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For adequate material combinations, the growth of a fractional monolayer on a terraced substrate is expected
to form a two-dimensional superlattice of flat square quantum boxes. We present a variational calculation of
the ground-state energy of an exciton in such a structure. The treatment is performed within a two-band
effective mass approximation. Numerical results are presented for the heavy-hole exciton in an InAs/InP
guantum-dot superlattice, giving the exciton ground-state energy, the contribution of the electron-hole inter-
action to this energy, and the extension of the exciton wave function in the superlattice plane. These calcula-
tions indicate that the exciton ground-state energy varies considerably with the quantum-dot superlattice
parameters. A fair agreement is found with the few available experimental rd S80t63-182606)09231-4

[. INTRODUCTION Sec. lll. The variational expression for the expectation value
of the exciton energy is derived in Sec. IV in a form which
Due to the growing interest in the quantum-d@D) can be easily handled numerically. Numerical results are pre-
structures, many techniques have been proposed for thesented in Sec. V for the heavy-hole exciton in an InAs/InP
fabrication. One of them is the growth of a fractional mono-QD superlattice and a conclusion follows in Sec. VI. Some
layer on a terraced substrdtén this technique, the substrate details of the calculations of Sec. IV are provided in the
is slightly inclined during the growth, thus presenting ter-APpendix.
races on its surface. The QD material is grown from the step
edges of the surface. With the deposition of less than a Il. FORMALISM
monolayer of the QD material, one expects the formation a
two-dimensional(2D) superlattice of one monolayer thick
nanoclusters. Such superlattices have been fabricated wi{

InAs/GaAs(Ref. 1) and InAs/InP(Ref. 2 systems. misalignment of the quantum dots and we consider a peri-

For an InAs/GaAs QD superlattice, the optical characterqic distribution of flat square boxes in a plaftae x-y
ization performed by Brandit al. indicates that 'ghe limited plane perpendicular to the growth axig @xis). The period
lateral extension of the quantum dots does modify the recomy the superlatticel() is determined by the orientation of the
bination kinetics but does not affect much the exciton[oo1] surface of the substrate which fixes the area of the
ground-state energyThis behavior of the ground-state en- terraces. The lateral dimension the boxks)(is determined
ergy is quite different from the results obtained by Leonellipy the coverage factor which is the fraction of the monolayer
et al. for an InAs/InP QD superlattictFor this system, the that is covered with the QD material. The boxes are one
optical characterization clearly shows that for a given supermonolayer thick. After the creation of the quantum dots, the
lattice period the exciton ground-state energy increases when
the lateral dimension of the quantum dots decreases.

In this paper, we present a simple variational treatment for [001]
the calculation of the ground-state energy of an exciton in a
QD superlattice grown on a terraced substrate. This ground-
state energy is the quantity measured by photoluminescence.
Our model is an attempt to describe the experimental behav-
ior observed in the InAs/InP system. We thus study the
variation of the exciton ground-state energy with the param-
eters of the superlattice. Our treatment provides an estimate —
of the lateral extension of the exciton wave function. This is
useful for discussing recombination kinetics. Finally, we also
analyze the contribution of the electron-hole interaction to {170]
the exciton ground-state energy.

In Sec. Il, we present the variational formalism used to FIG. 1. Vicinal [001] substrate surface tilted slightly towards
describe the exciton. The exciton wave function is written in[100]. It consists of two adjacent staircases with steps running along
terms of the one-particle electron and hole ground states ¢fi10] and [110] directions. Shaded boxes represent the clusters
the QD superlattice. Those ground states are characterized ginown at the terrace step edges.

The ideal 2D QD superlattice obtained by the growth of a
actional monolayer film on a terraced substrate is depicted
Fig. 1. As a first approximation, we neglect the vertical
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substrate material is overgrown. The superlattice is thus em- (v c(F Fh)|H|‘If C(; Fh)>
bedded in a matrix. We assume that both the substrate and Eexd axy) = = =, (6)
QD material are of zinc-blende structure. (Pexd e T [ PexdTe s h))

To study the exciton, we rely on a two-band effective-
mass approximation. Simple two-band models have been agye determine the ground-state eneByy, of the exciton and
plied to InAs/GaAgRef. 4 and InAs/InP(Refs. 3,5, and 6 s approximate wave function.
thin qu_antum wells, giving good agreement with experimen-  gince we have chosdﬁ(FE,Fh) to be independent of,
Fal optical measurements. We assume that the two bands dz,, we assume that the confinement along the growth
) X Girection (z axi9 is strong enough to neglect the Coulomb
tron and hole effective masses being denotednily and  orelation induced along that direction. Our variational
my, respectively. In all the equations, the lengths are given ifyaye function is based on the one-particle Bloch states cor-
units of a, the substrate lattice constant. The energies ar%sponding to the extrema of the electron and hole Super|at-
written in units of® =42/ (2m#,a%), wheremd,. is the sub-  tice minibands. We thus expect our variational treatment to
strate exciton effective magsn, .= 1/(1/mg +1/m})]. be suitable for a superlattice peribdsmaller than the Cou-
With the origin of the coordinate system at the center of domb correlation length 1/, if the superlattice potential
quantum box, we write the effective Hamiltonian for the ex-weakly modulates the one-particle wave functions. In that

citon as case, our treatment can be seen as an effective mass approxi-
mation applied to the superlattice structure sifigehe su-
Vg Vﬁ R - U perlattice effective mass of the exciton is similar to that of
H= = 5, T Velle) T Va(rn) = il (D) the substrate, the latter being used in &), and (ii) the

periodic parts of the electron and hole wave functions do not
whereo;=m¥/mZ, . (i=e,h). The last term of Eq(1) rep-  vary much over a wide range of the Brillouin zone, which is
resents the Coulomb interaction with=e?/(ea®), € being  implicitly assumed in our variational wave function. Hor
the static dielectric constant of the substrate. The functionfrger than 14,,, our formalism should be suitable for a

V(F) and V,(f,,) denote the electron and hole confining strongly confining potential. Tha_lt limit correspo'nds' to a
potentials introduced by the QD superlattice. We model boﬂguantum-dot array and our variational wave function is then

potentials with {=e,h) similar to that used for isolated quantum dbfBefore pro-

ceeding to the transformation of E¢6) into a form more
convenient for numerical evaluation, we characterize the

Vi) ==WUy (xi.yi) 8(z), @ one-particle ground states of the superlattice.

whereU,_p(xi ,Yi) is a periodic function which has a value of

unity within the quantum dots and is null elsewhere. Assum- IIl. THE ONE-PARTICLE GROUND STATES

ing that the exciton wave function is distributed over several . ]

lattice sites along the growth direction, it is a good approxi- N this section, we evaluate the electron and hole one-
mation to introduce & potential in thez direction since the Particle ground-state wave functions and the corresponding
QD potential is one monolayer thick. For each band, weconfinement energies. We solve E5) in detail for the elec-
estimate the amplitude of the potentiat) by multipliying ~ tron case, the treatment being similar for the hole. Note that,

the band offset with the thickness of a monolayer. in the following, the terms “wave number” and “unit cell”
Our variational excitonic wave function is apply to the 2D QD superlattice
The electronic ground state lies at the bottom of the low-
¥ (,(F b )=Cuy (F, )i (F)F(Fa.lr) 3 est superlattice miniband. It is thus characterized by a null
excie:th elle/Tnt i/t e thy wave number in the-y plane. Due to the symmetry of the
whereC is a normalization constant and potential, the wave function must belong to the representa-

tion A; of the groupD,,. We thus expres&e(Fe) with the
F(Fe.Th) =ext — ayy(Xe=Xp) 2+ (Ye—yn)?],  (4)  following expansion:

where «,, is a variational parameter. The functios(r )
and zﬂh(Fh) are the electron and hole one-particle ground- t//e(Fe)z 2 Ce,nl,nZXYnl,nz(Xe7ye)ze,n1,n2(ze)! @
n

state wave functions of the superlattice potential. They thus 172
correspond to the Bloch states associated with the extrema of
the superlattice electron and hole minibands. They are bottvheren, and n, are zero or positive integers. The basis

obtained from an equation of the form functionsXYnlvnz(xe,ye) are chosen orthonormal over a unit
cell and are given by

V? . - -
[—;‘wvi(ri) di(r) =Eigi(r). (5)
! XYnl,nz(Xeaye): an,nz[C0§nque)C03n2qye)
In the following, we refer to the absolute value Bf as the
electron or hole confinement energy. Finally, by minimizing +cogNy0X%e)cogN1qYe) |, 8
the expectation value of the Hamiltonian with respect to

Ayy, with g=2=/L. The normalization constant is
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N L 2 vz o (n3+n3) 1 d?
T L T oy, (11 0Lt 60| 0 | Ten & B o, a2 Comemenan(Z)
whered; ; is the Kronecker delta. In Sec. V, we use a limited
expansion for Eq(7). For this purpose, the basis functions —Ve5(ze)n§n ULp,nl,nz,n3,n4Ce,n1,nzze,n1,n2(Ze):Ov
will be ordered in ascending order according to the value of e
n3+n3. (10)
To obtain the expansion cofficient@e,nl,nz and the where
z-dependent functionze,nlynz(ze), we substitutepe(Fe) into ULp ,nl,nz,ns,n4:2an,n2Nn3,n4[W(nl1n3)W(n2vn4)
Eq. (5), multiply both sides b)XYn3,n4(xe,ye), and integrate
over a unit cell in thex-y plane. This leads to the following +W(n1.ng)W(nz,n3)], (1D
system of equations: with
( Lp |f n1=n2=0;
sin(n4qL L
”(2 14 p)+7p if Ny =n,%0;
W(ng,np)=q <M (12
sin(ny+ny)qLy/2] s (n;—ny)qly/2]
if ng#n,.
(n1+nz)q (n1—nz)q

For the ground state, Eq10) can only be solved if the To obtain the electron confinement enet@| and the ex-
functionsZ,n, ,n,(z¢) do not vanish at the origin. Enforcing pansion coefficient€e  n,, we find numerically the lowest

that these functions take a value of unity f=0, the so-  value of E, for which the above system has a nontrivial

lutions of Eq.(10) take the form solution. This also defines the functiods , n,(ze). If &
similar development is made for the hole, this completes the
Zen, n,(Ze) =X~ Ben, n,|Ze|), (13)  characterization of the one-particle ground states.
where
Ben,n,= Jn?+nd)q2—Eqoo, (14) IV. EXCITON GROUND-STATE ENERGY
if the following system of equations is verified: We now transform the expression for the expectation

value of the exciton energyEg. (6)] in a form which is

suitable for numerical calculations. Using the fact that

¥e(r'e) andyy(ry,) are solutions of Eq(5) with the fact that

F(ro.ry) only depends on the relative coordinates of the

~V, z ULp,nl,nz,n3,n4ce,nl,n220' (15) e_Iectron an(_j the_hole_ in thx_ey plane, one can find, after
ni=ny simple manipulations including an integration by part,

2
O'_e\/(n§+ ni)qz_ Eec"ece,n3 Ny

Tl ve(Fe) (1) 2F (P, T )2/ |1 o=y d3r odBry,
foV’/’e( l:)e)zl/fh( I:)h)zF(Fe th)2d3red3rh

Eexd @xy) =Ee+Ep+af,—U , (16)

whereV is the volume of the sample. All the integrals in the vation is performed using Fourier expansions. The results are
x-y plane diverge for a sample that is infinite in this plane.thus given as summations over the reciprocal lattice vectors
The integrals are thus evaluated on a macroscopicArea of the 2D superlattice. As discussed below, for computa-

Both six-dimensional integrals can be reduced to loweltional purposes, it is better to use expressions where the con-
dimensional forms. The details of the derivation are sketchetributions from the reciprocal lattice vectors with the same
in the Appendix and we only give the results here. Our deri-normK,, are combined. We obtain
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R . .. TABLE I. Material parameters. The values are taken from Ref.
f J e(e)2n(rn)?F(rg,r)2d3rod3ry, 14, except for the InP heavy-hole effective mass, which comes from
vJV Ref. 15.
mAayy M1(Kyy)
ST > 17 KT (17) InP InAs
Kxy ( axy xy)
Gap(eV) 1.42 0.42
and m 0.079 0.024
e o, mi, 0.65 0.41
f f e(re)“Yn(rn)“F(re,ry) 4 . lattice constantA) 5.8696 6.0588
S > h
vlv [Fe=Thl )
A *Ma(Kyy,W) ered, we have verified that the confinement along the growth

— —2ay
h 32%y fo & " pdo(Kyyp) o pZ+rw? dwdp, direction is strong enough to neglect the correlation intro-
duced by the Coulomb interaction along that direction. The
(18) use of 32 basis functions implies that 121 valueskgf,
whereJo(K,yp) is the zeroth order Bessel functfoand the ~ should be considered in the summations of E@S) and
functionsM;(K,,) andM,(K,,,w) are defined in the Ap- (18). We have found that restricting the summations to the 5
pendix. lowest values oK,, provides a good precision for the cor-
Although odd-looking, the resulting expressions consti-relation energy for all the superlattices studied here, thus
tute a good starting point for the elaboration of a numericakreducing considerably the computing time. In all the figures,
algorithm. Equation(17) can be quickly evaluated for the the symbols represent the calculated values, while the lines
various values ofw,,. The definition ofM(K,,,w) indi- have been added as a guide.
cates that E(18) involves a summation of two-dimensional  For the materials involved, we use the same parameters as
integrals. With a good algorithm, one can detect the manyn Ref. 3 and reprinted in Table I. With a static dielectric

terms that are equivalent and thus reduce the number of insonstant of 12.29 for the InP substrafehe dimensionless
tegrals to perform. The number of terms to include in theparametertU=0.127. To estimate/, and Vi,, we use the

summations of Eqg17) and(18) is determined by the nUM- |5tice constant of InP and the band offsets obtained from

ber of functions used in the expansion of the one-partlclqitting a simple envelope-function mod&to the average of

:‘/(\;?I\(;svi%n(;{(Iaocrt]iz[rlfq(.)r(]?].ca:z féztcrti'&eihzsSﬂ';ﬁ;ﬁ‘;gs'qothtﬁeexperimentally measured exciton binding energies in thin
' . . - uantum wells. Photoluminescen measurements per-
lowest values oK, and still obtain a very good precision. d (L) P

formed on thin InAs/InP quantum wells by Schneider and
Wessels, by Kobayashi and Kobayasfiand by Leonelli

V. INAS/INP QUANTUM-DOT SUPERLATTICES et al are used to obtain the offsets. We take into account the
To illustrate the above formalism, we study the heavy-fact that the measurements of Ref. 6 have been made at 77 K

hole exciton in an InAs/InP QD superlattice. Such superlatPy using a smaller InP band gap to extract the binding ener-
tices have been grown by Traet al? and optically charac- gies from the reported values. Before fitting the two-band
terized by Leonelliet al® In this section, we first provide envelope function modé! to the data, we substract from all
details on the numerical treatment and we determine the varthe measurements a correlation energy estimated to be
ous parameters needed for the calculations. We then proceatound —16 meV from a simple two-band effective tight-
to evaluate the exciton ground-state energy for structures dfinding model. The latter is a simplified version of the effec-
the dimensions reported in Ref. 3. We finally consider QDtive bond-orbital modéf in which we have included the
superlattices of various QD dimensions and periods to get alectron-hole interaction. From the data for quantum wells of
better picture of the ground-state energy dependence. Not@o to five monolayers, we obtain a heavy-hole band offset
that, in the following, we use the term “binding energy” for of 0.29 eV, taking into account the effect of strain on the
the magnitude of the ground-state energy of the excitonnas layer (the difference between the InP and InAs band
|Eexc|- To 'diSCUSS the influence Of the Coulomb interaction,gaps is taken as 0.95 e_?/ This leaves a conduction band
we a|950 introduce the correlation ener@y,=Eex—Ee  offset of 0.66 eV. Now, using the fact that the height of a
—Ey. monolayer in the zinc-blende structurea® (growth along

All the numerical calculations presented in this section argne [001] direction, the dimensionless paramete¥s and
performed using 32 basis functions in the expansion of thq;h are 0.209 and 0.0924, respectively.
one-particle wave function$Eq. (7)]. This choice corre- Note that in the above discussion, we do not consider the
sponds to basis functions presenting at most eight oscillaneasurements made on monolayer quantum wells since the
tions along thex or y direction within a superlattice unit cell. ' yariation between the reported values for the binding energy
The electron and hole confinement energies are evaluated by quite large(from 70 meV to 140 mey>%® Monolayer
finding the lowest valué; for which the determinant of EQ. quantum wells are very delicate to make and nonuniformity
(19 vanishes. The coefficient€; , ., are then obtained s present to a certain extent in all samples. The experimental
from the null space of the appropriate matrix. In the worstvalues come from PL measurements which are known to
cases, we estimate the numerical precision of the confinegive the lowest energy stat@sighest binding energy states
ment energies to be better than 1%. For all the cases consitt-can be misleading to use these values if some interface
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superlattice with a period of 62.2 A. This period results from
the growth of InAs quantum dots on an IfB01] surface
tilted 2° towardg100]. This corresponds to the growth con-
ditions of the QD superlattices studied in Ref. 3. For com-
parison, we also present values for an equivalent fractional
monolayer quantum welEFMQW) characterized by similar
coverage factors. For this EFMQW, the InAs sites are dis-
tributed uniformly in the monolayer instead of being concen-
trated within quantum dots. The calculations for the
EFMQW are performed with the same formalism as for a
QD superlattice but with.,=L and with adjusted values of

60 ¥+

w b (%)
o o [=]
2 M N

Binding Energy (meV)

Ny
o
M

Lok |

—=— QD Superlattice | V. andV,. We do not present results for coverage factors
-+ % --EFMQW below 0.28: our model does not apply well to very low cov-

1047

erage factors since one cannot neglect the correlation in-
duced along the growth direction by the Coulomb interac-
tion.

For the calculated quantum-dot structures, the variational
. o parameter W,, is larger than the superlattice period. We

FIG. 2. Heavy-hole exciton binding energy for an InAs/InP QD haye calculated the one-particle minibands using a generali-
superlattice with a 62.2 A period as a function of the coverage,ation of the procedure presented in Sec. Ill. We have found
Values for an equivalent fractional monolayer quantum wellya; for all these structures, the superlattice effective mass of
(EFMQW) are also given. the exciton is close to that of InP and that the periodic part of

the electron and hole one-particle Bloch states do not vary
roughness is present since one collects the signal from renuch over the Brillouin zones. Consequently, as discussed in
gions of largest thicknesses. This is exemplified in Ref. 3Sec. II, we expect our variational treatment to give a good
where measurements from photoluminescence excitatiogpproximation for the binding energy.
spectroscopy(PLE) are also given. The latter technique is  The binding energy and the magnitude of the correlation
expected to give a more accurate picture of the distributiorenergy increase with the coverage factor for both the QD
of energy states. For the monolayer quantum wWe&limple  superlattice and EFMQW cases. This increase is a conse-
S4 of Ref. 3, the PLE measurement suggests a binding enquence of the confinement introduced by the QD or EFMQW
ergy below 70 meV for the heavy-hole exciton while the PLstructures along the growth direction. This confinement is
measurement indicates an energy around 80 meV. Note thaiore pronounced for large coverage factors. The magnitude
our model gives 62 meV when applied to the monolayerof the correlation energy varies monotonically starting from
quantum-well structure, showing reasonable agreement witthe InP bulk exciton value|E.,,|~6.3 me\} for low cov-
the PLE measurement. erage factors. For large coverage factors, the magnitude of

In Figs. 2 and 3, we present, as a function of the coveragghe correlation energy remains smaller than the InP 2D exci-
factor, the heavy-hole exciton binding energy and the magton value (E..{~25.4 meV since the confinement intro-
nitude of the correlation energyEc,{) for an INAs/InP QD duced by a full monolayer of InAs is not strong enough to
achieve a 2D exciton.

The binding energy is substantially higher in the QD su-
perlattice case than in the EFMQW case. This increase is
also observed for the magnitude of the correlation energy,
but in a much smaller proportion. In fact, a careful study of
the different contributions to the binding energy shows that
most of the difference comes from the increase of the hole
confinement energyl E|). The superlattice potential modu-
lates the one-particle wave functions in tkey plane, in-
creasing the probability of presence within the quantum dots.
This modulation insures a better confinement effectiveness
of the InAs sites in the QD superlattice case over the

0.25 0.50 0.75 1.00
Coverage (Monolayer)

12+

14

-
o
N
T

[Econ| (MeV)
o

A~ — EFMQW case where such a modulation is not present.
71 \ @ S“pe”a"“ﬂ In Ref. 3, measurements are given for samples with cov-
g e ERMAW erage factors of 0.3 and 0.8. For reasons previously dis-
6 o t = cussed, the binding energies given by these PL measure-
0.25 0.50 078 1.00 ments are not reliable enough to attempt a direct comparison
Coverage (Monolayer) with our calculations. However, the displacement of the PL

peak indicates that the binding energy decreases by 34 meV

FIG. 3. Magnitude of the exciton correlation energy for an InAs/ When the nominal coverage factor is reduced by an amount
InP QD superlattice with a 62.2 A period as a function of the of 0.5 (from 0.8 to 0.3. From the slope of the curve pre-

coverage. Values for an equivalent fractional monolayer quantunsented in Fig. 2, our calculations suggest a decrease of the

well (EFMQW) are also given. order of 30 meV when the coverage factor is reduced by 0.5.
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FIG. 4. Heavy-hole exciton binding energy for an InAs/InP QD FIG. 6. Electron confinement energy for an InAs/InP QD super-

superlattice for various QD dimensions as a function of the periodattice for various QD dimensions as a function of the period of the
of the superlattice. superlattice.

The agreement is quite good considering the uncertainty For the smallest structures, the variational parameter
about the exact nature of the QD superlattices studied in RefL/aXy is larger than the superlattice period, and a character-
3 and the uncertainty about the parameters used in ougation of the minibands again shows that the criteria dis-
model, especially regarding the InP heavy-hole effectivecussed in Sec. Il are met. For the largest structures, the hole
mass and the band offsets. wave function is confined to the quantum dots while the
To give a better picture of the dependence of the heavyelectron wave function is strongly modulated. Those struc-
hole exciton ground-state energy on the QD superlattice paures are close to the quantum-dot array limit also discussed
rameters, Fig. 4 presents the binding energy for various Qbh Sec. Il and our variational treatment should again give a
dimensions(25 A, 50 A, 75 A, 100 A, and 150 A(Ref. 13 good approximation for the exciton binding energy. Between
as a function of the superlattice period. The correspondinghose limits, our treatment should provide some insight about
hole and electron confinement energies are provided in Figshe effect of the various parameters by giving an upper limit
5 and 6. The magnitude of the correlation energy and thep the ground-state energy.
value of 1k, are also presented in Figs. 7 and 8, respec- Figure 4 shows that the exciton binding energy varies
tively. We have restricted our calculations to coverage facconsiderably for small quantum dots as the superlattice pe-
tors larger than 0.25. The largest superlattice period of 30@iod increases while the variation is much less pronounced
A corresponds to the growth of InAs quantum dots on arfor larger quantum dots. This can be related to the fact that

InP [001] surface tilted 0.4° towardsL0Q]. the main contribution to the binding energy comes from the
35
164
“1 \ M\
s
(V] 150 A 4
£ 25¢ 1254 14
5 100 A o
s
o 20T E 124
E 75 A =
Q
§ 15+ v}
E 10
P 10 4+ 50 A
o
T ad
1 25A 25A soA
0 + . + t u 6 t g + 4 4
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Superlattice Period (&) Superlattice Period (A)

FIG. 5. Hole confinement energy for an InAs/InP QD superlat- FIG. 7. Magnitude of the exciton correlation energy for an InAs/
tice for various QD dimensions as a function of the period of thelnP QD superlattice for various QD dimensions as a function of the
superlattice. period of the superlattice.
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1/a,, presented in Fig. 8 can be used to obtain a good esti-
mate of the extension of the exciton wave function. With the
correlating function defined in Eg4), we find that the mean
oA lateral separation between the electron and the hole in the
superlattice plang] \{(Xe—Xn) >+ (Ye—Yn)%)] is approxi-
mately given by\/l_.SIaXy. For a three-dimensional exciton
in InP, this separation is given by2a}, wherea® . is the
exciton Bohr radiug92 A). Figure 8 thus indicates that, for
small quantum dots, the lateral extension of the exciton wave
function is slightly smaller than that of the three-dimensional
exciton in InP. Note that our model overestimates,}/for
small coverage factors: this is a consequence of the neglect
of the correlation induced by the Coulomb interaction along
80 oy ; t t t the growth directiorfor small quantum dots with a coverage

0 50 100 150 2000 250 300 factor of 0.25, the error is of the order of 109 or larger

Superlattice Period (A) . .
quantum dots, the value of dJ, indicates that the exciton

FIG. 8. Value of the variational parameterd for an InAs/InP does not sprgad over many quantum dOtS.' This .IS Clearl'y
QD superlattice for various QD dimensions as a function of ihe"elated to the increase of the electron-hole interaction previ-

period of the superlattice. ously discussed.

130 BA

120 4

-
oy
(=]

oty (A)

100

90

hole confinement energy. The hole wave function being well

confined by the larger quantum dots, the corresponding hole VI. CONCLUSION
confinement energy does not vary much with the superlattice . . .
period, as can be seen from Fig. 5. Figure 6 indicates that the In this paper, we have presented a simple two-band varia-

electron confinement energy contribution is smaller and thaional formalism for the characterization of the ground state
it varies considerably with the superlattice period for all the®f @n exciton in a two-dimensional QD superlattice grown on

QD dimensions considered, a consequence of the Sma”é)fterraced substratg. The_ exciton wave function a}nd the bind-
electron effective mass. In fact, the electron confinement erid energy are obtained in a two-step process. First, the one-
ergy shows a dependence on the superlattice period that Rarticle ground states of the superlattice are determined by
similar to the hole confinement energy, but on a length scal@umerically solving the Schdinger equation in a QD super-
about three times larger. lattice for both the electron and hole. The exciton wave func-
When the superlattice period increases, Fig. 7 indicatefon and the binding energy are then obtained from a varia-
that the magnitude of the correlation energy decreases fdonal ansatz, the minimization process being performed
quantum dots smaller than 100 A. Since the electron waveumerically.
function is less confined than the hole wave function, the When applied to InAs/InP QD superlattices, our model
former is mostly responsible for the behavior of the correla-predicts a decrease of the binding energy as the superlattice
tion energy. For small quantum dots, the electron wave funcperiod increases. This variation is larger for small quantum
tion is weakly modulated in the-y plane. The electron then dots. The electron-hole interaction has been found to de-
interacts with an average potential in the superlattice plangrease as the superlattice period increases for quantum dots
and the extension of its wave function along the growth di-smajler than 100 A while it increases for larger quantum
rection varies considerably with the superlattice period. Agjots.
the superlattice period increases, the electron wave function 5 strong variation of the binding energy with the QD

becomes more spread out in thelirection, thus leading t0 @ ' 4j,ensjons has been experimentally observed for InAs/InP
smaller el?at:tron-hole interaction. For quantum dots IargebD superlattice$.A fair agreement between our model and
than 100 A, the magnitude of ihe correlation energy ""the available experimental measurements has been found for

creases with the superlattice period. The electron wave fun(f'he variation of the exciton binding energy with the coverage

tion is more strongly modulated in they plane and its factor. Since only a few samples have been produced and
extension along the direction is less dependent on the su- ) y P P

perlattice period. Consequently, as the superlattice period inqharactenzed up to now, there still remains a Iqt of uncer-
creases, the electron-hole interaction is enhanced since tiaINtY about the exact nature of the QD superlattices experi-
electron wave function becomes more confined laterally tgneéntally studied. Although the experimental work already
the quantum dot while its extension along the growth direcP€rformed on InAs/inP QD superlattices represents in itself
tion remains about the same. For superlattice periods largéite an achievement, more work is needed to get a better
than those considered in Fig. 7, the magnitude of the corréknowledge of the shape, dimensions, and uniformity of the
lation energy reaches a maximum and then decreasdlantum dots resulting from the various growth conditions.
slightly. For example, a detailed study of the 150 A QD casd-or the optical characterization, more reliable binding ener-
shows that a maximum value of 18.5 meV is obtained for agies would be obtained if photoluminescence studies could
superlattice period of about 500 A. be complemented with PLE or absorption measurements.
Since the one-particle wave functions are weakly modu-Only with this information could we further evaluate the

lated in thex-y plane for small quantum dots, the value of validity of our model.
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APPENDIX A FA(re.r)=—4 (@, + 2Tk (A1)

In this appendix, we provide more details for the deriva-

tion of the results of Sec. IVEgs. (17) and (18)]. These L i i
derivations are rather lengthy, so only the main steps arwhere the summation is performed over the two-dimensional
given. wave-vector space of the QD superlattice. We can thus write

T ay - -
f f Be(T o) 2Un(rn)2F (T, M) 2d%r dsfh— yE (4a +k2+ki)s/zfva¢e(fe)2¢h(fh)2

xexp[ikxy~(re—rh)]d3red3rh. (A2)

To evaluate the remaining integrals, we first obtain

> o 223 A (IBe ny.n, IBe N3, n4)
J’Vwe(re) eXF“k're)d re_§n12n§132n4 Ce ng, nzce ng, n4Nn1 nan3 n4[k2+(ﬁe . n2+ﬁe s, n4)2] ny.ny,Ng, n4( xy) (A3)
whereAnl,nZ,nam(IZXy) is defined by the following summation of products of Kronecker deltas:
A K 5( s +t )5( Ky + ) (A4)
= —,sn+tn —=,uni+ong|.
3.z g ng(Kxy) Li=Thiti Im=SaiEm stioe=1 g g Ollm

An expression similar to EqA3) is obtained from the integration over the hole coordinates in (Bg). Note that the
definition ofAnlanVns‘nél(Iny) [Eqg. (Ad)] indicates that the summation O\AZ;{y in Eq. (A2) can be restricted to the reciprocal

lattice vectors of the QD superlattice. Finally, after introducing the electron and hole versions(@f3tinto Eq.(A2), one
can easily obtain Eq17) of Sec. IV, where the functioM,(K,,) is given by

Ce|nl,n2Ce,n3 ,n4Ch,n5 ,nech,n7 ,nanl,nan3 ,n‘l’\lnk._—ﬂnal\ln7 Ng

Ml(ny)

ny=n,,N3=ny4,N5=ng,N7=>nNg (Be,nl,n2+Be,na,n4)(,3h,n5,n6+13h,n7,n8)

X 2 Annyngng(Ka)Bngng.nyng(Ky)- (A5)

Ky i[Kxyl = Kxy

The derivation Eq(18) is done along similar lines. It starts with the following Fourier expansion:

F? (fe,rh 2 f

|r _rh|

»cog k,w)

fo eXIi—zaxyP)PJo(kxyP)fo ﬁdep

exgik-(re—rp)]dk,, (A6)

where Jo(k,,p) is the zeroth order Bessel functibrintroducing this expression into the left side of Ef8) and using the
electron and hole versions of E#\3), one obtains the right side of E(.8) after a simple integration over ttg variable. The
function M (K, ,w) of Eq. (18) is defined by
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Ce,nl,nzce,ns,n4Ch,n5,nGCh,n7,nBan,nanS,n4Nn5,n6Nn7,n8

Ma(Kyy,W)=

2 2
> N1=nNy,N3=Ny,N5=Ng,N7=Ng [(Bh,ns,n6+ﬂh,n7,n8) _(:Be,nl,n2+:8e,n3,n4) ]

X{exp{ - (ﬂe,nl,n2+ ﬂe,n3,n4)w](,3h,n5,n6+,8h,n7,n8)

_exq—_(,Bh,ns,n6+:8h,n7,n8)W](IBe,nl,n2+Be,n3,n4)} 2 Anl,n2,n3,n4(szy)AnS,n6,n7,n8(|zxy)- (A7)

k>(y ;‘kxy‘ =Kxy
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