional interaction may result either in
some finite correction to the transition temperature, or it has
to change the symmetry of the phase transition completely.
In the former case, since the models at every level of hierar-
chy are exactly equivalent to the original Chern-Simons
model with the fractional couplinga0 , we conclude that the
phase transition in the original model is in the samex-y
universality class.

Similar arguments apply when the finalan is an odd num-
ber corresponding to the Fermi statistics of the quasiparti-
cles. Although we do not know the universality class of the
phase transition for Chern-Simons bosons with odd-integer-
valued coupling, we can claim that it should be the same for
all original models in this class unless the irrelevant terms
drive it away from the critical point.

So far we have concentrated our attention on the more
pleasant possibility that the irrelevant terms are too weak to
change the symmetry of the critical point, and assumed that
the phase transition does not change its universality class or
become the first order. Let us try to analyze the irrelevant
terms more carefully to see what fractions are likely to fol-
low the universality scenario.

We saw that the bare lattice temperatures of the transi-
tions decrease rapidly with the hierarchy level; therefore
the temperature-dependent convergence conditionxk
5PTk/2pak!1 is not very limiting. There is, however,
the momentum contribution from the form factor
Q05cos(mkm/2 of the local Chern-Simons kernel~38!. To
investigate the extreme possible effect of this contribution,
let us write the sequence of hierarchical form factors at zero
lattice temperature for the fraction

FIG. 1. The phase diagram of the Chern-Simons Villainx-y
model. Vertical lines represent ordered phases of different symme-
try, corresponding to different levels of hierarchy. The phases with
the sum of numerator and denominatoroddcan be mapped to usual
Villain x-y model; they are shown with solid lines. The phases with
‘‘fermionic’’ Chern-Simons coupling are only shown schematically
with dotted lines, since we know only the ratios of corresponding
transition temperatures. Unlike the case of usual superconductor,
the duality transformation does not invert the direction of the lattice
temperature axis, and the high-temperature phases are always dis-
ordered.
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a05
1

2m11
1

2m21•••

, ~47!

starting with the form factorQ0 . The first duality transfor-
mation in the unwinding procedure results inQ151/Q0 ,
a1521/a0 , and the flux attachment transformation~46!
leads to the form factor

Q185
1

Q0
F122m1S 2m21

1

2m31•••

DP2G , ~48!

where

P2512Q0
25sin2(

m
km/2'S (

m
kmD 2Y4 ~49!

vanishes at the origin. Clearly, the coefficient in front of the
quadratic in momenta part increases with increased levels of
the hierarchy, and eventually it may become the main driv-
ing term of the phase transition in the system.

Making yet another duality transformation, we obtain
Q251/Q18 ; the resulting zero-temperature kernel has zero
surface at finite momenta determined by the equation
P251/2m1@2m21(1/2m31•••)#,1/2m1 . Although the di-
vergence does not occur at any finite lattice temperature, the
system develops a soft mode much closer to the origin then
the location of the original soft plane in the middle of the
Brilluen zoneP251. The exact location and the orientation
of this soft surface depends on the details of the selected
regularization procedure@in our case it was determined by
the chosen form of the local kernel~38!#, but its existence is
probably unavoidable as long as we want to define the
integer-valued linking numbers. The fluctuations in the vi-
cinity of this mode will grow with the hierarchy level and,
again, are capable of destroying the second-order phase tran-
sition.

We see that the ‘‘unwinding’’ procedure creates addi-
tional instabilities of the strength increasing with the level of
hierarchy and, generally, with the denominator of the statis-
tical coupling. Therefore, the phase transitions in the system
of particles with fractional statisticsa5p/q are expected to
be universal only for small enough denominatorsq.

One could argue that, instead of starting with Chern-
Simons bosons with fractional statistics, we could have fol-
lowed the usual direction of the hierarchy sequence and
started with thex-y model or Chern-Simons bosons with odd
‘‘fermionic’’ statistical coupling. In this case the sequence of
exact transformations also results in a nonlocal Chern-
Simons model with fractional coupling, and the truncated
local model with the same Chern-Simons coefficient differs
from the nonlocal one by classically irrelevant terms. Again,
the two models should be in the same universality class as
long as the phase transitions remain of the second order. This
procedure has the advantage that one can construct the se-
quence of lattice models without any apparent divergences.
Indeed, starting witha052m0 , the duality~45! and the flux
attachment~46! transformations result in the form factor

Q185
1

Q0 S 12
2m1P2

2m11
1

2m0

D ; ~50!

the coefficient in front ofP2 here is less than 1, and the
original convergence conditionuku!1 is preserved. Unfortu-
nately, this argument also fails to prove universality at high
hierarchy levels: the perturbation is not small compared to
the relevant scale given by the vanishing lattice temperature
~42!.

CONCLUSIONS

In this paper we studied a relativistic version of the
Chern-Simons-Landau-Ginzburg theory of bosons in the
limit of strong coupling. We used the lattice representation
of this model in terms of Villainx-y model minimally
coupled with the Chern-Simons gauge field to access the
strong-coupling limit without the perturbation theory. This
model has duality and flux attachment symmetries in the
long-wavelength limit, i.e., these symmetries are accurate up
to irrelevant cubic and higher-order derivative terms. There
is no single lattice model that can obey both symmetries
exactly, but we construct algebraically exact nonlocal duality
and flux attachmenttransformationscorresponding to these
symmetries in the continuum limit. These nonlocal transfor-
mations were used to show that there are only two univer-
sality classes in this model: one corresponding to the pure
x-y transition, and another corresponding to the ‘‘fermionic’’
x-y transition, or the transition in thex-y model with the
Chern-Simons coefficienta51. The value of such an inves-
tigation is to establish a theoretical model in which univer-
sality in the CSLG theory can be proven beyond the bounds
of perturbation theory.

Although it may be possible to construct an experimental
system that would be described by such a relativistically in-
variant model, this model is not in the same universality
class as the experimental quantum Hall systems, where the
relativistic symmetry is broken by nonzero charge density,
external magnetic field and the disorder potential. Theoreti-
cally, these effects can be incorporated into the lattice model
as additional external gauge fields without breaking the ex-
actness of the performed hierarchy transformations, but the
extra fields lower the symmetry of the problem. Now every
phase is characterized by the nontrivially transforming filling
factorn in addition to the original Chern-Simons coefficient
a, and the exact mapping between different quantum Hall
states is absent.

This is not surprising, since the mapping preserves infor-
mation about the exact configuration of the disorder. We
believe that disorder averaging with a proper identification of
the relevant degrees of freedom will increase the symmetry
and reveal the universality of phase transitions in this model.
Qualitatively, we saw that the Chern-Simons interaction has
no effect if it is screened by some other independent long-
range force. A two-dimensional time-independent random
scalar potential may be treated as an interaction of infinite
range in the time direction; apparently this interaction is
strong enough to suppress or modify the effect of the statis-
tical coupling on localization phase transitions.

Our model also sheds some light on the important ques-
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tion of the existence of high-order hierarchy states in the
quantum Hall effect. Since the duality and periodicity trans-
formations can simultaneously become symmetries of the
theory only in the long-distance limit, the accumulation of
extra terms, irrelevant near the critical point, will eventually
render a phase transition of the first order or change its sym-
metry.

Further research on this class of models should be con-
centrated on understanding models with several species of
the scalar fields. A clear understanding of a model with a
finite number of components is necessary to apply the replica
trick, which is the only possible way to perform disorder
averaging in the presence of interaction.

Another perspective direction is to understand the hierar-
chical picture within the rigorous approach by Chen and
Itoi.53,54 Starting from the representations of the
211-dimensional Lorenz group, they established the exact
relationship of the spin of particles to the coefficient of their
Chern-Simons coupling, namely, that all theories of particles
with spins and Chern-Simons couplinga describe the same
irreducible representation of the Lorenz group with the frac-
tional spin s1a/2. Although nominally the action of par-
ticles with spins has 2s11 components, in 211 dimen-
sions the equations of motion for massive particles leave
only one independent component, and the long-range prop-
erties of all particles with the samea but with spinss dif-
fering by an integer should be similar. This can be consid-
ered as a rigorous definition of the flux attachment
transformation for hardcore relativistic particles with Chern-
Simons interaction.

While finishing this work we learned that a similar model
was studied by Fradkin and Kivelson.55 They also used du-
ality and periodicity transformations to argue that phase tran-
sitions in three-dimensional lattice-regularized models are
universal, although they were less specific about the form of
the Chern-Simons coupling at short distances. In addition to
the behavior considered in this paper, Fradkin and Kivelson
considered a model with an additional dimensionless nonlo-
cal interaction between the integer-valued currents, corre-
sponding to the dissipative conductivity in the quantum Hall
effect. As in Refs. 17 and 23, this leads to a phase diagram
with multiple self-dual fixed points. Perturbatively, such an
interaction of finite strength can be generated near the phase-
transition point,26 and the accumulation of higher-order irrel-
evant terms considered in the present work can in principle
imply the change of the symmetry of the second-order phase
transition instead of the first order phase transition.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE FINITE-TEMPERATURE

DUAL MODEL

Instead of using the previously established symmetry
property ~12!, we could have arrived directly at the dual

action with nonzero lattice temperature by equivalent trans-
formations of the gauge field in the exponent. Indeed, aver-
aging Eq.~15! in the original gauge fieldAnm produces the
kinetic term ~24! for the dual gauge fielda, and one can
further rewrite the exponent in terms of the auxiliary trans-
verse fieldb as

iaM2 1
2 aK̃0a→ iaM2 iab2 1

2bK̃0
21b.

Now one can add and subtract the termT̃b2/2 with the arbi-
trary constantT̃, so that the introduction of yet another trans-
verse fieldc to dispatch the partb(K̃0

212T̃)b/2 of the ob-
tained gauge kernel results in the exponent

iaM2 iab1 ibc2
T̃

2
b22

1

2
c~K̃0

212T̃!21c.

This expression is linear in fielda, and an easy integration
yields the constraintb5M ; the subsequent integration inb
trivially yields

iMc2
T̃

2
M22

1

2
c~K̃0

212T̃!21c.

With the transverse integer-valued currentM , this is pre-
cisely the exponent of expression~20! with the gauge kernel
K̃5(K̃0

212T̃)21 and the lattice temperatureT̃.0 replacing
the artificially introduced infinitesimal variablet. Now the
summation formula~21!, and a subsequent rescaling of the
gauge field, lead directly to the dual model of the form~2!
and ~3! with the finite temperatureT̃ and the gauge kernel
K̃ satisfying~26!.

The derived mapping is a generalization of the well-
known duality in three dimensions.40 It can be understood as
the duality between vortices and monopoles in three spatial
dimensions, or the charge-vortex duality in 211-dimen-
sional systems. Indeed, the average in the presence of an
arbitrary number of vortex-antivortex pairs introduced by the
integer vortex strengthLn ,

K expi(
n

LnunL [K expi E d3k

~2p!3
L2kukL , ~A1!

with zero total vorticity(nLn50, results in the constraint

E dun
2p

eiLnun2 iunñmbnm5d~ñmbnm2Ln! ~A2!

instead of~8!. Evidently, the integersLn serve as the sources
for the field b, or monopoles with appropriate quantized
charges. The values of these charges are not affected by any
single-valued transformation of the vector potential, there-
fore the statement of equivalence generally holds for any two
models related by Eq.~26!. Similarly, the dual transforma-
tion of the original model~2! and ~3! in the presence of
monopoles introduced by appropriate multivalued external
vector potential results in vortices of the form~A1! located
exactly in the original positions of the monopoles.

Unfortunately, any averages involving the gauge fields,
particularly the averages of gauge-invariant currents, do not
have simple dual representation since the fluctuating gauge
fields change upon reparametrization. Therefore, only scalar
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sectors of arbitrary models of the form~2! and~3! related by
the generalized duality transformation~26! are equivalent to
each other.

APPENDIX B: CS COUPLING BETWEEN VORTICES
OF THE x-y MODEL: DETAILED ANALYSIS

Here we analyze the model numerically considered by
Schultka and Manousakis:52 the purex-y model with the
additional Chern-Simons interaction between thevortices,
introduced to study the universality of transitions in a system
of particles with fractional statistics. The original model is
defined simultaneously in terms of original phasesun and the
vorticity Mnm . Working in the Villain approximation, let us
perform the exact duality transformation on the scalar sector
and express the model entirely in terms of dual variables.
The duality transformation results in a model of the form
~20! with an additional coupling of the vorticityM to the
second gauge fieldA with the Chern-Simons kinetic term.
Shifting the gauge field

Anm→Anm2anm

and integrating away the fielda, we obtain the gauge kernel
of the combined interaction in the form

K5
Î P

2pãQ S 12
1

12 Î TãQP/2p
D 5

TP2

4p2 1O~P3!,

ãTPQ!2p, ~B1!

instead ofTP2/4p2 present without any gauge coupling; the
statistical coupling of the vortices does not change the long-
range properties of the model at all.

This is precisely the result of numerical study;52 from our
analysis it is clear that the additional Chern-Simons interac-
tion between the vortices is completely screened by the Cou-
lomb interaction already present in the dual model. Indeed,
the original vortices of thex-y model map to charges in the
superconductor, which is the correct dual model. The
charges have the Coulomb interaction decaying like 1/r at
large distances, while the additional CS interaction falls off
like 1/r 2; there always exists some range above which the
usual Coulomb force dominates. It is because of the exist-
ence of this finite range that the asymptotic form is correct
only in the restricted range of momenta as specified in~B1!.
This phenomenon can also be understood in terms of the
original x-y model: the vortices in a superfluid are not really
local objects because of their long-range phase structure;
therefore the additional Chern-Simons interaction does not
do anything at large enough distances.

It is important to emphasize that the previous analysis,
including Eq. ~B1!, holds for anx-y model coupled to a
Chern-Simons gauge field via the dual current only. If the
long-range structure around the vortices is already broken by
some mechanism, the addition of the Chern-Simons interac-
tion between vortices does change the parameters or even the
qualitative behavior of the model. In this case the long-range
phase structure of the vortices is destroyed~in the dual
representation—the charges are screened!, and the additional
statistical coupling is the main interaction at large distances.
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