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It is shown that at low densities, quantum dots with few electrons may be mapped onto effective charge-spin
models for the low-energy eigenstates. This is justified by defining a lattice model based on a many-electron
pocket-state basis in which electrons are localized near their classical ground-state positions. The equivalence
to a single-band Hubbard model is then established leading to a charge-spin (t2J2V) model which for most
geometries reduces to a spin~Heisenberg! model. The method is refined to include processes which involve
cyclic rotations of a ‘‘ring’’ of neighboring electrons. This is achieved by introducing intermediate lattice
points and the importance of ring processes relative to pair-exchange processes is investigated using high-order
degenerate perturbation theory and the WKB approximation. The energy spectra are computed from the
effective models for specific cases and compared with exact results and other approximation methods.
@S0163-1829~96!03731-9#

I. INTRODUCTION

Technological advances in microfabrication with corre-
sponding reduction in feature sizes has led to renewed inter-
est in the transport properties of semiconductor submicrome-
ter structures both from the fundamental physics point of
view and for possible future applications. In small metallic
islands the Coulomb blockade gives rise to the single-
electron effects, which may be modeled classically by a
small intradot capacitance.1 Islands fabricated on the basis of
semiconductors, called quantum dots, show in addition to the
charging effects discrete energy levels related to size
quantization.2–4 Individual quantum dots may be fabricated
from heterostructures, which limits the electron motion to
two dimensions, by imposing lateral confinement with a me-
tallic gate electrode deposited using fine-line~e-beam!
lithography.4 The discrete energy spectra may be measured
in transport experiments at finite voltages5,6 or frequencies.7

The influence of Coulomb correlations on the excitation en-
ergies is difficult to see optically by far infrared absorption8

due to the generalized version of Kohn’s theorem.9 The ob-
servation of the quadrupole transitions by using grating cou-
plers has been suggested10 as a possible optical means.

Quantum dots have been referred to as ‘‘artificial
atoms’’11 since the number of conducting electrons can be
smaller than 10 or 20. At the low electron densities which
are experimentally accessible, the calculation of excitation
energies becomes a challenging theoretical problem. For real
atoms, an independent-electron picture correctly describes
the main physics and the Hartree-Fock approximation yields
reasonably accurate eigenstates which may be refined in a
controlled way by perturbation theory. This is not generally
the case for semiconducting quantum dots for which even an
optimal Hartree-Fock approximation is significantly in
error12 and can even give qualitatively incorrect results, such
as the wrong spin-multiplet structure. The reason for this
qualitatively different behavior is that the electrons in a

semiconducting quantum dot are highly correlated, due to the
low effective density and the restriction of the electron mo-
tion to only two dimensions. Many-body effects must be
taken into account. This has been done by numerically exact
diagonalizations for systems with a very few electrons
~N<4!.13 In order to obtain reasonably accurate spectra for
systems with more electrons, approximations must be made.
One technique which has achieved some measure of success
at low electron densities is based on many-electron
‘‘pocket’’ states.14 Low-energy spectra of systems with up to
six electrons have been determined accurately15 and the
agreement with the exact numerical solutions~N<4! is good.
Unfortunately the computational effort is likely to become
prohibitive for systems with more than ten electrons and we
are again faced with the problem of devising a reliable ap-
proximation method for such cases.

One possible route is suggested by the pocket-state analy-
sis itself, which exploits the permutation symmetry of the
wave functions. We notice that in many cases the eigensolu-
tions may be represented by an effective spin model of a
simple form~Heisenberg model!. This apparent equivalence
is reminiscent of magnetic insulators for which the correlated
electron problem is known to reduce to a spin Hamiltonian, a
mapping which may be justified by transformation theory16

or degenerate perturbation theory17 as well as, in some cases,
by the theory of permutation groups.18 The magnetic insula-
tor problem starts with a lattice model in which the electrons
are localized on atomiclike orbitals and for which electron
correlations are essential, the generic model being the so-
called Hubbard model.19 The underlying crystalline lattice
establishes sites on which suitable one-electron states are
centered. The question arises as to what circumstances, if
any, might a Hubbard-type model be applicable to the prob-
lem of interacting electrons in a quantum dot, for which the
Fermi wavelengths are much larger than the interatomic
spacings and the underlying crystalline lattice loses its sig-
nificance. At extremely low electron densities the long-range
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interaction energy, according to Wigner,20 creates a crystal-
linelike ground state which might define new electronic lat-
tice sites. This crystallization is expected to take place only
at electron densities which are a factor of 20 smaller than the
densities used in experiments. Nevertheless, it has been
shown that the assumption of localized electrons allows the
calculation of discrete low-energy excitations as quantum
corrections to the Wigner crystal energies.15 The validity of a
Hubbard model description is not only an interesting ques-
tion of principle but has the practical potential of enabling
systems of many more electrons to be dealt with than has
hitherto been the case, i.e., tens of electrons or more. This
would enable the full machinery of techniques for solving
the Hubbard and Heisenberg models to be applied, for which
there has been much progress in recent years following the
discovery of high-temperature superconductivity and the as-
sociated theoretical activity on correlated electron systems.21

In this paper we will show that such a mapping may in-
deed be justified for thea priori continuous problem of in-
teracting electrons in a quantum dot at low densities. This is
done through the use of pocket states which are briefly re-
viewed in the next section after introducing the basic inter-
acting electron model. In Sec. III we show how the pocket
states may be used to define a one-electron orthonormal basis
with orbitals localized on a ‘‘lattice,’’ related to the electron
configuration~s! in the classical ground state~determined by
electrostatics!. This is then used to construct a tight-binding
Hamiltonian which reduces to the Hubbard model at low
electron densities. Further mapping to an effective~Heisen-
berg! spin Hamiltonian or charge-spin (t2J2V) model is
then performed.

In Sec. IV we point out an essential difference between
quantum dots and the corresponding correlated electron
problem for interacting electrons on a true lattice of atoms,
namely, the increased importance of the so-called ‘‘ring’’
terms in the former case, which involve cyclic permutations
of more than two electrons. The simple Hubbard model on a
lattice underestimates the magnitude of these ring terms for
the dot and it is shown how the method may be refined by
introducing intermediate lattice points which are unoccupied
in the ground manifold but give rise to the required ring
processes through virtual excitations. In Sec. V we solve the
effective Hamiltonians for specific examples withN<6 and
compare with exact numerical and pocket-state results where
appropriate. Finally, in Sec. VI, we give a summary and
discuss the outlook for this approach in dealing with systems
of more electrons and of obtaining further corrections where
necessary.

II. THE MODEL AND POCKET-STATE BASIS

We consider theN-electron quantum dot described by the
Hamiltonian

H5(
i51

N S pi22m1v~xi ! D 1W~x1 ,...,xN!,

W~x1 ,...,xN!5
1

2 (
i , j
iÞ j

w~ uxi2xj u!, ~2.1!

wherexi andpi are position and momentum of thei th elec-
tron in d dimensions~d52 for most quantum dots! with
~effective! massm and spins51/2. Neither the one-particle
confinement potentialv~x! nor the interactionw(x) depend
explicitly on spin.

The cases of square well single-particle potentials in one
dimension~1D! and in two dimensions~for square geometry!
have been discussed in Ref. 15. To be specific, and for com-
parison later, we shall also mainly confine ourselves to the
2D square potential well of square geometry, though the ex-
tension to other geometries is straightforward and, for the
present consideration, the detailed form ofv~x! is not quali-
tatively important. At large mean interparticle distancesr s it
becomes energetically favorable for the electron system to
localize its charge density distribution in regions close to the
classical ground-state electron configuration~s!,20,22 which
may be determined by minimizing the electrostatic energy.

This fact is the motivation for the many-electron pocket-
state basis in which the Hilbert space is restricted to
1<p<nN! basis statesup& with spatial representations being
defined in configuration space of dimensionalitydN. The
number of classical minimum-energy configurationsn may
be greater than one in certain symmetric geometries.~For
example, forN53 on a square we haven54 since, for the
classical ground-state energy, any one of the four corners
may be unoccupied.! The low-energy levels form a multiplet
which containsn2N states in total~including Zeeman levels!.
The excited ‘‘vibrational’’ states scale as a power law
;r s

2g with r s ~g being close to 3/2! and can be neglected if
the density is not too high. This is due to the scaling
;exp(2Ar s /r c) of the low-energy excitations we are inter-
ested in here, wherer c is a length scale which characterizes
the transition from the almost noninteracting situation
(r s!r c) into the qualitatively different regime of strong cor-
relations (r s@r c).

14

In the pocket-state method, the first step is to calculate
energies by assuming equivalent but distinguishable particles
and ignoring their spin. Spin and statistics are subsequently
reestablished by means of group theory. Tunneling integrals
^puHup8& between the localized many-particle~pocket! basis
states determine the low-energy excitations. The tunneling
processes correspond to~correlated! transitions between dif-
ferent particle arrangements. In the low-density regime one
tunneling integral,J/2, is exponentially larger than all others.
In many cases the dominantJ corresponds to the exchange
of only two particles, which may be adjacent in real space.
Other processes could be the simultaneous~ring! exchange
of three or more particles, corresponding to a cyclic permu-
tation.

An important feature of the spectra given by the pocket-
state approximation~and by the effective charge-spin models
to be derived and discussed in the following sections! is that
the fine structure of the energy spectra depends only onJ,
the magnitude of which may be estimated semiclassically
within the multidimensional WKB approximation. The ratios
between the energy differences are insensitive to the detailed
form of the interelectron potential and tor s . An examination
of the spectra shows that these situations may be mapped
onto an effective spin model with again one parameter for
each process~pair exchange, ring! considered. This equiva-
lence will be justified in the next section. Here we merely
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make the observation that for the cases considered by the
pocket-state method, the energy spectrum is the same as that
which would be given by a spin Hamiltonian. An exception
to this are situations for which more than one classical
minimum-energy configuration for the electrons exist
~n.1!, such as two or three electrons on a square. We will
show in the next section that these latter situations may be
mapped onto a so-calledt2J2V model in which the domi-
nant tunneling process is now related tot, the amplitude
corresponding to the jump of a single particle into an empty
‘‘site.’’ J is again an exchange process involving at least two
particles andV represents the Coulomb repulsion between
electrons on neighboring ‘‘sites.’’

In general, the pocket states are correlated electron states
which need not be assumed as a direct product of one-
electron states. However, we may mimic the eigenstates at
sufficiently larger s with a one-electron product basis within
the Heitler-London~HL! approximation. The latter are local-
ized in regions close to the positions the electrons would
have in the classical ground state. In the next section we
show how this one-electron basis may be used to define an
orthonormal basis from which we construct an effective
Hubbard model. This effective Hamiltonian yields low-
energy spectra which are at least as accurate as what would
be given by the corresponding HL approximation using a
product basis of nonorthogonal, one-electron wave functions.
We then show in Sec. IV how the method may be extended
to cases where ring processes are important.

III. MAPPING TO HUBBARD
AND CHARGE-SPIN MODELS

Let us assume that the pocket basis statesup& are approxi-
mated ‘‘optimally’’ by nonorthogonal one-electron wave
functionsfi centered at positioni . These states have the
form

^x1 ,...,xNup&[fp1
~x1!fp2

~x2!•••fpN
~xN!, ~3.1!

where $p1 ,...,pN% is the permutationp of the sequence
$1,...,N%. In this section we orthogonalize these one-electron
wave functions and construct antisymmetrizedN-electron
states from which we define the effective Hubbard model,
which is subsequently transformed into a spin Hamiltonian.
To illustrate the main features of the method with minimal
mathematical complexity, we first consider in detail the sim-
plest nontrivial case of two electrons in a 1D square well.
The analysis is then generalized toN electrons in one or two
dimensions.

As is well known, for two electrons the antisymmetrized
states may be written as the product of orbital and spin parts,
as with the HL states of the hydrogen molecule. The sym-
metric ~singlet! and antisymmetric~triplet! orbital states are
thus

CS5
f1~1!f2~2!1f2~1!f1~2!

A2~11s2!
~3.2!

and

CA5
f1~1!f2~2!2f2~1!f1~2!

A2~12s2!
, ~3.3!

wheres5^f1uf2& is the overlap and the arguments~i51,2!
abbreviate the coordinatexi of the i th particle. These HL
states yield approximate singlet and triplet ground-state en-
ergies:Esinglet5^CSuHuCS& andEtriplet5^CAuHuCA&, where
H is the Hamiltonian for two electrons given by Eq.~2.1!.

We now transform to orthonormal one-electron statesc
where

c15S 1

2A11s
1

1

2A12s
D f11S 1

2A11s
2

1

2A12s
D f2 ,

c25S 1

2A11s
1

1

2A12s
D f21S 1

2A11s
2

1

2A12sD f1 .

~3.4!

Inverting this transformation and substituting into Eqs.~3.2!
and ~3.3! we get

CS5
1

A11s2
CS

~1!1
s

A11s2
CS

~2! , ~3.5!

CS
~1!5

c1~1!c2~2!1c2~1!c1~2!

&
,

CS
~2!5

c1~1!c1~2!1c2~1!c2~2!

&
, ~3.6!

and

CA5
c1~1!c2~2!2c2~1!c1~2!

&
. ~3.7!

We note thatCA ~triplet! has the same form as for the
nonorthogonal states given in Eq.~3.3!, i.e. it corresponds to
one electron in each orbital. On the other hand,CS ~singlet!
consists of two components, one with an electron on each
orbital ~CS

(1)! and the other with both electrons in the same
orbital ~CS

(2)!. ~The latter state is not allowed for the triplet
by the Pauli principle.! This ‘‘double occupation’’ is thus a
direct consequence of orthogonalization.

Using these two-electron states composed of orthogonal
one-electron wave functions will, of course, yield exactly the
same approximate singlet and triplet energy expectation val-
ues. However, we can obtain a more accurate estimate for the
ground-state energy of the singlet by diagonalizing the
Hamiltonian in the Hilbert space defined by the two-electron
base statesCS

(1) andCS
(2) @Eq. ~3.6!#. This follows from the

variational principle which ensures that diagonalization of
the Hamiltonian matrix will yield the optimum superposition
of the base states, whereas the HL state~3.5! is not optimum
in general.

This principle also applies to the generalN-electron case
as stated in the Introduction, i.e., diagonalization of the
Hamiltonian in the restricted Hilbert space defined by base
states~Slater determinants! constructed from orthogonalized
one-electron wave functions will yield a more accurate low-
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energy spectrum than the simple products of nonorthogonal
one-electron states~3.2! and ~3.3!.

For the two-electron case the~232! Hamiltonian singlet
matrix is

Hs5S 2«1V1 j 2t̃

2t̃* 2«1U1 ̃
D , ~3.8!

where

«5 K c1UF p22m1vGUc1L 5 K c2UF p22m1vGUc2L ,
V5E uc1~x!u2uc2~y!u2w~ ux2yu!d3x d3y,

U5E uc1~x!u2uc1~y!u2w~ ux2yu!d3x d3y

5E uc2~x!u2uc2~y!u2w~ ux2yu!d3x d3y,

t5E c1* ~x!F p22m1v~x!Gc2~x!d3x,

t5E c1* ~x!F E uc1~y!u2w~ ux2yu!d3yGc2~x!d3x,

t̃5t1t,

j5E c1* ~x!c2* ~y!w~ ux2yu!c2~x!c1~y!d3x d3y,

j5E c2* ~x!c2* ~y!w~ ux2yu!c1~x!c1~y!d3x d3y,

j̃5Re~j!. ~3.9!

Note, j5j5 j̃ if the ci are real.
The triplet energy is

Et52«1V. ~3.10!

Within this restricted manifold of states, the singlet-triplet
Hamiltonian matrix, Eqs.~3.8! and ~3.10!, are equivalent to
an effective Hamiltonian,

Heff5«@n11n2#1U@n1↑n1↓1n2↑n2↓#1Vn1n2

1 j(
s

c1s
† c2s

† c2sc1s1F(
s

S tc1s
† c2s1t~c1s

† c2sn1s

1c2s
† c1sn2s!1

1

2
jc1s

† c1s
† c2sc2sD 1H.c.G , ~3.11!

wherecis
† is a Fermi creation operator at sitei51,2 satisfy-

ing ^xucis
† uvac&5c is(x); nis5cis

† cis andni5ni↑1ni↓ .
This effective Hamiltonian is very similar to that consid-

ered by Hubbard19 for a periodic array of one-electron atoms
in the study of the metal-insulator~Mott! transition. Indeed,
for this two-electron case, Eq.~3.11! is an effective Hamil-
tonian for the hydrogen molecule within a restricted Hilbert
space of~effective! 1s orbitals. We stress, however, that in

the quantum dot case the localized orbitals are fundamentally
different from those in the atomic case in that their very
existence depends on the electron-electron repulsion which is
responsible for localizing the electrons near specific points in
real space at low density. For this reason we are not justified,
a priori, in dropping all but the largest Coulomb term (U),
as is usually done in the Hubbard model. In particular, the
nearest-neighbor effective Coulomb interactionV becomes
most important whenr s becomes very large and Eq.~3.11!
simply reduces to the classical expression for the ground-
state energy, independent of spin, as it should. This may be
seen more clearly by transforming~3.11! into an effective
spin Hamiltonian which is demonstrated most directly for
this two-electron case by diagonalizing the singlet matrix,
~3.8!, explicitly to yield eigenenergies

E65
1

2
@4«1V1U1 j1 j̃6A~U2V1 j̃2 j !2116u t̃u2#.

~3.12!

Since for the cases of interest~large separation between
the electrons and real one-particle wave functions!,
U@V, j , j̃ and j5 j̃ , then

E1'2«1U1 j1
4u t̃u2

U2V
~3.13!

and

E2'2«1V1 j2
4u t̃u2

U2V
. ~3.14!

Combining these equations with~3.10! for the triplet we see
that the energy spectrum consists of a singlet-triplet pair at
low energies separated by a singlet at energy;U higher.
Hence the low-energy singlet triplet is equivalent to a spin
system with effective spin Hamiltonian

Hspin52«1V1J~s1•s221/4!, ~3.15!

where

J5
4u t̃u2

U2V
2 j'

4u t̃u2

U
2 j . ~3.16!

The first term in Eq.~3.16!, favoring a singlet ground state, is
sometimes referred to as ‘‘superexchange’’ and is usually
larger than the second ‘‘direct’’ exchange term,j . This su-
perexchange contribution has its origins in the assumed non-
orthogonality of the initial Heitler-London basisfi in ~3.1!.
From the pocket states it is known that they form a nonor-
thogonal basis set for the low-energy eigenstates.23

We now consider the general case ofN electrons in a
quantum dot. Starting with a suitable product basis of pocket
states, Eq.~3.1!, we may, in general, define an orthonormal
basis by Lo¨wdin’s method.24 @For high-symmetry situations
it may be more convenient and expedient to use some other
method. For example, in the case of four electrons on a
square we havep/4 rotational symmetry and we may gener-
ate orthonormal states by forming molecular orbitals, nor-
malizing, and then transforming back to localized states.
Similarly, for translationally invariant systems we may trans-
form to running~Bloch! waves, normalize, and then trans-
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form back to localized~Wannier! states.# Within the corre-
sponding many-electron Hilbert space we may express the
Hamiltonian in second quantized form. We are led directly to
an effective ‘‘single-band’’ model of the type considered by
Hubbard, generalizing Eq.~3.11!,

Heff5(
i

@« ini1Uini↑ni↓#1(
i , j

Vi j ninj

1(
i j s

j i j cis
† cjs

† cjscis1F (
i , j ,s

S t i j cis† cjs
1t i j ~cis

† cjsnis1cjs
† cisnjs!

1
1

2
j i j cis

† cis
† cjscjsD 1H.c.G , ~3.17!

where the indicesi and j should be distinct. The parameters
«, U, V, j , t, t, and j have the same meaning as in the
two-electron case~3.9!, though it should be noted that they
will, in general, depend on the position of the electron, or
pair of electrons and on separation. In particular the param-
eters,j , t, t, andj related to electron transfers decay rapidly
as the distance between the sitesi and j increases. This al-
lows us to retain only nearest-neighbor terms in the double
summations. As with the case of two electrons, we may
eliminate the high-energy states ofHeff to yield an effective
spin Hamiltonian. This may be done using degenerate per-
turbation theory25 or a canonical transformation,26 as with
the case of a lattice.

Specifically in the situations of two-~or higher-! dimen-
sional quantum dots the cases of more than one minimum of
the classical electrostatic energy may occur~n.1!. Then the
quantum-mechanical charge density distribution shows more
thanN peaks at larger s , sayÑ.N. The number of single-
electron states must be equal toÑ in these cases.Ñ2N
lattice sites will be unoccupied at an instant. Consider, for
example, the case of a square confining potential in two di-
mensions. ForN52, Ñ54 and the electrons will be found
mainly near opposite vertices along the diagonal of the
square, due to the Coulomb repulsion. States with two elec-
trons near adjacent vertices will be of orderV higher in
energy ~nearest-neighbor Coulomb repulsion energy! and
states with two electrons located near the same vertex will be
of orderU higher in energy. Similarly forN53 there will be
low-lying states with electrons located near three of theÑ54
vertices with states having two electrons near the same ver-
tex again being;U higher in energy. ForN54 all vertices
are occupied in the ground manifold, with configurations for
which there are two electrons near one vertex being at least
;U higher in energy.

In each of these cases the high-energy states, correspond-
ing to one or more vertices being occupied by two electrons,
may be eliminated from the Hilbert space by degenerate per-
turbation theory, where they appear as intermediate states.
More precisely, we first writeHeff in the formHeff5H01H1
whereH05( i [« ini1Uini↑ni↓]. H0 is diagonal in the basis
of product states with the highest-energy states having two
electrons in the same state, being;U higher than the low-
energy states.27 Eliminating these states to second-order re-
sults in an effective ‘‘t2J2V’’ Hamiltonian,28

Heff
tJV5P(

i , j
F(

s
~ t i j cis

† cjs1H.c.!

1Ji j ~si•sj21/4!ninj1Vi j ninj GP. ~3.18!

In this equationt andV have the same meaning as before
and

Ji j52ut i j1t i j u2F 1Ui
1

1

Uj
G2 j i j . ~3.19!

P is a projection operator which eliminates all base states for
which there are two electrons in the same localized state.
@These states appear as intermediate states and give rise to
the superexchange in Eq.~3.19!.# We also note that the«, t,
andj terms in Eq.~3.17! have disappeared in Eq.~3.18!. The
former has been dropped since it always gives rise to a con-
stant and the latter two are precluded byP ~as is theU term!
since they would always give rise to double occupation at a
site.

Equations~3.17! and~3.18! are the fundamental effective
Hamiltonians for interacting electrons at low density in a
quantum dot and capture the main physics of the problem for
most situations.~They do not, however, include processes in
which groups of electrons can rotate simultaneously, which
can be important in some circumstances. The generalization
to include these so-called ring terms is given in the next
section.! Although these effective models were justified by
starting with the Heitler-London approximation to pocket
states using nonorthogonal one-electron states, we emphasize
that they have a greater range of validity than the initial
approximation suggests. The above methodology enabled us
to define a basis set of product states~Slater determinants! of
some one-electron states and this led directly to effective
Hamiltonians operating within this restricted~incomplete!
basis set. However, it is well known25 that higher-lying base
states may be accounted for by perturbation theory. This
technique has recently been applied very successfully to lat-
tice models in which an effective single-band Hubbard
model was derived from a multiband model using quaside-
generate perturbation theory.29 We shall not attempt such a
reduction here for the quantum dot problem, but merely
point out that its main effect would be to renormalize the
effective parameters~« i ,Ui ,t i j , etc.! and extend the validity
of the resulting models.

Let us apply~3.18! to the case of electrons in a square
well in two dimensions, discussed above. ForN52 andN53
the t term will cause electrons to hop from occupied to un-
occupied sites whereas theJ andV terms will be effective
only when two adjacent sites are occupied. The presence of
the V term ensures that forN52 the electrons will have
lower energy when they are located on diagonally opposite
vertices of the well, as mentioned earlier. ForN54 the t
term may be omitted since all four vertices are occupied in
the ground manifold and it would thus give rise to double
occupancy, precluded byP. TheV term may also be dropped
since it gives rise to a constant contribution. Hence the sites
i and j can be restricted to nearest neighbors so that~3.18!
reduces to a Heisenberg model,
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HJ5(
^ i , j &

Ji jsi•sj , ~3.20!

whereP has been omitted for brevity.
Similar considerations apply forN.4 and the effective

Hamiltonian will either have the form~3.20! or ~3.18!, de-
pending on whethern51 ~e.g., N54,5! or n.1 ~e.g.,
N52,3,6!. For the latter cases a further reduction will be
possible when some of the states of thet2J2V model are
clearly higher in energy due to theV interaction.

Consider, for example, the case of two electrons in a
square-shaped dot for which there are six ways of distribut-
ing the two~indistinguishable! electrons in the four corners,
resulting in a Hilbert space of dimension 436524 when spin
is taken into account. Four of these configurations~16 with
spin! are of orderV higher in energy than the remaining two,
as shown in Fig. 1. These high-energy base states may be
eliminated from the problem by a further application of de-
generate perturbation theory, resulting in an effective Hamil-
tonian which only operates in the Hilbert space of the eight
lowest-energy base states. By a straightforward calculation
this takes the form~apart from an unimportant overall con-
stant!

Heff5D~n1n32n2n4!~Rp/22R2p/2!1J@~s1•s321/4!n1n3

1~s2•s421/4!n2n4#, ~3.21!

whereD52t2/V andRu is a rotation operator, i.e.,

Rp/2us,* ,s8,* &5u* ,s,* ,s8&, ~3.22!

etc. Note that the prefactor (n1n32n2n4) takes the value61
depending on whether either sites 1 and 3, or 2 and 4 are
occupied. This effective Hamiltonian is easily diagonalized.
The spectrum consists of two singlets and two triplets. We
see immediately that~3.21! gives zero when operating on a
spin-polarized state and hence the triplets are at zero energy
with the singlets at energies2J62D, in agreement with
what is obtained from the pocket-state approximation for this
problem when the exchange of the two electrons is included
there.15 There are thus two contributions to the ‘‘binding
energy’’ of the singlet ground state, a resonance energy
~22D! and a superexchange energy~2J!. It is easy to see
that the former will be dominant since it occurs in second

order and does not involve double occupation of a site. On
the other hand, there are two contributions toJ, the second-
order term;4t 13

2 /U and fourth-order terms;t 12
4 /V2U. We

may extend these considerations to a regular polygon withN
vertices andN/2 electrons. The effective Hamiltonian will
again consist of rotation operators~of 62p/N! and exchange
terms. The exchange terms are independent ofN, whereas
the rotation terms become relatively less important since
they first occur inNth order. In the next section we shall
encounter circumstances where simultaneous rotations of
more than two electrons may be important.

We conclude this section by emphasizing the computa-
tional advantage in this reduction to a spin or charge-spin
Hamiltonian. Thus, for example, the Heisenberg model lies
in a Hilbert space of dimension 2N for N electrons, which
may be further reduced by exploiting other symmetries, e.g.,
conservation of totalSz which reduces the largest subspace
to N!/[(N/2)!/] 2 ~Sz50 for N even!. This should be com-
pared with

max
S

F ~2S11!N!

~N/21S11!! ~N/22S!! G
2

for the largest subspace of the Hamiltonian in the original
pocket-state basis.

The mapping also gives interesting insight into the nature
of the energy spectrum. For those cases which reduce to a
Heisenberg model, the spectrum consists of spin multiplets
with energy separation of orderJ ~‘‘bandwidth’’ ;2NJ!. On
the other hand, for cases which reduce to a charge-spin
model, there are multiplets separated by energies of order
t~@J in the same geometry and electron densities!, each of
which have a fine structure with energy splittings of orderJ.

The foregoing analysis for electrons may also be extended
to a fictitious system of spin-1/2 charged bosons. For repul-
sive Coulomb interactions they also show Wigner crystalli-
zation and the pocket-state method can be applied. This
problem was considered by Ha¨usler15 in order to prove that
the state of highest spin within the multiplet structure of
electrons~fermions! in a quantum dot is the spin-polarized
state forn51 by exploiting an isomorphism between fermi-
ons and bosons using permutation group theory. We consider
this problem here to enable another direct comparison with
the pocket-state description.

The case of spin-1/2 bosons is similar to the fermion case
in that at low densities the largest ‘‘Coulomb’’ matrix ele-
ments correspond to two bosons on the same site. Neglecting
all other matrix elements thus gives the ‘‘boson’’ Hubbard
model:

H5 (
^ i , j &s

~ t i j bis
† bjs1H.c.!1

U

2 (
i ,s,s8

bis
† bis8

† bis8bis .

~3.23!

Using the usual commutation rules for the Bose operators
yields

b†un&5An11un11&,

bun&5Anun21&. ~3.24!

It follows that

FIG. 1. Classical low-energy configurations for two electrons in
a 2D square quantum well. The first two configurations are lowest
in energy while the remaining four areV higher in energy due to
Coulomb repulsion. All other configurations have higher electro-
static energy.
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h0us,s8&5Uus,s8&,

where

h05
U

2 (
ss8

bs
†bs8

† bs8bs .

This is the same result as the case of fermions except that
with bosons the two particles may have the same spin.

As with the fermion case, we can now reduce~3.23! to a
Heisenberg ort2J2V model~depending on whether or not
the number of bosons equals the number of lattice sites!. Let
us, for simplicity, do this for just two sites. The extension to
the general case may be done by perturbation theory in the
same way as with fermions.

In the ‘‘atomic limit’’ ~t50! the eigenstates of~3.23! with
two bosons consist of either one boson on each site with
either spin~energy 0! or one site unoccupied and the other
doubly occupied, again with either spin~energy equal toU!.
Using these base states it is straightforward to show that the
singlet state

ucS&5
u↑,↓&2u↓,↑&

&

is unaffected by the hopping, i.e.,

HucS&50.

On the other hand, the triplet states mix. For example, using
~3.24!, we get

Hu↑,↑&5t@ u•,↑↑&1u↑↑,•&],

Hu↑↑,•&5Uu↑↑,•&1&tu↑,↑&,

etc. This leads directly to the triplet Hamiltonian matrix

F 0 2t

2t U G ,
with lowest eigenvalue

E5
U2AU2116t2

2
.

This is exactly the same result as for the fermions except that
the positions of the~lowest! singlet and triplet levels are
reversed. It follows that the lowest singlet and triplet are
equivalent to a Heisenberg model with ferromagnetic ex-
change of the same magnitude as the case of fermions. As
mentioned above, this may be generalized to any number of
sites by degenerate perturbation theory resulting in a Heisen-
berg model in whichJ→2J when compared with the ferm-
ion case, leading to an ‘‘inverted’’ spectrum in agreement
with the permutation group analysis described in the second
reference of Ref. 15.

In a similar fashion, cases for which the number of bosons
is less than the number of sites~such as two or three on a
square! may be reduced to at2J2V model. However, while
the sign ofJ is reversed relative to the case of fermions, the
sign of t remains the same and the resulting spectrum is no
longer a simple inversion.

IV. RING TERMS

In Sec. III it was shown that thet2J2V model may be
reduced to an effective Hamiltonian which only involves the
lowest-energy base states. This effective Hamiltonian then
contains operators which rotate some or all of the electrons
simultaneously@cf. ~3.21!#. The possibility of such a collec-
tive motion of a subset or all of the electrons is much more
general and will in fact occur for any geometry. These pro-
cesses are negligible within the framework of the usual lat-
tice models but this is not always the case in quantum dots or
other semiconductor based nanostructures where such
‘‘ring’’ terms can become dominant. As we shall see they
may be included in a lattice model by introducing interme-
diate lattice points which are unoccupied in the ground mani-
fold.

Consider, for example, the case of an equilateral triangu-
lar dot containing three electrons, as shown in Fig. 2. Using
the Hilbert space defined by the Heitler-London approxima-
tion to the pocket states leads directly to the Heisenberg
model for this system, with a spin-1/2 ground state, as shown
in Sec. III. Ring terms corresponding to cyclic rotations of
all three electrons are not included in this model. However, it
is clear from the pocket-state description that such processes
exist. The relevant tunneling integrals between the 3!56
pocket states in this case can be represented by permutations
of the types

~123!→~213!: J/2 ~pair exchange!,

~123!→~312!: K/2 ~ring exchange!.

Their magnitudes may be estimated semiclassically within
the WKB approximation. The most important contributions
to J andK vary exponentially with the particle distancer s
~which equals the length of one side of the triangle in the
case considered!, i.e.,

J/2;e2S~123!→~213!, K/2;e2S~123!→~312!,

where

S5E
0

1

dqA2mnW„x~q!…

is the action associated with the transport ofn particles~n52
or n53 for J or K, respectively! of massm from the initial
classical ground state~123! into the final state. The transition
takes place along the trajectoryx¢(q) which in principle

FIG. 2. ~a! Classical ground-state configuration for three elec-
trons in a triangular quantum dot.~b! Classical path for the ex-
change of two electrons.~c! Classical path for the cyclic permuta-
tion of all three electrons. Particles are shown in intermediate
positions along their trajectories.
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obeys an equation of motion which minimizes the classical
action. Here, it is parametrized by 0<q<1 in configuration
space~of dimensionalitydN56!. For an explicit estimate let
us specify the interaction between the particles and assume

w~ uxi2xj u!5
e2/k

uxi2xj u
.

ThenW~x¢! is the Coulomb energy atx¢[$x1,x2,x3% where the
equilibrium value 3(e2/k)/r s has been subtracted so that
W„x¢~0!…5W„x¢~1!…50. The results

S~123!→~213!54Am
e2

k
r sE

0

1/2

dqF 1

A12q1q2

1
1

A12
29

8
q14q2

1
1

A12
5

2
q1

7

4
q2

23G 1/2

52.139Ar sme2/k,

S~123!→~312!56Am
e2

k
r sE

0

1/2

dqF 1

A123q13q2
21G 1/2

52.852Ar sme2/k

are obtained assuming straight linesx¢(q) for simplicity. This
yields upper bounds to the true values ofS which may be
reasonable particularly forS~123!→~312!. The estimate for
S~123!→~213! is surely worse because the classical pathx¢(q) is
more difficult to estimate for the pair exchange. The chosen
paths for both cases are indicated in Fig. 2. Thus the pair-
exchange process~corresponding to the superexchange
within the lattice description below! is slightly dominant
compared to the ring process in the equilateral triangle. This
supports a ground state of low total spinS51/2. However,
the triangle can easily be distorted so thatS~123!→~312! is much
reduced whileS~123!→~213! remains almost unaffected, result-
ing in a crossover to a spin-polarized ground state30,31 ~see
also below!.

The existence of ring-exchange processes highlights a
fundamental difference between a true lattice model and a
continuum model. In order to accommodate such processes
we need a better lattice approximation to the continuum than
that suggested by the Wigner lattice. This may be achieved
by introducing intermediate lattice points and corresponding
localized one-electron orbitals. Orthogonalizing these one-
electron orbitals then enables an orthonormal many-electron
basis set to be constructed, as before. This is shown in Fig. 3
for the triangular dot in which an extra lattice point is in-
serted between each pair of vertices.

The low-energy eigenstates may now be expanded in this
basis set. As before, the probability of occupation of the
three vertices is highest, leading to a 23 equals eightfold de-
generate ground manifold when the hopping terms are

switched off. Higher-lying base states, corresponding to
double occupation of a lattice site and to occupation of in-
termediate lattice sites may then be eliminated by degenerate
perturbation theory, resulting once more in an effective spin
Hamiltonian. Intermediate states which involve double occu-
pation of a lattice site give rise to a Heisenberg superex-
change term in the effective Hamiltonian, withJ58t4/V2U,
where t, V, andU have the same meanings as before but
now refer to nearest-neighbor and on-site interactions for the
new lattice. Longer-range interactions are ignored.@Note,
however, that this is not necessary, it being straightforward
to include longer-range interactions leading to a renormaliza-
tion of J which will leave the form of the~Heisenberg! pair
exchange unchanged.# There are two processes involved in
this superexchange making equal contributions toJ. These
are shown in Fig. 4. These processes are analogous to super-
exchange in atomic systems in which the intermediate sites
would correspond to ligand ions surrounding transition-metal
ions. Recent examples of this kind of system are the copper-
oxide planes of the high-temperature superconductors, for
which there is a similar fourth-order expression for the
superexchange.32 It is also clear from this extended lattice
description that other processes, which do not involve double
occupation of a site~and therefore do not involve the exclu-
sion principle!, are potentially important. The lowest-order
process of this type is also a pair exchange and occurs in fifth
order. An example is shown in Fig. 4~b!, which makes a
contribution toJ of order t5/V4. Despite being higher order

FIG. 3. Lattice points for the triangular quantum dot. In the
ground manifold all three electrons will be close to the positions
indicated by the circles. Excited~intermediate! states correspond to
one or more electrons in localized orbitals centered on the crosses.

FIG. 4. Superexchange processes.~a! Fourth order (;t4/V2U).
~b! Fifth order (;t5/V4).
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than the other superexchange terms, this process is, in fact,
the largest since it does not involve double occupation of a
site ~i.e., there is noU factor in the energy denominator!.

With intermediate lattice points it is easy to see that there
are ring processes giving rise to simultaneous rotation of all
three electrons. One such process, in which the three elec-
trons are rotated cyclically by 2p/3, is shown in Fig. 5. The
process resembles the classical path which would contribute
to the WKB tunneling rate, cf. Fig. 2. The former is a sixth-
order process giving rise to a cyclic rotation operator in the
effective Hamiltonian with amplitudet6/12V5. Summing
over all such processes results directly in an effective ‘‘ring’’
operator,2K(R2p/31R22p/3), whereK is a constant energy
and R2p/3(R22p/3) is an operator which performs a cyclic
~anticyclic! rotation of all three electrons@cf. ~3.22!#. We
note that these rotation operators may be written as spin op-
erators using the identities

R2p/3[P12P23 and R22p/3[P23P12, ~4.1!

where Pi j[2s1•s211/2 is the Dirac exchange operator.
Hence the effective spin Hamiltonian for three electrons in
an equilateral triangular potential well becomes

Heff5
J

2
@~P1221!1~P2321!1~P3121!#

2K~P12P231P23P12!. ~4.2!

We see immediately from this form that the spin-
polarized state has eigenenergy22K. It is straightforward to
complete the diagonalization ofHeff which results in a fur-
ther pair of degenerate doublets at energyK23J/2. Thus we
see that the ring and exchange terms oppose each other with
the former favoring a high-spin ground state and the latter a
low-spin ground state. The crossover occurs atJ52K, which
is not quite reached for the equilateral triangle, as discussed
above within the WKB approximation..

This will not always be so for other geometries as follows
immediately from the fact that we can change the shape of
the dot in such a way that the ring processes are increased in
amplitude relative to the exchange processes. An ‘‘extreme’’
example of this is the circular dot for which there is no
barrier to the simultaneous rotation of the three electrons and
the ground state should be spin polarized. The transition
from high-spin to low-spin ground states in rings with in-
creasing impurity barrier has been discussed recently31 in the
context of persistent currents.

With the inclusion of higher-order exchange processes in-
volving also more than two particles, this completes the
mapping of formerly continuous electron problems~2.1!

onto lattice models~3.18! for their low-energy and corre-
sponding spin properties. This incorporates all permutational
processes which according to the pocket-state description
may be relevant. The above derivation of an effective-spin
model for a triangular dot, including ring terms, is easily
generalized to arbitrary shapes by inspecting all possible
classes of ring and exchange terms on a suitably dense lattice
into ~3.18!. The relative amplitudes of the various processes
can be estimated semiclassically.

V. COMPARISON WITH EXACT RESULTS
AND OTHER APPROXIMATIONS

To corroborate the lattice description for the low-energy
and corresponding spin properties of quantum dots we com-
pare the results from~3.18! with results obtained by numeri-
cally exact diagonalizations14 and by the pocket-state
method.15

The simplest model for an artificial atom is a hard wall
box in one dimension. Rigorous properties for the sequence
of spin states

E~S!,E~S8! ~5.1!

for S,S8 are known by a theorem of Lieb and Mattis.33

E(S) denotes the lowest energy ofN almost arbitrarily in-
teracting electrons to given spin

S5 H 0
1/2J ,...,N/2.

In particular, the ground-state spin must be minimal. This
rule ~5.1! is in obvious agreement with the description in
terms of an antiferromagnetic Heisenberg~spin-1/2! chain
~3.20!, valid for this case according to Sec. III, where the
exchange of adjacent electrons is the relevant permutational
process and there is only one classical minimum-energy con-
figuration, ~n51!. In Table I the energy values ofN52,3,4
electrons are given in units ofJ as obtained within the
pocket-state approximation~PSA!, assumingJ125J235J34.
These spectra agree exactly with the eigenvalues of the
Heisenberg chain ofN52,3,4 spins apart from unimportant
additive constants. Similarly, Fig. 6 shows the excitation en-
ergies forN53,...,6 and includes also results obtained by

FIG. 5. A six-step ring process for three electrons in a triangular
quantum dot. The electrons would move continuously and simulta-
neously in the direction of the arrows in the WKB approximation.

TABLE I. Analytical values for the fine-structure spectrumEm
(N)

of N interacting electrons in a one-dimensional hard wall box
within PSA forN<4. S is the total spin ofN fermions withs51/2.
The excitation energiesEm

(N)2Eground state
(N) are given in units ofJ(N).

N S Em
(N)2Eground state

(N)

2 0 0
2 1 J~2!

3 1/2 0
3 1/2 J~3!

3 3/2 ~3/2!J~3!

4 0 0
4 1 ~11)2&!J~4!/2
4 1 ~11)!J~4!/2
4 0 ~2)!J~4!/2
4 1 ~11)1&!J~4!/2
4 2 ~31)!J~4!/2
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numerical diagonalization of the Hamiltonian matrices for
N53,4 ~dashed!. For the casesN55 and N56 we also
checked, by numerical diagonalization, that the Heisenberg
chain shows exactly the same spectrum.

As a further example we investigatedN52,...,5 electrons
in a two-dimensional square with hard walls. For these cases
the interaction must be long rangew~uxu!;uxu2g with g,2 in
order to make the PSA applicable. The spectra obtained
within PSA are shown in Fig. 7. ForN54 the nearest-

neighbor pair-exchange process has been compared with the
competing process of all four electrons rotating cyclically by
p/4,15 in a similar way as it has been done forN53 electrons
in a triangle in the preceding section, with the result of the
former being slightly dominant. In all cases the equilibrium
positions of the electrons have been taken as sites for single-
electron states for the lattice description, as discussed in Sec.
III, and the importance of transition processes has been esti-
mated semiclassically. ForN55 one electron is, by electro-
statics, located in the center of the square being coupled
antiferromagnetically, according to~3.20!, to the four elec-
trons placed in the corners. The Heisenberg model is appro-
priate since there is only one classical equilibrium configu-
ration ~n51!. Neglecting next-nearest-neighbor exchange
results in anS53/2 ground-state spin, using the PSA and
permutation group theory. This result is immediately under-
standable from the Heisenberg spin Hamiltonian, which
clearly has a quartet ground state. Furthermore, we have
checked that for all spectra, the corresponding Heisenberg
~N54,5! or t2J2V (N52,3) Hamiltonians exactly repro-
duce the correct ordering of the spin multiplets and the cor-
rect energy splittings provided that the parameterst, J, andV
are chosen to be consistent with the corresponding tunneling
amplitudes in the PSA.

As a third example we look at the spectrum of three elec-
trons in a one-dimensional ring. In Sec. IV we explained
why the ground state is high spin~S53/2!, which is also
found in the pocket-state description. Two degenerate low-
spin ~S51/2! excited states are higher in energy by the rota-
tional constanth2/2mNL2, whereL is the circumference of
the ring. They are additionally shifted by the magnitude of
the pair-exchange processJ towards lower energy, in agree-
ment with ~4.2!.

VI. SUMMARY AND OUTLOOK

Based on the pocket-state description of the low-energy
excitations in finite anda priori continuous systems of inter-
acting electrons at low densities we have derived a lattice
formulation for this problem. Nonorthogonal single-electron
states centered near the positions where the electrons would
be in the classical minimum-energy configurations are or-
thogonalized, leading to contributions from double occupan-
cies;Uini↑ni↓ in an effective Hubbard model description.
Subsequent elimination of high-energy states~;Ui or ;Vi j ,
from nearest-neighbor occupations! yields effective antifer-
romagnetic Heisenberg@Eq. ~3.20! for n51# or charge-spin
Hamiltonians@Eq. ~3.18! for n.1# depending on the number
n of classical minimum-energy configurations. An extended
version of the Hubbard model must be considered if highly
symmetric geometries or ring processes are important. A cru-
cial enhancement has been to enable ‘‘ring-exchange’’ pro-
cesses to be included, corresponding to the cyclic permuta-
tion of N.2 electrons. Intermediate lattice points were
introduced and the additional states corresponding to their
single occupation were also eliminated by higher-order per-
turbation theory, even though they are much lower in energy
than states corresponding to double occupation. This yields
generalized effective spin-1/2 models containing up to~N
21!-fold products of pairs of spin operators@see Eq.~4.1!#.
The magnitudes of the parameters for the superexchangesJ

FIG. 6. Fine-structure multiplets of a quasi-one-dimensional
quantum dot forN53,...,6 as obtained directly from the pocket-
state approximation and in exact agreement with the eigensolutions
of the effective spin Hamiltonian. The dashed lines were obtained
by direct numerical diagonalization of the interacting electron prob-
lem. TheN dependence ofJ(N) is not considered andJ has been
adjusted to normalize the ‘‘bandwidth’’ of the multiplets.

FIG. 7. Fine-structure spectra of~a! N53, ~b! N54, and ~c!
N55 electrons in a 2D square as obtained within the pocket-state
approximation. In~a! the dominant tunneling process (t) corre-
sponds to nearest-neighbor hopping of an electron whereas in~b!
and ~c! the dominant tunneling process is nearest-neighbor ex-
change (J). All spectra are identical with those obtained from the
corresponding charge-spin Hamiltonian.
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and the ring exchangesK can be estimated semiclassically.
Apart from providing a quantitative description of the

low-energy spectra in quantum dots the mapping onto lattice
models is, in itself, very illuminating. For example, in cases
that can be mapped onto the antiferromagnetic Heisenberg
model for the low-energy states, the spectrum consists of a
level multiplet of ‘‘band width’’ NJ whereJ, the nearest-
neighbor superexchange integral, depends exponentially on
the mean electron distancer s . The highest-energy state
within this multiplet is the spin-polarized state, in agreement
with what has been derived within the pocket-state approxi-
mation using less obvious arguments. All spectra obtained by
the lattice descriptions coincide exactly with those found in
the pocket-state15 approximation and are in very convincing
agreement with results gained by numerical
diagonalizations.14,34 The computational effort required for
the former is, however, considerably less compared to both
of the other methods. This will enable much larger systems
with N.20 to be investigated.

In certain geometries of two-dimensional quantum dots,
n.1 classical configurations of lowest electrostatic energy
may exist, leading to an effective spin-charge model instead
of a spin-only effective model. While such situations are
straightforward to deal with by the lattice method, we should
point out that in real experimental situations the high sym-
metry will be lowered by a polarizable environment for the
following reason. The energetically most favorable locations
for the quantum dot electrons depend on the distribution of
surrounding~nonconducting! charges, which themselves are
influenced by the distribution of the~Wigner localized but
under transport conditions conducting! dot charges. Self-
consistency allows the dot electrons to lower the total energy
by adjusting their environment. For example, two electrons
in a square will easily break the twofold symmetry of the
classical ground states by polarizing their surroundings, leav-
ing a diamond-shaped configuration for the potential. The
interplay between the surroundings and the granular electron
density of the dot finally tends to lower the number of clas-
sical low-energy configurations. Only configurations with
energies smaller than the bandwidth;NJ eventually need to
be considered explicitly. This plays a particular role, e.g., in
double-dot systems.35 Additionally, one should keep in mind
that the shape of the quantum dot also depends on voltages
applied to side gates,36 so that the fine-structure spectra may
change with gate voltage.

The lattice description simplifies considerably the deter-
mination of excitations in quantum dots. These excited levels
may be deduced implicitly from nonlinear transport
experiments.5 Furthermore, transport is qualitatively influ-
enced by the total spins of the many-electron states by two
types ofspin blockade.6,37

The occurrence of a nonminimal total spin for the ground
state in a finite electron system is a direct consequence of the
geometry of the boundary. For systems which can be repre-
sented by an antiferromagnetic Heisenberg model, this rela-
tionship is obvious~cf. discussion of the square dot with
N55 in Sec. V!. Apart from the electron number the spin
values of ground and of excited states should depend very
sensitively on the shape of the quantum dot. In future re-
search this will be investigated systematically to allow spe-
cific suggestions for experimental design.

Another highly relevant topic for real experimental situa-
tions is to apply the mapping derived in the present work to
study the interplay between mutual interactions of the quan-
tum dot electrons and impurities. No reliable picture exists
presently, which demonstrates our lack of understanding of
the persistent currents observed in mesoscopic rings. Theory
is still not capable of explaining even the order of magnitude
of the high values found experimentally. It is known that
one-dimensional models of rings are insufficient to describe
this problem.38 Furthermore, evidence exists that the electron
spin is important.39,31Our mapping onto lattice models dem-
onstrates that calculations based on the Hubbard model40–42

are not significantly influenced by the lattice but indeed re-
produce the low-energy properties of the original continuous
problems in the presence of strong interactions correctly if
the parameters, particularly the filling of the former, are in-
terpreted accordingly. Advantage can be taken of the com-
parably large electron numbers that can be dealt with by our
method, which would otherwise be intractable. This will al-
low the investigation of multiple channels in two-
dimensional rings of finite widths in the presence of impuri-
ties and flux.
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