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Effective charge-spin models for quantum dots
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It is shown that at low densities, quantum dots with few electrons may be mapped onto effective charge-spin
models for the low-energy eigenstates. This is justified by defining a lattice model based on a many-electron
pocket-state basis in which electrons are localized near their classical ground-state positions. The equivalence
to a single-band Hubbard model is then established leading to a chargd-s@din ¥/) model which for most
geometries reduces to a sgideisenberymodel. The method is refined to include processes which involve
cyclic rotations of a “ring” of neighboring electrons. This is achieved by introducing intermediate lattice
points and the importance of ring processes relative to pair-exchange processes is investigated using high-order
degenerate perturbation theory and the WKB approximation. The energy spectra are computed from the
effective models for specific cases and compared with exact results and other approximation methods.
[S0163-182606)03731-9

[. INTRODUCTION semiconducting quantum dot are highly correlated, due to the
low effective density and the restriction of the electron mo-
Technological advances in microfabrication with corre-tion to only two dimensions. Many-body effects must be
sponding reduction in feature sizes has led to renewed intetaken into account. This has been done by numerically exact
est in the transport properties of semiconductor submicromediagonalizations for systems with a very few electrons
ter structures both from the fundamental physics point ofN<4).2® In order to obtain reasonably accurate spectra for
view and for possible future applications. In small metallic systems with more electrons, approximations must be made.
islands the Coulomb blockade gives rise to the single-One technique which has achieved some measure of success
electron effects, which may be modeled classically by aat low electron densities is based on many-electron
small intradot capacitancdslands fabricated on the basis of “pocket” states* Low-energy spectra of systems with up to
semiconductors, called quantum dots, show in addition to theix electrons have been determined accurdteind the
charging effects discrete energy levels related to sizegreement with the exact numerical solutigNs<4) is good.
quantizatiort—* Individual quantum dots may be fabricated Unfortunately the computational effort is likely to become
from heterostructures, which limits the electron motion toprohibitive for systems with more than ten electrons and we
two dimensions, by imposing lateral confinement with a me-are again faced with the problem of devising a reliable ap-
tallic gate electrode deposited using fine-lie-bean) proximation method for such cases.
lithography? The discrete energy spectra may be measured One possible route is suggested by the pocket-state analy-
in transport experiments at finite voltagér frequencied.  sis itself, which exploits the permutation symmetry of the
The influence of Coulomb correlations on the excitation enwave functions. We notice that in many cases the eigensolu-
ergies is difficult to see optically by far infrared absorpfion tions may be represented by an effective spin model of a
due to the generalized version of Kohn's theoreithe ob-  simple form(Heisenberg modgl This apparent equivalence
servation of the quadrupole transitions by using grating couis reminiscent of magnetic insulators for which the correlated
plers has been suggest®ds a possible optical means. electron problem is known to reduce to a spin Hamiltonian, a
Quantum dots have been referred to as “artificialmapping which may be justified by transformation thébry
atoms™! since the number of conducting electrons can beor degenerate perturbation thetrgs well as, in some cases,
smaller than 10 or 20. At the low electron densities whichby the theory of permutation group$The magnetic insula-
are experimentally accessible, the calculation of excitatiorior problem starts with a lattice model in which the electrons
energies becomes a challenging theoretical problem. For reate localized on atomiclike orbitals and for which electron
atoms, an independent-electron picture correctly describesorrelations are essential, the generic model being the so-
the main physics and the Hartree-Fock approximation yieldsalled Hubbard modéf The underlying crystalline lattice
reasonably accurate eigenstates which may be refined in establishes sites on which suitable one-electron states are
controlled way by perturbation theory. This is not generallycentered. The question arises as to what circumstances, if
the case for semiconducting quantum dots for which even aany, might a Hubbard-type model be applicable to the prob-
optimal Hartree-Fock approximation is significantly in lem of interacting electrons in a quantum dot, for which the
error? and can even give qualitatively incorrect results, suchFermi wavelengths are much larger than the interatomic
as the wrong spin-multiplet structure. The reason for thisspacings and the underlying crystalline lattice loses its sig-
qualitatively different behavior is that the electrons in anificance. At extremely low electron densities the long-range
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interaction energy, according to Wigrf@rcreates a crystal- wherex; andp; are position and momentum of thth elec-
linelike ground state which might define new electronic lat-tron in d dimensions(d=2 for most quantum dotswith

tice sites. This crystallization is expected to take place onlyeffective massm and spins=1/2. Neither the one-particle
at electron densities which are a factor of 20 smaller than theonfinement potentiab (x) nor the interactiorw(x) depend
densities used in experiments. Nevertheless, it has beeasxplicitly on spin.

shown that the assumption of localized electrons allows the The cases of square well single-particle potentials in one

calculation of discrete IOW'energy excitations as quantunuimensior(lD) and in two dimensiongor square geometb’y
corrections to the Wigner crystal energiéghe validity of 2 have been discussed in Ref. 15. To be specific, and for com-
Hubbard model description is not only an interesting quesparison later, we shall also mainly confine ourselves to the
tion of principle but has the practical potential of enabling2p square potential well of square geometry, though the ex-
systems of many more electrons to be dealt with than hagnsjon to other geometries is straightforward and, for the
hitherto been the case, i.e., tens of electrons or more. Thigresent consideration, the detailed formuéx) is not quali-
would enable the full machinery of techniques for solvingtatively important. At large mean interparticle distancgst
the Hubbard and Heisenberg models to be applied, for whicRecomes energetically favorable for the electron system to
there has been much progress in recent years following thgcalize its charge density distribution in regions close to the
discovery of high-temperature superconductivity and the asc|assical ground-state electron configurat®A®?? which
sociated theoretical aCtiVity on correlated electron SySl?émS. may be determined by m|n|m|z|ng the electrostatic energy.
In this paper we will show that such a mapping may in-  Thjs fact is the motivation for the many-electron pocket-
deed be justified for the priori continuous problem of in-  state basis in which the Hilbert space is restricted to
teracting electrons in a quantum dot at low densities. This i3 <p< yN! basis statefp) with spatial representations being
done through the use of pocket states which are briefly regefined in configuration space of dimensionaliti. The
viewed in the next section after introducing the basic inter'number of classical minimum_energy Configurationmay
aCting electron model. In Sec. Ill we show how the pOCketbe greater than one in certain Symmetric geomet[(iEer
states may be used to define a one-electron orthonormal bagigample, forN=3 on a square we have=4 since, for the
with orbitals localized on a Hlattice,” related to the electron classical ground_state energy, any one of the four corners
configuratiotts) in the classical ground statdetermined by  may be unoccupiefiThe low-energy levels form a multiplet
eleCtrOStatiCB This is then used to construct a t|ght'b|nd|ng which Containsij states in tota{inc'uding Zeeman |eve]s
Hamiltonian which reduces to the Hubbard model at |0WThe excited ‘“vibrational”’ states scale as a power law
electron.densiti(_as. Eurther mapping to an effecﬁMeiselj— ~r 3 with rg (y being close to 3/2and can be neglected if
berg spin Hamiltonian or charge-spirt£J—V) model is  he” density is not too high. This is due to the scaling
then performed. . . ~exp(—yrs/re) of the low-energy excitations we are inter-
In Sec. IV we point out an essential difference between,gioq in here, where, is a length scale which characterizes
quantum dots and the corresponding correlated electiofe ransition from the almost noninteracting situation

problem for ipteracting (_alectrons on a true lattice of atpms(rs<rc) into the qualitatively different regime of strong cor-
namely, the increased importance of the so-called “”ng”relations( >r).14
S c/-

terms in the former case, which involve cyclic permutations |, e pocket-state method, the first step is to calculate

|°f more tr;an two electr(;]ns. The _Slnc]pleleﬁbbard_ model onf%nergies by assuming equivalent but distinguishable particles
attice underestimates the magnitude of these ring terms fQly,q j56ring their spin. Spin and statistics are subsequently
Fhe o~ gnd.|t IS sho_vvn hOV\.’ the method_may - reflned_b eestablished by means of group theory. Tunneling integrals
introducing intermediate lattice points which are unoccupie p|H|p') between the localized many-parti¢fgocke basis

in the ground mamfpld but give nse to the required ring gate5 determine the low-energy excitations. The tunneling
processes through virtual excitations. In Sec. V we solve theg, o asses correspond (morrelated transitions between dif-
effective Hz_irr:ultonlans for .Sp(TC'f'Z exarl?ples With<6 Iand Hoferent particle arrangements. I the low-density regime one
compare with exact numerical and pocket-state results whetg ,e|ing integraly/2, is exponentially larger than all others.

appropriate. Finally, in Sec. VI, we give a summary andj, many cases the dominadtcorresponds to the exchange
discuss the outlook for this approach in dealing with systemg; only two particles, which may be adjacent in real space.

of more electrons and of obtaining further corrections whereyhar processes could be the simultanetir) exchange

necessary. of three or more particles, corresponding to a cyclic permu-
tation.
Il. THE MODEL AND POCKET-STATE BASIS An important feature of the spectra given by the pocket-

] . state approximatiofand by the effective charge-spin models
We consider thé\-electron quantum dot described by the t pe derived and discussed in the following sectigashat
Hamiltonian the fine structure of the energy spectra depends only,on
the magnitude of which may be estimated semiclassically
within the multidimensional WKB approximation. The ratios
FW(X1,- .- XN)s between the energy differences are insensitive to the detailed
form of the interelectron potential and ttg. An examination
of the spectra shows that these situations may be mapped
1 onto an effective spin model with again one parameter for
WXy, x0) = 5 > wilx—x)), (2.1)  each procespair exchange, ringconsidered. This equiva-

i|¥]j lence will be justified in the next section. Here we merely

2
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make the observation that for the cases considered by the $1(1) (2)— bo(1) b1(2)
pocket-state method, the energy spectrum is the same as that Vp= ! 2 22 ! , (3.3
which would be given by a spin Hamiltonian. An exception V2(1-59)

to this are situations for which more than one ClaSSica\Nheres=<¢l|¢2> is the overlap and the argumerfis=1,2)
minimum-energy configuration for the electrons existyppeyiate the coordinate of the ith particle. These HL

(v>1), such as two or three electrons on a square. We Willyqi04 yield approximate singlet and triplet ground-state en-
show in the next section that these latter situations may bgfgieSZEsmg|et=<‘I’s|H|‘I’s> and Etriplet=<q,A|H|\PA>v where

mapped onto a so-callgd-J—V model in which the domi- g the Hamiltonian for two electrons given by E.1).

nant tunneling process is now related ttothe amplitude We now transform to orthonormal one-electron states
corresponding to the jump of a single particle into an empty, here
1
¢2!

“site.” Jis again an exchange process involving at least two
particles andV represents the Coulomb repulsion between 1 1 1
electrons on neighboring “sites.” = + b1+
In general, the pocket states are correlated electron states 2yl+s 2yl-s 2\y1l+s 2yl-s
which need not be assumed as a direct product of one-

electron states. However, we may mimic the eigenstates atw 1 N 1 ot 1 1 é
sufficiently larger ; with a one-electron product basis within 2= 2o1+s 21-s/ 2 \2 TJFS_ 21—s)
the Heitler-Londorn(HL) approximation. The latter are local- v (3.4)

ized in regions close to the positions the electrons would
have in the classical ground state. In the next section wénhverting this transformation and substituting into E(&2)
show how this one-electron basis may be used to define aand(3.3) we get

orthonormal basis from which we construct an effective

Hubbard model. This effective Hamiltonian yields low- Vo 1 NREI S P2 3.5
energy spectra which are at least as accurate as what would s l+g2 ° l+s2 ° '

be given by the corresponding HL approximation using a
product basis of nonorthogonal, one-electron wave functions.

1) _ d/l(l) l/’2(2) + 1/12(1) zr/fl(z)

We then show in Sec. IV how the method may be extended LS ,

to cases where ring processes are important. V2
IIl. MAPPING TO HUBBARD - P (1) i (2) + 1h,(1) 1h5(2) , 3.6
AND CHARGE-SPIN MODELS V2

Let us assume that the pocket basis stgi¢sre approxi- and
mated “optimally” by nonorthogonal one-electron wave
functions ¢, centered at position. These states have the v (1) 2(2) = (1) h1(2) 37
A_ . .

form Vi

= We note that¥, (triplet) has the same form as for the
(- 0P = b, (X0) b, (X0) g (). (31 nonorthogonal states given in E@®.3), i.e. it corresponds to
] ] one electron in each orbital. On the other havd, (single)
where {p,,...,py} is the permutationp of the sequence cqnsists of two components, one with an electron on each
{1,...N}. In this section we orthogonalize these one-electrorypitg) (¥ and the other with both electrons in the same

wave functions and construct antisymmetrizieelectron ot (\Ifiz)). (The latter state is not allowed for the triplet
states from which we define the effective Hubbard modelby the Pauli principle. This “double occupation” is thus a

which is subsequently transformed into a spin Hamiltonian yirect consequence of orthogonalization.

To illustrate the main features of the method with minimal Using these two-electron states composed of orthogonal
mathematical complexity, we first consider in detail the sim-gne-glectron wave functions will, of course, yield exactly the
plest nontrl_wgl case of two _electrons in a ;D square well.ggme approximate singlet and triplet energy expectation val-
The analysis is then generalizedNoelectrons in one or two  e5. However, we can obtain a more accurate estimate for the
dimensions. _ _ground-state energy of the singlet by diagonalizing the
As is well known, for two electrons the antisymmetrized pamiltonian in the Hilbert space defined by the two-electron
states may be written as the product of orbital and spin part$);se statew D and ¥ @ [Eq. (3.6)]. This follows from the
as with the HL states of the hydrogen molecule. The symyariational principle which ensures that diagonalization of
metric (singley and antisymmetrictriplet) orbital states are  ine Hamiltonian matrix will yield the optimum superposition

thus of the base states, whereas the HL stat) is not optimum
in general.
This principle also applies to the geneNdelectron case
1 2)+ ¢5(1 2
Vo= $1(1)#2(2) ¢22( )$2(2) (3.2  as stated in the Introduction, i.e., diagonalization of the
V2(1+s9) Hamiltonian in the restricted Hilbert space defined by base

states(Slater determinantsonstructed from orthogonalized
and one-electron wave functions will yield a more accurate low-
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energy spectrum than the simple products of nonorthogonahe quantum dot case the localized orbitals are fundamentally

one-electron state8.2) and(3.3). different from those in the atomic case in that their very
For the two-electron case th@x2) Hamiltonian singlet existence depends on the electron-electron repulsion which is
matrix is responsible for localizing the electrons near specific points in

real space at low density. For this reason we are not justified,

a priori, in dropping all but the largest Coulomb terrd),

as is usually done in the Hubbard model. In particular, the

nearest-neighbor effective Coulomb interactidnbecomes

most important whemg becomes very large and E.11)
simply reduces to the classical expression for the ground-

)

2e+V+]j 2t
2t 2e+U+]

p2
¢1> = < 2 {ﬁ +v
spin Hamiltonian which is demonstrated most directly for
V:j |y (%) 2] o (y) | 2w( | x— y]) d3x Py, this two-electron case by diagonalizing the singlet matrix,
(3.9), explicitly to yield eigenenergies

Hs= , (3.9

where

state energy, independent of spin, as it should. This may be
seen more clearly by transformin@.11) into an effective

p2
{ﬁ+v

8:<l/fl

U=f [ (O (y) | Pw(|x—y])d®x dy Et:%[4g+v+u+j+7¢ JU=V+]—))2+ 162
(3.12

Since for the cases of intere@airge separation between
the electrons and real one-particle wave functipns

= [0y lmx—yhox oy,

t=f Y1 (X) ;—m+v(x) Po(X)d3x, U>V,j,j andj=j, then
AP
E,~2e+U+]j+ U—v (3.13
T:J 1 (%) J|¢1(y)I2W(IX—y|)d3y (X)X,
and
t=t+r, 4m2
E-~2e+V+j— 5=y (3.14

J'=f 1 ()¢5 (YIW(|x=Y]) ha(X) () d3x Py, . . , ,
Combining these equations witB.10 for the triplet we see
that the energy spectrum consists of a singlet-triplet pair at
g:f 5 () s (Y)W(|X—y]) 1 (X) P (y)d3x dBy, low energies separated_by a si_nglet_ at en_efgy higher. _
Hence the low-energy singlet triplet is equivalent to a spin
system with effective spin Hamiltonian

T=Re(9). (3.9
Note,j=£=] if the 4 are real. Hepin=2e +V+I(s,- 5~ 1/4), (3.19
The triplet energy is where
Ei=2e+V. (3.10 ~ 4m2 - 4m2 . 316
Within this restricted manifold of states, the singlet-triplet “u-v TTo Tk '

Hamiltonian matrix, Eqs(3.8) and (3.10, are equivalent to

an effective Hamiltonian, The first term in Eq(3.16), favoring a singlet ground state, is

sometimes referred to as “superexchange” and is usually
Herr=e[N1+Ny]+UNy Ny 405005 1+ Vyn, larger than the second “direct” exchange terpn,This su-
perexchange contribution has its origins in the assumed non-
S (el + B orthogonality of the initial Heitler-London basig in (3.1).
2 | 1C10Co0 t 7(C1,C2sM17  From the pocket states it is known that they form a nonor-
thogonal basis set for the low-energy eigenstates.
We now consider the general case Mfelectrons in a
’ (3.1 quantum dot. Starting with a suitable product basis of pocket
states, Eq(3.1), we may, in general, define an orthonormal
whereciTo is a Fermi creation operator at site'1,2 satisfy-  basis by Lavdin’s method® [For high-symmetry situations
ing (x|c] |vag =i ,(x); ni,=c! c;, andn;= nip+ni; . it may be more convenient and expedient to use some other
This effective Hamiltonian is very similar to that consid- method. For example, in the case of four electrons on a
ered by Hubbarlf for a periodic array of one-electron atoms square we haver/4 rotational symmetry and we may gener-
in the study of the metal-insulatgMott) transition. Indeed, ate orthonormal states by forming molecular orbitals, nor-
for this two-electron case, E¢3.1)) is an effective Hamil- malizing, and then transforming back to localized states.
tonian for the hydrogen molecule within a restricted HilbertSimilarly, for translationally invariant systems we may trans-
space of(effective 1s orbitals. We stress, however, that in form to running(Bloch) waves, normalize, and then trans-

ENIR IR, _
+ J E ClUCZEC20'C10'+
o

+H.c.

U S
CZO'ClUnZU) 2 6010'01;(:20'(:20'
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form back to localizedWannie) states] Within the corre- v :
sponding many-electron Hilbert space we may express the H =P | 2 (tjcl,cjp+H.c)
Hamiltonian in second quantized form. We are led directly to ML

an effective “single-band” model of the type considered by
Hubbard, generalizing E¢3.11), +Jij(s 5= Uhnin;+V;nin; |P. (3.18
Heﬁ:; [Sini+uiniTni1]+iEj Vvinin, gwnéhls equationt andV have the same meaning as before
+> j--cTUc.T—c-gc-;+ > (t--c-Tgc-J .
ijo A Cat i,j,o el ‘]ij:2|tij+7—ij|2 U—+U— _Jij . (319)
[ j

+Tij(CiTaCjaniE_’_CjTaCionjE)

P is a projection operator which eliminates all base states for
’ (3.17) which there are two electrons in the same localized state.

[These states appear as intermediate states and give rise to

the superexchange in E(8.19.] We also note that the, 7,
where the indices andj should be distinct. The parameters and£terms in Eq(3.17) have disappeared in E(B.18. The
e, U, V, |, t, 7, and ¢ have the same meaning as in the former has been dropped since it always gives rise to a con-
two-electron cas€3.9), though it should be noted that they stant and the latter two are precluded®yas is theU term)
will, in general, depend on the position of the electron, orsince they would always give rise to double occupation at a
pair of electrons and on separation. In particular the paransite.
eters,j, t, 7, and £ related to electron transfers decay rapidly  Equations(3.17) and(3.18) are the fundamental effective
as the distance between the sitesndj increases. This al- Hamiltonians for interacting electrons at low density in a
lows us to retain only nearest-neighbor terms in the doublguantum dot and capture the main physics of the problem for
summations. As with the case of two electrons, we maymost situations(They do not, however, include processes in
eliminate the high-energy states I8 to yield an effective  which groups of electrons can rotate simultaneously, which
spin Hamiltonian. This may be done using degenerate pecan be important in some circumstances. The generalization
turbation theor” or a canonical transformatidfi,as with  to include these so-called ring terms is given in the next
the case of a lattice. section) Although these effective models were justified by

Specifically in the situations of twaor highery dimen-  starting with the Heitler-London approximation to pocket
sional quantum dots the cases of more than one minimum aftates using nonorthogonal one-electron states, we emphasize
the classical electrostatic energy may oc@url). Then the that they have a greater range of validity than the initial
guantum-mechanical charge density distribution shows morapproximation suggests. The above methodology enabled us
thanN peaks at large, sayN>N. The number of single- to define a basis set of product stat8ater determinantof
electron states must be equal b in these casesN—N some one-electron states and this led directly to effective
lattice sites will be unoccupied at an instant. Consider, foHamiltonians operating within this restrictdghcomplete
example, the case of a square confining potential in two dibasis set. However, it is well knowhthat higher-lying base
mensions. FON=2, N=4 and the electrons will be found states may be accounted for by perturbation theory. This
mainly near opposite vertices along the diagonal of theechnique has recently been applied very successfully to lat-
square, due to the Coulomb repulsion. States with two eledice models in which an effective single-band Hubbard
trons near adjacent vertices will be of ord€rhigher in  model was derived from a multiband model using quaside-
energy (nearest-neighbor Coulomb repulsion enérgynd  generate perturbation thed?yWe shall not attempt such a
states with two electrons located near the same vertex will beeduction here for the quantum dot problem, but merely
of orderU higher in energy. Similarly foN=3 there will be  point out that its main effect would be to renormalize the
low-lying states with electrons located near three ofthe4  effective parameter&; ,U; ,t;;, etc) and extend the validity
vertices with states having two electrons near the same veof the resulting models.
tex again being~U higher in energy. FON=4 all vertices Let us apply(3.18 to the case of electrons in a square
are occupied in the ground manifold, with configurations forwell in two dimensions, discussed above. Ro£2 andN=3
which there are two electrons near one vertex being at leasihe t term will cause electrons to hop from occupied to un-
~U higher in energy. occupied sites whereas tleand V terms will be effective
In each of these cases the high-energy states, corresponahly when two adjacent sites are occupied. The presence of

ing to one or more vertices being occupied by two electronsthe V term ensures that foN=2 the electrons will have
may be eliminated from the Hilbert space by degenerate petower energy when they are located on diagonally opposite
turbation theory, where they appear as intermediate stategertices of the well, as mentioned earlier. Ad=4 the t
More precisely, we first writél o in the formH z=Hy+H,;  term may be omitted since all four vertices are occupied in
whereHy=Z2;[&;n;+U;n;;n;|]. Hq is diagonal in the basis the ground manifold and it would thus give rise to double
of product states with the highest-energy states having twoccupancy, precluded ¥. TheV term may also be dropped
electrons in the same state, being) higher than the low- since it gives rise to a constant contribution. Hence the sites
energy state$’ Eliminating these states to second-order re-i andj can be restricted to nearest neighbors so (Bt
sults in an effective t—J— V" Hamiltonian,? reduces to a Heisenberg model,

+H.c.

= &icl clcizc
2 >l ioc¥ig-jo~jo

j
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order and does not involve double occupation of a site. On
D ‘ the other hand, there are two contributionsltahe second-
order term~4t2,/U and fourth-order terms-t 1,/V2U. We
may extend these considerations to a regular polygon Mith
_. ._ vertices andN/2 electrons. The effective Hamiltonian will
again consist of rotation operatdie® =2#/N) and exchange
I‘ ‘ ‘ terms. The exchange terms are independent ofvhereas
the rotation terms become relatively less important since
they first occur inNth order. In the next section we shall
Q encounter circumstances where simultaneous rotations of
more than two electrons may be important.
) i . i We conclude this section by emphasizing the computa-
FIG. 1. Classical low-energy configurations for two electrons iNtional advantage in this reduction to a spin or charge-spin
a 2D square quantum well. The first two configurations are loweSHamiltonian. Thus, for example, the Heisenberg model lies
in energy while the remaining four aré higher in energy due {0, 5 iihart space of dimension2for N electrons, which
;thjilcor::errgsulsmn. All other configurations have higher electro-maly be further reduced by exploiting other symmetries, e.g.,
’ conservation of tota, which reduces the largest subspace
to NI/[(N/2)!/]? (S,=0 for N even. This should be com-

Hy= 2 Jiis s (3.20 pared with
(i)
2S+1)N! 2
whereP has been omitted for brevity. ma{ N/2+(s+1 ')N/Z -
Similar considerations apply fdl>4 and the effective s L( )I(N/2—9)!

Hamiltonian will either have the fornG3.20 or (3.18, de-
pending on whetherv=1 (e.g., N=4,5 or v>1 (e.g.,
N=2,3,6. For the latter cases a further reduction will be

plossrllbltra]iwr?ernirfor:erof tdhe itatt(re\sé ic::tﬂ:&]t?\rﬁ model are of the energy spectrum. For those cases which reduce to a
ceg y 'dg ef ene gyl uetho efa;: on. lect . Heisenberg model, the spectrum consists of spin multiplets
onsider, for example, the case of two €lectrons in g, ., energy separation of orddr(“bandwidth” ~2NJ). On
square-shaped dot for which there are six ways of d|str|but,Ehe other hand, for cases which reduce to a charge-spin

Irggutlrt]ﬁl tV\i'r?gﬁ;fgg?:'?f:g%ﬁgggg; ;‘;ﬂ;jfovvrr];??eias’ model, there are multiplets separated by energies of order
is tak ngint nt pF r of th nfi_ ratiéhe wi?h t(>J in the same geometry and electron densjtieach of
S aKe 0 account. Four of these contigura which have a fine structure with energy splittings of order

spin) are of ordel higher in energy than the remaining two, The foregoing analysis for electrons may also be extended

as shown in Fig. 1. These high-energy base states may 98 a fictitious system of spin-1/2 charged bosons. For repul-

eliminated from th(_a problem by a fgrthgr appllcatl_on of de.'sive Coulomb interactions they also show Wigner crystalli-
generate perturbation theory, resulting in an effective Hamil-

tonian which onl rates in the Hilbert f the eiah ation and the pocket-state method can be applied. This
onia ch only operates € hbert space of the €I9N, ohlem was considered by Hslers in order to prove that
lowest-energy base states. By a straightforward calculatio

this takes the formapart from an unimportant overall con- e state of highest spin within the multiplet structure of
stany P P electrons(fermiong in a quantum dot is the spin-polarized

state forv=1 by exploiting an isomorphism between fermi-
ons and bosons using permutation group theory. We consider
this problem here to enable another direct comparison with

for the largest subspace of the Hamiltonian in the original
pocket-state basis.
The mapping also gives interesting insight into the nature

Her=A(N1N3—N2N4) (Rop—R_7p) +I[ (S 3~ 1/4)nyng

+(s,- 54— 1/4)n,n,], (3.21 the pocket-state description.
The case of spin-1/2 bosons is similar to the fermion case
whereA=2t*/V andR, is a rotation operator, i.e., in that at low densities the largest “Coulomb” matrix ele-
ments correspond to two bosons on the same site. Neglecting
Ruplox,a' x)=|*,0,%,a"), (322 4l other matrix elements thus gives the “boson” Hubbard

etc. Note that the prefacton{n;—n,n,) takes the value-1 model:

depending on whether either sites 1 and 3, or 2 and 4 are U

occupied. This effective Hamiltonian is easily diagonalized. H= 2 (tijb;rgbjoJr H.c)+ = E bi’rgb;rg,bi(,,bi(,.

The spectrum consists of two singlets and two triplets. We (.o 250

see immediately that3.21) gives zero when operating on a (3.23
spin-polarized state and hence the triplets are at zero energysing the usual commutation rules for the Bose operators
with the singlets at energiesJ+24, in agreement with yje|gs

what is obtained from the pocket-state approximation for this

problem when the exchange of the two electrons is included bf|n)=yn+1|n+1),
there!® There are thus two contributions to the “binding
energy” of the singlet ground state, a resonance energy b|n):\/ﬁ|n—l). (3.24

(—2A) and a superexchange energyJ). It is easy to see
that the former will be dominant since it occurs in secondit follows that
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holo,a’Y=Ula,a'),

u /)\
ho== 2 bibl b,b,. )

(a) () ()

where

This is the same result as the case of fermions except that

with bospns the tW(.) particles may have the same spin. FIG. 2. (a) Classical ground-state configuration for three elec-
As with the fermion case, we can now redu8e23 to a trons in a triangular quantum dofb) Classical path for the ex-

Heisenberg ot —J—V model(depending on whether or not cpange of two electrongc) Classical path for the cyclic permuta-
the number of bosons equals the number of lattice)sit®t  tjon of all three electrons. Particles are shown in intermediate

us, for simplicity, do this for just two sites. The extensio_n to positions along their trajectories.
the general case may be done by perturbation theory in the
same way as with fermions. IV. RING TERMS

In the “atomic limit” (t=0) the eigenstates ¢8.23 with ]
two bosons consist of either one boson on each site with N Sec. lll it was shown that the—J—V model may be
either spin(energy 0 or one site unoccupied and the other 'éduced to an effective Hamiltonian which only involves the
doubly occupied, again with either spienergy equal t&J).  lowest-energy base states. This effective Hamiltonian then

Using these base states it is straightforward to show that thgontains operators which rotate some or all of the electrons
singlet state simultaneouslycf. (3.21)]. The possibility of such a collec-

tive motion of a subset or all of the electrons is much more
11,10 =11,1) general and wiII'ir} fact occur for any geometry. These pro-
|pg)= ——— cesses are negligible within the framework of the usual lat-
V2 tice models but this is not always the case in quantum dots or
other semiconductor based nanostructures where such
“ring” terms can become dominant. As we shall see they
H|s)=0. may be included in a lattice model by introducing interme-

_ _ _ diate lattice points which are unoccupied in the ground mani-
On the other hand, the triplet states mix. For example, usingy|q.

is unaffected by the hopping, i.e.,

(3.24), we get Consider, for example, the case of an equilateral triangu-
lar dot containing three electrons, as shown in Fig. 2. Using
HIT. D=t 1D +[1T1,)1, the Hilbert space defined by the Heitler-London approxima-
tion to the pocket states leads directly to the Heisenberg
HITT, ) =UITT, ) +v2HT1,1), model for this system, with a spin-1/2 ground state, as shown
etc. This leads directly to the triplet Hamiltonian matrix N Sec. lll. Ring terms corresponding to cyclic rotations of
all three electrons are not included in this model. However, it
0 2t is clear from the pocket-state description that such processes
[Zt U } exist. The relevant tunneling integrals between the@!
pocket states in this case can be represented by permutations
with lowest eigenvalue of the types
U-—+/U2+ 162 (123 —(213): J/2 (pair exchangg
E=——F7+—.
2

(123 —(312: K/2 (ring exchangg

This is exactly the same result as for the fermions except tha1their magnitudes may be estimated semiclassically within

the positions of thelowes)h singlet and triplet levels are > ) 2
reversed. It follows that the lowest singlet and triplet arethe WKB approximation. The most important co_ntrlbutlons
to J andK vary exponentially with the particle distancg

equivalent to a Heisenberg model with ferromagnetic ex-,~ ~. . . ;
change of the same magnitude as the case of fermions. A@'h'Ch equals the length of one side of the triangle in the

mentioned above, this may be generalized to any number §se considerggli.e.,
sites by degenerate perturbation theory resulting in a Heisen-
berg model in whichl— —J when compared with the ferm-
ion case, leading to an “inverted” spectrum in agreementwhere
with the permutation group analysis described in the second
reference of Ref. 15. 1

In a similar fashion, cases for which the number of bosons S= fo dgy2mnWx(q))
is less than the number of sitésuch as two or three on a
sguarg may be reduced tota- J—V model. However, while is the action associated with the transporhgfarticles(n=2
the sign ofJ is reversed relative to the case of fermions, theor n=3 for J or K, respectively of massm from the initial
sign oft remains the same and the resulting spectrum is nelassical ground statd23) into the final state. The transition
longer a simple inversion. takes place along the trajector(q) which in principle

J2~e 123213, K/[2~e S(123-(312,
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obeys an equation of motion which minimizes the classical
action. Here, it is parametrized by<@=<1 in configuration
space(of dimensionalitydN=6). For an explicit estimate let
us specify the interaction between the particles and assume

€%k

X —xj|°

W(|Xi_xj|):
FIG. 3. Lattice points for the triangular quantum dot. In the

ThenW(X) is the Coulomb energy &tE{xl X,,Xa} Where the ground manifold all three electrons will be close to the positions
equilibrium value 3€%«)/r. has been éul;tracted so that Indicated by the circles. Exciteihtermediatg states correspond to
S

W()?(O))=W()'Z(1))=O. The results one or more electrons in localized orbitals centered on the crosses.
&2 12 1 switched off. Higher-lying base states, corresponding to
Sia23—(213=4\/ M — rsf dg| —— double occupation of a lattice site and to occupation of in-

Kk 0 vl—-q+q termediate lattice sites may then be eliminated by degenerate

perturbation theory, resulting once more in an effective spin
Hamiltonian. Intermediate states which involve double occu-

n 1 pation of a lattice site give rise to a Heisenberg superex-
29 , change term in the effective Hamiltonian, wilk- 8t*/V?U,
1- B q+4q wheret, V, andU have the same meanings as before but
now refer to nearest-neighbor and on-site interactions for the
1 12 new lattice. Longer-range interactions are ignorgdote,
+ - -3 however, that this is not necessary, it being straightforward
/1_ E q+ - to include longer-range interactions leading to a renormaliza-
2 4 tion of J which will leave the form of théHeisenbery pair
exchange unchangddThere are two processes involved in
—2.139rm&x, g 9q P

this superexchange making equal contributions tdhese
1o are shown in Fig. 4. These processes are analogous to super-
| € 172 exchange in atomic systems in which the intermediate sites
S(123-312=6\'M » fsfo dq \/m_ 1 would correspond to ligand ions surrounding transition-metal
ions. Recent examples of this kind of system are the copper-
=2.852/rime’/ k oxide planes of the high-temperature superconductors, for
. which there is a similar fourth-order expression for the
are obtained assuming straight lings|) for simplicity. This  syperexchang®. It is also clear from this extended lattice
yields upper bounds to the true values®fvhich may be  description that other processes, which do not involve double
reasonable particularly foiS(o3 315. The estimate for occupation of a sitéand therefore do not involve the exclu-
S(123-.(213 IS surely worse because the classical pdth) is  sjon principlg, are potentially important. The lowest-order
more difficult to estimate for the pair exchange. The chosefyrocess of this type is also a pair exchange and occurs in fifth
paths for both cases are indicated in Fig. 2. Thus the paiforder. An example is shown in Fig.(#, which makes a

exchange processcorresponding to the superexchangecontribution toJ of ordert®/\V*. Despite being higher order
within the lattice description belowis slightly dominant

compared to the ring process in the equilateral triangle. This

supports a ground state of low total sg1/2. However,

the triangle can easily be distorted so thgbg (312 is much A
reduced whileS1,5 213 remains almost unaffected, result-

ing in a crossover to a spin-polarized ground sfatk(see

also below.
The existence of ring-exchange processes highlights a A A
fundamental difference between a true lattice model and a 3 2 '\4/'\3/

continuum model. In order to accommodate such processes
we need a better lattice approximation to the continuum than
that suggested by the Wigner lattice. This may be achieved
by introducing intermediate lattice points and corresponding
localized one-electron orbitals. Orthogonalizing these one-
electron orbitals then enables an orthonormal many-electron
basis set to be constructed, as before. This is shown in Fig. 3
for the triangular dot in which an extra lattice point is in-
serted between each pair of vertices.

The low-energy eigenstates may now be expanded in this
basis set. As before, the probability of occupation of the
three vertices is highest, leading to Betjuals eightfold de- FIG. 4. Superexchange process@s.Fourth order t*/V2U).
generate ground manifold when the hopping terms areb) Fifth order (~t3/V%).
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TABLE I. Analytical values for the fine-structure spectrtlt‘rﬁ,\‘)

2 4 of N interacting electrons in a one-dimensional hard wall box
within PSA forN=<4. S is the total spin olN fermions withs=1/2.
) 5 mmlp The excitation energieB{\’ — E(ng siarre given in units 0™,
1 .
N S E%l]\l)_ Eg;‘c)ound state
3 6
2 0 0
) . . . 2 1 J@
FIG. 5. A six-step ring process for three electrons in a triangular
; ; 3 1/2 0
quantum dot. The electrons would move continuously and simulta- @
neously in the direction of the arrows in the WKB approximation. 3 12 J
3 312 (3/23®
than the other superexchange terms, this process is, in fact, 4 0 0
the largest since it does not involve double occupation of a 4 1 (1+v3—v2)3¥/2
site (i.e., there is ndJ factor in the energy denominajor 4 1 (1+v3)39/2
With intermediate lattice points it is easy to see that there 4 0 (2v3)39/2
are ring processes giving rise to simultaneous rotation of all 4 1 (1+v34+v2)J¥12
three electrons. One such process, in which the three elec- 4 2 (3+v3)3¥/2

trons are rotated cyclically by723, is shown in Fig. 5. The

process resembles the classical path which would contribute , )
to the WKB tunneling rate, cf. Fig. 2. The former is a sixth- Onto lattice modelg3.18 for their low-energy and corre-

order process giving rise to a cyclic rotation operator in theSPOnding spin properties. This incorporates all permutational
effective Hamiltonian with amplitude®/12v®. Summing Processes which according to the pocket-state description
over all such processes results directly in an effective “ring” M@y be relevant. The above derivation of an effective-spin
operator,—K(Ry,s+ R_,,/3), whereK is a constant energy model for a triangular dot, including ring terms, is easily
and R,_s(R_,.,3) is an operator which performs a cyclic generalized to arbitrary shapes by inspecting all possible
(anticyclio rotation of all three electroncf. (3.22]. We classes of ring and exchange terms on a suitably dense lattice

note that these rotation operators may be written as spin op?to (3.18. The relative amplitudes of the various processes
erators using the identities can be estimated semiclassically.

R27r/3E P12P23 and R72'n’/3E P23P12, (41) V. COMPARISON WITH EXACT RESULTS

. . AND OTHER APPROXIMATIONS
where Pj;=2s,'s,+1/2 is the Dirac exchange operator.

Hence the effective spin Hamiltonian for three electrons in  To corroborate the lattice description for the low-energy
an equilateral triangular potential well becomes and corresponding spin properties of quantum dots we com-
pare the results fror8.18 with results obtained by numeri-
cally exact diagonalizatioh$ and by the pocket-state
method®®

The simplest model for an artificial atom is a hard wall
box in one dimension. Rigorous properties for the sequence
of spin states

J
Heff:E [(P12— 1)+ (Py—1)+(P3—1)]

—K(P12P23+ P23P1)). (4.2

We see immediately from this form that the spin-
polarized state has eigenenerg2K. It is straightforward to E(S)<E(S) (5.1)
complete the diagonalization &f.; which results in a fur- . ]
ther pair of degenerate doublets at enekgy3J/2. Thus we for S<S' are known by a theorem of Lieb and Maﬁ%-
see that the ring and exchange terms oppose each other wfH{S) denotes the lowest energy bf almost arbitrarily in-
the former favoring a high-spin ground state and the latter 4€racting electrons to given spin
low-spin ground state. The crossover occurd=afK, which 0
is not quite reached for the equilateral triangle, as discussed S= [ 1/2],...,N/2.
above within the WKB approximation..

This will not always be so for other geometries as followsIn particular, the ground-state spin must be minimal. This
immediately from the fact that we can change the shape afule (5.1) is in obvious agreement with the description in
the dot in such a way that the ring processes are increased farms of an antiferromagnetic Heisenbdgpin-1/2 chain
amplitude relative to the exchange processes. An “extreme’(3.20, valid for this case according to Sec. lll, where the
example of this is the circular dot for which there is no exchange of adjacent electrons is the relevant permutational
barrier to the simultaneous rotation of the three electrons angrocess and there is only one classical minimum-energy con-
the ground state should be spin polarized. The transitiofiguration, (v=1). In Table | the energy values ®=2,3,4
from high-spin to low-spin ground states in rings with in- electrons are given in units of as obtained within the
creasing impurity barrier has been discussed recéritiithe ~ pocket-state approximatiofPSA), assumingd;,=J,z=Js,.
context of persistent currents. These spectra agree exactly with the eigenvalues of the

With the inclusion of higher-order exchange processes inHeisenberg chain odl=2,3,4 spins apart from unimportant
volving also more than two particles, this completes theadditive constants. Similarly, Fig. 6 shows the excitation en-
mapping of formerly continuous electron problen(.1) ergies forN=3,...,6 and includes also results obtained by
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neighbor pair-exchange process has been compared with the

N=3 N= N=5 N=6 competing process of all four electrons rotating cyclically by
e o . ) 5 —_ s 4.2 in a similar way as it has been done fé~=3 electrons
12 p— in a triangle in the preceding section, with the result of the
E — 12 —0 former being slightly dominant. In all cases the equilibrium
. 3 ] positions of the electrons have been taken as sites for single-
o 0 12 — ; electron sta.tes for the lattice de_spription, as discussed in Sep.
mmes —0, Ill, and the importance of transition processes has been esti-
e 1 —_— 32 — mated semiclassically. Fo&=5 one electron is, by electro-
0? statics, located in the center of the square being coupled
12 1 . . .
a2 —, antiferromagnetically, according t3.20, to the four elec-
- ] trons placed in the corners. The Heisenberg model is appro-

—1/2

priate since there is only one classical equilibrium configu-
1 ration (v=1). Neglecting next-nearest-neighbor exchange

results in anS=3/2 ground-state spin, using the PSA and
12 ===- 0 12 : 0 permutation group theory. This result is immediately under-
standable from the Heisenberg spin Hamiltonian, which
clearly has a quartet ground state. Furthermore, we have

FIG. 6. Fine-structure multiplets of a quasi-one-dimensional - .
quantum dot forN=3,...,6 as obtained directly from the pocket- ;heCked that for all spectra, the corresponding Heisenberg

L ) : . . (N=4,5 or t—J—V (N=2,3) Hamiltonians exactly repro-
state approximation and in exact agreement with the eigensolution th rrect ordering of th in multiolets and th -
of the effective spin Hamiltonian. The dashed lines were obtaine uce the correct ordering ot the sp ultiplets a €co

by direct numerical diagonalization of the interacting electron prob-rect energy splittings p.rOVIded _that the paramete@s andv .
lem. TheN dependence ad™ is not considered and has been are c.hosen _to be consistent with the corresponding tunneling
adjusted to normalize the “bandwidth” of the multiplets. amplitudes in the PSA.

As a third example we look at the spectrum of three elec-
) _ L o , trons in a one-dimensional ring. In Sec. IV we explained
numerical diagonalization of the Hamiltonian matrices forwhy the ground state is high spis=3/2), which is also
N=3,4 (dashed For the caseN=5 and N=6 we als0 ,nq in the pocket-state description. Two degenerate low-
chepked, by numerical diagonalization, that the He'senbergpin(5=1/2) excited states are higher in energy by the rota-
chain shows exactly the same spectrum. tional constanh?/2mNL?, whereL is the circumference of

As a further example we investigatét=2,...,.5 electrons ¢ ing They are additionally shifted by the magnitude of

in a two-dimensional square with hard walls. For these caseg, pair-exchange procedgowards lower energy, in agree-
the interaction must be long range|x|)~|x| ~¥ with y<2 in Hwent with (4.2). ’

order to make the PSA applicable. The spectra obtaine
within PSA are shown in Fig. 7. FON=4 the nearest-

VI. SUMMARY AND OUTLOOK
N=3 N=4 N=5 Based on the pocket-state description of the low-energy

excitations in finite anc priori continuous systems of inter-
acting electrons at low densities we have derived a lattice

4 —S=3/2 3} —s=2 5)/2 —S=5/2 K N ’
(24VE)t —S=1/2 formulation for this problem. Nonorthogonal single-electron
states centered near the positions where the electrons would
S—m$=1/21)2 20 —5=3/2.3/2.3/2 be in the classical minimum-energy configurations are or-
2) —§=1,1,0 thogonalized, leading to contributions from double occupan-
3)/2—s=1/2,1/2 cies~Ujn;;n;, in an effective Hubbard model description.
2t —S=3/2,3/2 Subsequent elimination of high-energy states); or ~V;;,
from nearest-neighbor occupatigngelds effective antifer-
J—s=1 romagnetic Heisenberdeq. (3.20 for »=1] or charge-spin
t—5=1/2,1/2 Hamiltoniang Eq. (3.18 for v>1] depending on the number
1/2 —8=1/2,1/2,1/2 . D . ;
v of classical minimum-energy configurations. An extended
(2-vE)t —S=1/2,1/2 version of the Hubbard model must be considered if highly
0 —5=3/2 0 —Ss=0 0—8=3/2 symmetric geometries or ring processes are important. A cru-
cial enhancement has been to enable “ring-exchange” pro-
(@ (b © cesses to be included, corresponding to the cyclic permuta-

tion of N>2 electrons. Intermediate lattice points were
FIG. 7. Fine-structure spectra ¢8) N=3, (b) N=4, and(c)  Introduced and the additional states corresponding to their
N=5 electrons in a 2D square as obtained within the pocket-stat§ingle occupation were also eliminated by higher-order per-
approximation. In(a) the dominant tunneling process) (corre-  turbation theory, even though they are much lower in energy
sponds to nearest-neighbor hopping of an electron whereés in than states corresponding to double occupation. This yields
and (c) the dominant tunneling process is nearest-neighbor exgeneralized effective spin-1/2 models containing up(No
change §). All spectra are identical with those obtained from the —1)-fold products of pairs of spin operatdrsee Eq.(4.1)].
corresponding charge-spin Hamiltonian. The magnitudes of the parameters for the superexchahges
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and the ring exchangéds¢ can be estimated semiclassically. The lattice description simplifies considerably the deter-
Apart from providing a quantitative description of the mination of excitations in quantum dots. These excited levels
low-energy spectra in quantum dots the mapping onto latticenay be deduced implicitly from nonlinear transport
models is, in itself, very illuminating. For example, in casesexperiments. Furthermore, transport is qualitatively influ-
that can be mapped onto the antiferromagnetic Heisenbe@nced by the total spins of the many-electron states by two
model for the low-energy states, the spectrum consists of &/Pes ofspin blockadé*’" .
level multiplet of “band width” NJ where J, the nearest- The occurrence of a nonminimal total spin for the ground
neighbor superexchange integral, depends exponentially ofiate in a finite electron system is a direct consequence of the
the mean electron distance,. The highest-energy state 980Metry of the boundary. For systems which can be repre-
within this multiplet is the spin-polarized state, in agreemen .enteq by an annferromagneth Heisenberg model, this .rela—
with what has been derived within the pocket-state approxi-'onSh.Ip is obvious(cf. discussion of the square dot W't_h
mation using less obvious arguments. All spectra obtained b =5 in Sec. V. Apart from t_he electron number the spin
the lattice descriptions coincide exactly with those found in alue_s_ of ground and of excited states should depend very
the pocket-stafé approximation and are in very convincing sensmvely on the §hape_ of the quantum dot. In future re-
agreement  with results gained by numerical sgarch this v_v|II be mvesugated systemancally to allow spe-
diagonalizationd*** The computational effort required for cific suggestions for experimental design.

the former is, however, considerably less compared to bot An_other highly relevant_topic f(_)r regl experimental situa-
of the other methods. This will enable much larger system lons 1S to_apply the mapping denveq In the_ present work to
with N>20 to be investigated study the interplay between mutual interactions of the quan-

In certain geometries of two-dimensional quantum dots fUm dot electrons and impurities. No reliable picture exists

v>1 classical configurations of lowest electrostatic energ)PresentIY’ tWTCh den;onsbtrates dqur lack of un.der'stand_:_r;]g of
may exist, leading to an effective spin-charge model insteque,{p”erS',;S en cblirrer; S OI Served in mte;]soscgplc ][lngs. " %ory
of a spin-only effective model. While such situations are'S Stlll not capable of explaining even the order of maghitude

straightforward to deal with by the lattice method, we shouldOf the high values found experimentally. It is known that

point out that in real experimental situations the high Sym_one-dimensional models of rings are insufficient to describe

metry will be lowered by a polarizable environment for theth|s problent® Furthermore, evidence exists that the electron

P 9,31 ; ; _
following reason. The energetically most favorable Iocationsstt |st|maﬁrt?nﬁl Iotl'” mabpplng ontc:hlat':l'cebrbnogerlfﬂ%e%rp
for the quantum dot electrons depend on the distribution opnstrates that caicuiations based on the riuboar

surrounding(nonconductinyg charges, which themselves are are not significantly influenced _by the Iattic_e .bUt inde_ed re-
influenced by the distribution of théWigner localized but produce the low-energy properties of the original continuous

under transport conditions conductingot charges. Self- problems in the presence of strong interactions correctly if

consistency allows the dot electrons to lower the total energj}.‘e parameters, particularly the filling of the former, are in-

by adjusting their environment. For example, two electron erpreted accordingly. Advantage can be taken of _the com-
in a square will easily break the twofold symmetry of the parably large electron numbers that can be dealt with by our

classical ground states by polarizing their surroundings, Iea\ﬂqethOd' Wh'Ch woulq otherwise b.e intractable. Th!s will al-
ing a diamond-shaped configuration for the potential. Théqw th_e |r|1v'est|ga:|(]3n' of . mhult!pleh channels |rf\. two-
interplay between the surroundings and the granular electroﬂ'mens'om’1 rings of finite widths in the presence of impuri-
density of the dot finally tends to lower the number of clas-11es and flux.
sical low-energy configurations. Only configurations with

energies smaller than the bandwidtiNJ eventually need to

be considered explicitly. This plays a particular role, e.g., in  We acknowledge stimulating discussions with Bernhard
double-dot system®. Additionally, one should keep in mind Kramer, Colin Lambert, Walter Stephan, and colleagues in
that the shape of the quantum dot also depends on voltagesir EU-sponsored HCM network on the quantum dynamics
applied to side gate¥, so that the fine-structure spectra may of phase coherent structuréslCM Grant No. CHRX-CT93-
change with gate voltage. 0136)
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