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For adequate material combinations, the growth of a fractional monolayer on a terraced substrate is expected
to form a two-dimensional superlattice of flat square quantum boxes. We present a variational calculation of
the ground-state energy of an exciton in such a structure. The treatment is performed within a two-band
effective mass approximation. Numerical results are presented for the heavy-hole exciton in an InAs/InP
quantum-dot superlattice, giving the exciton ground-state energy, the contribution of the electron-hole inter-
action to this energy, and the extension of the exciton wave function in the superlattice plane. These calcula-
tions indicate that the exciton ground-state energy varies considerably with the quantum-dot superlattice
parameters. A fair agreement is found with the few available experimental results.@S0163-1829~96!09231-4#

I. INTRODUCTION

Due to the growing interest in the quantum-dot~QD!
structures, many techniques have been proposed for their
fabrication. One of them is the growth of a fractional mono-
layer on a terraced substrate.1 In this technique, the substrate
is slightly inclined during the growth, thus presenting ter-
races on its surface. The QD material is grown from the step
edges of the surface. With the deposition of less than a
monolayer of the QD material, one expects the formation a
two-dimensional~2D! superlattice of one monolayer thick
nanoclusters. Such superlattices have been fabricated with
InAs/GaAs~Ref. 1! and InAs/InP~Ref. 2! systems.

For an InAs/GaAs QD superlattice, the optical character-
ization performed by Brandtet al. indicates that the limited
lateral extension of the quantum dots does modify the recom-
bination kinetics but does not affect much the exciton
ground-state energy.1 This behavior of the ground-state en-
ergy is quite different from the results obtained by Leonelli
et al. for an InAs/InP QD superlattice.3 For this system, the
optical characterization clearly shows that for a given super-
lattice period the exciton ground-state energy increases when
the lateral dimension of the quantum dots decreases.

In this paper, we present a simple variational treatment for
the calculation of the ground-state energy of an exciton in a
QD superlattice grown on a terraced substrate. This ground-
state energy is the quantity measured by photoluminescence.
Our model is an attempt to describe the experimental behav-
ior observed in the InAs/InP system. We thus study the
variation of the exciton ground-state energy with the param-
eters of the superlattice. Our treatment provides an estimate
of the lateral extension of the exciton wave function. This is
useful for discussing recombination kinetics. Finally, we also
analyze the contribution of the electron-hole interaction to
the exciton ground-state energy.

In Sec. II, we present the variational formalism used to
describe the exciton. The exciton wave function is written in
terms of the one-particle electron and hole ground states of
the QD superlattice. Those ground states are characterized in

Sec. III. The variational expression for the expectation value
of the exciton energy is derived in Sec. IV in a form which
can be easily handled numerically. Numerical results are pre-
sented in Sec. V for the heavy-hole exciton in an InAs/InP
QD superlattice and a conclusion follows in Sec. VI. Some
details of the calculations of Sec. IV are provided in the
Appendix.

II. FORMALISM

The ideal 2D QD superlattice obtained by the growth of a
fractional monolayer film on a terraced substrate is depicted
in Fig. 1. As a first approximation, we neglect the vertical
misalignment of the quantum dots and we consider a peri-
odic distribution of flat square boxes in a plane~the x-y
plane! perpendicular to the growth axis (z axis!. The period
of the superlattice (L) is determined by the orientation of the
@001# surface of the substrate which fixes the area of the
terraces. The lateral dimension the boxes (Lp) is determined
by the coverage factor which is the fraction of the monolayer
that is covered with the QD material. The boxes are one
monolayer thick. After the creation of the quantum dots, the

FIG. 1. Vicinal @001# substrate surface tilted slightly towards
@100#. It consists of two adjacent staircases with steps running along
@110# and @11̄0# directions. Shaded boxes represent the clusters
grown at the terrace step edges.
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substrate material is overgrown. The superlattice is thus em-
bedded in a matrix. We assume that both the substrate and
QD material are of zinc-blende structure.

To study the exciton, we rely on a two-band effective-
mass approximation. Simple two-band models have been ap-
plied to InAs/GaAs~Ref. 4! and InAs/InP~Refs. 3, 5, and 6!
thin quantum wells, giving good agreement with experimen-
tal optical measurements. We assume that the two bands are
isotropic, parabolic, and nondegenerate, the substrate elec-
tron and hole effective masses being denoted byme* and
mh* respectively. In all the equations, the lengths are given in
units of a, the substrate lattice constant. The energies are
written in units ofQ5\2/(2mexc* a2), wheremexc* is the sub-
strate exciton effective mass@mexc* 51/(1/me*11/mh* )#.

With the origin of the coordinate system at the center of a
quantum box, we write the effective Hamiltonian for the ex-
citon as

H52
¹e
2

se
2

¹h
2

sh
1Ve~rWe!1Vh~rWh!2

U

urWe2rWhu
, ~1!

wheres i5mi* /mexc* ( i5e,h). The last term of Eq.~1! rep-
resents the Coulomb interaction withU5e2/(eaQ), e being
the static dielectric constant of the substrate. The functions
Ve(rWe) and Vh(rWh) denote the electron and hole confining
potentials introduced by the QD superlattice. We model both
potentials with (i5e,h)

Vi~rW i !52ViULp
~xi ,yi !d~zi !, ~2!

whereULp
(xi ,yi) is a periodic function which has a value of

unity within the quantum dots and is null elsewhere. Assum-
ing that the exciton wave function is distributed over several
lattice sites along the growth direction, it is a good approxi-
mation to introduce ad potential in thez direction since the
QD potential is one monolayer thick. For each band, we
estimate the amplitude of the potential (Vi) by multipliying
the band offset with the thickness of a monolayer.

Our variational excitonic wave function is

Cexc~rWe ,rWh!5Cce~rWe!ch~rWh!F~rWe ,rWh!, ~3!

whereC is a normalization constant and

F~rWe ,rWh!5exp@2axyA~xe2xh!
21~ye2yh!

2#, ~4!

whereaxy is a variational parameter. The functionsce(rWe)
and ch(rWh) are the electron and hole one-particle ground-
state wave functions of the superlattice potential. They thus
correspond to the Bloch states associated with the extrema of
the superlattice electron and hole minibands. They are both
obtained from an equation of the form

F2
¹ i
2

s i
1Vi~rW i !Gc i~rW i !5Eic i~rW i !. ~5!

In the following, we refer to the absolute value ofEi as the
electron or hole confinement energy. Finally, by minimizing
the expectation value of the Hamiltonian with respect to
axy ,

Eexc~axy!5
^Cexc~rWe ,rWh!uHuCexc~rWe ,rWh!&

^Cexc~rWe ,rWh!uCexc~rWe ,rWh!&
, ~6!

we determine the ground-state energyEexc of the exciton and
its approximate wave function.

Since we have chosenF(rWe ,rWh) to be independent ofze
and zh , we assume that the confinement along the growth
direction (z axis! is strong enough to neglect the Coulomb
correlation induced along that direction. Our variational
wave function is based on the one-particle Bloch states cor-
responding to the extrema of the electron and hole superlat-
tice minibands. We thus expect our variational treatment to
be suitable for a superlattice periodL smaller than the Cou-
lomb correlation length 1/axy if the superlattice potential
weakly modulates the one-particle wave functions. In that
case, our treatment can be seen as an effective mass approxi-
mation applied to the superlattice structure since~i! the su-
perlattice effective mass of the exciton is similar to that of
the substrate, the latter being used in Eq.~6!, and ~ii ! the
periodic parts of the electron and hole wave functions do not
vary much over a wide range of the Brillouin zone, which is
implicitly assumed in our variational wave function. ForL
larger than 1/axy , our formalism should be suitable for a
strongly confining potential. That limit corresponds to a
quantum-dot array and our variational wave function is then
similar to that used for isolated quantum dots.7,9 Before pro-
ceeding to the transformation of Eq.~6! into a form more
convenient for numerical evaluation, we characterize the
one-particle ground states of the superlattice.

III. THE ONE-PARTICLE GROUND STATES

In this section, we evaluate the electron and hole one-
particle ground-state wave functions and the corresponding
confinement energies. We solve Eq.~5! in detail for the elec-
tron case, the treatment being similar for the hole. Note that,
in the following, the terms ‘‘wave number’’ and ‘‘unit cell’’
apply to the 2D QD superlattice.

The electronic ground state lies at the bottom of the low-
est superlattice miniband. It is thus characterized by a null
wave number in thex-y plane. Due to the symmetry of the
potential, the wave function must belong to the representa-
tion A1 of the groupD4h . We thus expressce(rWe) with the
following expansion:

ce~rWe!5 (
n1>n2

Ce,n1 ,n2
XYn1 ,n2~xe ,ye!Ze,n1 ,n2~ze!, ~7!

where n1 and n2 are zero or positive integers. The basis
functionsXYn1 ,n2(xe ,ye) are chosen orthonormal over a unit
cell and are given by

XYn1 ,n2~xe ,ye!5Nn1 ,n2
@cos~n1qxe!cos~n2qye!

1cos~n2qxe!cos~n1qye!#, ~8!

with q52p/L. The normalization constant is
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Nn1 ,n2
5
1

L F 2

~11dn1,0!~11dn2,0!~11dn1 ,n2!
G1/2, ~9!

whered i , j is the Kronecker delta. In Sec. V, we use a limited
expansion for Eq.~7!. For this purpose, the basis functions
will be ordered in ascending order according to the value of
n1
21n2

2.
To obtain the expansion cofficientsCe,n1 ,n2

and the

z-dependent functionsZe,n1 ,n2(ze), we substitutece(rWe) into

Eq. ~5!, multiply both sides byXYn3 ,n4(xe ,ye), and integrate

over a unit cell in thex-y plane. This leads to the following
system of equations:

F ~n3
21n4

2!

se
q22Ee2

1

se

d2

dze
2GCe,n3 ,n4

Ze,n3 ,n4~ze!

2Ved~ze! (
n1>n2

ULp ,n1 ,n2 ,n3 ,n4
Ce,n1 ,n2

Ze,n1 ,n2~ze!50,

~10!

where

ULp ,n1 ,n2 ,n3 ,n4
52Nn1 ,n2

Nn3 ,n4
@W~n1 ,n3!W~n2 ,n4!

1W~n1 ,n4!W~n2 ,n3!#, ~11!

with

W~n1 ,n2!55
Lp if n15n250;

sin~n1qLp!

2n1q
1
Lp
2

if n15n2Þ0;

sin@~n11n2!qLp/2#

~n11n2!q
1
sin@~n12n2!qLp/2#

~n12n2!q
if n1Þn2.

~12!

For the ground state, Eq.~10! can only be solved if the
functionsZe,n1 ,n2(ze) do not vanish at the origin. Enforcing

that these functions take a value of unity forze50, the so-
lutions of Eq.~10! take the form

Ze,n1 ,n2~ze!5exp~2be,n1 ,n2
uzeu!, ~13!

where

be,n1 ,n2
5A~n1

21n2
2!q22Eese, ~14!

if the following system of equations is verified:

2

se
A~n3

21n4
2!q22EeseCe,n3 ,n4

2Ve (
n1>n2

ULp ,n1 ,n2 ,n3 ,n4
Ce,n1 ,n2

50. ~15!

To obtain the electron confinement energyuEeu and the ex-
pansion coefficientsCe,n1 ,n2

, we find numerically the lowest

value of Ee for which the above system has a nontrivial
solution. This also defines the functionsZe,n1 ,n2(ze). If a

similar development is made for the hole, this completes the
characterization of the one-particle ground states.

IV. EXCITON GROUND-STATE ENERGY

We now transform the expression for the expectation
value of the exciton energy@Eq. ~6!# in a form which is
suitable for numerical calculations. Using the fact that
ce(rWe) andch(rWh) are solutions of Eq.~5! with the fact that
F(rWe ,rWh) only depends on the relative coordinates of the
electron and the hole in thex-y plane, one can find, after
simple manipulations including an integration by part,

Eexc~axy!5Ee1Eh1axy
2 2U

*V*Vce~rWe!
2ch~rWh!

2F~rWe ,rWh!
2/urWe2rWhud3r ed3r h

*V*Vce~rWe!
2ch~rWh!

2F~rWe ,rWh!
2d3r ed

3r h
, ~16!

whereV is the volume of the sample. All the integrals in the
x-y plane diverge for a sample that is infinite in this plane.
The integrals are thus evaluated on a macroscopic areaA.

Both six-dimensional integrals can be reduced to lower
dimensional forms. The details of the derivation are sketched
in the Appendix and we only give the results here. Our deri-

vation is performed using Fourier expansions. The results are
thus given as summations over the reciprocal lattice vectors
of the 2D superlattice. As discussed below, for computa-
tional purposes, it is better to use expressions where the con-
tributions from the reciprocal lattice vectors with the same
normKxy are combined. We obtain
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d3r ed
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5
pA

32(Kxy E0
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e22axyrrJ0~Kxyr!E
0

`M2~Kxy ,w!

Ar21w2
dwdr,

~18!

whereJ0(Kxyr) is the zeroth order Bessel function
8 and the

functionsM1(Kxy) andM2(Kxy ,w) are defined in the Ap-
pendix.

Although odd-looking, the resulting expressions consti-
tute a good starting point for the elaboration of a numerical
algorithm. Equation~17! can be quickly evaluated for the
various values ofaxy . The definition ofM2(Kxy ,w) indi-
cates that Eq.~18! involves a summation of two-dimensional
integrals. With a good algorithm, one can detect the many
terms that are equivalent and thus reduce the number of in-
tegrals to perform. The number of terms to include in the
summations of Eqs.~17! and~18! is determined by the num-
ber of functions used in the expansion of the one-particle
wave functions@Eq. ~7!#. In practice, as discussed in the
following section, one can restrict the summations to the
lowest values ofKxy and still obtain a very good precision.

V. INAS/INP QUANTUM-DOT SUPERLATTICES

To illustrate the above formalism, we study the heavy-
hole exciton in an InAs/InP QD superlattice. Such superlat-
tices have been grown by Tranet al.2 and optically charac-
terized by Leonelliet al.3 In this section, we first provide
details on the numerical treatment and we determine the vari-
ous parameters needed for the calculations. We then proceed
to evaluate the exciton ground-state energy for structures of
the dimensions reported in Ref. 3. We finally consider QD
superlattices of various QD dimensions and periods to get a
better picture of the ground-state energy dependence. Note
that, in the following, we use the term ‘‘binding energy’’ for
the magnitude of the ground-state energy of the exciton
uEexcu. To discuss the influence of the Coulomb interaction,
we also introduce the correlation energyEcorr5Eexc2Ee
2Eh .

9

All the numerical calculations presented in this section are
performed using 32 basis functions in the expansion of the
one-particle wave functions@Eq. ~7!#. This choice corre-
sponds to basis functions presenting at most eight oscilla-
tions along thex or y direction within a superlattice unit cell.
The electron and hole confinement energies are evaluated by
finding the lowest valueEi for which the determinant of Eq.
~15! vanishes. The coefficientsCi ,n1 ,n2

are then obtained
from the null space of the appropriate matrix. In the worst
cases, we estimate the numerical precision of the confine-
ment energies to be better than 1%. For all the cases consid-

ered, we have verified that the confinement along the growth
direction is strong enough to neglect the correlation intro-
duced by the Coulomb interaction along that direction. The
use of 32 basis functions implies that 121 values ofKxy

should be considered in the summations of Eqs.~17! and
~18!. We have found that restricting the summations to the 5
lowest values ofKxy provides a good precision for the cor-
relation energy for all the superlattices studied here, thus
reducing considerably the computing time. In all the figures,
the symbols represent the calculated values, while the lines
have been added as a guide.

For the materials involved, we use the same parameters as
in Ref. 3 and reprinted in Table I. With a static dielectric
constant of 12.29 for the InP substrate,10 the dimensionless
parameterU50.127. To estimateVe and Vh , we use the
lattice constant of InP and the band offsets obtained from
fitting a simple envelope-function model11 to the average of
experimentally measured exciton binding energies in thin
quantum wells. Photoluminescence~PL! measurements per-
formed on thin InAs/InP quantum wells by Schneider and
Wessels,5 by Kobayashi and Kobayashi,6 and by Leonelli
et al.3 are used to obtain the offsets. We take into account the
fact that the measurements of Ref. 6 have been made at 77 K
by using a smaller InP band gap to extract the binding ener-
gies from the reported values. Before fitting the two-band
envelope function model11 to the data, we substract from all
the measurements a correlation energy estimated to be
around216 meV from a simple two-band effective tight-
binding model. The latter is a simplified version of the effec-
tive bond-orbital model12 in which we have included the
electron-hole interaction. From the data for quantum wells of
two to five monolayers, we obtain a heavy-hole band offset
of 0.29 eV, taking into account the effect of strain on the
InAs layer ~the difference between the InP and InAs band
gaps is taken as 0.95 eV!.3 This leaves a conduction band
offset of 0.66 eV. Now, using the fact that the height of a
monolayer in the zinc-blende structure isa/2 ~growth along
the @001# direction!, the dimensionless parametersVe and
Vh are 0.209 and 0.0924, respectively.

Note that in the above discussion, we do not consider the
measurements made on monolayer quantum wells since the
variation between the reported values for the binding energy
is quite large~from 70 meV to 140 meV!.3,5,6 Monolayer
quantum wells are very delicate to make and nonuniformity
is present to a certain extent in all samples. The experimental
values come from PL measurements which are known to
give the lowest energy states~highest binding energy states!.
It can be misleading to use these values if some interface

TABLE I. Material parameters. The values are taken from Ref.
14, except for the InP heavy-hole effective mass, which comes from
Ref. 15.

InP InAs

Gap ~eV! 1.42 0.42
me* 0.079 0.024
mhh* 0.65 0.41
lattice constant~Å! 5.8696 6.0588
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roughness is present since one collects the signal from re-
gions of largest thicknesses. This is exemplified in Ref. 3,
where measurements from photoluminescence excitation
spectroscopy~PLE! are also given. The latter technique is
expected to give a more accurate picture of the distribution
of energy states. For the monolayer quantum well~sample
S4 of Ref. 3!, the PLE measurement suggests a binding en-
ergy below 70 meV for the heavy-hole exciton while the PL
measurement indicates an energy around 80 meV. Note that
our model gives 62 meV when applied to the monolayer
quantum-well structure, showing reasonable agreement with
the PLE measurement.

In Figs. 2 and 3, we present, as a function of the coverage
factor, the heavy-hole exciton binding energy and the mag-
nitude of the correlation energy (uEcorru) for an InAs/InP QD

superlattice with a period of 62.2 Å. This period results from
the growth of InAs quantum dots on an InP@001# surface
tilted 2° towards@100#. This corresponds to the growth con-
ditions of the QD superlattices studied in Ref. 3. For com-
parison, we also present values for an equivalent fractional
monolayer quantum well~EFMQW! characterized by similar
coverage factors. For this EFMQW, the InAs sites are dis-
tributed uniformly in the monolayer instead of being concen-
trated within quantum dots. The calculations for the
EFMQW are performed with the same formalism as for a
QD superlattice but withLp5L and with adjusted values of
Ve andVh . We do not present results for coverage factors
below 0.28: our model does not apply well to very low cov-
erage factors since one cannot neglect the correlation in-
duced along the growth direction by the Coulomb interac-
tion.

For the calculated quantum-dot structures, the variational
parameter 1/axy is larger than the superlattice period. We
have calculated the one-particle minibands using a generali-
zation of the procedure presented in Sec. III. We have found
that for all these structures, the superlattice effective mass of
the exciton is close to that of InP and that the periodic part of
the electron and hole one-particle Bloch states do not vary
much over the Brillouin zones. Consequently, as discussed in
Sec. II, we expect our variational treatment to give a good
approximation for the binding energy.

The binding energy and the magnitude of the correlation
energy increase with the coverage factor for both the QD
superlattice and EFMQW cases. This increase is a conse-
quence of the confinement introduced by the QD or EFMQW
structures along the growth direction. This confinement is
more pronounced for large coverage factors. The magnitude
of the correlation energy varies monotonically starting from
the InP bulk exciton value (uEcorru'6.3 meV! for low cov-
erage factors. For large coverage factors, the magnitude of
the correlation energy remains smaller than the InP 2D exci-
ton value (uEcorru'25.4 meV! since the confinement intro-
duced by a full monolayer of InAs is not strong enough to
achieve a 2D exciton.

The binding energy is substantially higher in the QD su-
perlattice case than in the EFMQW case. This increase is
also observed for the magnitude of the correlation energy,
but in a much smaller proportion. In fact, a careful study of
the different contributions to the binding energy shows that
most of the difference comes from the increase of the hole
confinement energy (uEhu). The superlattice potential modu-
lates the one-particle wave functions in thex-y plane, in-
creasing the probability of presence within the quantum dots.
This modulation insures a better confinement effectiveness
of the InAs sites in the QD superlattice case over the
EFMQW case where such a modulation is not present.

In Ref. 3, measurements are given for samples with cov-
erage factors of 0.3 and 0.8. For reasons previously dis-
cussed, the binding energies given by these PL measure-
ments are not reliable enough to attempt a direct comparison
with our calculations. However, the displacement of the PL
peak indicates that the binding energy decreases by 34 meV
when the nominal coverage factor is reduced by an amount
of 0.5 ~from 0.8 to 0.3!. From the slope of the curve pre-
sented in Fig. 2, our calculations suggest a decrease of the
order of 30 meV when the coverage factor is reduced by 0.5.

FIG. 2. Heavy-hole exciton binding energy for an InAs/InP QD
superlattice with a 62.2 Å period as a function of the coverage.
Values for an equivalent fractional monolayer quantum well
~EFMQW! are also given.

FIG. 3. Magnitude of the exciton correlation energy for an InAs/
InP QD superlattice with a 62.2 Å period as a function of the
coverage. Values for an equivalent fractional monolayer quantum
well ~EFMQW! are also given.
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The agreement is quite good considering the uncertainty
about the exact nature of the QD superlattices studied in Ref.
3 and the uncertainty about the parameters used in our
model, especially regarding the InP heavy-hole effective
mass and the band offsets.

To give a better picture of the dependence of the heavy-
hole exciton ground-state energy on the QD superlattice pa-
rameters, Fig. 4 presents the binding energy for various QD
dimensions~25 Å, 50 Å, 75 Å, 100 Å, and 150 Å! ~Ref. 13!
as a function of the superlattice period. The corresponding
hole and electron confinement energies are provided in Figs.
5 and 6. The magnitude of the correlation energy and the
value of 1/axy are also presented in Figs. 7 and 8, respec-
tively. We have restricted our calculations to coverage fac-
tors larger than 0.25. The largest superlattice period of 300
Å corresponds to the growth of InAs quantum dots on an
InP @001# surface tilted 0.4° towards@100#.

For the smallest structures, the variational parameter
1/axy is larger than the superlattice period, and a character-
ization of the minibands again shows that the criteria dis-
cussed in Sec. II are met. For the largest structures, the hole
wave function is confined to the quantum dots while the
electron wave function is strongly modulated. Those struc-
tures are close to the quantum-dot array limit also discussed
in Sec. II and our variational treatment should again give a
good approximation for the exciton binding energy. Between
those limits, our treatment should provide some insight about
the effect of the various parameters by giving an upper limit
to the ground-state energy.

Figure 4 shows that the exciton binding energy varies
considerably for small quantum dots as the superlattice pe-
riod increases while the variation is much less pronounced
for larger quantum dots. This can be related to the fact that
the main contribution to the binding energy comes from the

FIG. 4. Heavy-hole exciton binding energy for an InAs/InP QD
superlattice for various QD dimensions as a function of the period
of the superlattice.

FIG. 5. Hole confinement energy for an InAs/InP QD superlat-
tice for various QD dimensions as a function of the period of the
superlattice.

FIG. 6. Electron confinement energy for an InAs/InP QD super-
lattice for various QD dimensions as a function of the period of the
superlattice.

FIG. 7. Magnitude of the exciton correlation energy for an InAs/
InP QD superlattice for various QD dimensions as a function of the
period of the superlattice.
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hole confinement energy. The hole wave function being well
confined by the larger quantum dots, the corresponding hole
confinement energy does not vary much with the superlattice
period, as can be seen from Fig. 5. Figure 6 indicates that the
electron confinement energy contribution is smaller and that
it varies considerably with the superlattice period for all the
QD dimensions considered, a consequence of the smaller
electron effective mass. In fact, the electron confinement en-
ergy shows a dependence on the superlattice period that is
similar to the hole confinement energy, but on a length scale
about three times larger.

When the superlattice period increases, Fig. 7 indicates
that the magnitude of the correlation energy decreases for
quantum dots smaller than 100 Å. Since the electron wave
function is less confined than the hole wave function, the
former is mostly responsible for the behavior of the correla-
tion energy. For small quantum dots, the electron wave func-
tion is weakly modulated in thex-y plane. The electron then
interacts with an average potential in the superlattice plane
and the extension of its wave function along the growth di-
rection varies considerably with the superlattice period. As
the superlattice period increases, the electron wave function
becomes more spread out in thez direction, thus leading to a
smaller electron-hole interaction. For quantum dots larger
than 100 Å, the magnitude of the correlation energy in-
creases with the superlattice period. The electron wave func-
tion is more strongly modulated in thex-y plane and its
extension along thez direction is less dependent on the su-
perlattice period. Consequently, as the superlattice period in-
creases, the electron-hole interaction is enhanced since the
electron wave function becomes more confined laterally to
the quantum dot while its extension along the growth direc-
tion remains about the same. For superlattice periods larger
than those considered in Fig. 7, the magnitude of the corre-
lation energy reaches a maximum and then decreases
slightly. For example, a detailed study of the 150 Å QD case
shows that a maximum value of 18.5 meV is obtained for a
superlattice period of about 500 Å.

Since the one-particle wave functions are weakly modu-
lated in thex-y plane for small quantum dots, the value of

1/axy presented in Fig. 8 can be used to obtain a good esti-
mate of the extension of the exciton wave function. With the
correlating function defined in Eq.~4!, we find that the mean
lateral separation between the electron and the hole in the
superlattice plane@A^(xe2xh)

21(ye2yh)
2&# is approxi-

mately given byA1.5/axy . For a three-dimensional exciton
in InP, this separation is given byA2aInP* wherea InP* is the
exciton Bohr radius~92 Å!. Figure 8 thus indicates that, for
small quantum dots, the lateral extension of the exciton wave
function is slightly smaller than that of the three-dimensional
exciton in InP. Note that our model overestimates 1/axy for
small coverage factors: this is a consequence of the neglect
of the correlation induced by the Coulomb interaction along
the growth direction~for small quantum dots with a coverage
factor of 0.25, the error is of the order of 10%!. For larger
quantum dots, the value of 1/axy indicates that the exciton
does not spread over many quantum dots. This is clearly
related to the increase of the electron-hole interaction previ-
ously discussed.

VI. CONCLUSION

In this paper, we have presented a simple two-band varia-
tional formalism for the characterization of the ground state
of an exciton in a two-dimensional QD superlattice grown on
a terraced substrate. The exciton wave function and the bind-
ing energy are obtained in a two-step process. First, the one-
particle ground states of the superlattice are determined by
numerically solving the Schro¨dinger equation in a QD super-
lattice for both the electron and hole. The exciton wave func-
tion and the binding energy are then obtained from a varia-
tional ansatz, the minimization process being performed
numerically.

When applied to InAs/InP QD superlattices, our model
predicts a decrease of the binding energy as the superlattice
period increases. This variation is larger for small quantum
dots. The electron-hole interaction has been found to de-
crease as the superlattice period increases for quantum dots
smaller than 100 Å while it increases for larger quantum
dots.

A strong variation of the binding energy with the QD
dimensions has been experimentally observed for InAs/InP
QD superlattices.3 A fair agreement between our model and
the available experimental measurements has been found for
the variation of the exciton binding energy with the coverage
factor. Since only a few samples have been produced and
characterized up to now, there still remains a lot of uncer-
tainty about the exact nature of the QD superlattices experi-
mentally studied. Although the experimental work already
performed on InAs/InP QD superlattices represents in itself
quite an achievement, more work is needed to get a better
knowledge of the shape, dimensions, and uniformity of the
quantum dots resulting from the various growth conditions.
For the optical characterization, more reliable binding ener-
gies would be obtained if photoluminescence studies could
be complemented with PLE or absorption measurements.
Only with this information could we further evaluate the
validity of our model.

FIG. 8. Value of the variational parameter 1/axy for an InAs/InP
QD superlattice for various QD dimensions as a function of the
period of the superlattice.
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APPENDIX A

In this appendix, we provide more details for the deriva-
tion of the results of Sec. IV@Eqs. ~17! and ~18!#. These
derivations are rather lengthy, so only the main steps are
given.

For all the integrations over the electron and hole coordi-
nates, we assume that the sample is infinite along thez di-
rection and that the superlattice covers a large areaA in the
x-y plane. To obtain Eq.~17!, we first use the following
Fourier expansion:

F2~rWe ,rWh!5
4paxy

A (
kWxy

exp@ ikW xy•~rWe2rWh!#

~4axy
2 1kx

21ky
2!3/2

, ~A1!

where the summation is performed over the two-dimensional
wave-vector space of the QD superlattice. We can thus write

E
V
E
V
ce~rWe!

2ch~rWh!
2F~rWe ,rWh!

2d3r ed
3r h5

4paxy

A (
kWxy

1

~4axy
2 1kx

21ky
2!3/2

E
V
E
V
ce~rWe!

2ch~rWh!
2

3exp@ ikW xy•~rWe2rWh!#d
3r ed

3r h . ~A2!

To evaluate the remaining integrals, we first obtain

E
V
ce~rWe!

2exp~ ikW•rWe!d
3r e5

A

8 (
n1>n2 ,n3>n4

Ce,n1 ,n2
Ce,n3 ,n4

Nn1 ,n2
Nn3 ,n4

~be,n1 ,n2
1be,n3 ,n4

!

@kz
21~be,n1 ,n2

1be,n3 ,n4
!2#

Dn1 ,n2 ,n3 ,n4
~kW xy!, ~A3!

whereDn1 ,n2 ,n3 ,n4
(kW xy) is defined by the following summation of products of Kronecker deltas:

Dn1 ,n2 ,n3 ,n4
~kW xy!5 (

i , j51,2;iÞ j
(

l ,m53,4;lÞm
(

s,t,u,v561
dS kxq ,sni1tnl D dS kyq ,unj1vnmD . ~A4!

An expression similar to Eq.~A3! is obtained from the integration over the hole coordinates in Eq.~A2!. Note that the
definition ofDn1 ,n2 ,n3 ,n4

(kW xy) @Eq. ~A4!# indicates that the summation overkW xy in Eq. ~A2! can be restricted to the reciprocal
lattice vectors of the QD superlattice. Finally, after introducing the electron and hole versions of Eq.~A3! into Eq. ~A2!, one
can easily obtain Eq.~17! of Sec. IV, where the functionM1(Kxy) is given by

M1~Kxy!5 (
n1>n2 ,n3>n4 ,n5>n6 ,n7>n8

Ce,n1 ,n2
Ce,n3 ,n4

Ch,n5 ,n6
Ch,n7 ,n8

Nn1 ,n2
Nn3 ,n4

Nn5 ,n6
Nn7 ,n8

~be,n1 ,n2
1be,n3 ,n4

!~bh,n5 ,n6
1bh,n7 ,n8

!

3 (
kWxy ;ukWxyu5Kxy

Dn1 ,n2 ,n3 ,n4
~kW xy!Dn5 ,n6 ,n7 ,n8

~kW xy!. ~A5!

The derivation Eq.~18! is done along similar lines. It starts with the following Fourier expansion:

F2~rWe ,rWh!

urWe2rWhu
5
2

A(
kWxy

E
2`

1`F E
0

`

exp~22axyr!rJ0~kxyr!E
0

`cos~kzw!

Ar21w2
dwdrGexp@ ikW•~rWe2rWh!#dkz , ~A6!

whereJ0(kxyr) is the zeroth order Bessel function.8 Introducing this expression into the left side of Eq.~18! and using the
electron and hole versions of Eq.~A3!, one obtains the right side of Eq.~18! after a simple integration over thekz variable. The
functionM2(Kxy ,w) of Eq. ~18! is defined by
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M2~Kxy ,w!5 (
n1>n2 ,n3>n4 ,n5>n6 ,n7>n8

Ce,n1 ,n2
Ce,n3 ,n4

Ch,n5 ,n6
Ch,n7 ,n8

Nn1 ,n2
Nn3 ,n4

Nn5 ,n6
Nn7 ,n8

@~bh,n5 ,n6
1bh,n7 ,n8

!22~be,n1 ,n2
1be,n3 ,n4

!2#

3$exp@2~be,n1 ,n2
1be,n3 ,n4

!w#~bh,n5 ,n6
1bh,n7 ,n8

!

2exp@2~bh,n5 ,n6
1bh,n7 ,n8

!w#~be,n1 ,n2
1be,n3 ,n4

!% (
kWxy ;ukWxyu5Kxy

Dn1 ,n2 ,n3 ,n4
~kW xy!Dn5 ,n6 ,n7 ,n8

~kW xy!. ~A7!
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