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We have performedab initio total energy calculations for interstitial iron in silicon with particular emphasis
on the matrix elements for the hyperfine interactions with the iron nucleus and with several silicon ligand
nuclei. The total energy calculations have been performed in the general framework of the density functional
theory~DFT! treating many-particle effects in the local spin-density approximation~LSDA!. We use a Dyson’s
equation approach to solve the Kohn-Sham equation of the density functional theory and calculate the Green’s
function with the help of the linear muffin-tin orbital theory using the atomic-spheres approximation~ASA!.
Unfortunately the use of the ASA prohibits the inclusion of lattice relaxation effects. Our total energy calcu-
lations lead to a model for the electronic structure which is dominated by covalent hybridization of irond states
with silicon p states. From the results of our calculations we can easily explain the reaction of the electronic
system when passing from Fei

0 to Fei
1 . To this aim we slightly modify the Ludwig-Woodbury model: In a first

step we consider the exchange splitting of the irond states which in a second step are further split by the
crystal field. The hyperfine matrix elements for Si:Fei

0 are calculated directly from the magnetization density
obtained by the LSDA-DFT calculation and show excellent agreement with data from electron nucleus double
resonance~ENDOR! experiments. For Si:Fei

1 we have to take into account the spin-orbit interaction of the
iron d orbitals. Since our total energy calculations neglect spin-orbit interactions, we switch to a description
which uses symmetry-adapted many-particle wave functions. With these functions we calculate the matrix
elements for the hyperfine interaction with the iron nucleus and with several silicon ligand nuclei. We use the
localization properties of our magnetization density to determine the many-particle wave function and to obtain
data for the hyperfine interactions. We show that the covalent hybridization of the irond states with ironp
states and with silicon orbitals alone cannot explain the discrepancy between calculated and measured data for
the hyperfine interaction with the iron nucleus. However, the additional consideration of a dynamical Jahn-
Teller effect as a Ham effect leads to consistent data. The calculated data for the ligand hyperfine interaction
allow one to definitely assign ligand shells to the measured ENDOR data.@S0163-1829~96!04431-1#

I. INTRODUCTION

During the last 30 years considerable work has been spent
in order to understand the properties of transition-metal
~TM! ions in semiconductors. Because it is practically omni-
present a special focus has been on iron in silicon, which has
thereby become one of the best studied TM defects in semi-
conductors. The development started in the early 1960s with
the famous work of Ludwig and Woodbury,1 who investi-
gated doped semiconductors by magnetic resonance experi-
ments. In the following years experimental and theoretical
work dealt with topics such as solubility,2 electrical
activity,3,4 and also with ground-state properties studied by
electron paramagnetic resonance~EPR!,1,5 electron nucleus
double resonance~ENDOR!,6–10 and Mössbauer11 spectros-
copy. Due to the high mobility and reactivity of interstitial
iron much attention was given to pair defects and aggregates
containing iron~see, e.g., Ref. 12, and references therein!.

The apparent puzzling duality of TM ions that some prop-
erties are understood in a covalent delocalized picture while
other properties call for an atomically localized picture for
the defects stimulated the first theoretical calculations on TM
impurities in semiconductors.13 The theoretical investiga-
tions were renewed in the 1980s with the development of the
density functional theory~DFT!,14–18 which soon was ap-

plied to the problem of deep TM defects in
semiconductors.19–29With the exception of the ‘‘early inter-
stitials’’ and ‘‘late substitutionals’’26 all theoretical work
corroborated the main features of the model Ludwig and
Woodbury1 developed to describe their EPR results. Al-
though many experiments have been performed to measure
hyperfine interactions~hfi!, only a few attempts have been
made to calculate the hfi and these have been restricted to the
neutral charge state Si:Fei

0 only.11,23,28 To the best of our
knowledge up to now no attempt has been made to calculate
the hfi for the positive charge state Si:Fei

1 . This may be due
to the fact that the ground-state term of Si:Fei

1 is the orbital
triplet 4T1 , the degeneracy of which is lifted by the spin-
orbit interaction.

There is a controversial discussion as to the origin of the
large reduction of the orbital angular momentum factorgl̃ of
the g factor of the ground stateg5 5

3gs2
2
3gl̃ measured in

EPR. This reduction has been interpreted in the literature
assuming that Si:Fei

1 is a Jahn-Teller~JT! system showing a
Ham effect.30 Alternatively the reduction is explained by co-
valent hybridization. Katayama-Yoshida and Zunger23 have
shown that according to their calculations covalent hybrid-
ization is the dominant effect for the ground state. However,
recent experiments31–33on optical transitions for Si:Fei indi-
cate that a dynamical JT effect may be present for the ‘‘ex-
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cited’’ spin-orbit split states of the ground-state term4T1 .
We show based on calculated hfi matrix elements that cova-
lent effects alone cannot explain the large reduction factor of
the orbital angular momentum matrix elements for Fei

1 . We
therefore propose that the experimentally observed ground-
state properties of Si:Fei

1 are due to covalent hybridizations
and a dynamical JT effect.

Our paper is organized as follows: in Sec. II we sketch the
general framework of our total energy calculations and sum-
marize our results for Si:Fei

0 and Si:Fei
1 by means of a

covalent model. Our calculations of hfi matrix elements are
presented in Sec. III. Details of the calculations for Si:Fei

1

are given in the Appendix.

II. TOTAL ENERGY CALCULATIONS

A. Theoretical method

We have performedab initio total energy calculations us-
ing the DFT ~Refs. 14 and 15! in the local spin-density
approximation16–18 ~DFT-LSDA! to determine the electronic
ground state of deep impurities in silicon. Since the compu-
tational scheme has been discussed in detail in a theoretical
paper20 as well as in several applications26,27we restrict our-
selves here to the minimum information required and refer to
the literature for details.

We solve the problem of a deep impurity in a silicon
crystal using a Green’s function technique and solving a
Dyson equation

G~rW,rW8,z!5G0~rW,rW8,z!

1E G0~rW,rW9,z!DV~rW9!G~rW9,rW8,z!d3rW9,

~1!

whereDV5V2V0 is the difference between the one-particle
potentials of the crystal containing the impurity and that of
the unperturbed crystal. We have carried out a band structure
calculation using the linear muffin-tin orbital method in the
atomic-spheres approximation~LMTO-ASA! in order to de-
termine the Green’s functionG0 of the unperturbed crystal.
Since for deep impurities the difference of the potentials
nV has large values which, however, are restricted to a
small region around the impurity we divide the crystal into a
‘‘perturbed region’’ containing the atomic spheres of the im-
purity atom, of a few neighboring silicon host atoms, and of
space-filling interstitial spheres and into the ‘‘unperturbed’’
crystal outside this region. Our perturbed region consists of
30 atomic spheres that contain silicon atoms, of 28 empty
spheres, and of the atomic sphere centered around the impu-
rity atom. Within the perturbed region Dyson’s equation is
solved self-consistently, outside this regionG is approxi-
mated byG0.

From the Green’s function we calculate the angular mo-
mentum and site projected density of states~DOS!

NRL,RL8~E!57
1

p
lim
e→0

ImTrG~E6 i e! ~2!

and the charge density of the valence electrons inside a
sphere centered around the positionR,

nv,R~rWR!5 (
L,L8

ÈEF
NRL,RL8~E!uwRL~rWR ,E!u2dE, ~3!

where thewRL(rW,E) are the solutions of the Kohn-Sham
equation inside the atomic sphere around the positionR. L is
a shorthand notation of the angular momentum quantum
numbers,lm, andrWR5rW2RW .

To reduce the computational effort when solving Eq.~1!
we switch to symmetry-adapted basis functions which trans-
form according to the irreducible representations of the point
group of the defect. These are constructed with a Slater pro-
jector technique34

f
km,R̄l

a
~rW !5(

R̂

Gkm
a ~R̂!* R̂fRL~rWR!uS r RsRD . ~4!

Gkm
a (R̂) is the matrix element of the irreducible representa-

tion Ga for the point group operationR̂ of the point group of
the defect.k andm label the rows and the columns of the
matrix, respectively.R̄ labels the different ‘‘shells,’’ i.e., the
site vectorsRi that transform into each other under applica-
tion of the point group operationsR̂. Since the energy de-
pendence of thefRL(E,rW) is approximated by a Taylor se-
ries up to second order around some energy35 En l , we
obtain36

nv
a~rW !5 (

R̄,l ,l 8
k,m,k, j

N
R̄ll 8
a~k!~ j !

f
kk,R̄l

a,~k!
~rW ! f

mm,R̄l 8
a,~ j !

~rW !, ~5!

where the superscripts (k) and (j ) can take the values
0,1,2 and denote the function itself and its first and second
derivative according to the energy, respectively. The coeffi-
cients in Eq.~5! are given by

N
R̄ll 8
a~k!~ j !

5
1

k! j ! E2`

EF
N
R̄ll 8
a

~E!~E2En,l !
k~E2En,l 8!

jdE.

~6!

The particle density given in Eq.~5! can be considered as
arising from the square of some wave functions

uGa,k&5(
R̄l ,k

b
R̄l

a,~k!
f

kk,R̄l

a,~k!
~rW !. ~7!

These wave functions can be interpreted asdefect orbitalsin
the sense of covalently augmented impurity orbitals37 since
the uGa,k& contain both impurity and host orbitals. The co-
efficientsb in Eq. ~7! are determined by

b
R̄l

a,~k!
b
R̄l 8
a,~ j !

5N
R̄ll 8
a,~k!~ j !

. ~8!

This relation turns out to be essential for the calculation of
the hfi matrix elements when dealing with ground states
without orbital quenching. Since we use the LSDA we have
to add an additional spin index in Eqs.~2! – ~7! and use spin
densities instead of particle densities.

The total energy of the crystal containing the defect is
calculated ignoring lattice relaxations.20,26,27Since the total
energy is determined up to an additive constant only, we
calculate the difference in energy introduced by the defect.
To this we add the energy of the long-range Coulomb part of
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n(0.1 eV! where n indicates the charge state of the
impurity.26,38 In order to compare total energies for different
charge states of a defect we discuss then-times charged
defectD (n) plus n electrons or holes that are transferred to
the Fermi level. Thus the total energy becomes a function of
the Fermi levelEF ,

Etot~D
~n!,EF!5Etot

b ~D ~n!!1nEF , ~9!

whereEtot
b is the energy of the defect for a Fermi level at the

valence band edge. With these total energies we calculate the
electron removal energies as that position of the Fermi level
for which the total energies of two charge states coincide.

B. The electronic structure of Fei

In agreement with several other authors we find interstitial
iron in the neutral and in the positive charge states with an
electron removal energyE(1/0)5Ev10.29 eV. This com-
pares reasonably well with the experimentally determined
value of 0.385 eV.4,23

The electronic structure of TM ions in semiconductors is
usually described by the model of Ludwig and Woodbury1

~LW!. Starting from the atomic configuration@Ar#3dn4sm

the 4s electrons are transferred to thed states, resulting in a
dn1m ~atomic! configuration of the valence electrons for in-
terstitial TM’s. The crystal field splits the one-electrond
states intoe andt2 states separated byDCF and these in turn
are further split by the exchange interaction intoe↑ ande↓

states separated byDx(e) and into t2↑ and t2↓ states sepa-
rated byDx(t2), respectively. For interstitial TM ions in sili-
con the LW model predicts that the one-electron states are
ordered ase(t2↑),e(e↑),e(t2↓),e(e↓). This leads to
high-spin ground states, i.e., to the strong field
configurations39,40 t2

6e2 for Fei
0 and tot2

5e2 for Fei
1 , respec-

tively.
Since our symmetry-adapted one-particle orbitals~7! can

be interpreted as defect orbitals in the sense of one-particle
orbitals of a strong field configuration we interpret our cal-
culated induced DOS in terms of different defect orbitals
ca1

,ce ,c t2
with corresponding occupation numbersx,y,z of

the strong field configurationa1
xt2
yez. Figures 1~a!–1~f! and

2~a!–2~f! show the calculated induced DOS for Si:Fei
0 and

Si:Fei
1 projected onto the irreducible representations

a1 ,e,t2 for both spin directionsms56 1
2, respectively. We

find that the peaks in the induced DOS can be divided into
three groups labeled by the superscripts (a), (b), and (R).
The peaks indicated by (R) form resonance structures which
contain negligible charge in comparison to the structures la-
beled by (a) and (b).

We have analyzed the induced DOS in detail41 with the
help of projections on the impurity atomic sphere and on
several atomic spheres of the neighboring ligand atoms. The
analysis reveals that the peaks labeled (a) and (b) in Figs. 1
and 2 have contributions from irond states and mainly sili-
con p states leading to a picture of covalent hybridized iron
d states forming bonding (b) and antibonding (a) states with

FIG. 1. Induced DOS for Si:Fei
0 projected onto the irreducible representationse ~a!,~c! and t2 ~b!,~d! for both spin directionsms56

1
2. We use the top of the valence band as zero for the energy and indicate occupied states in the gap by filled and unoccupied states by empty
circles, respectively.
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the siliconp states~see Fig. 3!. In Figs. 4~a! and 4~b! we
show a contour plot of the particle densities for the antibond-
ing t2↓

(a) and e↑
(a) states of Si:Fei

0 in the (110) plane which
demonstrate the covalent hybridization of the atomic irond
states with the ligand orbitals. For Fei

0 the irond states are
somewhat more localized in the antibonding orbitals with
respect to the bonding states~Table I!. In contrast, for
Si:Fei

1 thed states are more localized in the bonding states
~see Table I!.

In order to understand the trends in the splitting and lo-
calization when going from Fei

0 to Fei
1 it is useful to reverse

the order in which crystal field and exchange splitting are
considered: in the following we will discuss the electronic
structure starting from atomicd states that are split by the
exchange interaction intod↑ and d↓ states separated by
Dx(d). In a second step these states are further split by the
crystal field with separationsDCF

↑ andDCF
↓ @see Figs. 5~a!

and 5~b!#. For neutral Fei
0 we thus obtainDx(d)50.84 eV,

DCF
↑ 50.93 eV, andDCF

↓ 51.08 eV. For iron in the positive
charge state Fei

1 the corresponding values areDx(d)51.12
eV, DCF

↑ 50.39 eV, andDCF
↓ 50.97 eV, respectively. This or-

der provides us with a rather simple picture of the reaction of
the electronic system when we pass from Fei

0 to Fei
1 . For

Fei
0 with spin S52/2 the exchange splitting is somewhat

smaller than the crystal field splittings. The states are, there-
fore, not spin ordered and the crystal field splittingDCF

↑ is
practically equal toDCF

↓ . When we go to Fei
1 the more

attractive potential of the positive ion moves all states to

lower energies. At the same time the spin is increased
(S51→S5 3

2) and thereby the exchange splitting is also in-
creased. Both effects cancel in part for thed↓ states but
cooperate to move thed↑ states to lower energies. Therefore

FIG. 3. Energy diagram showing the formation of bonding and
antibonding states. We start with the irond states ordered according
to the LW model and neglect the exchange splitting here.

FIG. 2. Induced DOS for Si:Fei
1 projected onto the irreducible representationse ~a!,~c! and t2 ~b!,~d! for both spin directionsms56

1
2. We use the top of the valence band as zero for the energy and indicate occupied states in the gap by filled and unoccupied states by empty
circles, respectively.
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the lower-lyingd↑ states become considerably more local-
ized both with respect to thed states of Fei

0 and to thed↓
states of Fei

1 . Hence the crystal field splittingDCF
↑ is dras-

tically reduced while the crystal field splitting of the gap
statesDCF

↓ remains virtually unaltered, leading to the spin-
ordered final states~Fig. 5!.

There is a puzzling difficulty if we attempt to describe the
electronic states of Fe in terms of occupation numbers: If we
integrate the induced DOS projected on the irreducible rep-
resentations of the point groupTd and restrict the range of
integration to the ASA sphere around the interstitial iron
impurity we obtain the occupation numbers

a1
0.44t2

5.19e2.21 for Fei
0 ,

a1
0.45t2

4.95e2.38 for Fei
1 .

The same induced DOS, however, integrated with respect to
all space, gives

a1
0.03t2

5.75e2.03 for Si:Fei
0 ,

a1
0.09t2

5.36e2.19 for Si:Fei
1 .

Since the irona1 orbitals are pures orbitals we see that the
s-d transfer proposed by the LW model is nearly complete if
we consider the complete defect orbitals. However, the local
configurations restricted to the iron atom subspace differ sig-
nificantly from the occupations of the defect orbitals: The
a1 ande orbitals are rather localized around the iron atom
whereas thet2 orbitals are more delocalized. The occupation
numbers of the defect orbitals approximate the LW configu-
rationst2

6e2 for Fei
0 and t2

5e2 for Fei
1 . However, they con-

tain small admixtures of the configurationst2
5e3 for Fei

0 and
of t2

4e3 for Fei
1 . Figure 6 shows a contour plot of the total

induced particle density of the valence electrons for Si:Fei
0

in the (110) plane which indicates localization of the particle
density around the iron atom with considerable redistribution
of the density, which reflects considerable bonding to the
surrounding ligands.

The magnetization density displayed in Fig. 7 is by far
more localized than the particle density. If we introduce the
local magnetic moment

m~X!5E
V~X!

@n↑~rW !2n↓~rW !#d3rW, ~10!

wheren↑,↓ are the spin densities andV(X) is the volume of
the atomic sphere around the positionX as compared to the
total magnetic moment,

FIG. 4. Contour plot of the particle density of the antibonding
t2↓
(a) state~a! and of thee↑

(a) state~b! in ~110! for Si:Fei
0 .

TABLE I. Occupation numbers of the particle densities for Si:Fei
0 and Si:Fei

1 projected onto the irre-
ducible representationse and t2 . Nd

Fe is the contribution of irond electrons andNtot the total occupation
number of the corresponding state.

Fei
0 Fei

1

State Nd
Fe Ntot Nd

Fe Ntot

e↑
(a) 1.16 1.70 0.81 1.27

e↑
(b) 0.59 0.68 0.88 0.92

t2↑
(a) 1.11 1.65 0.85 0.91

t2↑
(b) 1.08 1.13 1.48 1.68

e↓
(a)

e↓
(b) 0.29 0.44 0.37 0.57

t2↓
(a) 1.33 1.99 0.85 1.25

t2↓
(b) 0.55 0.64 0.81 0.85
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m~Si:X!5E
Vpert

@n↑~rW !2n↓~rW !#d3rW, ~11!

whereVpert is the volume of the perturbed region, we obtain
m(Fei

0)51.91mB andm(Si:Fei
0)'2mB for the neutral charge

state of iron. For the positive charge state we find
m(Fei

1)52.37mB and m(Si:Fei
1)52.76mB , respectively.

Therefore for Si:Fei
0 we approximately get the total theoreti-

cal magnetic moment ofm0(Fei
0)52S52 in our perturbed

region~Fig. 7!, and 95% of it in the iron ASA. For Si:Fei
0 we

have approximately 92% of the total theoretical magnetic
moment for Si:Fei

1 in the perturbed region and 80% of the
total magnetic moment is found in the iron sphere. Accord-
ing to the total spins we can approximate the ground-state
term for Si:Fei

0 as 3A2 and for Si:Fei
1 as 4T1 , respectively.

III. CALCULATION OF THE HYPERFINE
INTERACTIONS

A. Theory

The Hamiltonian representing the hfi ofN valence elec-
trons of the defect withM nuclei ~impurity and host nuclei!
reads

FIG. 5. Energetic positions of the one-electron states used in the
covalent model for Si:Fei

0 ~a! and Si:Fei
1 ~b!. Shown are the

atomiclike irond states that are split due to the exchange interaction
and due to the crystal field~left side! which form bonding (b) and
antibonding (a) defect orbital states with the siliconp states@see
Eq. ~7!#.

FIG. 6. Contour plot of the total induced particle density of the
valence electrons for Si:Fei

0 in ~110!.

FIG. 7. Contour plot of the magnetization density of the valence
electrons for Si:Fei

0 in ~110!.
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Hhfi5(
j51

M

g j(
i51

N S 8p

3
d~rW i j !sW i1

lW i
r i j
3

1
3~rW i j •sW i !rW i j2r i j

2 sW i
r i j
5 D IW jHCP, ~12a!

g j5
m0

4p
2gN

j mNmB , rW i j5rW i2RW j ,

where the nuclei with nuclear spinIW j and with theg factor
gN
j are at the positionsRW j . HCP takes into account the core

polarization42,43

HCP5(
j
ACP
j IW j•SW , ~12b!

ACP
j 5

8p

3
g j

1

2S(i $uw i↑~RW j !u22uw i↓~RW j !u2%.

Since our one-particle Kohn-Sham equation is based on a
Dirac equation neglecting spin-orbit interaction we calculate
the Fermi contact contributions arising from~12! as the av-
erage of the squared one-particle functions over a region near
the nucleus whose diameter is the Thomson radius
r T5Ze2/mc2 ~Ref. 44!. To determine the hfi of the defect
electrons with the magnetic nuclei we calculate the matrix
elements of~12! in first order perturbation theory.

B. Results

1. Si:Fei
0

The total energy calculations have shown that the ground
state of Si:Fei

0 is well approximated by3A2 . Therefore we
have orbital quenching and calculate the hfi matix elements
directly with the help of the magnetization density45

m~rW !5n↑~rW !2n↓~rW !

to

H5(
j
aj$SW • IW j1SW •B• IW j%, ~13a!

aj5
1

2S

8p

3
g jE m~rW1RW j !d~rW !d3rW, ~13b!

~Bj !kl5
1

2S
g jE m~rW1RW j !

3xkxl2r 2dkl
r 5

d3rW. ~13c!

Heren↑(rW) andn↓(rW) are the spin densities calculated in the
DFT-LSDA ~including the core polarizations!. The isotropic
constantsaj are directly related to the Fermi contact interac-
tion, the matricesBj characterize the angular dependent parts
of the spin Hamiltonian~13a!. To evaluate the integral~13c!
which extends over all space we make use of the LMTO-
ASA concept and approximate46

Bj5
1

2S
g jE

Vs~Rj
W !
m~rW1RW j !

3rW ^ rW2r 21

r 5
d3rW ~14a!

1
1

2S
g j(

i
m~RW i !

3RW i j ^RW i j2Ri j
21

Ri j
5 , ~14b!

whereRW i j5Ri
W2RW j ,

m~RW i !5E
Vs~R

W
i !
m~rW !d3rW,

andVs(RW i) is the volume of the atomic sphere of radiuss
around the lattice pointRW i . Since the matricesBj are trace-
less they are transformed into their eigensystem and the ei-
genvalues are parametrized as 2b, 2b1b8, 2b2b8, such
that 2b is the largest eigenvalue.

In Table II we compare our total calculated hfi data sum-
marized bya, b, andb8 with experimental hfi data which
have been measured in ENDOR~Refs. 7 and 8! ~for the Si
ligands! and in EPR~Ref. 1! ~for Fe! experiments. For the
ENDOR data relative signs betweena, b, andb8 are known,
for the EPR data only absolute values can be given.

Our calculated ligand hfi data show excellent agreement
with the measured data for the anisotropic constantsb and
fair agreement for the isotropic constantsa. We get large
deviations between calculated and measured data for the con-
tact data of the first two inner shell positions Si(1,1,1) and
Si(2,0,0). The major part of the magnetization density, how-
ever, is related to the constantsb. Therefore our calculated

TABLE II. Comparison of calculated and measured hfi data~in MHz! for Si:Fei
0 . The hfi data for the Si

ligands are taken from ENDOR measurements~Refs. 7 and 8! and the hfi constant for Fe is determined by
EPR measurements~Ref. 1!. In the last column we show the calculated contact data from Katayama-Yoshida
and Hamada~Ref. 28!, who carried out a supercell calculation. In order to overcome the ambiguity of the
results for ligands of supercell calculations these data have been scaled with the experimental values.

Refs. 7 and 8 This work Ref. 28
Position aexpt bexpt/bexpt8 a b/b8 acalc

Fe0~0,0,0! 620.94 215.2
Si~1,1,1! 0.157 1.402 3.032 1.504 20.15

Si~1,1,3̄) 23.870 20.434/0.068 23.887 20.448/0.035 23.60

Si~2,0,0! 24.641 20.799/20.514 212.981 20.679/0.040 216.66
Si~2,2,2! 3.244 20.156 3.945 20.242 12.79

Si~2,2,2̄) 0.776 20.196 1.074 20.143 10.67
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magnetization density shown in Fig. 7 is essentially correct
even if there are some serious discrepancies with respect to
the ligand contact hfi. The calculated total hfi data arise from
contributions of the gap states, from the states in the valence
bands, and from the contact terms of the core states~core
polarization!. These decompositions are shown in Table III
for the Fermi contact constantsa and in Table IV for the
matricesB. In the last column of Table IV we show the
eigendirections of the largest eigenvalue 2b of B. The first
two columns give the local contributions of the magnetiza-
tion density according to~14a!, in the last column we also
include the point-dipole part of~14b!. Obviously the good
agreement between calculated and measured data is only ob-
tained if both parts—local and point-dipole parts—are taken
into account.

The contact hfi data for the interaction with the central Fe
nucleus~Table III! have two major contributions from the
valence band polarization and from the core polarization.11

Both have opposite signs and in the self-consistent cycle
influence each other, thus strongly impeding the conver-
gence. The data of Table III show that the core polarizations
caused by the defect electrons are large for the iron and for
the first silicon neighbor shell only. The contact densities
correspond to very small fractions ofs densities of the mag-
netization density and should be rather sensitive to lattice
relaxations. Such relaxations are predicted to occur as a sym-
metric breathing mode relaxationwith large relaxations for
the first two shells of silicon atoms for interstitial TM ions in
silicon.21,25,47 This may be the reason for the fact that the
deviations of the calculated contact hfi data for the close Si
(1,1,1) and Si(2,0,0) ligands as compared to the experimen-

tal data are quite large while theoretical and experimental
contact hfi data agree quite nicely for the more distant ligand
shells.

2. Si:Fei
1

Based on our total energy calculations we approximate
the electronic ground-state term for Si:Fei

1 by 4T1(t2
5e2).

The spin-orbit interaction splits this term into the sublevels
G6( j5

1
2), G8( j5

3
2), G7( j5

5
2), andG8( j5

5
2). The sublevels

G7(
5
2), G8(

5
2) are degenerate in first order perturbation theory

and theG6(
1
2) sublevel is the ground state.

10,31–33,39,40,48The
G i denote the irreducible representations of the cubic double
groupTd

D and j indicates the total angular momentum result-
ing from the coupling of the total spinS5 3

2 with the ficti-
tious orbital angular momentuml̃51 attributed to the orbital
triplet T1 due to the Wigner-Eckart theorem.39,40 Since the
ground-state functions

uG66
1
2 &5 A6 u4T1~61̄!~7 1

2 !&2
1

A3
u4T1~ 0̄!~6 1

2 !&

1
1

A2
u4T1~71̄!~6 3

2 !& ~15!

are eigenfunctions of the spin-orbit interaction which is not
taken into account in our total energy calculations we ap-
proximate the many-particle functions49 u4T1(m̄ l̃ )(MS)& as
Slater determinants of the hole configurationt2e

2,

u4T1~m̄l̃ !~MS!&5uml̃ ueuuMS&. ~16!

TABLE III. Decomposition of the calculated hfi contact data~in MHz! for Si:Fei
0 into contributions from

various one-particle states and from the core polarization.

Position ae at2 agap aVB aCP atot

Fe0~0,0,0! 0 0 0 12.49 227.66 215.17
Si~1,1,1! 0 20.2947 20.2947 2.563 0.763 3.032

Si~1,1,3̄) 25.666 21.676 27.342 3.4279 0.0274 23.887

Si~2,0,0! 210.995 20.023 211.018 22.002 0.0396 212.981
Si~2,2,2! 0 218.824 218.824 22.753 0.0158 3.945

Si~2,2,2̄) 0 20.474 20.474 1.556 20.008 1.074

TABLE IV. Decomposition of our calculated anisotropic hfi constantsb andb8 for Si:Fei
0 ~in MHz!. The

vectornW indicates the eigendirection of 2b. The indicesg and VB indicate the inclusion of the gap states
(g) and of the states that occur in the valence bands~VB! to the magnetization density. The index tot
indicates the inclusion of the contribution from~ 14b!.

Position bg /ubg8u bg1vb /ubg1VB8 u btot /ubtot8 u nW

Fe0~0,0,0! 0.0 0.0 0.0
Si~1,1,1! 1.538 2.659 1.504 @111#

Si~1,1,3̄) 20.844/0.175 20.306/0.009 20.449/0.035 /@111#5283.3°

Si~2,0,0! 21.630/0.068 0.074/0.010 20.679/0.040 @100#
Si~2,2,2! 2.754 20.0826 20.2423 @111#

Si~2,2,2̄) ' 0.0 20.003 20.144 @111#
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Here theml̃ are the one-particle eigenfunctions50 of the
fictitious orbital angular momentum l̃51: u6 1̃&5

71/A2(t2x6 i t 2y),u 0̃&5t2z with t2x , t2y , t2z , and u, e
transforming according to the first and second~and third!
column of the irreducible representationst2 and e of the
point groupTd , respectively. The notationuabcu indicates a
Slater determinant of the three orbitalsa, b, and c and
uMS& is a symmetric three-particle spin function.10

We have approximated thet2 ande one-particle functions
by the defect orbitals~7! @restricted to thek50 contribution
of Eq. ~7! only#. Since we deal with at2e

2 hole configuration
we approximate the coefficientsb

R̄l

a,(0)
with the help of the

magnetization density calculated in the LSDA-DFT~Ref. 51!
and take

b
R̄l

a,~0!
b
R̄l 8
a,~0!

5N
R̄ll 8↑
a,~0!,~0!

2N
R̄ll 8↓
a,~0!,~0!

. ~17!

We therefore take the localization of at2 and ane hole
around a lattice siteR as coefficientb

R̄l

a,(0)
in our t2 ande

defect orbitals~7!, respectively. With the assignment~17! we
take into account covalent effects as well as the spin-
polarization effects of our LSDA-DFT magnetization
density.52

For theG6 ground state we have calculated the hfi matrix
elements of~12! with the iron nucleus and with five silicon
nuclei centered at Si(1,1,1), Si(2,2,2), Si(2,2,2)̄ ~which rep-
resent shells of four equivalent ligands with trigonal symme-

try!, at Si(2,0,0)~which represents a shell of six equivalent
ligands with rhombic symmetry!, and at Si(1,1,3̄) ~which
represents a shell of 12 equivalent ligands with monoclinic
symmetry!. In order to compare our results with experimen-
tal data from EPR~Ref. 1! and ENDOR~Ref. 10! measure-
ments we have to transform our matrix elements into those
of a spin Hamiltonian for an effective spinS85 1

2,

H5SW 8•AFe
• IWFe1(

j

Si

SW 8•A j
• IW j . ~18!

According to first order perturbation theory the effective spin
S85 1

2 is identical to the total angular momentum of the
ground statej5 1

2. If we abbreviateuG66
1
2&5u6& and

NW j5g j(
i51

3 S 8p

3
d~rW i j !sW i1

lW i
r i j
3 1

3~rW i j •sW i !rW i j2r i j
2 sW i

r i j
5 D 1ACP

j SW

~19!

@where the notations are taken from Eq.~12!# the matrix
elementsAkl

j of ~18! are related to those of~12! by
Akx
j 1 iAky

j 52^2uNk
j u1& and Akz

j 52^1uNk
j u1&. Details of

the calculation can be found in the Appendix.
As was pointed out by van Kooten, Sieverts, and

Ammerlaan,10 there is no longer a one-to-one correspon-
dence between the contact term contributions and the isotro-
pic hfi constants@and likewise between the dipole-dipole in-
teraction and the angular dependent parts of~18!,

TABLE V. Decomposition of all calculated hfi matrix elements~for Si:Fei
1) into contributions from the

core polarization~CP!, from the Fermi contact interaction (c), from the orbital angular momentum (l ), from
the local parts of the dipole-dipole interaction (d), and from the dipole-dipole interaction with the magneti-
zation density localized around the iron atom (dd).

Site Tensor a
element CP c l d dd tot

Fe(0,0,0) axx
a 220.73 48.04 22.29 25.06

Si(1,1,1) axx
a 20.695 21.876 2.506 20.063 20.128

axy
a 0.376 1.345 2.829 21.517 3.033

Si(2,2,2) axx
a 22.766 2.000 1.197 0.770 1.201

axy
a 20.400 20.794 20.847 20.190 22.231

Si(2,2,2̄) axx
a 20.011 0.175 20.073 20.036 0.055

axy
a 20.035 20.043 0.016 20.189 20.251

Si(2,0,0) axx
a 7.389 211.82 20.891 21.969 27.291

ayy
a 7.389 211.26 0.474 20.984 24.281

Si(1,1,3̄) axx
a 23.187 21.738 20.247 20.002 0.157 25.008

axy
a 0.123 20.020 20.388 20.059 20.344
axz

a 0.123 0.050 0.226 0.177 0.576
ayx

a 0.123 20.241 20.366 20.059 20.543
ayy

a 23.187 21.738 20.036 0.088 0.157 24.706
ayz

a 0.123 0.050 0.240 0.177 0.590
azx

a 0.123 20.340 0.258 0.177 0.218
azy

a 0.123 20.020 0.205 0.177 0.485
azz

a 23.187 21.738 20.143 20.163 0.069 24.906
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respectively# if we switch from a description with the ‘‘true’’
spin S5 3

2 to a description with an effective spinS85 1
2.

Table V shows a decomposition of our results for all calcu-
lated ~independent! hfi matrix elements. For the hfi with the
iron nucleus we get an isotropic hfi matrix with a total value
of 25.06 MHz which deviates significantly from the mea-
sured EPR data1 of 68.87 MHz. This discrepancy can be
understood if we go one step back and calculate theg value
measured in EPR. For the ground state we obtain

g~G6!5 5
3 gs2

2
3 gl̃ , ~20!

wheregs'2 andgl̃ are theg factors of the electron spin and
of the orbital angular momentum, respectively. If the
ground-state term for Fei

1 is approximated by4T1(
4F) ~aris-

ing from the weak field coupling term4F) gl̃ has the value
g
l̃

WF
52 3

2. For the strong field coupling limit~without cova-

lent effects! as 4T1(t2
5e2) we haveg

l̃

SF
521. This leads to

gWF(G6)5
13
3 andg

SF(G6)5
12
3 54. However, the value deter-

mined by EPR is gEPR53.524, which corresponds to
gl̃ 520.286. This large deviation between calculated and
measuredg factors has been attributed to two effects in the
literature: to covalent hybridization of the irond states with
silicon ligand orbitals23 and with ironp states or alternatively
to a dynamical Jahn-Teller effect as a Ham effect.30

Covalent hybridization is taken into account by our defect
orbitals. For the strong field term4T1(t2

5e2) we calculate
gl̃ 52b0

2 using the same approximations as for the hfi matrix
elements. According to our calculationsp-d mixing of iron
states is negligible. If we compare our value ofgl̃ '20.83
with the value inferred from the EPR datag

l̃

EPR
520.286 we

see that our localization of thet2 magnetization density
would be about a factor 3 too large to account for the reduc-
tion. Since we have learned from the calculated hfi data for
Si:Fei

0 that our self-consistent magnetization densities are in
excellent agreement with the ones ‘‘seen’’ in EPR we expect
the same for Si:Fei

1 . We additionally will show in a forth-
coming paper on iron-acceptor pair defects in silicon that it
is possible to calculate localization factors from the magne-
tization density which are in good agreement with the mea-
sured data.53 Therefore we conclude that the rather small
orbital g value gl̃ measured in EPR is subject to covalent
hybridizationand to a Ham effect which introduces an addi-
tional reduction factor for the matrix elements of the orbital
angular momentum of the iron atom. If we apply this reduc-

tion factor to our hfi matrix elements, the orbital contribution
reduces by about a factor 3, leading to a total hfi value
aFe526.49 MHz~as indicated in Table V! in fair agreement
with the EPR data.

The comparison of our calculated hfi data for the silicon
ligands with ENDOR data10 ~see Table VI! shows that ex-
cept for the isotropic constant for Si(1,1,1) all calculated
data have the same sign and are of the same order of mag-
nitude as the measured data. The discrepancy foraSi(1,1,1)
may be due to the rather small total value which arises from
the combination of large single contributions~see Table V!.
As was the case for Si:Fei

0 , our calculated hfi data for
Si:Fei

1 agree much better with experimental data for the
more distant ligands, which again might indicate the influ-
ence of lattice relaxations for the inner ligand shells. We note
that our calculated hfi matrix for Si(1,1,3)̄ is not symmetric
as there is no symmetry constraint for this ligand which
would forbid such asymmetry. This is another example of
asymmetric hfi matrices for defects in silicon which shows
that asymmetric hfi matrices are not only found for defects
with a lower symmetry54,55but do occur for highly symmet-
ric defects as well.56 We note that the evaluation of the
ENDOR experiments10 was based on the invalid assumption
that the hfi matrix is symmetrical for the ligand Si(1,1,3)̄ so
that it might be difficult to compare measured and calculated
data.

IV. CONCLUSIONS

We have shown that the trends of the exchange and crys-
tal field splittings of Si:Fei

0 and Si:Fei
1 can be understood if

one considers the exchange splitting first. We have also
shown that for the case of Si:Fei

0 one can obtain spin densi-
ties fromab initio LSDA-DFT calculations that result in hf
interactions with the Fe nucleus and also with several Si
ligand nuclei in close agreement with experimental hfi data.
For the contact interaction with the Si~1,1,1! and Si~2,0,0!
shells we find a significant discrepancy between our calcu-
lated results and the experimental data. As this discrepancy
corresponds to a slight error in thes-like spin admixture at
these ligands only, we conclude that our spin densities are
essentially correct. However, the calculated isotropic hfi with
the more distant Si ligands agrees very closely with the ex-
perimental data. We therefore argue that the experimental
results could be influenced by a breathinglike lattice distor-
tion which is not included in our calculation. The agreement

TABLE VI. Comparison of measured~Ref. 10! and calculated hfi data~in MHz! for Si:Fei
1 .

aexpt bexpt bexpt8 a b b8

Fe1(0,0,0) 68.97 25.06a

26.49b

Si(1,1,1) 0.087 1.231 20.128 3.033
Si(2,2,2) 0.764 20.226 1.201 22.231

Si(2,2,2̄) ? ? ? 0.055 20.251

Si(2,0,0) 27.529 20.738 0.460 25.351 20.970

Si(1,1,3̄) 23.927 20.518 0.159 24.873 20.462 0.170

aCalculated with an orbital reduction factor which is only due to covalent effects.
bHere we useg

l̃

EPR
.
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between experimental and calculated data for the anisotropic
hfi ~and also for the isotropic part of the hfi with the more
distant ligand shells! allows one to assign ligand shells to
ENDOR results in a unique way.

The hfi data for the Si:Fei
1 deep defect cannot be ob-

tained in the same way from the spin densities because of
incomplete quenching of the orbital momentum in this case.
We have, therefore, constructed many-particle wave func-
tions which reflect the localization properties of the magne-
tization densities obtained from the LSDA-DFT calculations.
We show that with these functions we still do not obtain the
hfi with the central Fe nucleus in any reasonable agreement
with the experimental data. We must infer in addition a dy-
namical Jahn-Teller effect as a Ham effect in order to obtain
consistent hfi data in agreement with experimental data. A
very strong argument for the presence of this effect comes
from the gyromagnetic ratio as measured experimentally by
EPR: the observed value ofgl̃ 5 –0.286 is in no way com-
patible with thep-d mixing ratio for iron as observed in our
calculations for which we would obtaingl̃ 5 –0.83. From
the close agreement of our hfi results with experimental data
in the case of Si:Fei

0 we conclude that the spin-density dis-
tribution obtained by the LSDA-ASA calculation is essen-
tially correct. We have found no reason to assume that the
same agreement should be absent in the case of Si:Fei

1 . If
we therefore conclude that thep-d mixing ratio for Si:Fei

1

cannot be discounted as unrealistic there is little alternative
but a Ham effect to explain the value ofgl̃ observed experi-
mentally. The comparison of the hfi data calculated including
the reduction factor of the Ham effect~Table VI! with the

experimental data shows that a consistent set of data is ob-
tained.
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APPENDIX: HYPERFINE MATRIX ELEMENTS
FOR Si:Fei

1

We use the following linear combinations of one-particle
orbitals as defect orbitals~7!:

ut2a&5b0ut2a&Fe1 (
k51

3

bku f k
a&1 (

m51

2

gmugm
a &1(

r51

4

d r uhr
a&

1empty spheres, a5x,y,z , ~A1a!

uea&5b00uea&Fe1b4u f 4
a&1 (

m53

4

gmugm
a &1(

r55

7

d r uhr
a&

1empty spheres, a5u,e. ~A1b!

For convenience we introduce the new abbreviationsbk ,
gm , d r for the coefficientsb

R̄l

a
. The functions ut2a&Fe,

uea&Fe, u f k
a&, ugm

a &, anduhr
a&, which are linear combinations

of site-centered one-particle orbitals uL&R
5wRL(rWR)Q(r R /sR), are given in Tables VII–X,57 the sites
around which the atomic spheres are centered are given in
Table XI.

Using Eqs.~15! and ~16! we calculate the hfi matrix ele-
ments^2uNk

j u1&, ^1uNk
j u1& of Eq. ~19!. Since the operator

Nk
j is a sum of one-particle operators,

Nk
j 5(

i51

3

nk
j ~ i !, ~A2!

TABLE VII. Iron d functions transforming according to the
irreducible representationst2 ande of the point groupTd .

j ut2 j&Fe j uej&Fe

x uyz& u u3z22r 2&
y uxz& e ux22y2&
z uxy&

TABLE VIII. Unnormalized, symmetry-adapted linear combinations of ligand functions@ f k
a , see Eq.

~A1!# for trigonal shells of four silicon atoms. We use the notationuL&R , whereL denotes a cubic harmonic
andR numbers the four site positions building up the shell~see Table XI!. Where two signs6 and7 are
given the first one applies for Si(1,1,1) and Si(2,2,2), the second one applies for Si(2,2,2)̄.

a k u f k
a&

x 1 us&12us&21us&32us&4
2 ux&11ux&21ux&31ux&4
3 uy6z&11u2y6z&22uy6z&31uy7z&4

y 1 us&11us&22us&32us&4
2 uy&11uy&21uy&31uy&4
3 ux6z&12ux6z&21u2x6z&31ux7z&4

z 1 6us&17us&27us&36us&4
2 uz&11uz&21uz&31uz&4
3 6ux1y&16ux2y&26u2x1y&37ux1y&4

u 4 ux1y72z&11u2x1y62z&21ux2y62z&3
2ux1y62z&4

e 4 u2x1y&11ux1y&22ux1y&31ux2y&4
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the three-particle matrix elements reduce to sums of one-
particle matrix elements. Carrying out the spin integrations
we are left with spatial integrals of the form

R^Lunk
j uL8&R8. ~A3!

Since the orbitalsuL&R are restricted to the atomic sphere
around the siteR, we have one-, two-, and three-center inte-
grals. The one-center integrals (R5Rj5R8) are calculated
exactly. The only two-center integrals (R5R8ÞRj ,
R5RjÞR8, R85RjÞR) that are taken into account are the
integrals of the dipole-dipole interaction withR5R850.58

These are approximated by

^Lualk
j uL8&'g j

3~2Rj ! l~2Rj !k2Rj
2d lk

Rj
5 bFe

2 dLL8, ~A4!

wherebFe is b0 or b00 and

alk
j 5g j

3XlXk2R2d lk
R5 , Xl5~rW2RW j !•eW l ,R5urWRj u.

All three-center integrals (RÞRjÞR8) vanish.
For convenience we introduce the following parameters:

TABLE IX. Unnormalized, symmetry-adapted linear combinations of ligand functions@gk
a , see Eq.~A1!#

for a rhombic shell of silicon atoms. We use the notationuL&R , whereL denotes a cubic harmonic andR
labels the six site positions building up the shell.~See Table XI.!

a m ugm
a &

x 1 us&172us&22
2 ux&171ux&22

y 1 us&182us&21
2 uy&181uy&21

z 1 us&192us&20
2 uz&191uz&20

u 3 us&171us&1822us&1922us&201us&211us&22
4 ux&171uy&1822uz&1912uz&202uy&212ux&22

e 3 2us&171us&181us&212us&22
4 2ux&171uy&182uy&211ux&22

TABLE X. Unnormalized, symmetry-adapted linear combinations of ligand functions@hk
a , see Eq.~A1!#

for a monoclinic shell of silicon atoms. We use the notationuL&R , whereL denotes a cubic harmonic and
R labels the 12 site positions building up the shell.~See Table XI.!

a r uhr
a&

x 1 us&51us&71us&92us&112us&131us&142us&152us&16
2 ux&51ux&71ux&91ux&111ux&131ux&141ux&151ux&16
3 uy&51uz&72uz&91uz&112uz&132uy&142uy&151uy&16
4 uz&51uy&72uy&92uy&111uy&132uz&141uz&152uz&16

y 1 us&51us&61us&82us&102us&122us&141us&152us&16
2 uy&51uy&61uy&81uy&101uy&121uy&141uy&151uy&16
3 ux&51uz&62uz&82uz&101uz&122ux&142ux&151ux&16
4 uz&51ux&62ux&81ux&102ux&121uz&142uz&152uz&16

z 1 us&61us&72us&82us&91us&102us&112us&121us&13
2 uz&61uz&71uz&81uz&91uz&101uz&111uz&121uz&13
3 uy&61ux&72uy&82ux&92uy&101ux&111uy&122ux&13
4 ux&61uy&71ux&81uy&92ux&102uy&112ux&122uy&13

u 5 2us&52us&62us&72us&82us&92us&102us&112us&12
2us&1312us&1412us&1512us&16

6 2ux1y&52uy1z&62ux1z&71u2y1z&8
1u2x1z&91uy2z&101ux1z&111uy1z&12
1ux2z&1312ux2y&1412u2x1y&1522ux1y&16

7 2uz&52ux&62uy&71ux&81uy&91ux&102uy&112ux&12
1uy&1322uz&1422uz&1512uz&16

e 5 us&62us&71us&82us&91us&102us&111us&122us&13
6 uy1z&61u2x2z&71uy2z&81u2x1z&9

1u2y1z&101ux1z&112uy1z&121ux2z&13
7 ux&62uy&72ux&81uy&92ux&102uy&111ux&121uy&13
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^r23& l
j5E

0

sRj 1

r 3
uwRj l

~r !u2r 2dr, l5p,d , ~A5a!

Pl
j5

m0

4p
gN
j mNmB^r23& l

j , l5p,d , ~A5b!

Ad
j 5

m0

4p
gN
j mNmB

1

Rj
3 , ~A5c!

Ac,a
j 5 2

3 m0gN
j mNmBuCa

j ~0!u2, a5t2 ,e , ~A5d!

wheresRj is the radius of the atomic sphere centered around

the siteRj and uCa
j (0)u2 has to be taken from Table XII.

Using the parameters~25! our results will be summarized
with the notation

Aik
j 5aik

CP,j1aik
c, j1aik

l , j1aik
d, j ,

where the superscripts CP,c, l , andd refer to the contribu-
tion from the core polarization, from the Fermi contact inter-
action, from the orbital angular momentum, and from the
dipole-dipole interaction listed in~12!, respectively. We ob-
tain the following results.

1. hfi with the iron nucleus

Aik
Fe50; i5” k,

Aii
Fe5al1ad1aCP, i5x,y,z ,

al5
4
3 b0

2Pd
Fe, ~A6!

ad52 2
63 gsb0

2Pd
Fe,

aCP5
5
6 ACP

Fe .

2. Trigonal shells

axy
h, j5ayx

h, j56axz
h, j56azx

h, j56ayz
h, j56azy

h, j ,

h5CP,c,l ,d ,

axx
h, j5ayy

h, j5azz
h, j , h5CP,c,l ,d ,

axx
CP,j5 5

3 ACP
j ,

axy
CP,j50,

axx
c, j5

5

18

gs
2
Ac,t2
j ,

axy
c, j52

1

18

gs
2
Ac,t2
j , ~A7!

axx
l , j52 1

3 ~b2
22 1

2 b3
2!Pp

j ,

axy
l , j5 2

3 S 2 1
4 b3

21
1

A8
b2b3D Pp

j ,

axx
d, j52

gs
18

@b2
21 1

10 b3
22b4

2#Pp
j ,

TABLE XI. Relation between the site indices and the site positions of the atomic spheres that are
occupied with atoms. The site indices are used in Tables VIII–X. Note that three distinct trigonal shells are
included, each of which correspond to the site indices 1–4.

Site
indices Sites

0 (0,0,0)

1–4 (1,1,1), (1̄,1,1̄), (1,1̄,1̄), (1̄,1̄,1)
1–4 (2,2,2), (2̄,2,2̄), (2,2̄,2̄), (2̄,2̄,2)
1–4 (2,2,2̄), (2̄,2,2), (2,2̄,2), (2̄,2̄,2̄)

5–16 (1,1,3̄), (3̄,1,1), (1,3̄,1), (3,1,1̄), (1,3,1̄), (3,1̄,1),

(1̄,3̄,1̄), (3̄,1̄,1̄), (1̄,3,1), (1,1̄,3), (1̄,1,3), (1̄,1̄,3̄)

17–22 (2,0,0), (0,2,0), (0,0,2), (0,0,2)̄, (0,2̄,0), (2̄,0,0)

TABLE XII. Contact densitiesuCa
j (0)u2 for the silicon ligand shells for different irreducible representa-

tions used in Eq.~A5d!.

Shell
a Trigonal Rhombic Monoclinic

t2 b1
2uwRj0

(0)u2 g1
2uwRj0

(0)u2 d1
2uwRj0

(0)u2

e – g3
2uwRj0

(0)u2 d5
2uwRj0

(0)u2
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axy
d, j5

gs
2 S 15 1

A8
b2b31

1
18

1
5
11
2 b3

22 1
9 b4

2D Pp
j

1 5
9 ~b0

212b00
2 !gsAd

j .

3. Rhombic shells

aik
h, j50; i5” k, h5CP,c,l ,d ,

ayy
h, j5azz

h, j , h5CP,c,l ,d ,

axx
CP,j5ayy

CP,j5 5
3 ACP

j ,

axx
c, j5~ 1

18 Ac,t2
j 1 5

27 Ac,e
j !gs ,

ayy
c, j5~ 1

9 Ac,t2
j 1 5

27 Ac,e
j !gs ,

akk
l , j50, k5x, j ,z,

axx
d, j5 1

9 ~ 2
5 g2

21 4
3 g4

2!gsPp
j ~A8!

1 5
9 gs~b0

212b00
2 !
3~2Rj !x

22Rj
2

Rj
2 Ad

j ,

ayy
d, j52 2

45 ~g2
21 5

3 g4
2!gsPp

j 1 5
9 gs~b0

212b00
2 !

3
3~2Rj !x

22Rj
2

Rj
2 Ad

j .

4. Monoclinic shells

akk
CP,j5 5

3 ACP
j , k5x,y,z ,

aik
CP,j50; i5” k,

akk
c, j5 5

9 gs~
1
8 Ac,t2

j 1 1
12 Ac,e

j !, k5x,y,z ,

aik
c, j5 1

9 gs
1
8 Ac,t2

; i5” k,

axx
l , j52 1

6 ~d2
22d3d4!Pp

j ,

axy
l , j5azy

l , j5 1
6 ~d2d32d3d4!Pp

j ,

axz
l , j5ayz

l , j5 1
6 ~d2d42d3d4!Pp

j ,

ayx
l , j5 1

6 ~d2d32d4
2!Pp

j ,

ayy
l , j52 1

6 ~d2
22d4

2!Pp
j ,

azx
l , j52 1

6 ~d3
22d2d4!Pp

j ,

azz
l , j52 1

6 ~d2
22d3

2!Pp
j ,

TABLE XIII. Data for the products of the prefactorsb ibk , g igk , andd idk ~times 1024) defined in the
linear combinations~21! for Si:Fei

1 . The data are determined from our self-consistently calculated magne-
tization densities Eq.~17!. The products listed are used in Eqs.~A6!–~A9!. For brevity we list the combina-
tions of indicesi , j only.

i,k
Site 2,2 2,3 2,4 3,3 3,4 4,4 6,6 6,7 7,7

Si(1,1,1) 218 2285 2141 681
Si(2,2,2) 236 270 207 6.14

Si(2,2,2̄) 29.83 4.18 23.53 5.59

Si(2,0,0) 23.6 103

Si(1,1,3̄) 223.3 35.5 20.2 254.8 31.2 217.5 171 2154 129

Fe(0,0,0) b0
258288 b00

2 57156

TABLE XIV. Hyperfine parameter~in MHz! determined from the self-consistently calculated magneti-
zation density for Si:Fei

1 @see Eqs.~12b! and ~A5!#.

j ACP
j Ac,t2

j Ac,e
j Pp

j Ad
j

Si(1,1,1) 20.417 26.752 2275.55 20.604
Si(2,2,2) 21.660 7.197 2272.37 20.604

Si(2,2,2̄) 20.007 0.629 2272.28 20.604

Si(2,0,0) 4.433 0.121 1.606 2273.01 20.393

Si(1,1,3̄) 21.912 4.442 225.43 2272.39 20.086

Fe(0,0,0) 212.41 Pd543.52
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axx
d, j52

1

36

gs
10

~10d2
21d3

21d4
22 10

3 d6
21 20

3 d7
2!Pp

j

1 5
9gs~b0

212b00
2 !
3~2Rj !x

22Rj
2

R2 Ad
j , ~A9!

axy
d, j5

1

36

gs
10

~13d2d32d4
2112d3d4110d6

2!Pp
j

1 5
9 gs~b0

212b00
2 !
3~2Rj !x~2Rj !y

Rj
2 Ad

j ,

axz
d, j5

1

36

gs
10

~14d2d4112d3d4110A2d6d72
1
2 d3

2!Pp
j

1 5
9 gs~b0

212b00
2 !
3~2Rj !x~2Rj !z

Rj
2 Ad

j ,

ayx
d, j5

1

36

gs
10

~13d2d312d4
219d3d4110d6

2!Pp
j

1 5
9 gs~b0

212b00
2 !
3~2Rj !2x~2Rj !y

Rj
2 Ad

j ,

ayy
d, j52

1

36

gs
10

~10d2
2211d3

2110d4
213d3d42

10
3 d6

2

1 20
3 d7

2!Pp
j 1 5

9 gs~b0
212b00

2 !
3~2Rj !y

22Rj
2

Rj
2 Ad

j ,

ayz
d, j5

1

36

gs
10

~2d2d3111d3d4114d2d4

110A2d6d7!Pp
j 5
9 gs~b0

212b00
2 !

~2Rj !y~2Rj !z

Rj
2 Ad

j ,

azx
d, j5

1

36

gs
10

~13d2d419d3d4110A2d6d712d3
2!Pp

j

1 5
9 gs~b0

212b00
2 !
3~2Rj !x~2Rj !z

Rj
2 Ad

j ,

azy
d, j5

1

36

gs
10

~11d3d42d2d4114d2d3110A2d6d7!Pp
j

1 5
9 gs~b0

212b00
2 !
3~2Rj !y~2Rj !z

Rj
2 Ad

j ,

azz
d, j52

1

36

gs
10

~10d2
2110d3

2211d4
213d3d41

20
3 d6

2

2 40
3 d7

2!Pp
j 1 5

9 gs~b0
212b00

2 !
3~2Rj !z

22Rj
2

Rj
2 Ad

j .

In order to calculate data for the hfi with the iron nucleus
and with several silicon nuclei we use the calculated magne-
tization density as indicated in Eq.~17! to calculate the pref-
actors and the hfi parameters defined in Eq.~A5! and Eq.
~12b!. Tables XIII and XIV show the corresponding data for
six positions of nuclear spins. Using these data together with
Eqs.~A6!–~A9! we get the results summarized in Table V.
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