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Ground-state properties of isolated interstitial iron in silicon:
Electronic structure and hyperfine interactions
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We have performedb initio total energy calculations for interstitial iron in silicon with particular emphasis
on the matrix elements for the hyperfine interactions with the iron nucleus and with several silicon ligand
nuclei. The total energy calculations have been performed in the general framework of the density functional
theory(DFT) treating many-particle effects in the local spin-density approximdti®DA). We use a Dyson’s
equation approach to solve the Kohn-Sham equation of the density functional theory and calculate the Green’s
function with the help of the linear muffin-tin orbital theory using the atomic-spheres approxinfAt&m).
Unfortunately the use of the ASA prohibits the inclusion of lattice relaxation effects. Our total energy calcu-
lations lead to a model for the electronic structure which is dominated by covalent hybridization dfstates
with silicon p states. From the results of our calculations we can easily explain the reaction of the electronic
system when passing from Fm Fe' . To this aim we slightly modify the Ludwig-Woodbury model: In a first
step we consider the exchange splitting of the icbstates which in a second step are further split by the
crystal field. The hyperfine matrix elements for SifFfﬁre calculated directly from the magnetization density
obtained by the LSDA-DFT calculation and show excellent agreement with data from electron nucleus double
resonancédENDOR) experiments. For Si:kewe have to take into account the spin-orbit interaction of the
iron d orbitals. Since our total energy calculations neglect spin-orbit interactions, we switch to a description
which uses symmetry-adapted many-particle wave functions. With these functions we calculate the matrix
elements for the hyperfine interaction with the iron nucleus and with several silicon ligand nuclei. We use the
localization properties of our magnetization density to determine the many-particle wave function and to obtain
data for the hyperfine interactions. We show that the covalent hybridization of thel isteites with ironp
states and with silicon orbitals alone cannot explain the discrepancy between calculated and measured data for
the hyperfine interaction with the iron nucleus. However, the additional consideration of a dynamical Jahn-
Teller effect as a Ham effect leads to consistent data. The calculated data for the ligand hyperfine interaction
allow one to definitely assign ligand shells to the measured ENDOR [&2463-182006)04431-1

I. INTRODUCTION plied to the problem of deep TM defects in
semiconductor$®~2°With the exception of the “early inter-
During the last 30 years considerable work has been spestitials” and “late substitutionals®® all theoretical work
in order to understand the properties of transition-metatorroborated the main features of the model Ludwig and
(TM) ions in semiconductors. Because it is practically omni-Woodbury developed to describe their EPR results. Al-
present a special focus has been on iron in silicon, which hathough many experiments have been performed to measure
thereby become one of the best studied TM defects in semhyperfine interactionghfi), only a few attempts have been
conductors. The development started in the early 1960s witmade to calculate the hfi and these have been restricted to the
the famous work of Ludwig and Woodbutywho investi-  neutral charge state Si:Eeonly.!?28To the best of our
gated doped semiconductors by magnetic resonance expekinowledge up to now no attempt has been made to calculate
ments. In the following years experimental and theoreticathe hfi for the positive charge state Si;FeThis may be due
work dealt with topics such as solubilify,electrical o the fact that the ground-state term of SiFis the orbital
activity,>* and also with ground-state properties studied b¥iriplet 4T,, the degeneracy of which is lifted by the spin-
electron paramagnetic resonan@&PR),"® electron nucleus orpit interaction.
double resonancéENDOR),°~*® and Msbauef' spectros- There is a controversial discussion as to the origin of the
copy. Due to the high mobility and reactivity of interstitial |arge reduction of the orbital angular momentum facfoof
iron much attention was given to pair defects and aggregatese g factor of the ground statg= 39— g7 measured in
containing iron(see, e.g., Ref. 12, and references therein EPR. This reduction has been interpreted in the literature
The apparent puzzling duality of TM ions that some prop-assuming that Si:Feis a Jahn-TelletJT) system showing a
erties are understood in a covalent delocalized picture whilgiam effect®® Alternatively the reduction is explained by co-
other properties call for an atomically localized picture forvalent hybridization. Katayama-Yoshida and Zurfgérave
the defects stimulated the first theoretical calculations on TMshown that according to their calculations covalent hybrid-
impurities in semiconductors. The theoretical investiga- ization is the dominant effect for the ground state. However,
tions were renewed in the 1980s with the development of theecent experiments—=2on optical transitions for Si:Fendi-
density functional theoryDFT),*4~18 which soon was ap- cate that a dynamical JT effect may be present for the “ex-
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cited” spin-orbit split states of the ground-state teff,. . Er . )
We show based on calculated hfi matrix elements that cova- Ny r(TR)= 2 NrLre (E)lerL(Tr,E)[“dE, (3)
lent effects alone cannot explain the large reduction factor of L.L

the orbital angular momentum matrix elements fof F&Ve  where thegr, (r,E) are the solutions of the Kohn-Sham
therefore propose that the experimentally observed groundquation inside the atomic sphere around the posRioh is
state properties of Si:Feare due to covalent hybridizations a shorthand notation of the angular momentum quantum
and a dynamical JT effect. numbersim, andrg=r —R.

Our paper is organized as follows: in Sec. Il we sketch the T¢ reduce the computational effort when solving ED.
general framework of our total energy calculations and sumgye switch to symmetry-adapted basis functions which trans-
marize our results for Si:Feand Si:F¢ by means of a form according to the irreducible representations of the point
covalent model. Our calculations of hfi matrix elements areyroup of the defect. These are constructed with a Slater pro-
presented in Sec. lll. Details of the calculations for Sj:Fe jector techniqu¥
are given in the Appendix.

a =, h - g rR
foo=r)=2 I (R)*R rp) 6l —|. 4
Il. TOTAL ENERGY CALCULATIONS onrl") ZR eu(R"Rébmulre) (SR) @

A. Theoretical method I'2,(R) is the matrix element of the irreducible representa-

We have performedb initio total energy calculations us- tion I"* for the point group operatioR of the point group of
ing the DFT (Refs. 14 and 1bin the local spin-density the defect.x and u label the rows and the columns of the
approximation®~*#(DFT-LSDA) to determine the electronic matrix, respectivelyR labels the different “shells,” i.e., the
ground state of deep impurities in silicon. Since the compusite vectorsR; that transform into each other under applica-
tational scheme has been discussed in detail in a theoreticghn of the point group operatiorR. Since the energy de-

0 . . . 7 . _ N
papef® as well as in several _appllcatl_()?ﬁ§ we restrict our pendence of thate, (E.T) is approximated by a Taylor se-
selves here to the minimum information required and refer ta.
ries up to second order around some en&rdy, , we

the literature for details. obtair?®
We solve the problem of a deep impurity in a silicon
crystal using a Green’s function technique and solving a

i g a(K)(j)ea,(K) , 2 ca,(] >,
Dyson equation n“r= >, NE?,,)(J)fmf,%(r)fu::?l’(r)' (5)
RII"
G(F,F’,Z)ZGO(F,F’,Z) KK, j

where the superscriptskY and () can take the values
0,1,2 and denote the function itself and its first and second
derivative according to the energy, respectively. The coeffi-
cients in Eq.(5) are given by

>

+J GOr, " Z)AV(r")G(r",r" ) dr",

«y
whereAV=V—VC s the difference between the one-particle a1 [BF 4 _ K= i
potentials of the crystal containing the impurity and that of Neir = kij! ,WNR”’(E)(E E,)(E~E,)'dE.

the unperturbed crystal. We have carried out a band structure (6)
calculation using the linear muffin-tin orbital method in the
atomic-spheres approximatighMTO-ASA) in order to de-
termine the Green’s functio&® of the unperturbed crystal.
Since for deep impurities the difference of the potentials

AV has large values which, however, are restricted to a T, k)=, ﬂ%(k)fi;f%(F). (7)
small region around the impurity we divide the crystal into a RIk ’

“perturbed region” containing the atomic spheres of the im-Thege wave functions can be interpretediafect orbitalsin
purity atom, of a few neighboring silicon host atoms, and ofie sense of covalently augmented impurity orb¥ance

space-filling interstitial spheres and into the “unperturbed” o IT'“, &) contain both impurity and host orbitals. The co-

crystal outside this region. Our perturbed region consists oéfficientsﬁ in Eq. (7) are determined by
y

The particle density given in Ed5) can be considered as
arising from the square of some wave functions

30 atomic spheres that contain silicon atoms, of 28 empt
spheres, and of the atomic sphere centered around the impu- ’ng)ﬁﬂj): a,(K)(j) ®)
rity atom. Within the perturbed region Dyson’s equation is Rl TRIY RITY

solved self-consistently, outside this regi@ is approxi- This relation turns out to be essential for the calculation of

mated byG®°. the hfi matrix elements when dealing with ground states
From the Green’s function we calculate the angular mo-without orbital quenching. Since we use the LSDA we have
mentum and site projected density of sta@©S) to add an additional spin index in Eq®) — (7) and use spin

densities instead of particle densities.

The total energy of the crystal containing the defect is
calculated ignoring lattice relaxatiof$?®?” Since the total
energy is determined up to an additive constant only, we
and the charge density of the valence electrons inside ealculate the difference in energy introduced by the defect.
sphere centered around the posit®Rn To this we add the energy of the long-range Coulomb part of

NrLru(E)=F= limImTrG(E+ie) 2)

e—0

s
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FIG. 1. Induced DOS for Si:lii)eprojected onto the irreducible representatien&),(c) andt, (b),(d) for both spin directionsng= +
%. We use the top of the valence band as zero for the energy and indicate occupied states in the gap by filled and unoccupied states by empty
circles, respectively.

n(0.1 eV) where n indicates the charge state of the states separated hy,(e) and intot,; andt,, states sepa-
impurity.2°381n order to compare total energies for different rated byA,(t,), respectively. For interstitial TM ions in sili-
charge states of a defect we discuss thémes charged con the LW model predicts that the one-electron states are
defectD™ plus n electrons or holes that are transferred toordered ase(ty)<e(e;)<e(ty))<e(e)). This leads to

the Fermi level. Thus the total energy becomes a function ohigh-spin ground states, i.e., to the strong field

the Fermi levelEg, configuration®®“°t5e? for Fe? and tote? for Fe", respec-
tively.
E(D™,Ep)=ER(D™)+nEe, ) Since our symmetry-adapted one-particle orbit@scan

b ) be interpreted as defect orbitals in the sense of one-particle
whereE,, is the energy of the defect for a Fermi level at the orhjtals of a strong field configuration we interpret our cal-
valence band edge. With these total energies we calculate thelated induced DOS in terms of different defect orbitals
electron removal energies as that position of the Fermi level, 4.y, with corresponding occupation numbety, z of
for which the total energies of two charge states coincide. ,, - 2 - CXeY Az

the strong field configuratioajte®. Figures 1a)—1(f) and

2(a)—2(f) show the calculated induced DOS for Si%Fand
Si:Fe" projected onto the irreducible representations
In agreement with several other authors we find interstitial, ,e,t, for both spin directionsn =+ 3, respectively. We
iron in the neutral and in the positive charge states with arfind that the peaks in the induced DOS can be divided into
electron removal energi(+/0)=E,+0.29 eV. This com- three groups labeled by the superscri@s, ((b), and R).
pares reasonably well with the experimentally determinedrhe peaks indicated byR) form resonance structures which
value of 0.385 eV}:?3 contain negligible charge in comparison to the structures la-
The electronic structure of TM ions in semiconductors isbeled by @) and [©).
usually described by the model of Ludwig and WoodBury ~ We have analyzed the induced DOS in détailith the
(LW). Starting from the atomic configuratigr]3d"4s™  help of projections on the impurity atomic sphere and on
the 4s electrons are transferred to thestates, resulting in a several atomic spheres of the neighboring ligand atoms. The
d"*™ (atomig configuration of the valence electrons for in- analysis reveals that the peaks labeley énd () in Figs. 1
terstitial TM’'s. The crystal field splits the one-electran and 2 have contributions from irceh states and mainly sili-
states intee andt, states separated ly-r and these in turn conp states leading to a picture of covalent hybridized iron
are further split by the exchange interaction itoande; d states forming bondindy) and antibondingd) states with

B. The electronic structure of Fe
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FIG. 2. Induced DOS for Si:Re projected onto the irreducible representatien&),(c) andt, (b),(d) for both spin directionsng=+
%. We use the top of the valence band as zero for the energy and indicate occupied states in the gap by filled and unoccupied states by empty
c

ircles, respectively.

the siliconp states(see Fig. 3. In Figs. 4a) and 4b) we lower energies. At the same time the spin is increased
show a contour plot of the particle densities for the antibond{S=1 — S=3) and thereby the exchange splitting is also in-
ing t§? and e{® states of Si:Fg in the (110) plane which creased. Both effects cancel in part for tde states but
demonstrate the covalent hybridization of the atomic idon cooperate to move the; states to lower energies. Therefore

states with the ligand orbitals. For f¢he irond states are
somewhat more localized in the antibonding orbitals with
respect to the bonding staté3able ). In contrast, for
Si:Fe" thed states are more localized in the bonding states
(see Table)l

In order to understand the trends in the splitting and lo-
calization when going from I'—?eto Fe' itis useful to reverse
the order in which crystal field and exchange splitting are
considered: in the following we will discuss the electronic
structure starting from atomid states that are split by the
exchange interaction intal, and d, states separated by
A,(d). In a second step these states are further split by the
crystal field with separationd ;- and A& [see Figs. 5a)
and §b)]. For neutral F§ we thus obtain,(d)=0.84 eV,
ALr=0.93 eV, andA=1.08 eV. For iron in the positive
charge state Fe the corresponding values afg(d)=1.12
eV, ALr=0.39 eV, andA .= 0.97 eV, respectively. This or-
der provides us with a rather simple picture of the reaction of
the electronic system when we pass fronf e Fe" . For
Fe? with spin S=2/2 the exchange splitting is somewhat
smaller than the crystal field splittings. The states are, there-
fore, not spin ordered and the crystal field splitti‘ﬁ@F is

FIG. 3. Energy diagram showing the formation of bonding and

practically equal toA-. When we go to F§ the more  antibonding states. We start with the irdrstates ordered according
attractive potential of the positive ion moves all states toto the LW model and neglect the exchange splitting here.
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There is a puzzling difficulty if we attempt to describe the
electronic states of Fe in terms of occupation numbers: If we
integrate the induced DOS projected on the irreducible rep-
resentations of the point groufy and restrict the range of
integration to the ASA sphere around the interstitial iron
impurity we obtain the occupation numbers

a8.44tg.19e2.21 for qu'

ad*15%?3® for Fe'.
The same induced DOS, however, integrated with respect to
all space, gives

ad%%3%e2%  for Si:Fd,
ad%%33%>1° for Si:Fe' .

Since the irora; orbitals are pures orbitals we see that the
s-d transfer proposed by the LW model is nearly complete if
we consider the complete defect orbitals. However, the local
configurations restricted to the iron atom subspace differ sig-
nificantly from the occupations of the defect orbitals: The
a, ande orbitals are rather localized around the iron atom
whereas the, orbitals are more delocalized. The occupation
numbers of the defect orbitals approximate the LW configu-
rationst5e? for Fe andt3e? for Fe;" . However, they con-
tain small admixtures of the configuratiotie® for Fe{ and

of t3e® for Fe;" . Figure 6 shows a contour plot of the total
induced particle density of the valence electrons for Si:Fe
in the (110) plane which indicates localization of the particle
density around the iron atom with considerable redistribution
of the density, which reflects considerable bonding to the

FIG. 4. Contour plot of the particle density of the antibonding surrounding ligands.
t§) state(a) and of thee!? state(b) in (110 for Si:Fe.

the lower-lyingd, states become considerably more local-
ized both with respect to the states of F@ and to thed,
states of F¢ . Hence the crystal field splitting - is dras-
tically reduced while the crystal field splitting of the gap
statesA & remains virtually unaltered, leading to the spin-
ordered final stateg-ig. 5).

The magnetization density displayed in Fig. 7 is by far
more localized than the particle density. If we introduce the
local magnetic moment

_ o\ g 37
m(X)—fV(X)[nT(r) n (r)jd°r, (10

wheren;, | are the spin densities an{ X) is the volume of
the atomic sphere around the positiéras compared to the
total magnetic moment,

TABLE |. Occupation numbers of the particle densities for S{?:Iaad Si:F¢ projected onto the irre-
ducible representations andt,. Ni® is the contribution of irond electrons andNy, the total occupation
number of the corresponding state.

Fe? Fe"

State NEe Niot NEe Niot
el® 1.16 1.70 0.81 1.27
ef?) 0.59 0.68 0.88 0.92
t& 1.11 1.65 0.85 0.91
t) 1.08 113 1.48 1.68
el

ef” 0.29 0.44 0.37 0.57
ts 1.33 1.99 0.85 1.25
t$) 0.55 0.64 0.81 0.85

2]
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FIG. 5. Energetic positions of the one-electron states used in the

covalent model for Si:Fi%(a) and Si:F¢ (b). Shown are the

atomiclike irond states that are split due to the exchange interaction

and due to the crystal fieldeft side which form bonding b) and
antibonding &) defect orbital states with the silicom states[see

Eqg. (7)].

m(Si:X):f [n.(r)—n (r)]d°r, (12)

Vpert

whereV . is the volume of the perturbed region, we obtain
m(F€’) =1.91ug andm(Si:F€) ~2u for the neutral charge
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FIG. 6. Contour plot of the total induced particle density of the
valence electrons for Si:l?e'n (110.

state of iron. For the positive charge state we find
m(Fg")=2.37ug and m(Si:Fe"')=2.76ug, respectively.
Therefore for Si:F@ we approximately get the total theoreti-
cal magnetic moment afno(FqO)=ZS=2 in our perturbed
region(Fig. 7), and 95% of it in the iron ASA. For Si:Fewe
have approximately 92% of the total theoretical magnetic
moment for Si:F¢ in the perturbed region and 80% of the
total magnetic moment is found in the iron sphere. Accord-
ing to the total spins we can approximate the ground-state
term for Si:Fé as °A, and for Si:F¢ as “T;, respectively.

Ill. CALCULATION OF THE HYPERFINE
INTERACTIONS

A. Theory

The Hamiltonian representing the hfi bif valence elec-
trons of the defect wittM nuclei (impurity and host nuclgi
reads

.00 x10°!

w

.00x10""

[
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.00x104
.00x1074

.00x1073

FIG. 7. Contour plot of the magnetization density of the valence
electrons for Si:FRin (110).
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TABLE II. Comparison of calculated and measured hfi daiaVHz) for Si:Fe,O. The hfi data for the Si
ligands are taken from ENDOR measuremgiefs. 7 and Band the hfi constant for Fe is determined by
EPR measurementRef. 1). In the last column we show the calculated contact data from Katayama-Yoshida
and HamaddRef. 28, who carried out a supercell calculation. In order to overcome the ambiguity of the
results for ligands of supercell calculations these data have been scaled with the experimental values.
Refs. 7 and 8 This work Ref. 28
Position Aexpt Dexpt/ Dexpt a b/b’ Acalc
Fe(0,0,0 +20.94 —-15.2
Si(1,1,9 0.157 1.402 3.032 1.504 -0.15
Si(1,1,3 —3.870 —0.434/0.068 —3.887 —0.448/0.035 —3.60
Si(2,0,0 —4.641 —0.799/0.514 —12.981 —0.679/0.040 —16.66
Si(2,2,2 3.244 —0.156 3.945 —0.242 +2.79
Si(2,2,9 0.776 —0.196 1.074 —0.143 +0.67
S S (87 e _ 187 F+R,) 8(F)d3F b
thi:E ’)/IE _5(rij)si+_3 aj_z_s?yj m(r+R]) (r) r, (13)
=1 =1\ 3 ri
> o - - 2
3(r...s4)r..—rgs. R 1 N 3XkX|—I’ 5k| N
+ ——— T Hep, (12a (Bu=5g7% | Mr+R)——=—dr. (139

r,J

>

Mo, > >
'YJIEZQINIU*N/-LBv rj=ri—Rj,

where the nuclei with nuclear spfr; and with theg factor

gj;\, are at the positiongej . Hep takes into account the core
polarizatiorf®*3

Hep=2 ALl ;S (12b
]

. 87 1 R -
AEPZ?YJZ—SZ {lei (RDIP= i (R}

Heren,(r) andn (r) are the spin densities calculated in the
DFT-LSDA (including the core polarizatiohsThe isotropic
constantsy; are directly related to the Fermi contact interac-
tion, the matrice®; characterize the angular dependent parts
of the spin Hamiltoniar{133). To evaluate the integr&l 30
which extends over all space we make use of the LMTO-
ASA concept and approximéfe

rer—r2l

1 . .3 -
=~ +R)—7 @3
B; 28yjfvs(RTj)m(r R)) = d’r (149

. 3R;®R;—-Rj1

1
tagn MRI——s——, (14D

Since our one-particle Kohn-Sham equation is based on Whereﬁijzﬁ—ﬁ
Dirac equation neglecting spin-orbit interaction we calculate
the Fermi contact contributions arising frofh2) as the av-
erage of the squared one-patrticle functions over a region near
the nucleus whose diameter is the Thomson radius

rr=2€’/mc” (Ref. 44. To determine the hfi of the defect anqgv (R)) is the volume of the atomic sphere of radisis
electrons with the magnetic nuclei we calculate the matrix

j

m(ﬁi):fv(ﬁ. m(r)dqr,

elements of12) in first order perturbation theory.

B. Results
1. Si:Fe?

around the lattice poirf{i . Since the matriceB; are trace-
less they are transformed into their eigensystem and the ei-
genvalues are parametrized ds, 2-b+b’, —b—b’, such
that 2b is the largest eigenvalue.

In Table Il we compare our total calculated hfi data sum-
marized bya, b, andb’ with experimental hfi data which

The total energy calculations have shown that the groun@igve peen measured in ENDQRefs. 7 and B(for the Si

state of Si:Fé is well approximated by’A,. Therefore we

ligandg and in EPR(Ref. 1) (for Fe) experiments. For the

have orbital quenching and calculate the hfi matix elementgNDOR data relative signs betweanb, andb’ are known,

directly with the help of the magnetization denéfty

m(F)=nT(F)—nl(F)

to

(133

for the EPR data only absolute values can be given.

Our calculated ligand hfi data show excellent agreement
with the measured data for the anisotropic constangnd
fair agreement for the isotropic constarts We get large
deviations between calculated and measured data for the con-
tact data of the first two inner shell positions Si(1,1,1) and
Si(2,0,0). The major part of the magnetization density, how-
ever, is related to the constariis Therefore our calculated
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TABLE IIl. Decomposition of the calculated hfi contact d4ira MHz) for Si:Fe,0 into contributions from
various one-particle states and from the core polarization.

Position ae ay, Agap ayg acp Aot
Fe(0,0,0 0 0 0 12.49 —27.66 —15.17
Si(1,1,2 0 —0.2947 —0.2947 2.563 0.763 3.032
Si(1,1,3 —5.666 —1.676 —7.342 3.4279 0.0274 —3.887
Si(2,0,0 —10.995 —0.023 —11.018 —2.002 0.0396 —12.981
Si(2,2,2 0 —18.824 —18.824 22.753 0.0158 3.945
Si(2,23 0 —0.474 —0.474 1.556 —0.008 1.074

magnetization density shown in Fig. 7 is essentially correctal data are quite large while theoretical and experimental
even if there are some serious discrepancies with respect tontact hfi data agree quite nicely for the more distant ligand
the ligand contact hfi. The calculated total hfi data arise fronshells.

contributions of the gap states, from the states in the valence

bands, and from the contact terms of the core stéatese 2. Si:Fe!

pOlarizatior). These decompOSitionS are shown in Table Il Based on our total energy calculations we approximate
for the Fermi contact constangs and in Table IV for the the electronic ground-state term for SiiFeoy *T;(t3€?).

matricesB. In the last column of Table IV we show the The spin-orbit interaction splits this term into the sublevels
eigendirections of the largest eigenvalue @ B. The first  T'((j=1), T'g(j=2), I'7(j=2), andl'g(j =32). The sublevels
two columns give the local contributions of the magnetiza-I",(3), I'g(3) are degenerate in first order perturbation theory
tion density according t¢14a, in the last column we also and thel'¢(3) sublevel is the ground stat&31-33394048rhe
include the point-dipole part ofl4b). Obviously the good T'; denote the irreducible representations of the cubic double
agreement between calculated and measured data is only ofroupTY andj indicates the total angular momentum result-
tained if both parts—local and point-dipole parts—are takering from the coupling of the total spiB= % with the ficti-
into account. tious orbital angular momentuhs= 1 attributed to the orbital
The contact hfi data for the interaction with the central Fetriplet T, due to the Wigner-Eckart theoreih®® Since the
nucleus(Table ll) have two major contributions from the ground-state functions
valence band polarization and from the core polarizaton.

Both have opposite signs and in the self-consistent cycle _ 1 _

influence each other, thus strongly impeding the conver- |[g*3)= \/§|4T1(i1)(1%)>—7|4T1(O)(t§)>
gence. The data of Table Il show that the core polarizations 3

caused by the defect electrons are large for the iron and for 1 .

the first silicon neighbor sheI_I only. The_ contact densities +—=*T(F1)(=D)) (15)
correspond to very small fractions sfdensities of the mag- V2

netization density and should be rather sensitive to lattice

relaxations. Such relaxations are predicted to occur as a synd'€ eigenfunctions of the spin-orbit interaction which is not
metric breathing mode relaxatiowith large relaxations for ~taken into account in our total energy calculations we ap-
the first two shells of silicon atoms for interstitial TM ions in proximate the many-particle functiofg*T;(m7)(Mg)) as
silicon222547 This may be the reason for the fact that the Slater determinants of the hole configuratige®,

deviations of the calculated contact hfi data for the close Si

(1,1,1) and Si(2,0,0) ligands as compared to the experimen- [*T1(nT)(Mg))=|nT fe||M ). (16)

TABLE IV. Decomposition of our calculated anisotropic hfi constantndb’ for Si:Fe,O (in MHz). The
vector » indicates the eigendirection o2 The indicesg and VB indicate the inclusion of the gap states
(g) and of the states that occur in the valence baf\B) to the magnetization density. The index tot
indicates the inclusion of the contribution frofi4b).

Position by /| bé| by vo/| bg’,+VB| Biot/[brod v
Fe%(0,0,0 0.0 0.0 0.0

Si(1,1,1 1.538 2.659 1.504 [111]
Si(1,1,3 —0.844/0.175 —0.306/0.009 —0.449/0.035 /[111]=-83.3°
Si(2,0,0 —1.630/0.068 0.074/0.010 —0.679/0.040 [100]
Si(2,2,2 2.754 —0.0826 —0.2423 [111]

Si(2,2,2 ~ 0.0 —0.003 —0.144 [117]
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TABLE V. Decomposition of all calculated hfi matrix elemerttsr Si:Fg") into contributions from the
core polarizatio(CP), from the Fermi contact interactiorc), from the orbital angular momentunh)( from
the local parts of the dipole-dipole interactioth) ( and from the dipole-dipole interaction with the magneti-

zation density localized around the iron atoddj.

Site Tensor a
element CP c | d dd tot
Fe(0,0,0) Ay —-20.73 48.04 —-2.29 25.06
Si(1,1,1) ag, —0.695 —-1.876 2.506 —0.063 —0.128
a;fy 0.376 1.345 2.829 —1.517 3.033
Si(2,2,2) agy —2.766 2.000 1.197 0.770 1.201
a)‘fy —0.400 —-0.794 —0.847 —0.190 —2.231
Si(2,2§ Ay —0.011 0.175 —-0.073 —0.036 0.055
a;‘y —0.035 —0.043 0.016 —-0.189 —0.251
Si(2,0,0) ag, 7.389 —-11.82 —0.891 —1.969 —-7.291
a‘y*y 7.389 —-11.26 0.474 —0.984 —4.281
Si(l,lg ag, —-3.187 —-1.738 —0.247 —0.002 0.157 —5.008
a;’y 0.123 —-0.020 —0.388 —0.059 —-0.344
ay, 0.123 0.050 0.226 0.177 0.576
a;’x 0.123 —-0.241 —0.366 —0.059 —0.543
a‘y*y —-3.187 —1.738 —0.036 0.088 0.157 —4.706
a}‘}z 0.123 0.050 0.240 0.177 0.590
agy 0.123 —0.340 0.258 0.177 0.218
a;*y 0.123 —0.020 0.205 0.177 0.485
ay, —3.187 —-1.738 —0.143 —-0.163 0.069 —4.906

Here thent are the one-particle eigenfunctiGlsof the
fictitious orbital angular momentuml=1: |+T)=
FLN2(taexityy),|0)=ty, with to, toy, ty, and 6, €
transforming according to the first and secof@hd third
column of the irreducible representatiohs and e of the
point groupTy, respectively. The notatiojabc| indicates a
Slater determinant of the three orbitads b, and ¢ and
[Mg) is a symmetric three-particle spin functith.

We have approximated thig¢ ande one-particle functions
by the defect orbital§7) [restricted to thé&k=0 contribution
of Eq. (7) only]. Since we deal with &e? hole configuration

we approximate the coefficienﬁ%](o) with the help of the

magnetization density calculated in the LSDA-DfRef. 5J)
and take

@,(0) ,a,(0) _ \a,(0),(0) \ «,(0),(0)
BRI 'BRI’ _NRII’T NRII’l

17

We therefore take the localization ofta and ane hole

around a lattice sit&®R as coefficientﬁ%‘o) in ourt, ande

defect orbitalg7), respectively. With the assignmefif7) we

try), at Si(2,0,0)(which represents a shell of six equivalent
ligands with rhombic symmetjy and at Si(1,1,8 (which
represents a shell of 12 equivalent ligands with monoclinic
symmetry. In order to compare our results with experimen-
tal data from EPRRef. 1) and ENDOR(Ref. 10 measure-
ments we have to transform our matrix elements into those
of a spin Hamiltonian for an effective spll =3,
Si
H=S AFe T+ > S AlT;. (18)
i

According to first order perturbation theory the effective spin
S'=3 is identical to the total angular momentum of the
ground statg =3. If we abbreviatdI'g* 3)=|=) and

3

Ni=y2,

i=1

-
ijSi

3(rii-Sp)ri—r .
— +ALS
(19

[where the notations are taken from H2)] the matrix
elements A}, of (18) are related to those of12) by

8’775 - _)+ ri n
3 ( IJ) i risj rij

take into account covalent effects as well as the spinAl +iAl,=2(—|N}/+) and Al,=2(+|N}|+). Details of
polarization effects of our LSDA-DFT magnetization the calculation can be found in the Appendix.

density>?

As was pointed out by van Kooten, Sieverts, and

For thel's ground state we have calculated the hfi matrixAmmerlaan'® there is no longer a one-to-one correspon-
elements of(12) with the iron nucleus and with five silicon dence between the contact term contributions and the isotro-

nuclei centered at Si(1,1,1), Si(2,2,2), Si(2)2(&hich rep-

resent shells of four equivalent ligands with trigonal symme-eraction and

pic hfi constant$and likewise between the dipole-dipole in-
the angular dependent parts @),
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TABLE VI. Comparison of measureRef. 10 and calculated hfi datén MHz) for Si:Fe" .

aexpt bexpt bt/expt a b b’
Fe*(0,0,0) +8.97 25.06'
-6.49°
Si(1,1,2) 0.087 1.231 -0.128 3.033
Si(2,2,2) 0.764 —0.226 1.201 -2.231
Si(2,2,2 ? ? ? 0.055 —0.251
Si(2,0,0) —7.529 ~0.738 0.460 —5.351 -0.970
Si(1,1,3 -3.927 ~0.518 0.159 —4.873 —0.462 0.170

&Calculated with an orbital reduction factor which is only due to covalent effects.

EPR
"Here we use; .

respectively if we switch from a description with the “true” tion factor to our hfi matrix elements, the orbital contribution
spin S=3 to a description with an effective spif’ =3. reduces by about a factor 3, leading to a total hfi value
Table V shows a decomposition of our results for all calcu-ag,= —6.49 MHz(as indicated in Table Min fair agreement
lated (independenthfi matrix elements. For the hfi with the with the EPR data.

iron nucleus we get an isotropic hfi matrix with a total value The comparison of our calculated hfi data for the silicon
of 25.06 MHz which deviates significantly from the mea- ligands with ENDOR dat4 (see Table V) shows that ex-
sured EPR dataof +8.87 MHz. This discrepancy can be cept for the isotropic constant for Si(1,1,1) all calculated
understood if we go one step back and calculategthalue  data have the same sign and are of the same order of mag-

measured in EPR. For the ground state we obtain nitude as the measured data. The discrepancyadqy ; 1
may be due to the rather small total value which arises from
g(le)=3g— 2, (200  the combination of large single contributioteee Table V.

As was the case for Si:e our calculated hfi data for
wheregs~2 andgy are theg factors of the electron spin and Sj:Fg" agree much better with experimental data for the
of the orbital angular momentum, respectively. If the more distant ligands, which again might indicate the influ-
ground-state term for Feis approximated by T;(*F) (aris-  ence of lattice relaxations for the inner ligand shells. We note
in\AQIJFfrom the weak field coupling terfiF) gi has the value that our calculated hfi matrix for Si(1,,3s not symmetric
o = — 3. For the strong field coupling limitwithout cova-  as there is no symmetry constraint for this ligand which
lent effects as 4T1(tge2) we haveg|~SF= —1. This leads to Would fort_)id s_uch asymmetry. This _is gnother e_xample of

asymmetric hfi matrices for defects in silicon which shows
that asymmetric hfi matrices are not only found for defects
Juith a lower symmetry#®° but do occur for highly symmet-
ric defects as weft® We note that the evaluation of the
ENDOR experiment€ was based on the invalid assumption
that the hfi matrix is symmetrical for the ligand Si(1,1l s
that it might be difficult to compare measured and calculated
data.

t

g"F(I's) =2 andgSA(I's) = ¥=4. However, the value deter-
mined by EPR isgf"R=3.524, which corresponds to
gr=—0.286. This large deviation between calculated an
measuredy factors has been attributed to two effects in the
literature: to covalent hybridization of the ir@hstates with
silicon ligand orbital&® and with ironp states or alternatively
to a dynamical Jahn-Teller effect as a Ham efféct.
Covalent hybridization is taken into account by our defec
orbitals. For the strong field terfiT,(t3e?) we calculate
gr = — B2 using the same approximations as for the hfi matrix IV. CONCLUSIONS

elements. According to our calculatiopsd mixing of iron We have shown that the trends of the exchange and crys-
states is negligible. If we compare our valuegpfs —0.83

. ; EPR tal field splittings of Si:F@ and Si:F¢" can be understood if
with the value inferred from the EPR daga’ = —0.286 we  one considers the exchange splitting first. We have also
see that our localization of the, magnetization density shown that for the case of Si:F@ne can obtain spin densi-
would be about a factor 3 too large to account for the reducties fromab initio LSDA-DFT calculations that result in hf
tion. Since we have learned from the calculated hfi data fonteractions with the Ee nucleus and also with several Si
Si:Fe? that our self-consistent magnetization densities are inigand nuclei in close agreement with experimental hfi data.
excellent agreement with the ones “seen” in EPR we expecFor the contact interaction with the ($j1,7) and S{2,0,0
the same for Si:F&. We additionally will show in a forth- shells we find a significant discrepancy between our calcu-
coming paper on iron-acceptor pair defects in silicon that ilated results and the experimental data. As this discrepancy
is possible to calculate localization factors from the magnecorresponds to a slight error in tisdike spin admixture at
tization density which are in good agreement with the meathese ligands only, we conclude that our spin densities are
sured datd® Therefore we conclude that the rather smallessentially correct. However, the calculated isotropic hfi with
orbital g value g measured in EPR is subject to covalentthe more distant Si ligands agrees very closely with the ex-
hybridizationandto a Ham effect which introduces an addi- perimental data. We therefore argue that the experimental
tional reduction factor for the matrix elements of the orbitalresults could be influenced by a breathinglike lattice distor-
angular momentum of the iron atom. If we apply this reduc-tion which is not included in our calculation. The agreement
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TABLE VII. Iron d functions transforming according to the experimental data shows that a consistent set of data is ob-

irreducible representationts ande of the point groupT. tained.
] |t2)) e j &) re
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APPENDIX: HYPERFINE MATRIX ELEMENTS
between experimental and calculated data for the anisotropic FOR Si:Fe;"
hfi (and also for the isotropic part of the hfi with the more
distant ligand shellsallows one to assign ligand shells to
ENDOR results in a unique way.

The hfi data for the Si:Ré deep defect cannot be ob- 3 ) .
tained in the same way from the spin densities because of o o o
incomplete quenching gf the orbital Fr)nomentum in this case. [t20) = Boltoa)ret k; 'Bk|fk>+mz:1 7m|gm>+21 &lhe)
We have, therefore, constructed many-particle wave func-

We use the following linear combinations of one-particle
orbitals as defect orbitals):

tions which reflect the localization properties of the magne- +empty spheres, a=Xx,y,z, (Ala)
tization densities obtained from the LSDA-DFT calculations.
We show that with these functions we still do not obtain the 4 7

hfi with the central Fe nucleus in any reasonable agreement | \= g, e et BalfO+ X ymlg)+ >, 5]h%)
with the experimental data. We must infer in addition a dy- m=3 r=5
namical Jahn-Teller effect as a Ham effect in order to obtain
consistent hfi data in agreement with experimental data. A
very strong argument for the presence of this effect comes . _ .
from the gyromagnetic ratio as measured experimentally b{fO convenience we mtroducae the new abbreviatigins
EPR: the observed value gf = —0.286 is in no way com- ¥m. &; for the coefficientsg;. The functions|t,,)re,
patible with thep-d mixing ratio for iron as observed in our |e,)ee, |f£), |95y, and|hf), which are linear combinations
calculations for which we would obtaigr = —0.83. From  of site-centered one-particle orbitals |L)g

the close agreement of our hfi results with experimental data eru(FrR)O(rr/sR), are given in Tables VII-X¥! the sites

in the case of Si:Féwe conclude that the spin-density dis- around which the atomic spheres are centered are given in
tribution obtained by the LSDA-ASA calculation is essen-Tahle XI.

tially correct. We have found no reason to assume that the Using Egs.(15) and(16) we calculate the hfi matrix ele-
same agreement should be absent in the case of ;Si:Fe ments( — N} +), (+|NL|+) of Eq.(19). Since the operator
we therefore conclude that theed mixing ratio for Si:Fe" Nl is a sum of one-particle operators,

cannot be discounted as unrealistic there is little alternative

+empty spheres, a=6,e€. (Alb)

but a Ham effect to explain the value gf observed experi- 3
mentally. The comparison of the hfi data calculated including NI = 2 ni (i) (A2)
the reduction factor of the Ham effe€Table VI) with the = T

TABLE VIII. Unnormalized, symmetry-adapted linear combinations of ligand funct{dijs see Eq.
(A1)] for trigonal shells of four silicon atoms. We use the notatiojk, whereL denotes a cubic harmonic
andR numbers the four site positions building up the sliedle Table X). Where two signst and + are
given the first one applies for Si(1,1,1) and Si(2,2,2), the second one applies for Si(2,2,2

=~

)

IS)1—IS)2+[s)s—S)4
%) 1+ )2+ [X) 3+ [X) g
ly£2)1+|-y=2)—y=2)s+|yT2),
|S)1t18)2—[8)s—S)4
V)1t [¥)2+[V)s+[Y)a
[X£2Z);— |XEZ)o+ | —XEZ) 3+ |XF 2)y
*[8)1F[8)2F[8)3*[S)a
|2)1+12)2+|2)3+[2)a
XY EX—y)o T [—X+Y)aF[X+Y),
|X+yF 221+ | —X+y*+22),+|x—y+227)5
—|x+y=*22),
| =X+ YD1+ [X+Y)o— [X+Y)s+|x—Y)4

(47

X
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TABLE IX. Unnormalized, symmetry-adapted linear combinations of ligand funcfigfis see Eq(A1)]
for a rhombic shell of silicon atoms. We use the notatibjiz, whereL denotes a cubic harmonic afti
labels the six site positions building up the shéBee Table XI.

a m |gm
X 1 SV 17— [8)22
2 %) 17+ %) 22
y 1 SV 18— [S)21
2 V)18t [Y)21
z 1 )10~ [S)20
2 12)16F12) 20
0 3 |S)17+ [S) 186~ 2[S) 16— 2|S) 20 [S) 21+ [S) 22
4 %) 17+ Y) 186~ 2|2) 10F 2] 2) 20— [Y) 21~ [X) 22
€ 3 —|8) 177 [8) 18t [S) 21— [S) 22
4 =17t [Y)1s— (YD 22t [%)22
the three-particle matrix elements reduce to sums of one- 3(—Rj)|(—Rj)k—R.25|k
particle matrix elements. Carrying out the spin integrationgL|af|L")~ 7, =5 L2 B2, (A4)
we are left with spatial integrals of the form i
rR(LINIL Yre. (A3)  whereBgis B, or By and
Since the orbitaldL)g are restricted to the atomic sphere
around the sitdR, we have one-, two-, and three-center inte- . 3X, X, — R25), o _
grals. The one-center integralR€R;=R’) are calculated a{k=yj—, Xi=(r—Rj)-¢ ,Rzerj|.

5
exactly. The only two-center integralsRER'#R;, R

R=R;#R’, R"=R;#R) that are taken into account are the
integrals of the dipole-dipole interaction wiR=R’=058  All three-center integralsR+ R;#R’) vanish.
These are approximated by For convenience we introduce the following parameters:

TABLE X. Unnormalized, symmetry-adapted linear combinations of ligand funcfibfis see Eq(A1)]
for a monoclinic shell of silicon atoms. We use the notatibjr, whereL denotes a cubic harmonic and
R labels the 12 site positions building up the shéllee Table X).

=

he)

(4

X IS)s+[8)7+[S)e—[8) 11— [S) 13+ [S) 14— [S) 15— [S)16
IX)s+ [X) 7+ XD [X) 12+ [X) 15+ [X) 14t [X) 15+ [X) 16
IV)st+12)7=12)e+|2) 11~ 12) 13~ [Y) 14— [¥) 15+ V)16
125+ 1Y) 7= [Y)o—[Y) 11t [Y) 13— 1214+ [2) 15~ |2) 16
IS)5+[S)e+[8)s—1S) 10— [S) 12— )14 |S) 15— [S)16
V)5t ¥)et ¥)st¥)1ot V) 1ot V)14t ¥) 15t (Y )16
1X)s+|2)6—12)s—12) 10t |2) 12— [X) 14— [¥) 15T [X) 16
12)5+[X)6— X)g+ [X) 10~ [¥) 127 [2)14—12) 15— |2)16
IS)et[S)7—IS)s—[S)o+[S) 10— S) 11— [S) 12T [S)13
126+ |2)7+[2)s+[2)9F[2) 10t [2) 11+ |2) 127 [2)13
V)6t X)7=[¥)e= [X)o— V)10t XD 11t |Y) 12— [X) 13
1X)et[Y) 7+ X e+ [Y)o— X 10~ [Y) 12— [X¥) 12— [¥)13
2[s)s—[s)e—[8)7—[8)s—[S)o—[S) 10~ [S) 11~ [S)12
—18) 131 2[8) 14t 2|8) 15+ 2|S) 16
6 2[x+y)s—ly+2z)e—[x+2)7+|—y+2)s
H=xX+2)9t|y=2) 10t X+ 2) 11t |y +2)12
+[X=2) 15+ 2|x—y) 14+ 2] =X+ Y) 15— 2|X+Y) 16
7 2|2)s—[x)6=[y)7H )+ Yo+ X)) 10— [¥) 11— [X) 12
+1Y)13—212)14= 2|2) 15+ 2|2) 16
€ 5 IS)e—[S)7+[S)s—[S)o+[S) 10— S) 11t S) 12— [S)13
6 [y +2)6+|—X—2)7+|y—2)g+|—X+2)q
=y + D10t X+ 21— [y +2) 10+ [X—2) 13
7 X)e=[Y)7=[¥)e+[¥)e— X) 10— [¥) 11+ [X)12F[¥) 13
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TABLE XI. Relation between the site indices and the site positions of the atomic spheres that are
occupied with atoms. The site indices are used in Tables VIII-X. Note that three distinct trigonal shells are
included, each of which correspond to the site indices 1-4.

Site

indices Sites

0 (0,0,0)

1-4 (1.11), (11,9, (1,11, (111)

1-4 (2.2.2), (22,2, (2,22), (222)

1-4 (22,2, (22.2), (2.22), (22.2)

5-16 (11,3, (31,1), (131), (31,3, (13,D, (3.11),
(131, (311, (131), (1,13), (11,3), (113

17-22 (2,0,0), (0,2,0), (0,0,2), (0,012(0,20), (20,0)

_3> f_§|‘PRI(r)|22dr I=p.d,

i Mo
PI]:4_gNMNMB<r 3>|, l=p.,d,

Mo 1
Ad - T ONMNMB TSI R3 ,

A!:,a: % noghmnmsl V1L(0)[2,

a=t2,e

— 2 2pFe
4=~ 53 UsBoPy

(A5a)
ace= ¢ Ach
(A5b) -
2. Trigonal shells
(A50) aj/=all=*al)=+all=+al)=+all,
n=CPc,l,d,
(A5d)

r=ari=ay)
apl=ajl=a}),

n=CPgc,l,d,

wheresR is the radius of the atomic sphere centered around

the S|teR and|¥! (0)|2 has to be taken from Table XII. aSPi=8 AL,
Using the parameter®5) our results will be summarized

with the notation

CPJ
A,k— +a +a +alk,

where the superscripts CP, |, andd refer to the contribu-

tion from the core polarization, from the Fermi contact inter-
action, from the orbital angular momentum, and from the
dipole-dipole interaction listed ifl2), respectively. We ob-

ag =0,
5 Os
=152
. lg
A= 152 At (A7)

tain the following results.
1. hfi with the iron nucleus

=0Vi+#k,
Aff=a,+ay+acp,

i=X,y,z,

__ 4 p2pFe
=73 BoPy

|x>]<=_ 3(32 3B ) {3.
Lji_2 12, L j
axy_§ - ZB3+ ﬁIBZIB3 P

g .
(A6) ayl= - 7ol B3+ & B3 BEIP,

TABLE XII. Contact dens,ities*,\IfJ;X(O)|2 for the silicon ligand shells for different irreducible representa-

tions used in Eq(A5d).

Shell
a Trigonal Rhombic Monoclinic
t2 ﬁa‘PRjO(O”Z 71|<PR 0(0)? 51|‘PR 0(0)?
e - 73|<PR 0(0)? 52|<PR 0(0)?
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TABLE XIlI. Data for the products of the prefacto By, viv«, and &8, (times 10°%) defined in the
linear combinationg21) for Si:Fe" . The data are determined from our self-consistently calculated magne-
tization densities Eq.17). The products listed are used in E¢a6)—(A9). For brevity we list the combina-
tions of indicesi,j only.

ik
Site 2,2 2,3 2,4 33 3,4 4.4 6,6 6,7 7.7
Si(1,1,1) 218  —285 —-141 681
Si(2,2,2) 236 270 207 6.14
Si(2,2,2 -9.83 4.18 ~3.53 5.59
Si(2,0,0) 23.6 103
Si(1,1,3 -233 35.5 202 -548 312 -175 171 -154 129
Fe(0,0,0) B5=8288 B5o=T7156
d,j _ 2
_% Ei 1111 2 1 2 PJ ay)}__ %5(72 -’y4)gspj+ QgS(BO+2:800)
=3 5\/—,32[33 852 B3~ 5B4| Py
8 3(—Ry:i—
) X% i
+ §(B3+2B%)9A). RE Y
3. Rhombic shells 4. Monoclinic shells
agi=3%AL, k=xy,z,
’”—OVHEk n=CPgc,l.d,
a =0Vvi#Kk,
a’”—a’”, n=CPg,l.d, . , :
“ ai=50s(s ALt 2 ALY, k=xy,z,
CPj_ ACPj_5 Aj
B =By =5 Ace as)=5 g3 Ao, Vik,
aSl=(&Al, + 2AL ag=— % (85— 856,)P
15 Act,t 27 Ace)Us. XX 6§ (027 0304)Fp,
ayy=a;y=t (6263~ 835, P},,
CJ_(g ct2+27Ace)gS! T )
ay=ayy=5 (8204 5354) P},
lj_ v . .
a4=0, k=x].z ayl=1(8,65- 5P,
. l,j i
ag =5 (%v3+3 yﬁ)gsP'p (A8) ayy= § (85— 85)P),
R )2 ayl=—§ (85~ 5,65)P},
J X N
3o+2:800) Ad’

ayl=— 1 (85— 5P,

TABLE XIV. Hyperfine parametefin MHz) determined from the self-consistently calculated magneti-
zation density for Si:F& [see Eqs(12b) and (A5)].

j Alp AL, AL P, Al

Si(1,1,1) —0.417 —6.752 —275.55 —0.604
Si(2,2,2) —1.660 7.197 —272.37 —0.604
Si(2,25 —0.007 0.629 —272.28 —0.604
Si(2,0,0) 4.433 0.121 1.606 —273.01 —0.393
Si(l,lg —1.912 4.442 —25.43 —272.39 —0.086

Fe(0,0,0) —12.41 P4=43.52
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i lg i i R)y(—Ry);
A== 35 15(1083+ 53+ 55— ¥ 55+ B P, +10V203,)P) § 085+ 2659 T
Rz
9gs(ﬁz+2,3§o)#AJ , (A9) 1g
adi=— =2(135,5,+9535,+102555,+2652) P!
3610
lg
d,j_ 2 2\ pi
Ay = = (138,65~ & a1 12556,+1055) Py, 3(—R)(—Ry), .
3610 + 30485+ 2850~ Al
3(—R)X(—Ryy /| ‘
+ 3 9s(B5+ 2800z Al
i
aj) = 3% 10(115354 8284+ 148,83+ 10y2865,) P},
ad) = Z2(148,5,+125,8,+10y2545,— % 52)P!
3610 P 5 2 2 3(_Rj)y(_Rj)z i
) ( ) + §gS(BO+ZBOO) RZ Ad’
X
AP AR S LN |
i
gj_ 1 9s 2 2\ i ad'i:—i%(105§+ 1082— 1182+ 3536,+ R 52
Ak =35 10(135253+25 +9838,+1055) Py, 2z 36 10
3(—R)—X(—Rj)y - — 40 52)p I)Z i
B g B 28 ( J)R2( ])yAé, s5PL+ 5 gs(,30+2/300) R Ad.
i
dj_ 2 2 2 10 2
a (105 1165+ 1085+ 36838,— 5 &
o 36 10 i ® In order to calculate data for the hfi with the iron nucleus
3(—R;)2—R2 and with several silicon nuclei we use the calculated magne-
+ 2 5§)p{)+ ggS(IBSJF 2330)%%, tization density as indicated in E¢L7) to calculate the pref-
R actors and the hfi parameters defined in Ep) and Eq.
(12b). Tables XlII and XIV show the corresponding data for
ad 1 gs( 5250t 11528+ 14558 six positions of nuclear spins. Using these data together with
y2 73610 273 374 2%4 Eqgs.(A6)—(A9) we get the results summarized in Table V.
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