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Duality and universality for the Chern-Simons bosons
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By mapping the relativistic version of the Chern-Simons-Landau-Ginzburg theory Inddmensions to the
three-dimensional3D) lattice Villain x-y model coupled with the Chern-Simons gauge field, we investigate
phase transitions of Chern-Simons bosons in the limit of strong coupling. We construct algebraically exact
duality and flux attachment transformations of the lattice theories, corresponding to analogous transformations
in the continuum limit. These transformations are used to convert the model with arbitrary fractional Chern-
Simons coefficientr to a model witha either zero or 1. We show that, unless the corrections of cubic and
higher power in momenta, irrelevant near corresponding fixed points, render the phase transition first order, the
phase transition in the original model is either in the 3By or a “fermionic” universality class.
[S0163-182606)06428-4

INTRODUCTION magnetic field, interacting via the Chern-Simons gauge field.
Information about the filling factor is contained only in the
As one changes the external magnetic field, the Hall coneoefficient of the Chern-Simons term. The electromagnetic
ductance of a system of two-dimensional electrons jumpsesponse functions in the CSLG theory can be expressed
from one quantized value to another, while the longitudinalsolely in terms of response functions of the bosonic field and,
conductance displays a peak. The zero temperature localizttierefore, the different quantum Hall transitions are in the
tion length diverges in transition points, indicating the same universality class if the critical exponents of the boson
second-order quantum phase transitions. Remarkablguperfluid to insulator phase transition are independent of the
experiments show that these phase transitions are univerChern-Simons coefficient.
sal, i.e., the critical exponents governing the divergence of On the basis of the CSLG theory in the random-phase
the localization length are the same for integer and fractionahpproximation(RPA), KLZ argued that the critical expo-
transitions. It has also been fouhthat the critical resis- nents of Hall transitions are universal; they predicted values
tances for integer and fractional phase transitions are univefor critical conductances that have been recently confirmed
sal as well. Finally, a brilliant recent experiment by Shaharexperimentally* However, since the Chern-Simons term is a
et al® demonstrates a precise duality mapping of nonlineamarginal operator by riee power counting, it could in prin-
current-voltage characteristics between the insulating andiple change the critical exponents. If this happens, the tran-
fractional quantum Hall sides of the transition, where carrierssition will no longer be universal. Therefore, it is highly
are respectively electrons and fractionally charged quasipadesirable to check the idea of universality in some specific
ticles. One of the most challenging problems in the quantunfield-theoretical calculation. Unfortunately, it is very hard to
Hall effect is to understand the universality of the transitionstreat the full interacting problem in the presence of disorder.
Apparently, there is a conceptual difference between thé&or this reason the analysis is often restricted to toy models
physics of the integer and the fractional quantum Hall rethat nevertheless share some essential features with real
gimes. In the former case the quasiparticles are fermiongjuantum Hall systems.
their localization transition is believed to be a one-particle The most spectacular feature of the quantum Hall system
problem. The physics is understood quasiclassically aés the symmetry of the phase diagram, and there are several
quantum-tunneling-assisted percolatfsAwhile the nonlin-  field-theoretical models with a similar symmetry. A broad
ear o model with a topological terfnprovides the field- class of such models has been introduced by Shapere and
theoretical formalism to study this problem. On the otherWilczek® who generalized the construction of Cardy and
hand, excitations above the fractional quantum Hall effecRabinovict®?° and constructed four- and two-dimensional
ground state, given with extreme precision by inherentlyself-dual models consisting of mutually dual discrete Abelian
many-body Laughlin’s wave functiort§,have an infinite- gauge lattice models coupled via tieterm. A similarly
range statistical interaction that seems to invalidate the usuabnstructed 2 1-dimensional model with the Chern-Simons
one-particle localization theory. Field theoretically, this in-term was analyzed by Rey and Z&d.litken and Rosg*
teraction can be described in terms of the Chern-Simondiscussed the symmetry of fixed points of a self-dual two-
gauge field coupled to either boséh¥ or fermions'3-16 dimensional clock model, and argued that the corresponding
Using the bosonic description, called the Chern-SimonsgroupSL(2,Z) describes the symmetry of all fixed points of
Landau-Ginzburg CSLG) theory'? of the quantum Hall ef- the quantum Hall system. This statement is analogous to the
fect, Kivelson, Lee, and Zhan(KLZ) proposed’ a global law of corresponding staté$;unfortunately, so far no deri-
phase diagram of the quantum Hall effect. The original probvation of the field-theoretical realization of this symmetry
lem of interacting electrons in a large magnetic field isgroup for the quantum Hall system is known.
mapped onto the problem of bosons in zero or weak uniform The question of whether phase transitions in the system of
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Chern-Simons bosons can even in principle be universal is so The goal of this paper is to address the question of uni-
general that the answer for virtually any such model wouldversality of phase transitions in relativistic Chern-Simons

be interesting. Particularly, one can study the phase transBosons without the limitations of the perturbation theory. We

tion driven by the amplitude of an external periodic potentialaccess the strong-coupling limit of the Chern-Simons bosons
at commensurate filling instead of that driven by disorder. Itusing the Villain form of thex-y model minimally coupled

is knowr?* that the system of bosons at fillings commensu-With the Chern-Simons gauge field. For this model we for-

rate with external periodic potential can be mapped onto théhulate the exact duality and flux attachméansformations

x-y model. In the quantum Hall problem one arri¢eat an with usual properties in the continuum limit, and build the

x-y model minimally coupled with the Chern-Simons term in Haldane-Halperiff-* hierarchy of models related by these
zero average magnetic field. Within this model one can natufonlocal transformations. We show that in the absence of an

rally address the question of whether the order-disorder trar£Xteérmnal magnetic field the universality class of phase transi-
sition is altered by coupling with the Chern-Simons termt'c_’” in the strqng—couplmg limit |s_determ|ned_ by the Chern-
and, if so, whether there is an additional universality class, opimons couplingx=p/q. When eitherp or g is even, the
the phase transition continuously depends on the Cherrh@se ftransition is in the universality class of the order-
Simons coupling. Even though this is an artificial model, itsdiSorder transition in the usual three-dimensiangl model.
successful analysis will undoubtedly shed some light on th&Vhen bothp andq are odd, the system in the vicinity of a
universality of the real quantum Hall phase transitions.  Cfitical point(if any) is equivalent to the-y model with the -
Wen and W& used the representation of the tkey Che_rn.—Slmons cqupllngx=1, corresp_ondmg to the Fer.ml
model in terms of the relativistic complex-valued scalar fielgStatistics. We believe that our result is exact, and that it ap-
with quartic interaction, especially convenient for perturba-Pliés at least for fractions with small enough denominators
tional expansion. They also used thélIgxpansion, known d- With increasing denominators the terms formally irrel-
to work for ordinary bosons, to regularize the perturbationa€vant near the-y critical point grow, effectively limiting the
series in three dimensions. Within the second loop approxitumber of fractions with expected universality.
mation Wen and Wu found that although the phase transition Unlike previous work¥®=%° analyzing lattice Chern-
remains of the second order, the critical exponents of theimons models, we derive algebraically exact flux attach-
x-y model are continuously changed by the Chern-Simongnent and duality transformauons. Thus we gv0|d the prqb—
coupling. lem of relevance or irrelevance of the higher order in
Soon after that, we pointed dftthat the 1N expansion momenta terms appearing in different lattice definitions of
artificially suppresses the gauge fluctuations in this modelth® Chermn-Simons coupling. Instead, we construct an exact
and the result of Wen and Wu is not likely to hold in the transformation to the _thec_)ry wnh_zem, equivalent to the_
physical limit of N= 1. Our alternative calculatidfiwas per- usual 3Dx-y model with flnlte_l_attlce temperature. For this
formed in the vicinity of a nominal tricritical point of the theory the algebra of local critical operators is known, and
theory, where the quartic interaction is absent and one has gae formal irrelevance of extra terms does not require addi-
keep the six-field coupling. The effective theory in the vicin- tional proof. . .
ity of the tricritical point is renormalizable in three dimen-  The paper is organized as follows. We derive the exact
sions(3D), and allows a systematic loop expansion, exacﬂyquahty transformation for the Villain form of the-y modgl _
as the theory with four-field interaction is renormalizable inin Sec. |, and the exact flux attachment transformation in
four dimensions where the quartic coupling is dimensionless>€¢- Il. These transformations have a correct naive con-
The presence of the Chern-Simons coupling, also dimensioritnuum limit, and work for lattice theories with gauge cou-
less in 3D, does not introduce any classically divergent quanPling of the most general form. In Sec. Il we construct the
tities, but it already has a dramatic effect at the second loogeguence of such transformations leading to the Viliain
level, changing the transition from the second to the firstnodel with a Chern-Simons coupling of either zero or one,
order. This is similar to the stateméhthat the phase tran- and utilize known properties of the usualy model to build
sition in clean type-I superconductors becomes weakly firsthe phase diagram of the original model.
order due to fluctuations of the electromagnetic field. In our
case, since _the theory w_ithout thg quartic.interaction is mas- |. GENERALIZED DUALITY
sive, it remains massive in some finite region of values of the
guartic coupling. Thus, within the perturbative region of the Particles in a superfluid repel each other at short dis-
relativistic complex scalar field model, the transition is of tances. At very small temperatures most of the particles are
first order even for some nonzero values of the quartic couin the same quantum state, characterized by the condensate
pling. wave functionW(x,t) = ¢ exp 6, where both the amplitude
This conclusion obtained in the vicinity of the Gaussiany and the phase& are real-valued functions. Slow phase
fixed point of the scalar sector was not in formal contradic-rotations have an extremely small energy, implying the ex-
tion with the result of Wen and Wu obtained near theistence of a linear sound mode.
strongly coupled fixed poinfformally accessed with the Another important kind of excitation in superfluids are
1/N expansion), but it reopened the question about the uni-vortices in two dimensions, or vortex lines in three dimen-
versality of phase transitions of scalar fields coupled with thesions. They are characterized by a nontrivial phase of the
Chern-Simons field. The results of both calculations indicateeondensate wave function gained along any surrounding con-
that the Chern-Simons interaction iselevantperturbation  tour. Far enough from the center of the vortex the gradient of
to the scalar theory with strong short-range repulsion, anthe phase is small, and the superfluid dengifyis close to
that some kind of nonperturbative analysis is necessary. its nonperturbed value. Although the reduced density in the
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core region near the center of the vortex costs some energgnalysis as universal as possible, we consider the three-
the total energy of a single vortex is mostly determined bydimensional Villainx-y model
the twisted phase in the area outside the core, and any two
vortices have a long-range logarithmic interaction. = do,
Quite differently, vortices in superconductors have only Z[A]:g __ 2w
short-range interaction§ust like particlesin a superfluigt
the extra phase is easily screened by the vector potential. = (AMen—AnM—ZwmnM)2
Instead, the conserved particle currents in normal phase in- X _200 exp— 2T . (2
teract logarithmically through their magnetic fields just like m
vortices in a superfluid. This analogy can be formulated 1
more preC|ser_ as duality between typg-ll superconductors z:J ex;{ — EAM/CZ:,A”,V)Z[A]H dA,,, 3
in the London limit, where the penetration length of the mag- n.p
netic field is .Iarg(_—:‘ c_ompared to the coherence length and.thgt the cubic lattice, minimally coupled to the gauge field
strong-coupling limit of the Ginzburg-Landau model. In th|sA with some generic. possibly nonlocal kerdel”. . or
limit of strong coupling one can completely neglect the den- "» i 9 P y ) rief
sity fluctuations, considering only the phasgsas degrees X' (K)=AK(k) in the momentum representation. By tge-
of freedom. The core energy of the vortices can be regulaf?€ic Chern-Simons couplinge shall imply that in the con-
ized by redefining the theory at the lattice. The resulting tinuum limit £ must be an antisymmetric matrix linear in

y model is a collection of classical spisg= (cosd,,sinb,) momenta. . . . . .
with  nearest-neighbor interacton of the form The summation over linkg in (2,3) is performed only in

§S,=Ccos@—#). It turns out that a reverse transformation the positive directioru; the phases, are defined in the
from thex-y model to the strongly coupled superfluid is also "°d€s, while both the integer-valued fieiy},, and the gauge
possible®® This two-way analogy has been confirmed byﬂeld A, are defined at the links of three-dlmen5|ogal cubic
comparing the results of numeric computations in the latticdattice. We use the notation& ,f,=f,,;,—f, and A ,f,

x-y model with corresponding analytical results for thé¢  =f,—f,_; for the forward and backward lattice differences,
theory. respectively, and imply the summation over repeated indices.
The partition function of thex-y model, It will be convenient to specify the Fourier expansion of

g vector fields in the form
6 cog6b,,,—6
Zyy= [ 20 oo, 0% nn™ On). i ;
27 T 1 = d°k ik
e = U
is periodic with respect to the phasésand, at least in the VN — (27)

EE;ZTlg_igorzgmg d“ent](latrr;virr]li:jebth?h(laa\t/til(:ci?]itte(r)r:‘prﬁra?ﬁrjrg olfsthe (no summation ink) to emphasize their location at the links
' y y y of the lattice. With this definition the gradient,f,

expression in the exponent. The shape of these maxima can—

be simulated using the Villain form of the'y model, =Apfae or Pui(k) in the momentum representation is a
5 vector, while the divergenceA A,,=A A, ;, oOf

ox cog 0ﬂ+,u_'9ﬂ)ﬁ2 exp- (On+i= On—27Mnz) P,A,(k) is a scalar field, as one would expect from the

T m 2T geometrical interpretation of the lattice fields. We shall use

- . . the vectorP,=2 sink,/2) to define different functions of
originally proposed by Berezinskif,and later independently |tice moméntum. For example, the kernel of the local in the

and in greater detail investigated by Villaih. . gauge-field Chern-Simons term used in Refs. 48, 31, and 32
Peskift® proved that duality transforms the Villair-y c be written as K,,=&*"*P Qq2ma with
mv P 1

. an
model into a so-called frozen superconductor, or the Ze10n = coss k./2, and in Sec. Il we shall define the Chern-
temperature limit of the Villainx-y model coupled to the Si?nons term V\,Iith the kernel,, = &**?P_/2raQq, provid-
Maxwell field. This rigorous analysis has been extended b " " o

¥ng for the local coupling between the gauge-invariant scalar
Kleinert3® who analyzed the lattice superconductor in a WidecugrrentS on the Iatti(l?e. g gaug

region of parameters using the Villain approximation, and | gt g treat the actio@[ A] as the Villainx-y model in
gch|eved quantitative agreem_‘&n'vvlth numerlga_l simula- the presence of some external gauge figJdand follow the
tions. These model computations eventually fetf to an  yorivation® of the duality transformation for this model.
understa}ndmg of the complete_ phase diagram of %u%erco%hile the integration in phaseg, is performed over re-
ductors in the dual representation. La_lter Lee and _5 Br stricted intervals, the gauge transformation
and Lee and Zhar§ applied this duality transformation to
the anyon superconductivity and the quantum Hall effect. 0,— 0,+ 27N,
We are interested in a very similar class of models,
namely, the strong-coupling limit of relativistic Chern-
Simons bosons. The idea is to follow the successful example
of a superconductor and examine nonperturbative propertiedoes not change the integrand @. One can extend the
of this model at the lattice using the Villain form of tlke  integration region ing, to the infinite interval by simulta-
y model coupled to the Chern-Simons gauge field. There areeously constraining the fielch,, to avoid overcounting.
severdl®31:323%different gauge-invariant definitions of the This can be done, for example, by applying the usual gauge
lattice Chern-Simons coupling, and, in order to keep thecondition

®

my,— My, + Nnﬂg— N,
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depend on a particular selection of parametrization. More-

0=2 (Mnyju— M) (6)  over, although at the tree level the properties of quasiparti-
K’ cles appear to be changed, any correlators involving the
Now introduce an auxiliary field,, by writing gauge-invariant current retain their values. This can be
o checked by perfqrming the same transformation in the pres-
zA1=11 fw do, 11 l) f db ence of an additional external gauge fidlg: the reparam-
n Jow 2w T\ 27 nu etrization does not affect the minimal gauge coupling with

this external field.
T . Having established the reparametrization symméts)
2
X% exr{ N Ebnﬂ+'b“#(Aﬂan_An#_zwm“#) : of the complete mode(2) and (3), let us resume the trans-
. formations of the partition functiof7). As usual, the field
(@) a,, introduced in(9) is defined up to a gauge transformation

The integration byd,, can be done after regrouping the terms
in the exponent, Anp—anut (Nns = An) (13
= de N _ with arbitrary \,; for simplicity we imply the Coulomb
f 2—7:9_'0“%[)”“:5(&#'3%). (8)  gaugeA ,a,,=0 for all our gauge fields. The integration
o over 6, results in
the resulting constraint being merely the lattice version of the
equationV-b=0 indicating that the field is a pure curl, zial= | S e~ TBh,/2-2mibp, My, ~iAn by, (14)
~ am
bn,u,zs'uypAVan—,}p- 9) . .
or, after regrouping the second term in the exponent,
So far the only difference from the duality
transformatiof’ for the purex-y model is the presence of the Z[A]= | S e Teh 2t 2mian My, Ay, (15)
product—ib,,A,, in the exponent of7). This extra term in am
the action is responsible for important additional symmetry. ) o )
Indeed, the original gauge field in the full partition function Where the integer-valued vorticity is defined as
(3) can be integrated away,

M= &P (My 5= M ). (16
1/2
z=]1 (l) f > eiPu(Aun=2mMny) Since the vorticity is locally conserved,
2m ﬁnvbnp Mny
1 d% ) > (Mp,—Mp_,,) =0, (17
Xex‘{‘z [ s T8, D0 A

(10 we may exchange the summation ovey, for a sum over
M, subject to conditiorf17). This integer-valued constraint
and, since the fiel8 is transverse, it is clear that the partition can in turn be removed by additional phaggs
function Z depends only on the transverse combination
— ("9 4 F m
TS, K, (11 5O,A#MnH_J S €Tt (18

uv _77277

indicating the e_xac_t equivalenc_e of any two models with theTo finish the transformation of the dual model toward the
parameters satisfying the relationship Villain form analogous to the original mod€R) and (3),

T8 K =T,8 + K, L (12) Peskirt® introduced a convergence factor
nv nv y7a uv

t B B t
where s, ,=95,,—P,P, denotes th.e transvgrse part of.the 1=1lim exr{ _ —Mﬁﬂ (19)
Kronecker symbol, an®,=P,/|P| is the unit vector. This 0 2
reparametrization changes both the gauge and scalar cou- ]
plings; it is an exact symmetry of the partition function of the into Eq. (15) and transformed the resulting sum
Villain x-y model or any correlators that do not involve the B
gauge field directly. These are the only physical correlators lim >, o~ tMA J2+ 2mian My, +i6pA Mp,, (20)
as long as we treat the Chern-Simons field as an auxiliary t—o M
field needed to define the fractional statisticeor the par- ] ] )
ticles. Since the lattice temperatufemeasures the strength With the Poisson summation formula
of the local repulsion, relationshi@d2) implies that a part of - "

. R . . P ) 2 1/2
this repulsion can be mediated by the gauge field if its propa- 2 i oM —tM2/2_ 2 ~(o—2am)2/2t
. e =|— e . (21

gator has a nonzero symmetric part. ML t m=—o

One may further verify that the system averages taken in _ . -
the presence of any number of vortex-antivortex pairsAfter rescaling the gauge fields 7&,,=A,,,

exp(6,— 6,), as well as the monopoles dual to them, do not2#b,,=B,,, the dual action can be finally written as
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. 7 dé, - ordinate representation. The conventional duality transfor-
z[A]=lim [] EH fdAnM mation results in the zero-lattice-temperature mo(®9)
tm0 N S K with the gauge kernel

1 _
X D exr{ - 2—,[(Aﬂe?n—27-rm,w—A,w)2
m

~ o
KE'(K)=— 5—e""PP,+ [P25""—P#P"],

27 (2m)°

5 (28)

i
——A,

5 . (22)

)

- _ B2
B8l Tk
analogous to the frozen superconduéfoithe two terms
Again, we can integrate away the original gauge fild to  here are a nonlocal Chern-Simons term of the same form as
obtain the final form of the dual action, (27), and the usual lattice Maxwell action. The zero lattice
temperature implies a zero tree level propagator for the mat-
ter field, in analogy with the dual thedAof nonrelativistic
continuum bosons coupled to a purely statistical Chern-
Simons gauge field. However, already in the RPA approxi-
mation, the dynamics of the dual gauge fiéld associated
with the nonzero dimensionful chargé=(2)?/T, renders
) o this propagator finite, therefore introducing some nonzero
where the appropriate summation in each term of the expoguttice temperature for the dual matter field.
nent is implied. In accord with our previous conclusion, the | et us try to understand this result using our generalized
action depends only on the transverse part of the combingsyajity transformatior(26). Specifically, we want to find a
tion (K~*+T4"),,. In addition, the dual model has a form form of the dual model with a purely statistical gauge field,
of (2) and(3) with zero lattice temperatutte=0 and the dual go that all dynamics would be associated with the scalar
gauge kernéf field.
) 1 ) To simplify the subsequent algebra, it is convenient to
~ TP —PxK xp_ P -1 introduce special notation for typical matrices appearing in
Ko= 2 = 2(THK7D), (29 i e =%
(2m) (2m) the expressions. The matrices,,=5,,~P,P, and

where only the transverse part enters because of the gau%]%wzs“”ﬂth commute with — each _ other,_ t vv_h|Ie
fixing for the fieldA. The dual model has the same form asl! “1uv="9,,. Algebraically, the symmetric matrig,,, is

the original one and, since the additional gauge field wagquivalent to unity, whilel plays a role ofi =exp(=/2).
introduced as an auxiliary field, this model has the samédince we always assume a transverse gauge, it is possible not
reparametrization freedo12). Therefore, the most general to write 5;“, at all, and treal as a commuting number. In
form of the dual model with the lattice temperatdiand the ~ these notations the dual gauge ker(3) can be written as

gauge kernelC satisfies the equation

1 -
— i 2
Z=lim fl,a E EXF{—Z—t(Aﬁn—ZWmn#—AnM)

t—0 m

1 ~ ~
+ WAKPX(T%-IC_l)XPAk}, (23

~ ~aP  TP?
z. 1 =1 (2m) -1 -1 KOZ_IZ_W+(2’IT)2’

. so that the corresponding inverse matrix in the transverse
or, more symmetrically,

gauge is just
= =, (2m)?
(THKHNT+K )= b7 (26) 1+,T,<2_5)1_ (21m)2
K Ko —2mlaP+TP?

An alternative direct derivation of the finite-temperature dual
action, as well as the vortex-monopole mapping explicitly gwf( ITP ) 201

T
relating the scalar sectors of the two models is provided in ~—|1 =—9+t—>+--. (29
aP aP  «

Appendix A. This algebraically exact mapping proves that 2ma

dual models of the forni2) and (3) related by the general-
ized duality(26) are equivalent, being just two different rep-
resentations of the same model.

To provide an example of the duality in the presence o
the Chern-Simons coupling, let us consider the simplest lin
ear in momenta form of the gauge kernel

Naively, the first term of the expansion may be associated
with the inverse of the modified dual Chern-Simons kernel,
fvvhile the second constant term plays a role of the dual tem-
perature. We notice that while tl&hern-Simons term is the
same as the one in the representation with @, the F term
has been traded for the nonzero lattice temperature T
1 =T/a? in the scalar sector.
K (k) =5 e“"PP,. (27 In reality, we cannot just discard the extra terms denoted
by ellipsis in Eq.(29), but we certainly have the freedom to

While this definition is very well convergent toward the con- choose the valu& =T/«? for the dual temperature as long
tinuum limit, and generally looks like a plausible definition as the general duality conditiof26) is satisfied. With this
of the Chern-Simons kernel, it is actually nonlocal in a co-particular choice the exact dual gauge kernel becomes
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_ laP 1 It is ~clear that the model describes particles with the
K=- o ~——7, (300  charge e=—e/a, while the momentum-dependent term
T IX+(1+1x) 1+1Ix in the denominator of the coupling can be regarded as
where we denoted=TP/27w«. The exact kernek differs @ form factor indicating the finite size of excitations and the
from the truncated dual kernel presence of the Magnus force. Te(B1), dependent only on
the external gauge field, shows that the duality transforma-
tion produced the condensate with the charge density

—e?A X Agl2ma=—e’By/2mra determined by the external
magnetic fieldB,. More specifically, if the original theory
had the average charge dengitythe total charge density of
excitations in the dual representation is given by

o wvp o~
27" Po= ZW[I]“”P

only by corrections of the higher orde:(’)(P?’)Ah,d so that in

the naive continuum limit the dual gauge fiedddoes not

have anyF? term or associated dynamics.

It is tempting to propose that, as long as these corrections _ e?B,
are small, as terms of higher order in momenta they should pP=p= 5
be irrelevant, and that the scaling properties of both the trun-
cated and exact forms of the dual theory should be equiva®ne flux quantum of the magnetic field binds the charge
lent, with their corresponding critical indices equal. Then,e/«, or exactly one quasiparticle in the dual representation.
using the previously established mapping between theoriesince the duality translates the original quasiparticles with
that are dual as specified by E@6), one could conclude chargee into vortices with unit vorticity, this condensate can
that the two models with gauge kernels of the fai2i) and e also interpreted as the average vorticity pér quasipar-
the corresponding parameterd,&) and (T/a?,—1/a) ticle in the dual model.
should also be equivalent at large scales. The first statement Certainly, the external magnetic field does not simplify
is, however, not so obvious because the Chern-Simons theghe lattice model at all: even the one-particle Hofstadter
ries are intrinsically nonlocal, and the critical dimensions ofspectrum in the magnetic field is very complicated. How-
different operators may substantially differ from their classi-ever, if both the magnetic field and particle density are small
cal values. We shall prove the legitimacy of this procedure imat the scale of the lattice, only the filling factors of electrons

Sec. lll. _ _ v=_2mple’B and quasiparticles= 27 p/€2B are important.
Along with the dimensionless parametemwe carried out  |n this case Eq(32) becomes
a transformation of the classically irrelevant dimensionful

(32

lattice temperaturd@. Clearly, since the values of the lattice v=a(av—1). (33
momentumP are limited from the above, the small values of

the ratioT/|a| =T/|a| ensure the smallness &f so that the Il. PERIODICITY IN CHERN-SIMONS COUPLING

effect of higher-order irrelevant terms is negligible, and the

bare value of the lattice temperatufeshould be meaningful. Nonrelativistic continuum models display periodicity in

Remarkably, in the presence of the Chern-Simons term ththe Chern-Simons coupling because geometrically this cou-
duality transformation does not lead to a rever&iohof the  pling is just the linking number between the trajectories of
temperature axis characteristic of the duality between the suguasiparticles. As long as this linking number remains an
perconductor and the superfluid. In our case only the Cherrinteger, equal increments in the Chern-Simons coefficient re-
Simons coupling constant is inverted, while the scalar sectosult in the total shift of the phase of the partition function by
may remain in the strong-coupling regime. integer multiples of Zr. This is always so when quasiparti-
The physical properties of excitations in the generalizectles avoid each other—for example, if they are fermions or if
x-y model are revealed by their coupling with external fieldsthey have strong hardcore repulsion. Althoughxhemodel
in 2+1 dimensions. Luckily, the introduction of the addi- is already in the limit of pointlike strong repulsion as viewed
tional external gauge fieldA, does not influence the exact from the corresponding continuum model, the current lines
procedure of the duality transformation; now it results in thecan intersect or even join each other, and special effort is
partiion function (220 up to the substitution needed to define a Chern-Simons action that is periodic in its
A, —An.tehAg,, . Integration over the original gauge field coupling. In this section we find such a definition and use it

A and a proper shift of the dual gauge figddresults in the to derive the exact transformation analogous to the flux at-
frozen model(23) with additional minimal coupling to the tachment transformation in the continuum, valid for an arbi-

external field trary form of the lattice Chern-Simons action.
The current of quasiparticles in they model is defined
e 1 TP as the field canonically conjugated with the gradients of
T 1+TXAO' = ora phasesA ,6,. Since the pa}rtition function is periodic in
these phases, they are cyclic variables and the current is in-
and the constant term teger valued. As one would expect, the current operator is
R not diagonal in terms of the phasés; it is more convenient
e? IP to deal with currents in the special current representation. In
47mA0(_k) 1+fo0(k) 3D the Villain approximation the explicit form of this represen-

tation can be obtained with the inverse of the Poisson sum-
in the exponent. These two terms remain intact in reparammation formula(21). The integration over phas#g ensures

etrized models with nonzero lattice temperatures. the conservation of the curreM,,,, and the partition func-
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tion (2) and(3) rewritten in terms of this current becomes
exp—imaN— J expY, —iM ,(—k)a,(k)
da k

2 . v
Z:E 601 M e_TM”M/Z_IM”MAHM_AHMKnn'An’Vlz_ ~
M T Jya

P
(34) +a(—k) 470, a(k), (37)

It is important to emphasize that the transformation 10 th&yith an additional transverse fluctuating fieldntroduced as
integer current representati¢d4) did not change the gauge he Hupbard-Stratonovich field. Clearly, the gauge coupling
field A in any way, so that the gauge ker€f, in Egs.(3)  has exactly the form of that it84) with the gauge kernel
and(34) is exactly the same.

The linking number between lattice current flow lines , o
does not have a natural geometrical meaning at intersection Kpun(K)=e* pm- (38)
points and therefore cannot be uniquely defined to fit all
intuitive requirements. There is, however, no difficulty in The momentum expansion of this kernel starts with a linear
defining the linking number for any two conserved fieldsantisymmetric term and has no quadratic in the momenta
M,, and N,, determined on mutually dual lattices since part; therefore, it corresponds to the Chern-Simons term in
they never intersect. Formally, this coupling can be intro-the long-distance limit. The apparent singularity of this

duced via the solutioa® of equations gauge kernel at the plarig+k+k,=m does not lead to
any divergences, but merely suppresses fluctuations of the

A a% =0 (35) field a in the vicinity of this plane. One can totally avoid
veny introducing a somewhat unpleasant division by zero by con-
asN= EMnﬂaﬂu. Since the fieldN,, is defined on the links  sidering periodic lattices with an odd number of lattice nodes
of the dual latticgor at the plaquettes of the primary lattice, in each direction, so that at any finite system size the singu-
the auxiliary fie|dagy is defined on the links of the primary larity of the kernel is never reached. This also eliminates the
lattice, and the summation is well defined. One can proveproblem of a zero functional denominator arising from inte-
that this definition is indeed the integer-valued linking num-gration over the transverse part of the gauge feeid (37).
ber by rewriting the conserved currelt,,, as a superposi-  Consider mode(34) with the specific form of the gauge
tion of some numben, of directed loops.!, i=1,...n, k.ernel(38). This partition function is convergent at all posi-
carrying unit current each. This splits the expressionfor tive lattice temperatures even though the second term can
into a number of sums over independent closed loops, and e zero for certain configurations. One can use the Poisson
the Stokes theorem each of them is exactly equal tqithe ~Summation formula to rewrite the model in the fot@) and
tege) flux of currentN through the surface delimited by the (3) depending only on the phasés By construction, this
corresponding loop; obviously the total is the integer- Modelis a periodic function ok with the periodA «=2, so
valued linking number. that any two models with the couplings related by
Now let us define the regularized integaif-linkingnum-
ber of the integer-valued curreht in exactly the same way a—at2m, T-T (39

but with additional identificatioM,,=N,, . This identifies  are absolutely equivalent to each other. Definitely, this peri-
neighboring parallel links of the original and dual lattices odicity is precisely the flux attachment symmetry as it was
mutually displaced in the directiofi,1,) by half a period.  formulated for nonrelativistic systems. It is important to
This displacement, uniquely determining the integer-valuegnention that none of the previously considered
regularized linking number, is revealed in Fourier represengefinitiond®3-3*of the lattice Chern-Simons term provide

np 0 _ “
e AManV— Nn_pp,

tation, where the auxiliary equation35) take the form for this property; this is why we needed to construct yet
o ik K /2.0 ks another form of the Chern-Simons coupling. The flux attach-
etrP(efu—1)e" " a (k)=e "M (k), ment transformation changes the properties of the gauge

) field, but our main interest is to understand the effect of the

(1-e *nad(k)=0, fractional statistics on the dynamics of the scalar field; we

use theauxiliary Chern-Simons field only to get rid of the
nonlocal interaction.

Even though one can construct other forms of gauge cou-
pling leading to the same symmetry of the partition function,
Solving these equations with respect to auxiliary fieldwe  these forms are very special; generic gauge couplings do not
obtain the regularized self-linking number in Fourier repre-reveal the exact flux attachmesymmetry Moreover, it is

(no summation irp) or, somewhat more symmetrically,

etPPal, =ie kTt P oal%(k)=0. (36)

sentation easy to check that this property is not even preserved by the
duality transformatior{26). Therefore, we need to define the
) QoP, flux attachmentransformationto display the same periodic-
N=Tra’,(=k)M ,(k) =i Tre®""M (k) —5z=M (k) ity (39) at least in the continuum limit for some broad class
of possible lattice Chern-Simons terms.
where the original exponent eXp> k, in (36) was re- In order to do this, let us introduce the trivial phase
placed withQy=Q(k) =cos k,/2, allowing for the sym- 27mN proportional to the integer-valued self-linking num-

metry of the total sum. The exponent of the linking numberber A/ in addition to the already present in E¢34) gauge
N can be further transformed to form a gauge coupling  coupling with the gauge kerndl. Clearly, this trivial phase
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does not change the partition function, and yet, after rewritlines in the normal state already have the magnetic interac-
ing the introduced term as the additional gauge cougld®y  tion logarithmic at large distances, and the additional cou-
and integrating away one of the gauge fields, we obtain theling cannot have any effect on the long-distance physics: it

same model but with the gauge kernel will not be visible at all at some finite scale.
. Although this statement appears to be rather evident, in
, _, 4mmIQy -t some cases the form of interaction at large distances may not
Ki=\K" == - (40 pe obvious. For example, Schultka and Manous3kisnsid-

ered the 3Dx-y model with the Chern-Simons coupling in-

The resulting model is rigorously equivalent to the originaltroduced forvortices instead of the real charges. Numeri-
model with the gauge kernél, and it is convergent at any cally, the phase transition in this model is in they
nonzero lattice temperatuiie universality class for all values of the Chern-Simons cou-

The long-range properties of the flux-attached gauge kerpling, and this was interpreted as explicit proof of the uni-
nel (40) depend on the properties of the original keritellf  versality of phase transitions in the Chern-Simons theories.
K has the Chern-Simons form, i.e., if its momentum expaniWe do not agree with this interpretation: clearly, the model
sion starts with the linear in momenta term dual to thex-y model is the frozen lattice superconductor,
K.,~&e""Pk,[2ma, the expansion of the gauge kern€l and the CS coupling between the vortices of the original
has the same form with the coefficiemt=a+2m. In the  model is just the extra coupling between the currents of the
particularly simple case when the matrix structure of thedual theory. But the currents in the normal state of the su-
gauge kernekC,,, is the combination oeriw and[l],,, we  perconductor already have long-range magnetic interaction;
may further simplify the flux attachment transformation by the additional coupling is screened, and the large distance
defining the form factoQ througth=fPQ‘1/21-ra. Then behavior is effectively merely that of the originaly model.

the appropriately defined form fact@’ for the kernel’ is ~ This statement can be o_btained more rigorously from the
determined simply as the linear combination small-momentum expansion of the combined gauge kernel

derived in Appendix B.
, aQ+2mQy 1)
a+2m Ill. LAW OF CORRESPONDING STATES

Earlier we adjusted the lattice temperature to obtain the For the Villainx-y model(2) and(3) with fractional sta-
purely statistical Chern-Simons field without any dynamicstistics « introduced by coupling to an auxiliary gauge field
in the naive continuum limit, the appropriate lattice gaugeyth the kernel obeyingC#”=e#"?k J2ma+ O(K%) at small
kernel having no quadratic terms in the small momentumnomenta, we found that the exact duality transformation
expansion. This is ezquwalent to the expansion of the fom*[(%), T=T/a?] and flux attachment transformatid40),
factor Q(k)=1+0O(k?), k—0; obviously this property is T'=T] have very natural and simple forms,
preserved by Eq41l).

Before discussing the implications of this flux attachment -
transformation on the universality of the phase transitions in a=—1la, T=T/d?
Chern-Simons models, let us reflect on the fact that the de-
rived expression40) is an exact symmetry of any lattice
model with the integer-valued current, moreover, it is valid
not only for Villain models, but also for the usualy models ] o
minimally coupled with with some fluctuating gauge field. If in terms of the Chern-Simons coefficient Although «
the original model has no long-range interaction between th&ully describes the gauge coupling only in the limit of small
quasiparticles, it is in the universality class of thg model, ~Mmomenta, we would like to check whether these relation-
while the transformed model has a Chern-Simons term wittfhips are meaningful by themselves at least for some values
the gauge kerne38) and the couplingr=2m. The duality of the lattice temperatur& and the Chern-Simons coupling
transformation results in the model of the same form with the?-
lattice temperaturel =T/4m? and Chern-Simons coupling

a=—1/2m, the small momentum expansion being valid aspling with the fractional parametery=py/qo. Shifting ag

long asT P<47rm. The continuum limit of this model is that b iat it b | i
of scalar particles coupled with the even-denominator Chern2Y @n appropriate even integer number, we can aways sat-

Simons field; yet this theory is rigorously equivalent to the'S]:y inequalities —1<ag=ao+2me<1. If ao=1, or
original x-y model. ay,=0, we cannot proceed any further with our transforma-

A completely different situation arises if we try to add tions and should stop. Otherwise the duality transformation

such additional Chern-Simons interaction to a lattice superYields a;=—1/ag=p;/q; with the integer denominator
conductor described by the same mog®land(3) but with ~ 0<d1<do. Repeating such transformations, in a finite num-
quadraticin momenta gauge kernél. Qualitatively, the in-  ber of steps1<q, we arrive at either,=1 or a;,=0 with
teraction introduced with the CS coupling is working inde-the final lattice temperatur&,=q3T, given simply by the
pendently of the original one. In the coordinate representadenominatorq, of the original Chern-Simons coupling.
tion this additional interaction between current lines decayssince both the shift and duality transformation preserve the
as 1f at large distances; in order to have any effect it shouldoarity of the sum of the numerator and denominatoupit

not be screened by the original interaction. However, currenis clear that any fraction with this sum odde., either nu-

a'=a+2m, T' =T,

In the continuum, the duality and flux attachment trans-
formations can be used to “unwind” the Chern-Simons cou-
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where xq=PTo/2may, |Xo|<To/m|ae| and the the dual
3 : : 1 coupling @;=—1/aq. It is convenient to rewrite the dual
: : gauge kernel as
h ~
fg; P
a‘é Kl_ 2’7TCY1Q1 ' (44)
g by introducing the next level form factor
3 i :
: : gt — (45)
. : ‘ . : ‘ ‘ . . Ql XO QO+iX0.
o Wi Loy -,Ill.i.lll.- 51 LAY ;lll.i.lll; 51 L A1 o _ )
o 1 0 1 2 A similarly introduced form factor of the CS coupling result-
Chern-Simons coupling o ing from the flux attachment transformatiéf0) can be ex-
pressed merely as
FIG. 1. The phase diagram of the Chern-Simons Villa#y
model. Vertical lines represent ordered phases of different symme- . a1Q1+2m;Qo
try, corresponding to different levels of hierarchy. The phases with Q1:W1 (46)

the sum of numerator and denominataid can be mapped to usual

Villain x-y model; they are shown with solid lines. The phases withwhere a; +2m,; = a; is the resulting gauge coupling; obvi-
“fermionic” Chern-Simons coupling are only shown schematically gysly, both transformations preserve the small momentum
with dotted lines, since we know only the ratios of correspondingexpansion of the form facto®(k) = 1+(9(k2). At the nth

transition temperatures. Unlike the case of usual superconductogtepa becomes an integer, and the universality class of the
. . . . . . n 1
the duality transformation does not invert the direction of the 'att'ceresulting theory is determined by the parity @f .

temperature axis, and the high-temperature phases are always dis- If this number is an even integer, the final shift similar to

ordered. (46) results in the gauge kernsingular at small momenta,

] ) . and the long-distance gauge interaction is suppressed. The
merator or denominator is an even numbeill lead t0  remaining short-range interaction between the currents per-
a,=0, and the original fraction with both andq odd will  trps thex-y critical point, and one can prove that it is irrel-
result ina,=1. _ o evant in this point by simple power counting. As formally

In the former case the final theory is just the purg  jrrelevant, this additional interaction may result either in
model without any additional coupling. Up to a finite renor- some finite correction to the transition temperature, or it has
malization correction, the phase-transition temperature ifg change the symmetry of the phase transition completely.
this model is just that in the usual Villair-y model* | the former case, since the models at every level of hierar-
To~Tvxy =3.03. We immediately obtain values chy are exactly equivalent to the original Chern-Simons

model with the fractional coupling,, we conclude that the

Po\  Tuxy phase transition in the original model is in the sarg
To = (42)  universality class.
0

Similar arguments apply when the fina} is an odd num-
. i . ber corresponding to the Fermi statistics of the quasiparti-
of the phase-transition temperatures in the Villain Chernyeg  Ajthough we do not know the universality class of the
Simons models with either the numerator or denominatopaqe transition for Chern-Simons bosons with odd-integer-

given by even numbers, as plotted in Fig. 1 with solid lines.5yed coupling, we can claim that it should be the same for
Similarly, once the phase-transition temperature in a singlg| original models in this class unless the irrelevant terms
x-y model with “fermionic” Chern-Simons couplinge=1  4ive it away from the critical point,

is known, one can use the same relationship to obtain the g4 t5r we have concentrated our attention on the more
approximate values of the phase-transition temperatures fQfiaasant possibility that the irrelevant terms are too weak to
all “fermionic” fractions with both the numerator and de- change the symmetry of the critical point, and assumed that

nominator odd. , , the phase transition does not change its universality class or
Let us rectify the outlined procedure by using the exactyecome the first order. Let us try to analyze the irrelevant

duality (26) and the flux attachmeri#0) transformations at {erms more carefully to see what fractions are likely to fol-

every step, starting with the local theory with the gauge keryq,; the universality scenario.

nel (38) and the initial parameters, andT,. The partition We saw that the bare lattice temperatures of the transi-
function with this gauge kernel is periodic with respect to theyjons decrease rapidly with the hierarchy level; therefore
couplingao, and we can safely assume that[g|<1. The  the  temperature-dependent convergence —conditiop

dual model has the lattice temperatdre=To/a>To and =PT/2ma,<1 is not very limiting. There is, however,
the gauge kernel the momentum contribution from the form factor
Qo=cosZ K, /2 of the local Chern-Simons kerné38). To
_ P 1 investigate the extreme possible effect of this contribution,
K (43)  let us write the sequence of hierarchical form factors at zero

1=/o= = -1’
2may x5+ (Qo+1xg) lattice temperature for the fraction
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B 1 A 1/ 2m P\ 50
o= @) Q=g [ 1~ = |: (50
2ml+m 2m1+2—mo

the coefficient in front ofP? here is less than 1, and the
original convergence conditigk|<1 is preserved. Unfortu-
nately, this argument also fails to prove universality at high
hierarchy levels: the perturbation is not small compared to
the relevant scale given by the vanishing lattice temperature
(42).

starting with the form factof,. The first duality transfor-
mation in the unwinding procedure results @y, =1/Q,,
a;=—1lay, and the flux attachment transformati¢46)
leads to the form factor

Q; 1{1—2m1(2m2+ 732} (48)

7 Q CONCLUSIONS

2Mg+ - - -

In this paper we studied a relativistic version of the
where Chern-Simons-Landau-Ginzburg theory of bosons in the
limit of strong coupling. We used the lattice representation
2 of this model in terms of Villainx-y model minimally
772=1—Q5=sin22 kM/2f~v(E kﬂ) /4 (49 coupled with the Chern-Simons gauge field to access the
m w strong-coupling limit without the perturbation theory. This
model has duality and flux attachment symmetries in the
vanishes at the origin. Clearly, the coefficient in front of thelong-wavelength limit, i.e., these symmetries are accurate up
quadratic in momenta part increases with increased levels a irrelevant cubic and higher-order derivative terms. There
the hierarchy, and eventually it may become the main drivis no single lattice model that can obey both symmetries
ing term of the phase transition in the system. exactly, but we construct algebraically exact nonlocal duality
Making yet another duality transformation, we obtain and flux attachmentransformationscorresponding to these
Q,=1/Q;; the resulting zero-temperature kernel has zercsymmetries in the continuum limit. These nonlocal transfor-
surface at finite momenta determined by the equatiomations were used to show that there are only two univer-
P2=1/2my[2m,+ (1/2mz+ - - -)]<1/2m; . Although the di- sality classes in this model: one corresponding to the pure
vergence does not occur at any finite lattice temperature, they transition, and another corresponding to the “fermionic”
system develops a soft mode much closer to the origin ther-y transition, or the transition in thg-y model with the
the location of the original soft plane in the middle of the Chern-Simons coefficient=1. The value of such an inves-
Brilluen zoneP?=1. The exact location and the orientation tigation is to establish a theoretical model in which univer-
of this soft surface depends on the details of the selectesality in the CSLG theory can be proven beyond the bounds
regularization procedurgin our case it was determined by of perturbation theory.
the chosen form of the local kerngd8)], but its existence is Although it may be possible to construct an experimental
probably unavoidable as long as we want to define thesystem that would be described by such a relativistically in-
integer-valued linking numbers. The fluctuations in the vi-variant model, this model is not in the same universality
cinity of this mode will grow with the hierarchy level and, class as the experimental quantum Hall systems, where the
again, are capable of destroying the second-order phase trarlativistic symmetry is broken by nonzero charge density,
sition. external magnetic field and the disorder potential. Theoreti-
We see that the “unwinding” procedure creates addi-cally, these effects can be incorporated into the lattice model
tional instabilities of the strength increasing with the level ofas additional external gauge fields without breaking the ex-
hierarchy and, generally, with the denominator of the statisactness of the performed hierarchy transformations, but the
tical coupling. Therefore, the phase transitions in the systeraxtra fields lower the symmetry of the problem. Now every
of particles with fractional statistica=p/q are expected to phase is characterized by the nontrivially transforming filling
be universal only for small enough denominatqrs factor v in addition to the original Chern-Simons coefficient
One could argue that, instead of starting with Chern-a, and the exact mapping between different quantum Hall
Simons bosons with fractional statistics, we could have folstates is absent.
lowed the usual direction of the hierarchy sequence and This is not surprising, since the mapping preserves infor-
started with thex-y model or Chern-Simons bosons with odd mation about the exact configuration of the disorder. We
“fermionic” statistical coupling. In this case the sequence of believe that disorder averaging with a proper identification of
exact transformations also results in a nonlocal Chernthe relevant degrees of freedom will increase the symmetry
Simons model with fractional coupling, and the truncatedand reveal the universality of phase transitions in this model.
local model with the same Chern-Simons coefficient differsQualitatively, we saw that the Chern-Simons interaction has
from the nonlocal one by classically irrelevant terms. Again,no effect if it is screened by some other independent long-
the two models should be in the same universality class asange force. A two-dimensional time-independent random
long as the phase transitions remain of the second order. Thézalar potential may be treated as an interaction of infinite
procedure has the advantage that one can construct the sange in the time direction; apparently this interaction is
qguence of lattice models without any apparent divergencestrong enough to suppress or modify the effect of the statis-
Indeed, starting witheg=2m,, the duality(45) and the flux tical coupling on localization phase transitions.
attachment46) transformations result in the form factor Our model also sheds some light on the important ques-
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tion of the existence of high-order hierarchy states in theaction with nonzero lattice temperature by equivalent trans-
guantum Hall effect. Since the duality and periodicity trans-formations of the gauge field in the exponent. Indeed, aver-
formations can simultaneously become symmetries of thaging Eq.(15) in the original gauge field\,, produces the
theory only in the long-distance limit, the accumulation of kinetic term (24) for the dual gauge field, and one can
extra terms, irrelevant near the critical point, will eventually further rewrite the exponent in terms of the auxiliary trans-
render a phase transition of the first order or change its symverse fieldb as
metry.
Further research on this class of models should be con- iaM — % ak,a—iaM—iab— %gﬁglg.
centrated on understanding models with several species of ~
the scalar fields. A clear understanding of a model with aNow one can add and subtract the teFior/2 with the arbi-
finite number of components is necessary to apply the replicttary constan®, so that the introduction of yet another trans-
trick, which is the only possible way to perform disorder verse fieldc to dispatch the par(/C, *—T)b/2 of the ob-
averaging in the presence of interaction. tained gauge kernel results in the exponent
Another perspective direction is to understand the hierar-
chical picture within the rigorous approach by Chen and i i i T, 1 ~ =~
Itoi.>®%* Starting from the representations of the iaM —iab+ibc— 2b"— 5 c(Ko "~ T) "cC.
2+ 1-dimensional Lorenz group, they established the exact
relationship of the spin of particles to the coefficient of their This expression is linear in field, and an easy integration
Chern-Simons coupling, namely, that all theories of particleg/ields the constrainb=M; the subsequent integration i
with spins and Chern-Simons coupling describe the same trivially yields
irreducible representation of the Lorenz group with the frac- ~
tional spins+ «a/2. Although nominally the action of par- iMc— IMZ— E C(}"C‘—l_rr‘)—lc
. . . . . C L 0 L.
ticles with spins has Z+1 components, in 21 dimen- 2 2
sions the equations of motion for massive particles leav
only one independent component, and the long-range pro
erties of all particles with the same but with spinss dif-
fering by an integer should be similar. This can be consi
ered as a rigorous definition of the flux attachment ) ;
transformation for hardcore relativistic particles with Chern-SUmmation formula(Zl), and a subsequent rescaling of the
Simons interaction. gauge field, lead directly to the dual model of the fof®
While finishing this work we learned that a similar model @1d (3) with the finite temperaturd and the gauge kernel
was studied by Fradkin and KivelséhThey also used du- K satisfying(26).
ality and periodicity transformations to argue that phase tran- The derived mapping is a generalization of the well-
sitions in three-dimensional lattice-regularized models ar&nown duality in three dimensioffS.It can be understood as
universal, although they were less specific about the form ofhe duality between vortices and monopoles in three spatial
the Chern-Simons coupling at short distances. In addition tglimensions, or the charge-vortex duality int-2-dimen-
the behavior considered in this paper, Fradkin and Kivelsogional systems. Indeed, the average in the presence of an
considered a model with an additional dimensionless nonloarbitrary number of vortex-antivortex pairs introduced by the
cal interaction between the integer-valued currents, correinteger vortex strength,,
sponding to the dissipative conductivity in the quantum Hall

. . . ) . d3k
effect. As in Refs. 17 and 23, this leads to a phase diagram <eXp2n: Ln0n> E<expf (277)3L—k0k>! (A1)

vith the transverse integer-valued currevt this is pre-
cﬂ::iselyv the exponent of expressi@20) with the gauge kernel
d_IC:(IC(;l—T)‘1 and the lattice temperatuie>0 replacing
the artificially introduced infinitesimal variable Now the

with multiple self-dual fixed points. Perturbatively, such an
interaction of finite strength can be generated near the phase- . . .
transition poinf® and the accumulation of higher-order irrel- With Zero total vorticity=,L, =0, results in the constraint
evant terms considered in the present work can in principle de _ _

imply the change of the symmetry of the second-order phase f — D ailnfn=i0n2 b, — 8(A by, —Ly) (A2)
transition instead of the first order phase transition. 2m

instead of(8). Evidently, the integerk,, serve as the sources
ACKNOWLEDGMENTS for the field b, or monopoles with appropriate quantized
charges. The values of these charges are not affected by any
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grateful to the IBM graduate fellowship program for funding models related by Eq26). Similarly, the dual transforma-

his research assistantship at Stanford University. tion of the original model(2) and (3) in the presence of
monopoles introduced by appropriate multivalued external
APPENDIX A: ALTERNATIVE DERIVATION vectolr p_oterr:tlal _re_sullts m_yortlce? (r)]f the for(rAT) located
OF THE EINITE-TEMPERATURE exactly in the original positions of the monopoles. _
DUAL MODEL Unfortunately, any averages involving the gauge fields,

particularly the averages of gauge-invariant currents, do not
Instead of using the previously established symmetrnhave simple dual representation since the fluctuating gauge
property (12), we could have arrived directly at the dual fields change upon reparametrization. Therefore, only scalar
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sectors of arbitrary models of the forf®) and(3) related by
the generalized duality transformati¢?6) are equivalent to
each other.

APPENDIX B: CS COUPLING BETWEEN VORTICES
OF THE x-y MODEL: DETAILED ANALYSIS
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instead ofT P?/472 present without any gauge coupling; the
statistical coupling of the vortices does not change the long-
range properties of the model at all.

This is precisely the result of numerical stuthfrom our
analysis it is clear that the additional Chern-Simons interac-
tion between the vortices is completely screened by the Cou-
lomb interaction already present in the dual model. Indeed,

Here we analyze the model numerically considered bythe original vortices of th&-y model map to charges in the

Schultka and Manousak®é:the purex-y model with the
additional Chern-Simons interaction between tratices

superconductor, which is the correct dual model. The
charges have the Coulomb interaction decaying like at/

introduced to study the universality of transitions in a systenfarge distances, while the additional CS interaction falls off
of particles with fractional statistics. The original model is like 1/r<; there always exists some range above which the

defined simultaneously in terms of original phaggsnd the

usual Coulomb force dominates. It is because of the exist-

vorticity M, . Working in the Villain approximation, let us ence of this finite range that the asymptotic form is correct

perform the exact duality transformation on the scalar sect
and express the model entirely in terms of dual variable
The duality transformation results in a model of the form

(20) with an additional coupling of the vorticitil to the

second gauge field with the Chern-Simons kinetic term.

Shifting the gauge field

An,u_)An,u,_ anp.

and integrating away the fiela, we obtain the gauge kernel

of the combined interaction in the form
P (1 1
2maQ 1-1TaQP27

K —TP2+O p3
=12 (P%),

aTPQ<2, (B1)

S.

opnly in the restricted range of momenta as specifie(Bi.

This phenomenon can also be understood in terms of the
original x-y model: the vortices in a superfluid are not really
local objects because of their long-range phase structure;
therefore the additional Chern-Simons interaction does not
do anything at large enough distances.

It is important to emphasize that the previous analysis,
including Eqg.(B1), holds for anx-y model coupled to a
Chern-Simons gauge field via the dual current only. If the
long-range structure around the vortices is already broken by
some mechanism, the addition of the Chern-Simons interac-
tion between vortices does change the parameters or even the
qualitative behavior of the model. In this case the long-range
phase structure of the vortices is destroy@d the dual
representation—the charges are scregreettl the additional
statistical coupling is the main interaction at large distances.
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