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The dependence of theE0 direct gap of Ge, GaAs, and ZnSe on isotopic masses at low temperatures has
been investigated. Contributions of the variation of the lattice parameter to the gap shift of the binary com-
pounds have been evaluated by using a volume-dependent lattice dynamics, while local empirical pseudopo-
tential techniques have been employed to calculate gap shifts due to electron-phonon interaction. The depen-
dence of these terms on the lattice-dynamical model and on theq→0 extrapolation of the pseudopotential form
factors has been investigated. The contributions of the optical and acoustical modes to the isotopic shift are
analyzed. The results are compared to previous experimental data, in the case of germanium, and to low-
temperature reflectance measurements performed as part of this work on GaAs samples with different isotopic
gallium composition. Particular attention has been paid to the differences in the effects of changing either the
cation or the anion masses. The temperature dependence of theE0 gap of ZnSe has also been calculated, and
reasonable agreement with experiment has been found.@S0163-1829~96!02032-2#

I. INTRODUCTION

The possibility of growing isotopically enriched semicon-
ductors has allowed us to investigate the dependence of their
basic solid-state properties on isotopic masses and disorder
~for an overview, see Refs. 1–4!. The variation of the ther-
mal conductivity with isotopic composition, the dependence
of phonon frequencies and linewidths on the isotopic masses,
and the dependence of the lattice constant and energy gaps
on the average isotopic mass are some of the most interesting
properties. This interest is not only of basic relevance, but
technical applications have also been proposed.5,6 A consid-
erable amount of studies have been published during the last
few years on the isotopic dependence of such properties in
diamond-type semiconductors.1–4 Interest has recently
shifted to zinc-blende-type materials.7–9

The dependence of the electronic energy gapE0 on the
isotopic massMk of a semiconductor compound (k is the
atomic species! at a constant temperature can be separated
into two contributions, similar to those responsible for the
temperature dependence of the gaps:10–12
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The first term is the contribution of the electron-phonon in-
teraction~EP! at constant volume. The second one is due to
the change of the lattice constant or, equivalently, of the
crystal volume with the isotopic mass. Anharmonic correc-
tions to the crystal volume at low temperatures depend on
the atomic masses through the ‘‘zero-point’’ vibrational am-
plitudes. The origin of this term is equivalent to that of the
thermal expansion~TE! at low temperature; by analogy we
shall call it the zero-point thermal expansion term.

The influence of the isotopic mass on the crystal volume
has recently been calculated for diamond-type semiconduc-
tors such as C, Si, or Ge byab initio total-energy
techniques.13 The results are in striking agreement with the
experiment for diamond,14 and slightly smaller than the only
experimental point available for Ge.15

In binary semiconductors, the calculation of the depen-
dence of volume~or lattice parameter! on isotopic masses is
more complicated. It is not possible to write the relative
variation of the crystal volume as a simple function of the
relative variation of the mass. Phonon frequencies depend
differently on the two masses, and this dependence has to be
known, together with the corresponding Gru¨neisen param-
eters for all phonon modes, in order to calculate the depen-
dence of the lattice constant on the isotopic masses. In this
paper we present calculations of the dependence of the lattice
constant of ZnSe on the two isotopic masses. We have em-
ployed an 11-parameter rigid-ion model16 ~RIM! at two dif-
ferent pressures, i.e., two different unit-cell volumes, to ob-
tain the Gru¨neisen parameters. Due to the absence of a
similar dynamical model for GaAs, an estimation of the
variation of its lattice parameter with Ga and As~Ref. 17!
masses has been performed by interpolating the ZnSe and Ge
results. We find, in all cases, that the magnitude of the mass
derivative of the lattice parameter is larger for the anion el-
ement than for the cation.

The dependence of electronic band gaps on isotopic
masses has been extensively studied in diamond-type semi-
conductors. Davieset al.18 studied the lowest direct gapE0
and the indirect gapEind of Ge by means of absorption
measurements at 2 K. They found a change
]E0 /]MGe50.4960.03 meV/amu. There are also experi-
mental results for theE01D0 ~Ref. 19!, E1 ~Ref. 20!, and
E11D1 ~Ref. 21! critical points~cp’s! of Ge. Diamond ex-
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hibits a larger isotopic shift. Collinset al.22 found a differ-
ence of 14.060.7 meV between the lowest indirect gaps of
12C and 13C. Theoretical studies of the dependence of sev-
eral energy gaps and linewidths on isotopic mass and tem-
perature in diamond, silicon, and germanium have been per-
formed by Zollner, Cardona, and Gopalan.21 Their
calculations are in rather good agreement with the experi-
ment for diamond. In the case of germanium they slightly
overestimate the isotopic mass dependence of the indirect
Eind andE0 gaps. The calculations for theE1 cp, however,
considerably underestimate the experimental results.

We investigate in this work the dependence of theE0 cp
on the isotopic mass and temperature in several semiconduc-
tors isoelectronic to germanium. In Sec. II we present experi-
mental results of reflectivity in the neighborhood of the fun-
damental gap of GaAs, obtained for several samples with
different isotopic gallium compositions. Section III is de-
voted to the calculation of the dependence of the lattice con-
stant on the isotopic mass at low temperature. The variation
of theE0 gap due to thermal expansion at low temperatures
is discussed in Sec. IV. In Sec. V, we use thelocal empirical
pseudopotential methodto obtain the gap renormalization
due to the electron-phonon interaction and its mass depen-
dence in Ge, GaAs, and ZnSe. The temperature dependence
of the ZnSe gap is calculated in Sec. VI, and compared with
existing experimental results. Finally, in Sec. VII we sum-
marize the main conclusions of the work.

II. EXPERIMENTAL RESULTS

A series of GaAs samples with a controlled composition
of Ga isotopes has been grown by molecular-beam epitaxy
on semi-insulating@001#-oriented GaAs substrates using the
stable isotopes69Ga and71Ga as source materials. The thick-
ness of the layers is 5000 Å. They were grown with a rate of
2 Å/s at a substrate temperature of 580 °C. The ratio of
69Ga to 71Ga in alloy samples was controlled by appropri-
ately adjusting the individual particle fluxes via the source
temperature. The average Ga masses of the samples obtained
this way are 69, 69.5, 70, 70.5, and 71 amu, respectively. In
addition to these specimen we have used natural GaAs
~60.4%69Ga, 39.6%71Ga, 100%75As, and average Ga mass
69.8 amu! grown by liquid-phase epitaxy as a reference. The
isotopic gallium composition of all samples was checked by
Raman spectroscopy. We find that the frequency of the
longitudinal-optic ~LO!-phonon shifts with the reduced
GaAs mass to a very good approximation.

To determine the fundamental band gap of GaAs, we per-
formed reflectivity measurements at 10 K. Since the spectra
are influenced by the excitonic character of the absorption
edge we have taken the minimum of the reflectivity curves as
a measure of the gap. Results are shown in Fig. 1. A linear
least-squares fit~solid line! to the data~points! yields a slope
of

]E0

]MGa
50.3960.06 meV/amu. ~2!

III. DEPENDENCE OF THE LATTICE CONSTANT
ON ISOTOPIC MASSES

The equilibrium volume of a crystal at a given tempera-
ture depends, through anharmonicity, on the amplitude of the
lattice vibrations. Actually, the anharmonic contribution is
nonzero even at zero temperature, due to the ‘‘zero-point’’
vibrational amplitude~the minimum energy of a quantum
oscillator is\v/2). In order to connect the change in volume
with phonon parameters we use the Helmholtz free energy
F, which is related for a system of independent oscillators
~phonons! through the partition function.23 In terms of the
energy of individual oscillators,F can be written as

F5(
n,q

H 12 \vn~q!1kT ln@12exp„2\vn~q!/kT…#J . ~3!

The volume of a sample is related to the bulk modulus
through (DV/V)T52Dp/B, while p can be written as
p52(DF/DV)T . Using these expressions, we find
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where we have introduced the mode Gru¨neisen parameters
gn(q) defined asgn(q)52] lnvn /] lnV andnB„vn(q)… is the
Bose-Einstein factor. In Eq.~4!, V0 represents the crystal
volume in the limit of infinite masses. In terms of the lattice
constant of the conventional unit cell (a0 in the limit of
infinite masses! for zinc-blende-type materials, Eq.~4! can
be written as

a~M1 ,M2!2a0
a0

5
4\
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2 #,

~5!

wherea(M1 ,M2) is the lattice constant for a finite mass of
atoms 1 and 2 in the primitive cell at a given temperature.
Here we are interested in the change of the lattice parameter
when one of the atomic masses changes (] lna/]Mk) and in
the low-temperature limit in whichnB'0. If we change the
mass of atomk (k51,2) fromMk to Mk1DMk , the rela-
tive change in the lattice parameter is

FIG. 1. E0 gap of GaAs with isotopically controlled Ga compo-
sition obtained from reflectivity measurements atT510 K. The
solid line shows a linear least-square fit to the experimental data.
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By Dk@vn(q)gn(q)# we mean the difference of the quantity
in brackets evaluated at two different isotopic masses. This
term is usually negative for an increase in either of the
masses. Thus it can be understood as an ‘‘isotopic contrac-
tion’’ of the lattice parameter.

The calculation of Eq.~6! requires an integration over the
whole Brillouin zone~BZ!. For this reason, it is convenient
to define the ‘‘lattice spectral function’’

F~M1 ,M2 ;V!5
2\

3Ba0
3(

n,q
Vgn~q!d@V2vn~q!#, ~7!

which represents the spectral dependence of the changes in
lattice parameter induced by a mass configuration,M1 and
M2. In terms of Eq.~7!, Eq. ~6! becomes

Dka

a
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0
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dVDkF~M1 ,M2 ;V!. ~8!

In order to obtain the spectral functionF(M1 ,M2 ;V) for
ZnSe, we have proceeded in the following way. First, we
made use of the calculations of Talwaret al.16 to obtain the
Grüneisen parameters. These authors fitted experimental
phonon dispersion data available for ZnSe at two different
pressures~ambient pressure and 13.7 GPa! by using a rigid-
ion model~RIM! with 11 parameters, developed by Kunc24

~these parameters are listed in Table I of Ref. 16!. We have
performed similar calculations for two different isotopic
masses. Once we obtained the Gru¨neisen parameters, the
density of states was calculated with the deformable-bond
approximation, in order to be consistent with the calculations
of the electron-phonon interaction to be described in Sec. V.

Figure 2~a! shows the spectral functions@see Eq.~7!# cor-
responding to two different isotopic masses of Zn, the mass
of the natural isotope~solid line!, and the mass of a hypo-
thetical isotope with five more amu~dotted line!. We observe
that there is a very small difference between both curves in

the region of lower energies where transverse and longitudi-
nal acoustic modes~TA and LA! contribute. This difference
becomes more important in the region of optical phonons at
higher frequencies~TO and LO!. Figure 2~a! also shows as
an inset the difference between the lattice spectral functions
DF for both masses~solid line! which enters directly into the
calculation of the variation of the lattice parameter with the
isotopic mass@see Eq.~8!#. The integral ofDF vs energy
according to Eq.~8! is shown by the dotted line in the inset
of Fig. 2~a!. One can see that the main contribution to
DZna/a comes from the region of LO and TO phonons. Due
to strong oscillations inDF, large cancellations in the inte-
gral occur and the main contribution toDZna/a actually
arises from phonons around LOG , i. e., near the center of the
Brillouin zone. Let us now compare this with the case in
which the Se mass is changed. In Fig. 2~b! we show the
spectral functions corresponding to two different Se masses
~natural mass: solid line; five more amu: dotted line!. The
inset of Fig. 2~b! displays the difference of the spectral func-
tionsDF ~solid line! and its integral vs energy~dotted line!.
The units of the integral curves in both insets are those of
F andDF multiplied by 1 meV. In the case of Se substitu-
tion, the region of TA and LA phonons makes a higher con-
tribution than in the case of Zn. Moreover, the energy region
of optical phonons makes contributions of smaller amplitude
than for Zn. Again, the magnitude and sign ofDSea/a is
determined by the LOG phonons.

The differences in the contributions of various phonons to
the spectral functions for Zn and Se substitution can be un-
derstood by looking at the eigenvectors of the different
modes at theX point of the BZ, in whose neighborhood large
contributions to the density of states arise. The simplest case
is that of longitudinal phonons, in which only one of the
species is moving. The LA mode corresponds to vibrations
of Se atoms, the LO to Zn vibrations: modes corresponding
to light atoms have higher frequencies than those associated
with heavy atoms. Thus the shift of the spectral function in
the LA peak region, close to 20 meV, is appreciable only for
Se @Fig. 2~b!#, while the shift in the LO region is larger for
Zn substitution. The LO peak overlaps with the TO modes.
In the case of transverse phonons both atoms vibrate. How-

TABLE I. Dependence of the lattice constant on the isotopic
masses calculated for Ge, GaAs, and ZnSe, as explained in the text.
The coefficients are ordered according to increasing atomic mass.

Compound k Mass~amu! ] lna/]Mk ~1026 amu21)

ZnSe Zn 65.38 27.95
GaAs Ga 69.74 26.44
Ge Ge 72.59 210.9a,b

GaAs As 74.94 24.44
ZnSe Se 78.96 22.70

aThis coefficient corresponds to a change of the mass of the two
atoms in the primitive cell.
bReference 13. FIG. 2. Lattice spectral functionsF @Eq. ~7!# of ZnSe ~solid

lines: natural abundance! for ~a! a change of the Zn mass and~b!
the Se mass by 5 amu~dotted lines, respectively!. The insets show
the differenceDkF between the two spectral functions for each case
~solid lines!. The integral overDkF ~dotted lines in the insets!
determines the change of the lattice constant according to Eq.~8!.
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ever, the TA modes mostly correspond to vibrations of the
Se atoms, explaining why there is a contribution in the TA
region~around 10 meV! in the case of Se. When the mass of
Zn is changed, the contribution of the TA modes to the dif-
ferential spectral function is negligible. For the TO modes,
the amplitude of the vibration is larger for Zn atoms than for
Se atoms. The influence of changing the Zn mass is therefore
stronger @see the inset in Fig. 2~a! in the region around
27 meV#. The differential spectral functions help us to
clarify which phonon modes participate more strongly in the
lattice constant renormalization. As a consequence of the os-
cillatory behavior~see the insets of Fig. 2, solid lines! and,
consequently, strong cancellations in the integral of Eq.~8! it
is hard to see by inspection of Figs. 2~a! and 2~b! which
atomic species produces the larger relative variation in the
lattice constant.

The numerical results obtained from the integration of the
differential spectral functions~insets in Fig. 2, dotted lines!
per atomic mass unit, are presented in Table I. When com-
paring the results for ZnSe with those for Ge obtained by
Pavone and Paroni,13 we note that the effect of changing
both masses in the unit cell is nearly the same for both ma-
terials. However, whereas for Ge the two atoms contribute
equally, for ZnSe the contributions of the anion and the cat-
ion are rather asymmetric. The dependence of the GaAs lat-
tice parameter on the Ga and As masses has been obtained
by linear interpolation between the values found for Ge and
ZnSe because of the less extensive knowledge of Gru¨neisen
parameters for GaAs than for ZnSe.25 In order to perform
this interpolation, the Ge data have to be divided by a factor
of 2, since a change in the Ge mass means a change in the
mass of the two atoms in the unit cell. The influence of the
isotopic mass on the lattice constant in the different semicon-
ductors is larger for replacement of lighter atoms. The nega-
tive signs of the coefficients reflect the fact that an increase
of the mass produces a decrease in the lattice constant. The
smallest value of the lattice constant is obtained for infinite
atomic masses~because of anharmonicity the atoms need
‘‘space’’ to vibrate!.

IV. DEPENDENCE OF THE GAP ON ISOTOPIC MASS
DUE TO CHANGES IN THE LATTICE CONSTANT

The isotopic contribution to the variation of the energy
gapE0 due to zero-point thermal expansion can be written as
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We have evaluated Eq.~9! by using the results of Sec. III,
given in Table I, the bulk modulus, and the pressure coeffi-
cients of the gaps after Ref. 26. The results are given in
Table II for Ge, GaAs, and ZnSe. The calculated value ob-
tained for Ge, 0.29 meV/amu, as mentioned in Sec. III, has
to be divided by a factor of 2 when comparing it with the
change of either cation or anion masses in GaAs and ZnSe.
The contribution to the gap variation, derived from Eq.~9! is
of the same order in Ge and GaAs, while in ZnSe it is half of
that value. This difference comes from the different pressure
coefficient of the ZnSe gap, which is due in part to the larger
difference in atomic term values between the cation and an-
ion. Hence the hybridization effect becomes smaller, a fact
which causes a smaller change in the gap with the pressure.
Table II also shows trends of the gap shifts with the respec-
tive masses: As mentioned in the discussion of Table I, the
decrease of the lattice parameter with increasing mass be-
comes smaller for the heavier atomic species. Analogously,
the gap shift decreases with increasing mass; i.e., isotopic
substitution of a heavier atom like As or Se causes a smaller
gap shift than substituting a lighter one like Ga or Zn.

V. DEPENDENCE OF THE GAP ON ISOTOPIC MASS
DUE TO ELECTRON-PHONON INTERACTION

The renormalization of electron energies by deformation-
potential electron-phonon interaction also plays an important
role in the dependence of the energy gaps on temperature and
isotopic masses. The temperature dependence of the gaps in
zinc-blende-type semiconductors has been widely studied,
both theoretically and experimentally.27 A rigorous deriva-
tion of the electron self-energy involved has been given by
Allen.28,29Here we only summarize the main ideas and final
expressions.

To evaluate the effect of electron-phonon coupling on the
energy gap, two renormalizations have to be taken into ac-
count: The Debye-Waller effect~DW!, which arises from the
simultaneous interaction of an electron with two phonons
with the same wave vectorq and from the same branchn
~second-order electron-phonon interaction taken in first-order

TABLE II. Gap shift due to isotopic contraction atT50 K ~TE!. The values of bulk modulus and the
pressure coefficient are taken from Ref. 26, unless explicitly indicated. In the binary compounds, the gap
derivatives depend on the atomic speciesk as indicated.

Compound B ~GPa! (]E0 /]p)T ~meV/GPa! k (]E0 /]Mk)TE ~meV/amu!

Ge 74.4a 121 Ge 0.29

GaAs 76 111 Ga 0.163
As 0.112

ZnSe 64.7 75 Zn 0.116
Se 0.039

aReference 41.
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perturbation theory!, and the real part of the self-energy
~SE!, which comes from the electron–one-phonon interac
tion taken to second-order perturbation theory. If we assume
that the phonon frequencies are smaller than the lifetime
broadening of the relevant electronic states, perturbed elec-
tron energiesEn(k) of bandn can be written in terms of the
unperturbed energies«n(k) ~which correspond to infinite ion
masses! as

En~k!5«n~k!1(
n,q

S ]En~k!

]nqn
D ~nqn1 1

2 !, ~10!

wherenqn is the occupation number of the (n,q) vibrational
mode, which is finally substituted with the Bose-Einstein
factor once a thermal average is performed. The coefficients
„]En(k)/]nqn… are the sum of the DW contributions
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Heretk denotes the equilibrium positions of the atoms in the
unit cell,N is the number of unit cells in the crystal,Rk is the
position of atomk, a, andb are Cartesian coordinates, and
en,k(q) are normalized phonon eigenvectors. Here we adopt
the rigid-ion approximation, in which the lattice potential is
taken to be a sum of atomic potentials which move rigidly
with the atoms. Below in Eqs.~11! and ~12! we shall use
atomic or ionic pseudopotentials for the potentialsvk . Both
the DW and SE corrections depend explicitly on the isotopic
mass. In order to calculate the mass derivative at a constant
volume, we have to calculate these corrections for two dif-
ferent masses. Since we are interested here in the low-
temperature limit, the Bose-Einstein factor will be neglected.

In order to better display the numerical results we define,
as in Sec. III, a spectral function, the electron-phonon spec-
tral function, which now depends not only on the phonon
frequency and the finite mass configuration, but also on the
electron state:

g2F~M1 ,M2 ,n,k;V!5
1

\ (
q,n

]En~k!

]nq,n
d@V2vn~q!#.

~13!

In terms ofg2F, the energy renormalization due to electron-
phonon interaction, at low temperature, is

DEn~k!5
\

2E0
Vmax

dVg2F~M1 ,M2 ,n,k;V!. ~14!

To perform the sum over the whole BZ in Eq.~13!, we
have used the tetrahedron method30 with a discrete mesh of
89 points in the irreducible wedge of the BZ. To avoid nu-
merical problems in the calculation of Eqs.~11! and~12!, we
have introduced a Lorentzian broadening of 0.01 Ry in the
denominators, which corresponds to electron lifetime broad-

enings of 0.005 Ry. This value is probably overestimated,
but we have checked that the results do not depend on its
exact magnitude.

Electronic states are calculated using local empirical
pseudopotentials with a basis of 59 plane waves. We have
chosen the Cohen-Bergstresser31 set of empirical pseudopo-
tential form factorsvk(G). The matrix elements containing
derivatives of atomic potentials are also calculated within the
pseudopotential formalism. To determine these derivatives,
however, it is necessary to knowvk(G) as a continuous
function ofG, not only at the few reciprocal-lattice vectors
needed to calculate the band structure. This problem is
solved by smoothly interpolating between the known empiri-
cal form factors and extrapolating to some judicious value at
G50. In our calculations, we have used two different ex-
trapolations:~i! the traditional one32 ~GP!, where the form
factor takes the value of22«F/3 atG50, as in metals («F is
the Fermi energy, which corresponds to the valence electron
density in the free-electron case!, and ~ii ! the
Bednarek-Ro¨ssler33 extrapolation~BR!, in which vk(0) is
taken to be zero. We have investigated in detail the depen-
dence of the isotopic shift of the gap on the kind of extrapo-
lation used and found it not to be critical.

Two different lattice-dynamical models have been used to
obtain phonon eigenvalues and eigenvectors for Ge and
GaAs: Weber’s adiabatic bond-charge model34,35~BCM! and
the 14-parameter shell model~SM! of Kunc and Nielsen.36,37

The BCM parameters for GaAs have been taken from a re-
cent fit to ab initio dispersion relations by Colombo and
Giannozzi.38 We have also used two different phonon mod-
els for the calculations of the ZnSe isotopic band-gap varia-
tion: an 11-parameter rigid-ion model39,40 and the
deformable-bond approximation39 ~DBA!.

In Figs. 3~a! and 3~b! we present the electron-phonon
spectral function for theE0 gap in ZnSe, i.e., the difference
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between the spectral functions ofG1 ~conduction! and G15
~valence! electronic states, for three different isotopic con-
figurations: the two natural masses~solid lines!; keeping the
Se mass at its natural value and increasing the mass of Zn by
5 amu@dashed line, Fig. 3~a!#; and for the reversed situation
@dashed line, Fig. 3~b!#. For the calculation of electron ener-
gies and wave functions we have employed a GP-type
pseudopotential model. A 15-parameter DBA model is more
realistic than the RIM model for the lattice dynamics, and
gives a better approximation for the phonon density of states.
This was the reason for choosing this model in our display of
the electron-phonon spectral functions. As it is shown in Fig.
3, increasing the isotopic mass of any of the compounds
shifts the spectral function to lower energies. The heavier the
atoms are, the lower the frequencies of the corresponding
vibrational modes. However, the change of the cation or the
anion mass results in different spectral functions. A similar
behavior was observed in the spectral function for the lattice-
constant renormalization~Fig. 2!. Again, the variation of the
Zn mass is important only at high energies. In contrast to
that, the change in the Se mass produces shifts at all ener-
gies. According to Eq.~14! the correction to the energy is
proportional to the integral of the functions in Fig. 3. We find
that the electron-phonon renormalization is reduced for an

increase of either mass. Thus when atomic masses increase,
the energy gap also increases. Increasing the atomic masses
has the same effect as ‘‘freezing’’ the vibrations of the solid.

Table III shows the electron-phonon renormalization of
the E0 gap of Ge, GaAs, and ZnSe, calculated with two
different pseudopotential extrapolations and different phonon
models. In the case of Ge, BCM gives a slightly larger value
than SM. Comparing the pseudopotential approaches, the GP
extrapolation makes a larger contribution than the BR model.
However, even with the lowest value, 0.36 meV/amu, the
total gap shift with the isotopic mass is around 30% larger
than the measured one~see Table IV!. In the case of GaAs,
BCM gives larger values than SM for Ga substitution, but
the opposite happens when the isotopic mass of As is
changed.17 The GP extrapolation also gives larger values,
similarly to the case of Ge. If we take the result correspond-
ing to the SM and GP pseudopotential extrapolations, our
theory reproduces the experimental result within the error
~see Table IV!. The experimental uncertainties, however, are
too large to distinguish which of the proposed phonon mod-
els and pseudopotentials are best: all theoretical predictions
are quite satisfactory. For ZnSe we obtain similar results for
the two-phonon models and the GP and BR approaches. The
GP pseudopotential gives a larger mass dependence for Zn

FIG. 3. Electron-phonon spectral functionsg2F for theE0 gap
of ZnSe~solid lines: natural abundance! for ~a! a change of the Zn
and ~b! the Se mass by 5 amu~dashed lines, respectively!.

TABLE III. Electron-phonon contribution to theE0 gap shift for
different lattice dynamical~BCM, SM, RIM, and DBA! and
pseudopotential models~GP and BR!. The numbers in brackets are
the theoretical errors of a linear regression through the results ob-
tained for different mass increments.

GP ~meV/amu! BR ~meV/amu!

Ge BCM 0.43~4! 0.404~16!
SM 0.389~8! 0.364~4!

GaAs Ga BCM 0.285~8! 0.260~7!

SM 0.270~7! 0.248~7!

As BCM 0.285~2! 0.277~3!

SM 0.308~1! 0.300~1!

ZnSe Zn RIM 0.171~6! 0.147~5!

DBA 0.186~17! 0.158~17!
Se RIM 0.258~16! 0.292~16!

DBA 0.261~13! 0.288~15!

TABLE IV. E0 gap shift, theoretical and experimental results
~in meV/amu!.

k (]E0 /]Mk)EP (]E0 /]Mk)TE Total Experiment

Ge Gea 0.36 0.29 0.65 0.49~3!b

GaAs Ga 0.27 0.16 0.43 0.39~6!

As 0.31 0.11 0.42

ZnSe Zn 0.19 0.12 0.31
Se 0.26 0.04 0.30

aThe Ge coefficients correspond to the simultaneous change of two
masses per unit cell. They must be divided by two in order to
compare them with those given for GaAs and ZnSe.
bReferences 18 and 19.
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than the BR model, while for Se substitution the opposite is
found. All the results, as in the case of Ge and GaAs, are
rather similar. Since no experimental data are available, we
have chosen the calculations with the DBA model and the
GP pseudopotentials in order to compare them with the gap
variation of Ge and GaAs in Table IV.

Table IV shows the two contributions~electron-phonon
and thermal expansion! to the gap shift which we have cal-
culated in the present work. Electron-phonon interaction
causes different shifts for cation and anion isotopic substitu-
tion in compound semiconductors which are larger for the
heavier constituents. This difference increases with increas-
ing ionicity of the material. The contribution due to thermal
expansion is also different for substitution of heavier and
lighter elements of a compound, and the difference increases
with increasing ionicity. However, the gap shifts for lighter
atoms are larger than those of the heavier ones due to the
larger changes in the lattice constant~see Tables I and II!.
This behavior is opposite to that found from electron-phonon
interaction. The two effects almost cancel each other when
the total gap shift is considered, which becomes nearly inde-
pendent of the species being substituted.

In Table V we show separately the contribution of acous-
tical and optical phonons to the SE and DW terms. The re-
sults shown are obtained by using the BR pseudopotential
model and BCM, SM, and RIM lattice dynamics for Ge,
GaAs, and ZnSe, respectively. Generally, both corrections,
SE and DW, make similar contributions. Nevertheless, there
are important cancellations among them that make the result
hard to understand in simple terms. For Ge, the DW term
dominates in the acoustical region, while the SE contribution
is more important in the optical region. In GaAs and ZnSe
we can additionally distinguish between optical and acoustic
DW and SE contributions when the mass of either the cation
or the anion is changed. When the cation mass is changed,
the DW contribution dominates in the acoustic region, while
the SE contribution is larger in the optical region. This be-
havior is analogous to that of Ge. For anion replacement, the
DW and SE contributions of As and Se almost cancel in the
acoustical regime. The gap shift is thus dominated by optic
modes. In general, the optical region makes the most impor-
tant contribution to the energy renormalization, due to
electron-phonon interaction in Ge and for anion replacement
in GaAs and ZnSe, while both types of modes are almost
equally important for cation substitution~Ga, Zn!. An inter-
esting trend can be observed for the DW contribution of
optical modes. For Ga and Zn substitution we obtain a nega-
tive gap shift, while it is positive for replacement of As and

Se. The magnitude of the shifts for either anions or cations
increases with increasing ionicity. This behavior directly re-
flects changes of the electronic structure due to lattice vibra-
tions. This can be qualitatively understood in simple terms
by multiplying the atomic pseudopotentialsv with a Debye-
Waller factor, yielding expressions likev exp(2G2^u2&/6)
which can be used to obtain the corresponding contribution
to the temperature or isotopic mass dependence of the elec-
tronic structure in an alternative way to Eq.~11!. Going from
Ge to GaAs and ZnSe, the difference between anion and
cation pseudopotentialsv(3), which determine theE0 gap
energy to a large extent, increases, thus leading to larger
gaps.31 These pseudopotentials are negative for all atoms
considered, with their magnitudes being larger for anions
than for cations. Under these circumstances an increase of
Ga or Zn masses leads to a decrease of the antisymmetric
component between anion and cation pseudopotentials, and
thus to a decrease of the gap. On the other hand, an increase
of As or Se masses leads to an increase of the antisymmetric
pseudopotentials and therefore to a larger gap.

VI. TEMPERATURE DEPENDENCE OF THE ZnSe GAP

The change in the energy gap with temperature obeys the
same equation@Eq. ~1!# as the change with the mass, but now
we have to take the derivative with respect to temperature.
We have to calculate two terms, the TE and EP contributions
to this energy shift. The TE term now contains the linear
expansion coefficienta5] lna/]T, that can be calculated by
differentiating Eq.~5!:

a5
4\2

3Ba0
3kT2(n,q nB

2
„vn~q!…vn

2~q!gn~q!e\v/kT. ~15!

The contribution to the EP interaction is equivalent to Eqs.
~11! and~12!, but now the energy shift is obtained by chang-
ing the temperature instead of the mass. In this way we have
calculated the temperature behavior of the gap for ZnSe. We
have used the RIM with 11 parameters and the GP pseudo-
potential form factors. Figure 4 shows the results of the cal-
culations~solid line! together with experimental data of the
1S exciton associated with theE0 direct gap obtained from
luminescence42 ~open circles! and luminescence excitation43

~dashed line! measurements. The data of Ref. 43~dashed
line! have been fitted with Varshni’s formula, which yields

TABLE V. Contribution of acoustical and optical phonons to
the isotopic shift of theE0 gap ~in meV/amu!.

Acoustical Optical
DW SE Total DW SE Total

Ge 0.184~7! -0.099~5! 0.085 0.065~2! 0.253~5! 0.318

GaAs Ga 0.165~4! -0.052~5! 0.113 -0.051~6! 0.185~1! 0.134
As 0.071~4! -0.062~3! 0.009 0.118~9! 0.172~8! 0.290

ZnSe Zn 0.144~9! -0.056~9! 0.088 -0.115~5! 0.175~6! 0.060
Se 0.154~1! -0.080~2! 0.074 0.121~9! 0.096~6! 0.217 FIG. 4. Calculations of theE0 gap of ZnSe with temperature

~solid line! in comparison to experimental data~open circles: Ref.
42, dashed line: Ref. 43!.
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E~T!52.804 eV28.5931024T2/~T1405! eV/K.
~16!

Our calculated curve has been shifted to match the exciton
energy at low temperatures. The theory somewhat overesti-
mates the experimental temperature shifts, although the gen-
eral agreement is reasonable.

VII. CONCLUSIONS

We have calculated the isotopic mass dependence of the
E0 direct gap of Ge, GaAs, and ZnSe at low temperature. A
local empirical pseudopotential methodhas been employed
to evaluate the electron-phonon coupling. The dependence of
the electron-phonon term on the details of the pseudopoten-
tial form factors in the limitq→0 has also been analyzed.
Phonon-dispersion relations obtained with theshell and
bond-chargemodels have been used. The calculated results
are found to depend only slightly on the details of the lattice
dynamics. The contributions of acoustical and optical
branches to the isotope shifts of the gaps are given sepa-

rately. Results of reflectivity measurements at theE0 gap of
GaAs samples with six different isotopic gallium composi-
tions are also presented. Theoretical and experimental results
compare satisfactorily. We have extended the calculations to
the isoelectronic II-VI semiconductor ZnSe. The variation of
the fundamental gap with both the isotopic mass and tem-
perature is presented. Although experimental results for the
dependence of the gap on isotopic mass are not yet available
for ZnSe, the calculated temperature dependence is in rea-
sonable agreement with the experimental data.
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