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The energy relaxation of coupled free-carrier and exciton populations in semiconductors after low-density
ultrafast optical excitation is studied through a kinetic approach. The set of semiclassical Boltzmann equations,
usually written for electron and hole populations only, is complemented by an additional equation for the
exciton distribution. The equations are coupled by reaction terms describing phonon-mediated exciton binding
and dissociation. All the other relevant scattering mechanisms, such as carrier-carrier, carrier-phonon, and
exciton-phonon interactions, are also included. The resulting system of rate equations in reciprocal space is
solved by an extended ensemble Monte Carlo method. As a first application, we show results for the dynamics
of bulk GaAs in the range from 1 to;200 ps after photoexcitation. The build-up of an exciton population and
its sensitivity to the excitation conditions are discussed in detail. As a consequence of the pronounced energy
dependence of the LO-phonon-assisted transition probabilities between free-pair states and excitons, it is found
that the efficiency of the exciton-formation process and the temporal evolution of the resulting population are
sensitive to the excitation energy. We discuss the effects on luminescence experiments.
@S0163-1829~96!06831-2#

I. INTRODUCTION

Ultrafast optical excitation of semiconductors at energies
well above the fundamental band gap is followed by a rapid
relaxation of the initial nonequilibrium state of the system.
The recent progress in the generation of extremely short laser
pulses1 and the detection of optical signals on the same time
scale has opened the possibility to probe directly these relax-
ation processes which typically take place in a range of fem-
toseconds to picoseconds.2,3

A variety of interaction mechanisms contributes to the
temporal evolution of the generated hot-electron and -hole
distributions. Their relative importance is determined by the
actual experimental conditions, in particular by the excess
energy and the intensity of the exciting laser and by the
lattice temperature. Carrier-carrier scattering leads to a
broadening of initially sharp structures in the distribution
functions and tends to establish a quasiequilibrium condition
among the particles within the different bands. Due to
screening and phase-space filling, this effect is strongly de-
pendent on the carrier density. Interaction with different pho-
non modes acts as coupling to a heat bath which can be
driven out of equilibrium itself in case of large excess ener-
gies and high carrier densities. The resulting hot-phonon ef-
fects will slow down the carrier cooling.

Many of these relaxation processes have been success-
fully described by a semiclassical theory in terms of Boltz-
mann equations which have been solved numerically using
parametrizations of the distribution functions,4–8 direct-
integration methods,9,10 eigenfunction expansions,11 and
Monte Carlo simulations.11–17The kinetic variables in these
theoretical approaches are the single-particle distribution

functions; the interaction between carriers and various qua-
siparticles is treated in terms of scattering processes only.
While some interaction is implicitly included as a mean field
in the definition of the band structure and some may be in-
cluded effectively in the dielectric function which enters the
Coulomb matrix element, any correlation beyond this is
omitted. However, for an electron-hole plasma consisting of
particle species with opposite charges, an important conse-
quence of their mutual attraction is the existence of two-
particle bound states, which are stable at least in a certain
range of density and temperature. The purpose of the present
paper is to extend the system of Boltzmann equations for
electrons and holes by including similar equations for exci-
ton populations, and to solve the coupled set through an en-
semble Monte Carlo approach.

Excitonic effects are of major importance for the optical
properties of pure direct semiconductors at low
temperatures.18 Typical absorption spectra exhibit series of
discrete lines below the gap energy which correspond to
bound states of free excitons. The same lines are found in
luminescence even when the excitation is at energies much
higher than the band gap. If one assumes that under these
conditionsfree electron-hole pairs are generated in the first
place —which seems to be well justified for GaAs and simi-
lar III-V semiconductors19—it is clear that the excitonic
boundstates have to be populated afterwards simultaneously
with the carrier relaxation.

The intrinsic process of exciton formation has been the
subject of several experimental studies20–25 during recent
years aiming to identify the mechanisms which are active in
the buildup of an exciton population and, in particular, to
determine characteristic times. Damenet al.21 have mea-
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sured the time-resolved luminescence of high-quality
GaAs/Al12xGaxAs quantum wells using an up-conversion
technique. From an analysis of the temporal variation of the
exciton line shape they concluded that bound states are
formed with a time constantt<20 ps in large-wave-vector
states. The time required for the subsequent relaxation to
optically active states within the homogeneous linewidth26

D around K50 by scattering with acoustic phonons is
strongly temperature dependent and decreases from 400 ps at
T55 K to 20 ps at 60 K. The exciton distribution was found
to benonthermalduring the entire time-interval of the mea-
surements. These results were nearly independent of the laser
excess energy in the range between 10 and 100 meV above
the gap. Whereas it seems to be clear now that the binding of
electron-hole pairs into excitons is a very fast process,22–25

there is less agreement about the dominant mechanism,
which is attributed mainly to interaction with acoustic21 or
with optical phonons.24 Robartet al.25 assume a thermody-
namic equilibrium between excitons and free carriers at each
time delay after the excitation and deduce a formation time
<10 ps.

The concept behind the common interpretation of the ex-
periments is that of rate equations for the densities of elec-
trons, holes, and excitons which contain free parameters
characterizing the different interactions~carrier generation,
binding and dissociation of excitons, radiative free-carrier
and excitonic recombination, etc.!. These time constants are
obtained by fits to the experimental data. Their definition,
however, is not unique and different fitting procedures are
used in the literature. Since this approach treats only particle
densities, it implicitly assumes that the distribution functions
are smooth, i.e., that the equilibration of the distributions is
faster than any process contributing to the measured signal.
The use of simple time constants implies further that the
relevant microscopic transition probabilities have no strong
dependence on the momenta of the particles involved. Both
assumptions may be questioned and a microscopic kinetic
theory of the coupled free-carrier and exciton relaxation is
desired.

We address this problem by our system of coupled Bolt-
zmann equations for electrons, holes, and excitons. We will
confine ourselves to the low-density limit where screening of
the exciton and other many-body complications like band-
gap renormalization can be neglected. For an equilibrium
system this would mean that the pair density has to be well
below the Mott density which is, e.g., several 1015 cm23 for
GaAs at low temperatures.27 The dominant mechanisms for
the formation and dissociation of exciton bound states in this
low-density regime are due to the interaction of the constitu-
ent electron-hole pairs with phonons. In the language of rate
equations this corresponds to reaction terms which are sim-
ply proportional to the product of the electron and hole den-
sities: }Cnp. The ‘‘bimolecular formation coefficient’’C
does depend on temperature but is density independent,
which excludes Auger-like transitions. We will derive the
probabilities for such transitions from the Hamiltonian of the
exciton-phonon interaction using Fermi’s golden rule. They
are used to set up collision integrals which couple the free-
carrier and exciton distributions. The resulting system of rate
equations inkW space is then solved by means of an ensemble
Monte Carlo method. In our first implementation of the

method, we consider only the 1s exciton distribution.
We will treat as a first step bulk semiconductors; how-

ever, the general aspects of the kinetic theory outlined in this
paper apply also to low-dimensional systems, on which most
of the experiments have been performed. An application of
our approach to GaAs quantum wells will be presented in a
forthcoming publication.

The structure of the paper is the following. In Sec. II we
outline our theoretical scheme: we introduce the kinetic
equations for free carriers and excitons and the transition
probabilities which enter as the main physical ingredients
and couple the kinetic equations. The structure and energy
dependence of the probabilities for exciton binding and dis-
sociation are discussed in detail. After describing our nu-
merical approach~Sec. III!, in Sec. IV we show applications
to bulk GaAs and present results for the buildup of an exci-
ton population and its sensitivity to the excitation conditions
~energy and density! and to temperature. The possibility of a
selective tuning of exciton formation with laser energy is
discussed in detail, together with its implications for lumi-
nescence experiments. Finally, Sec. V presents our view of
the possible developments of our approach, including its ap-
plication to low-dimensional semiconductors.

II. KINETIC THEORY

A. Kinetic equations for free carriers and excitons

In this section we will describe how the relaxation theory
for optically generated electrons and holes can be extended
to include free-moving aggregates of these particles which
may form due to Coulomb attraction. The problem resembles
in a certain sense that of a two-component plasma.28 There
are, however, important differences: The analogy between
holes and positively charged ions is a rather formal one, and,
moreover, it is of course important that the plasma is situated
in a semiconductor and interacts with lattice vibrations. The
description of two-particle bound states on a quantum me-
chanical level would require the treatment of suitable two-
particle functions which contain just that part of the correla-
tion which causes the binding. This could be done, e.g., in a
density-matrix theory29 by choice of an appropriate set of
matrices and application of a decoupling scheme beyond the
Hartree-Fock approximation. In fact, an extension of the
semiconductor Bloch equations29,30 ~SBE! has been given
recently31 to describe the biexciton contribution to the non-
linear optical response of semiconductors. However, in a
strict sense this theory treats properly coherent excitations
only and damping is introduced phenomenologically. Thus,
it is restricted to times during and just after the excitation.
Although dephasing and scattering by carrier-carrier29,30and
by carrier-phonon16 interaction can be introduced into such a
density-matrix theory on the single-particle level, this seems
to be presently out of reach if two-particle correlations, and
in particular bound states, have to be taken into account on a
time scale up to hundreds of picoseconds, as in the relaxation
regime.

We therefore take another point of view. Apart from de-
tails of the generation process itself, where the coherence of
the excitation is essential and can be probed
experimentally,32 the relaxation is satisfactorily described by
a semiclassical theory which can be obtained from the SBE
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by adiabatic elimination of the coherent interband polariza-
tion and Markov approximation. Assuming that the initial
coherence and correlation of the generated electron-hole
pairs is rapidly damped out~and, consequently, that the
aforementioned approximations are reasonable!, we will take
the resulting Boltzmann equations for the particle distribu-
tions as the outset and complement them with similar equa-
tions for excitons as additional ‘‘particle species.’’

Consider a simple bulk semiconductor model with two
nondegenerate isotropic parabolic bands, the conduction
band with dispersionekW

e
5EG1\2k2/2me and the valence

band withekW
h
5\2k2/2mh , respectively.me (mh) is the effec-

tive mass of electrons~holes!, andEG is the gap energy. For
practical calculations we will use parameters adapted to bulk
GaAs, which are listed in Table I.

The single-particle states in this model are obviously
plane waves. It is assumed that the system is homogeneous
and that no external fields—apart from the light field of the
exciting laser—are present. The system of coupled Boltz-
mann equations for the distribution functions of both free-
particle species may then be formally written as

d

dt
f e~kW !u f p5GkW~ t !1(

i

d

dt
f e~kW !u i , ~2.1!

d

dt
f h~kW !u f p5G2kW~ t !1(

i

d

dt
f h~kW !u i . ~2.2!

The first term on the right-hand side of both equations is a
time-dependent optical generation rate,GkW(t). The appear-
ance of the same functionGkW(t) in both kinetic equations
accounts for the fact that electrons and holes are generated
always pairwise and with opposite momenta due to the van-
ishing wave vectors of the incident photons. We will specify
the explicit form ofGkW(t) later.

The second contributions to the temporal change of the
distribution functions are collision integrals which describe
particle scattering due to the various interaction mechanisms
denoted by the superscripti . Their general structure
(s5e,h),

d

dt
f s~kW !u i5(

kW8
$Ws

i ~kW ,kW8! f s~kW8!@12 f s~kW !#

2Ws
i ~kW8,kW ! f s~kW !@12 f s~kW8!#%, ~2.3!

is easily understood as the net change of occupation of the
statekW due to the balance of the gain by in-scattering from all
available states, kW8, and the reverse process of
out-scattering.33 The Pauli blocking factors in~2.3! are writ-
ten for completeness; they have no practical relevance in the
low-density regime that we will consider. The probabilities
of the microscopic transitions are given by theWs

i (kW ,kW8). In
second-order perturbation theory and Markovian approxima-
tion they are obtained from Fermi’s golden rule and ensure
conservation of energy and momentum. The explicit expres-
sions for electron-phonon scattering read:

Ws
i ~kW1qW ,kW !5

2p

\ (
6

uCs,qW
i u2~nqW1 1

2 6 1
2 !

3d~ekW1qW
s

2ekW
s
6\vqW !, ~2.4!

where the upper sign refers to emission and the lower one to
absorption.nqW is the occupation number of a phonon mode
with wave vectorqW and energy\vqW , which is the Bose
function if deviations of the phonon system from equilibrium
can be neglected, as in the present case.

The coupling constantsCs,qW
i specify the interaction of par-

ticles and lattice vibrations. We will consider the Fro¨hlich
interaction with LO phonons of frequencyv0 where

uCe,qW u25uCh,qW u25
2pe2

V
\v0S 1ko

2
1

ks
D 1

q2
~2.5!

(ko andks are the high- and low-frequency dielectric con-
stants! and the deformation-potential coupling to acoustic
phonons in isotropic approximation with

uCs,qW u25
\

2rvV
Ds
2q~s5e,h! ~2.6!

(Ds is the deformation potential,r the crystal density, and
v the velocity of sound!. V is a normalization volume.

The transition probabilities for carrier-carrier scattering,
which depend on the distribution functions even for the non-
degenerate case, are written as

Ws~kW1qW ,kW !5
2p

\ (
s85e,h

(
kW8

uVqW u2f s8~kW8!@12 f s8~k
W82qW !#

3d~ekW1qW
s

1ekW82qW
s8 2ekW8

s82ekW
s
! ~2.7!

TABLE I. Material parameters of the simplified GaAs model with two parabolic bands: the conduction
and the heavy hole band.

Band gapEg 1.519 eV
Electron effective massme 0.063m0

Hole effective massmh 0.450m0

LO-phonon energy\v0 36.4 meV
Relative static dielectric constantks 12.90
Relative optical dielectric constantko 10.92
Crystal densityr 5.37 g/cm3

Longitudinal velocity of sounds 5.333105 cm/s
Acoustic deformation potential~conduction band! De 7 eV
Acoustic deformation potential~valence band! Dh 23.5 eV
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with Vq being the matrix element of the screened Coulomb
interaction.

Kinetic equations for excitons34 may be set up along the
same lines, starting from an appropriate set of basis func-
tions: the eigensolutions of the stationary two-particle Schro¨-
dinger equation of an electron-hole pair interacting via stati-
cally screened Coulomb attraction, which in effective-mass
approximation reads:

F2
\2

2me
De2

\2

2mh
Dh2

e2

ks

1

urWe2rWhu
GC~rWe ,rWh!5EC~rWe ,rWh!.

~2.8!

Apart from the simplifications in the band-structure model,
this equation describes a highly idealized system of just two
interacting particles and has to be seen as a low-density limit
of a much more complicated many-body problem. We will
confine ourselves to this regime where corrections due to
phase-space filling, density-dependent screening, and band-
gap renormalization can be ruled out.

Transforming to center-of-mass~COM! and relative coor-
dinates

RW 5
merWe1mhrWh
~me1mh!

, rW5rWe2rWh ,

the wave function is readily factorized as

C~RW ,rW !5
1

AV
eiK

W RW Fn~rW ! ~2.9!

(V is the normalization volume!. The plane-wave factor de-
scribes the free motion of the COM of the aggregate through
the crystal. Solutions of the remaining hydrogenlike problem
for the relative wave functionFn(rW) are well known35 for
both bound and continuum states.

In the former case,n stands for a set of discrete quantum
numbers. The eigenenergies of bound states with principal
quantum numbersn51,2, . . . are given by the familiar ex-
pression

eKW
n

5EG2
«0
n2

1
\2K2

2M
, ~2.10!

with «05e4m/2ks
2\2 being the effective Rydberg

(m215me
211mh

21 is the reduced mass!. Our model yields
the numerical value of«054.2 meV; the corresponding Bohr
radius isa05\2ks /e

2m5136 Å . Equation~2.10! is the dis-
persion of free particles with wave vectorKW in parabolic
bands of massM5me1mh ; bands with identical principal
quantum numbers are degenerate. One can label the bound
exciton states by ‘‘band indices’’n and wave vectorsKW

~which reads in a bracket notationun,KW &) and treat them as
composite particles with internal degrees of freedom. For the
distribution functions of these additional particle species,
f n(KW ), we may set up semiclassical kinetic equations analo-
gous to~2.3!:

d

dt
f n~KW !5 (

n8KW 8
@Wnn8

i
~KW ,KW 8! f n8~K

W 8!

2Wn8n
i

~KW 8,KW ! f n~KW !#. ~2.11!

We have not included a generation rate for excitons since we
are interested in off-resonant excitation which producese-h
pairs with small momenta in the continuum. Generation of
‘‘hot excitons’’36 is possible only via assisted interband tran-
sitions where a partner particle~e.g., a phonon! provides the
necessary momentum to reach bound states with largeKW .
Such processes could be taken into account easily but for
simplicity we will assume that they are negligible. The tran-
sition probabilities in~2.11! will be considered explicitly in
the next subsection.

Eigenstates belonging to positive energy eigenvalues for
the relative motion form a continuum and may be labeled by
KW and a relative momentumpW . Their dispersion

epW~KW !5EG1
\2K2

2M
1

\2p2

2m
5EG1

\2ke
2

2me
1

\2kh
2

2mh
~2.12!

is identical to that of noninteracting electron-hole pairs as
can be seen by insertion of the definitions

KW 5kWe1kWh , pW 5bkWe2akWh ,

where we have introduced the mass factorsa5me /M and
b5mh /M . The relative wave functionsFpW (rW), and conse-
quently the oscillator strengths for optical transitions, differ
from the free-particle result~‘‘Sommerfeld enhancement’’ of
continuum absorption37!. However, to keep the connection to
the kinetic description of the free carriers in terms of the
Boltzmann equations, we will approximate the continuum
states as products of plane waves and neglect their Coulomb
correlation. From now on we will call bound exciton states
simply ‘‘excitons’’ and continuum states ‘‘free carriers.’’

B. Exciton-phonon interaction and transitions
between bound states

The interaction of Wannier excitons with phonons has
been treated in the literature for the case of bulk
semiconductors38 as well as for quantum well structures.34

The corresponding Hamiltonian is simply obtained by calcu-
lating matrix elements of the sum of the electron-phonon and
hole-phonon interaction Hamiltonians between suitable exci-
ton states. For scattering between the bound statesun,KW &
introduced above the result reads:

Hex2ph
i 5(

KW ,qW
(
n,n8

Dnn8
i

~qW !un8,KW 1qW &^n,KW u~bi ,2qW
†

1bi ,qW !.

~2.13!

bi ,qW
† and bi ,qW are the creation and annihilation operators of

phonon modes with wave vectorqW ; the index i labels, as
before, a certain branch of the phonon dispersion and the
interaction mechanism. TheqW -dependent effective coupling
constantDnn8

i (qW ) is the weighted sum of the individual cou-
pling constants of electrons and holes:
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Dnn8
i

~qW !5Ce,q
i Snn8~bqW !2Ch,q

i Snn8~2aqW ! ~2.14!

~the minus sign stems from the transformation to the
electron-hole picture!. The weights in~2.14! are the exciton
form factors:

Snn8~q
W !5E d3rFn8

* ~rW !eiq
W rWFn~rW !, ~2.15!

which are Fourier transforms of the products of relative wave
functions of the states involved in the transition. Note that
for different free-particle masses,aÞb, electrons and holes
contribute differently to the probability~and charge! density
distribution of the exciton and, consequently, to the response
to a certain phonon mode.

If both the initial and final state are in the lowest exciton
band, one obtains explicitly from the ground state wave
function

F0~rW !5
1

Apa0
3
e2r /a0 ~2.16!

the well-known result

S00~qW !5
1

@11~qa0/2!2#2
. ~2.17!

Similar expressions are easily derived for other combinations
of bandsn andn8.

The transition probabilities in lowest-order perturbation
theory with respect toHex-ph,

Wnn8
i

~KW 1qW ,KW !5
2p

\ (
6

uDnn8
i

~qW !u2S nqW1
1

2
6
1

2D
3d~eKW 1qW

n8 2eKW
n

6\vqW !, ~2.18!

are, of course, similar to the free-carrier ones~2.4!. Integra-
tion of Wnn8

i (KW 1qW ,KW ) over the final states yields the scat-
tering rate

Gnn8
i

~KW !5(
qW
Wnn8

i
~KW 1qW ,KW !, ~2.19!

which is proportional to the inverse lifetime of stateun,KW &
due to processi and depends, for a homogeneous system,
only on uKW u. In Fig. 1 we have plotted the scattering rates for
several transitions involving states in the 1s exciton band at
T54.2 K. Figure 1~a! shows the rates for scattering within
the lowest exciton band and to the next higher 2s and 2p
bands under emission of LO phonons~absorption of optical
phonons can be neglected at these low temperatures!. The
intraband scattering rate reaches a maximum value of'5
ps21 which is close to the corresponding value for electrons:
the effect of the larger exciton massM , which would in-
crease the rate, is nearly compensated by the reduction due to
the form factor. The scattering to higher exciton bands is less
effective by at least an order of magnitude~this holds also
for all other transitions to bound states not shown here!.

Luminescence is dominantly emitted from the lowest ex-
citon band since only states withs symmetry, i.e., zero an-
gular momentum, are involved in dipole-allowed transitions

and their oscillator strengths scale with the principal quan-
tum number asn23 in a bulk system.18 For this reason and
because the transfer of excitons between the ground state and
excited states by phonon scattering is slow compared to the
intraband processes, we will confine ourselves to the 1s ex-
citon distribution, which is labeledf X(KW ).

Deformation-potential scattering@Fig. 1~b!# is even
slower than the interaction with LO phonons. Nevertheless,
it turns out to be important since it is the only relaxation
mechanism for energies below the optical-phonon energy
\v0536.4 meV. It has to be expected that these processes
which redistribute excitons from large-wave-vector states to
the optically active states in the vicinity ofK50 take place
on a time scale of hundreds of picoseconds.

C. Reaction terms and coupling of the kinetic equations

The most important physical processes that couple the
distributions of free carriers and excitons are binding and
dissociation: ane-h pair in the continuum undergoes a tran-
sition into a bound state, and vice versa. Due to energy and
momentum conservation, these processes have to be assisted
by some partner particle. For low densities—the situation we
are interested in—it can be assumed that phonon-mediated
transitions will dominate. In analogy to a chemical reaction
we express them formally as

FIG. 1. Scattering rates for transitions between exciton bound
states atT54.2 K. ~a! Transitions under emission of LO phonons
within the 1s band~solid line!, and from 1s to the 2s ~dashed!, and
to the 2p ~dotted! bands, respectively. The latter two curves have
been scaled by a factor of 5.~b! Inelastic scattering within the 1s
band by emission~upper curve! and absorption~lower curve! of
acoustic phonons via the deformation-potential coupling. Note the
different scales.
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e1h
X, ~2.20!

and presuppose that the rates of these reactions will be pro-
portional to the product of the electron and hole densities for
binding and proportional to the exciton density for dissocia-
tion with a density-independent constant of proportionality
C. This is exactly the idea behind the rate-equation concept:
it is assumed that all particles of a given species contribute to
the reactions, at least on average, in the same way. In other
words, both the distribution functions and the transition
probabilities should have a smooth dependence on the micro-
scopic state variables, i.e., on the particle momenta. On the
other hand, it is well known that optical excitation high in
the bands generates distribution functions in strong nonequi-
librium, which are very structured at the beginning of the
relaxation process.

Therefore, we are led to give a transcription of Eq.~2.20!
on a kinetic level which is consistent with the Boltzmann
equations~2.3!. If RB andRD are the binding and dissocia-
tion probabilities, we make the followingansatzfor the re-
action terms in the kinetic equations which guarantees con-
servation of the total number ofe-h pairs, bound and free, in
the system:

d

dt
f e~kWe!uR5 (

kWh ,K
W

@RD~kWe ,kWh ;KW ! f X~KW !

2RB~KW ;kWe ,kWh! f e~kWe! f h~kWh!#,

d

dt
f h~kWh!uR5 (

kWe ,K
W

@RD~kWe ,kWh ;KW ! f X~KW !

2RB~KW ;kWe ,kWh! f e~kWe! f h~kWh!#, ~2.21!

d

dt
f X~KW !uR5 (

kWe ,k
W
h

@RB~KW ;kWe ,kWh! f e~kWe! f h~kWh!

2RD~kWe ,kWh ;KW ! f X~KW !#.

The binding contribution, representing a gain term for the
occupationf X(KW ) of stateKW in the exciton band, is set pro-
portional to the distribution functions of electrons and holes.
The loss term describing dissociation, in turn, depends only
on the exciton distribution. In accordance with our central
assumption of low particle densities and the neglect of many-
body aspects in the description of the exciton states, we have
omitted here and in Eq.~2.11! any occupation factors of the
final states which would describe quantum corrections.

The microscopic transition probabilitiesRB andRD are
again obtained in lowest-order perturbation theory with re-
spect to the Hamiltonian of the exciton-phonon interaction,
now using freee-h pair statesupW ,KW &5ukWe ,kWh& as initial or
final states. Let us consider explicitly binding transitions
which are possible under emission or absorption of a pho-
non; the corresponding probability is expressed as~upper
sign: emission!

R6
B ~KW ;kWe ,kWh!5

2p

\ (
qW

uD̃ i u2S nqW1
1

2
6
1

2D dKW 6qW ,kWe1kWh

3d~eKW
X

2ekWe
e

2ekWh
h

6\vq!. ~2.22!

Apart from the fact that we have written the conservation law
for the COM momentum explicitly here~the relative mo-
mentum isnot conserved!, this is formally analogous to Eq.
~2.18!. The effective coupling constantD̃ i can be expressed
again as a sum of an electron and a hole contribution:

D̃ i5CeqW
i
SX@b~kWe7qW !2akWh#2ChqW

i
SX@bkWe2a~kWh7qW !#

~2.23!

with a form factorSX that measures the overlap of the exci-
ton 1s wave function with the plane-wave states in the con-
tinuum:

SX~qW !5S ~2a0!
3p

V D 1/2 1

@11~qa0!
2#2

. ~2.24!

As they stand, the binding probabilitiesR6
B are complicated

functions of the momenta of the particles involved in the
transitions. However, some of the information they contain is
redundant. The distribution functions of the three particle
species will depend only on the absolute values of their ar-
guments at any instant of time in an isotropic system. Fur-
thermore, for givenke and kh , the possible final exciton
COM momentaK are completely fixed by the conservation
laws in Eq. ~2.22!. Thus, we can perform the summation
over the phonon wave vectorqW in R6

B , sum over the possible

final exciton statesKW , and integrate out the ‘‘unnecessary’’
angle between the initial electron and hole wave vectors:

R6
B ~KW ;kWe ,kWh!→G6

B ~ke ,kh!.

G6
B (ke ,kh) is a scattering rate for phonon-assisted transitions

of ane-h pair into a bound state in the 1s exciton band.
The result for the most efficient exciton formation mecha-

nism in our model system, binding under emission of one LO
phonon, is shown in Fig. 2 as a function of the electron and
hole energies. Multiplication of this function with the par-
ticle distribution functions including appropriate normaliza-
tion factors~and withnqW11) and integration over the initial
particle momenta according to Eqs.~2.21! yields directly the
rate of exciton binding or, in other words, the rate of ‘‘loss’’
of free pairs in the continuum. The pronounced structures
result from two causes. First, it is clear that energy conser-
vation according to Fermi’s golden rule requires that thee-
h pair in the initial state has to have a minimum energy to be
able to emit an optical phonon with a final state in the exci-
ton band. Since the edge of the exciton band isbelow the
continuum by just the amount of the exciton binding energy
«0 , this threshold is at\v02«0 . The sharp peaks just above
the threshold and the rapid decrease of the scattering rate for
higher particle, in particular electron, energies are due to the
polar nature of the Fro¨hlich interaction and, even more, due
to the strong wave-vector dependence of the form factor
SX . The apparent asymmetry with respect to the particle en-
ergies is again due to the different polarizabilities of the elec-
tron and hole contributions to the exciton charge density
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(meÞmh). Transitions where basically the entire necessary
energy is provided by one of the free carriers are favored.

Figure 3 gives the result of the similar calculation for the
rate of dissociation under absorption of a LO phonon,
G2
D (K,kh), as a function of the initial exciton energy and the

energy of the final hole state~the energy of the released
electron follows from the conservation law!. This process is
active at high enough temperatures when sufficient phonon
modes are occupied according to the Bose distributionnqW .
The two ‘‘ribs’’ in the plane with nonvanishing values of the
rate again correspond to transitions where practically all of

the initial energy, i.e., the initial exciton energy plus that of
the absorbed phonon, is gained by either the electron or the
hole. Their different weights are determined by the form fac-
tors: hole states of a given energy are at much larger wave
vectors than electron states with the same energy.

At this point some remarks about our approximations are
in place. The Markovian approximation, i.e., the use of Fer-
mi’s golden rule with strict conservation laws for energy and
momentum, is the basis of any semiclassical kinetic theory in
terms of Boltzmann equations. Apart from this, we have used
simple plane waves for the continuum states in the calcula-
tion of the transition rates and left out Coulomb correlation
in that part of the spectrum. As already mentioned, this is
consistent with the treatment of the free-carrier kinetics, and
it is expected that the various scattering processes present in
the system damp out the coherence of thee-h pair. There
are, however, situations where the scattering states have to
be treated as solutions of the Coulomb problem, e.g., for the
description of second-order Raman scattering.39 Rudinet al.
have calculated the phonon contribution to the exciton line-
width using Coulomb scattering states in Fermi’s golden rule
approach for several bulk semiconductors40 and quantum
well systems.41 For the latter they have compared their re-
sults with previous42 ones and have found differences by a
factor of the order of 2. The LO-phonon-induced linewidth
of the exciton due to transitions into the continuum can be
obtained from the dissociation probability for the exciton
momentumK50 ~see Fig. 3! by integration over the final
hole states. Writing it as proportional to the phonon occupa-
tion number nq , D1s,cont

LO 5g1s,cont
LO nq , a temperature-

independent linewidth parameterg1s,cont
LO is defined. Using

the material parameters of Ref. 40, our calculation gives
g1s,cont
LO 59 meV whereas the~corrected! value of Rudin

et al. is 4.21 meV. An estimate of the result of the approxi-
mation under consideration in the general case~for arbitrary
combinations of particle momenta! is difficult and further
work, both conceptual and practical, is needed.

III. NUMERICAL METHOD

A. Ensemble Monte Carlo technique

The complete system of kinetic equations is now written
as

d

dt
f s~kW !5

d

dt
f s~kW !u f p1

d

dt
f s~kW !uR ~s5e,h,X!.

~3.1!

This is a set of Markovian rate equations inkW space and may
be solved by means of a Monte Carlo simulation. This tech-
nique allows for the inclusion of different, even complicated,
scattering mechanisms and provides a clear and intuitive pic-
ture of the physical system.43 In general, it consists in mod-
eling the processes which change a particle’s state in time
~free flights and random scattering events! stochastically, ac-
cording to the known transition probabilities, and in calcu-
lating suitable statistical averages.

For linear ergodic systems it suffices in principle to simu-
late a single particle: the ensemble average can be replaced
by a time average. The solution of nonlinear problems where
the time-dependent distribution functions have to be known

FIG. 2. Integrated transition probability for the formation of
excitons under emission of one LO phonon as a function of the
electron and hole energies.

FIG. 3. Integrated transition probability for the dissociation of
excitons under absorption of one LO phonon as a function of the
electron and hole energies.

4666 54SELBMANN, GULIA, ROSSI, MOLINARI, AND LUGLI



in order to calculate the scattering rates requires the simula-
tion of particle ensembles. This is already the case when the
Pauli principle is included and, of course in the presence of
particle-particle interactions. The accuracy of such a simula-
tion will then depend on the ensemble size.44 An efficient
way to handle very large numbers of particles is based on
phase-space discretization45 and the introduction of an ‘‘oc-
cupation number representation.16’’

We use the fact that in our isotropic system all functions
of the wave vectorkW depend only on its absolute valuek and
introduce an equidistant discretization with step sizeDk be-
tweenk50 and somekmax. In this way we define ‘‘cells’’
around certain pointski which contain allk with

ki2
1
2 Dk<k,ki1

1
2 Dk;

the distribution functions are approximated as stepwise con-
stant. The total number of available states in bandl for each
cell, nl

i , has to be determined from the density of states~per

band! in kW space, which isV/4p3 for a three-dimensional
~spin-degenerate! system of volumeV. Accordingly, the
number of statesdnl

i in an infinitesimal spherical shell of
thicknessdk aroundki is given by

dnl
i 5

V

p2 ki
2dk

and integration of this relation yieldsnl
i . The normalization

volumeV has to be fixed bynl5Nl
s /V, which relates the

total number ofsimulatedparticlesNs to theirphysicalden-
sity nl in one particular band; the number of particles in the
other bands is calculated with the givenV from their densi-
ties.

This phase-space discretization has several advantages
compared to ensemble Monte Carlo~EMC! methods which
follow the trajectories of individual particles characterized
by their wave vectorskW i(t). First of all, as the ratio of the
number of particles present in a cell at a timet to the number
of states available in it is naturally interpreted as an average
occupation number

f l
i ~ t !5

Nl
i ~ t !

nl
i ,

the method gives direct access to the distribution functions at
any instant. Scattering of a particle between differentkW states
means simply reducingNl

i in 1 cell and increasing it in an-
other just by one. The Pauli exclusion principle can be ful-
filled, if needed, by a trivial rejection technique which com-
pares a uniformly distributed random number~on the unit
interval! with the occupation factor@12 f l

i (t)#. From a com-
putational point of view it is advantageous that the memory
required to store the necessary information about the actual
state of the system does not depend on the number of simu-
lated particles but only on that of the cells, which is typically
several hundreds. In this way we are able to work easily with
as many as several hundred thousand particles. The size of
the ensemble is limited only by computer time.

The simulation itself consists of a sequence of time steps
of equal durationdt up to the desired total simulation time.
For t5t0 before the laser excitation we define initial condi-

tions for the system which may be either in the ground state,
corresponding to vanishingf s(k) for all k, or in any other
state with predefined isotropic, e.g., thermal, distributions.
The time-dependent rates for carrier-carrier scattering and
exciton reactions are then updated at the beginning of each
time stept i , using the known distribution functions. Obvi-
ously, dt has to be chosen small enough to allow for the
neglect of any time variation in the nonlinear contributions
entering our kinetic equations. During the time steps a con-
ventional Monte Carlo procedure is applied to every particle:
the physical processes which may change their state—optical
generation and scattering—are modeled using random num-
bers.

B. Exciton transitions

The MC treatment of free-carrier scattering is
standard;43,44 that of exciton intraband transitions is identical
since the collision integral for these processes~2.11! has the
same structure as the free-carrier one~2.3! in the nondegen-
erate limit. The only change is the appearance of the exciton
form factor in the matrix element.

Exciton reactions are many-particle collisions involving
free carriers, excitons, and phonons. For transitions into
bound states the scattering rate for the pair states,
G6
B (ke ,kh), is multiplied with the distribution function of

particle speciesj and integrated over the wave vectorkj :

p6
B ~ki !5(

kW j

G6
B ~ki ,kj ! f j~kj !. ~3.2!

This yields a time-dependent scattering probabilityp6
B (ki)

for the other speciesi , which can be used in the common
way to choose the scattering mechanism according to its
probability and to determine the time of free flight, and has
to be updated for every time step. The final stateK and the
wave vector of the participating phonon are chosen accord-
ing to the conservation laws and the implicit probability dis-
tribution given byR6

B (KW ,kWe ,kWh). The contribution of disso-
ciation to the reaction terms~2.21! is proportional to the
exciton distributionf X(K) alone. The transition probabilities
R6
D can be integrated over both free-carrier momenta, which

results in a ‘‘conventional’’ scattering ratep6
D (K) for the

dissociation of an exciton in stateK. The functionR6
D , how-

ever, is needed for the choice of the final state of the pair.

IV. APPLICATIONS

Simulations have been performed for a two-band model
with GaAs-like parameters~see Table I!. The exciting laser
pulses are taken as Gaussians with central frequencyvL and
width tL , centered att50:

E~ t !5E0expF2
t2

tL
2G ; ~4.1!

for all calculations presented here we use a pulse duration of
tL5500 fs. From ~4.1! one obtains approximately16 the
semiclassical generation rate:
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GkW~ t !5A2pFmkWE0

\ G2tLexpF2
2t2

tL
2 GexpF2

1

2
Vk

2tL
2G

3@12 f e~kW !2 f h~2kW !# ~4.2!

with mkW being the dipole matrix element and
\Vk5\vL2(ekW

e
1e

2kW
h ). Since the pulse width is finite the

pair energies are spread around\vL and~4.2! can be seen as
proportional to their~Gaussian! distribution. For practical
purposes we rewrite it~neglecting thekW dependence ofmkW)
as

GkW~ t !5n0A 2

ptL
2expF2

2t2

tL
2 GexpF2

1

2
Vk

2tL
2G

3@12 f e~kW !2 f h~2kW !#

and set the final pair densityn0 , i.e., the total density ofe-
h pairs generated by the pulse, to its desired value.

The elementary process of optical excitation is schemati-
cally depicted in Fig. 4: the transition that generates an elec-
tron in the conduction band and leaves a hole in the valence
band is vertical inkW space since the momentum of the inci-
dent photon can be neglected in practice. This means, obvi-
ously, that the excess energy of the laser beam,
DE5\v2EG , is shared asymmetrically between electron
and hole for different effective masses in the two bands. The
major part,DE/(11me /mh), is transferred to the electron
~for our parameters this is'0.88DE). Thus, for experimen-
tally relevant excess energies up to, say,'200 meV ~well
below the upperL valleys in the conduction band of GaAs!,
the initial energy of the photoexcited holes will always be
lower than the LO-phonon energy and their relaxation will
be determined by carrier-carrier and acoustic-phonon scatter-
ing. On the other hand, the mean energy of the initial elec-
tron distribution can be chosen everywhere in this range by
tuning the laser excess energyDE. In particular, it is pos-
sible to generate electrons selectively at energies where the
probability of LO-phonon-assisted exciton formation is large
~see Fig. 2!.

A. Sensitivity of exciton formation to the excitation conditions

Results of a simulation for this case are shown in Fig. 5.
The initial peak of the electron distribution@Fig. 5~b!# is
centered at'30 meV, a large fraction of particles being in
states with a high probability for transitions into exciton
states under emission of one LO phonon. This very fast pro-
cess starts already during the laser pulse and after 5 ps@low-
est curve in Fig. 5~a!# a substantial exciton population with
center at 3 meV is established. For longer times it piles up
further and relaxes much more slowly towards the edge of
the 1s band by inelastic deformation-potential scattering. As
time elapses the peak in the electron distribution, Fig. 5~b!, is
broadened, mainly by carrier-carrier interaction, and slowly
transferred to lower energies. The fastest possible relaxation
mechanism, intraband emission of LO phonons, is operative
only for electrons above\v0 , and the energy range with
high formation probability remains well occupied for rather
long times up to 50 ps. The time dependence of the hole
distribution, Fig. 5~c!, is, as expected, determined by fre-
quent carrier-carrier scattering~broadening! and interaction
with acoustic phonons~relaxation!. For all times the holes
remain at low energies, and the efficiency of the exciton
formation depends on the shape of theelectrondistribution
alone. These results have been obtained for a final pair den-
sity of n051014 cm23 and lattice temperature ofT54.2 K.
The total exciton densitynX reaches monotonically
'1.731013 cm23 after 200 ps, which is practically its as-
ymptotic value. In Fig. 5~d! we compare the time evolution
of nX for the same laser energy and intensity but different
temperatures. Above'50 K exciton dissociation gains im-
portance, which is mainly due to LO-phonon absorption and
thus is weighted by the Bose occupation factor. In an inter-
mediate range of temperatures the initial binding is much
faster than the dissociation, and an overshooting ofnX over
its asymptotic value is found. At higher temperatures47 a
stationary value, which is lower by nearly an order of mag-
nitude than that for 4.2 K, is reached much faster: excitons
dissociate as fast as they bind. The deformation-potential
coupling of excitons is, as for free carriers, much weaker
than the Fro¨hlich interaction. The contribution of this mecha-
nism to transitions between bound and continuum states is
not important on the present time scale up to 200 ps. Never-
theless, it is responsible for the energy loss within the 1s
band.

For the results discussed so far it was essential that elec-
trons were generated in a region inkW space were transitions
into excitons are favored. For simplicity, we will call this
kind of excitation ‘‘resonant’’~RE!, which should not be
confused with direct excitation of excitons atK50. Tuning
the laser, it is possible to excite ‘‘off resonantly’’~ORE! as
well: the excess energy is chosen such that the initial elec-
tron distribution peaks at energies where the binding prob-
ability is low. This condition is fulfilled for the simulation
presented in Fig. 6 withDE568 meV. The electrons are
generated around 60 meV but are immediately~within
'0.3 ps! scattered into the first LO-phonon satellite. This is
the structure around 24 meV at 5 ps after the pulse in Fig.
6~b!. It is now below the threshold for exciton binding, and
the only particles that can be scattered into bound states are
those of the high-energy tail that emerges at later times, due

FIG. 4. Schematic representation of optical transitions~absorp-
tion!. Conduction band (e), valence band (h), and the 1s exciton
band (X) are shown. The gap energy atT50 is 1.519 eV in the
model.
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to broadening. The exciton distribution, shown in Fig. 6~a!
on the same scale as in Fig. 5~a!, rises much more slowly and
is less structured: the hole energies are larger on average and
more spread. Exciton states with higher energies are popu-
lated compared to the previous case. The effect of the differ-
ent excitation conditions is perhaps best seen when compar-
ing Figs. 5~d! and 6~d!: in the ORE case the total exciton
density is lowered by, roughly speaking, a factor of 2 and
increases more slowly for all temperatures. Ionization is un-
important for low temperatures, as before. But, for higher
temperatures, the formation is no longer much faster and the
overshooting behavior ofnX is practically absent.

The comparison of the two simulations demonstrates that
the kinetics of the exciton-formation process have a sensitive
dependence on the excess energy of the laser pulse, which is
explained by inspection of the transition probability for LO-
phonon-mediated binding~Fig. 2!.

B. Oscillatory dependence on the laser excess energy

The photoconductivity and the photoluminescence of bulk
GaAs under steady state excitation are known to exhibit an
oscillatory dependence on the optical excitation energy,46

which is explained in terms of systematic variations of the
electron temperature. If, and under which conditions, similar
oscillations can be observed in ultrafast time-resolved ex-

periments of the type considered here are less clear. Damen
et al.21 have found no dependence of their results for GaAs
quantum wells on laser energy. Blomet al.24 have measured
the rise time of excitonic luminescence in thin GaAs quan-
tum wells. They report clear oscillations of this quantity and
interpret this result as the occurrence of a selective LO-
phonon-assisted exciton formation. It is assumed that the
binding of electrons and holes into excitons is sensitive to
the positions of the free particles after the initial LO-phonon
cascade. The process has a high probability in certain regions
of phase space, which they call ‘‘sensitive spots.’’

This concept is in accordance with our results for the
transition probabilities. We have performed a series of simu-
lations with different laser excess energies.48 A result is
given in Fig. 7, which compares the time dependence of the
total exciton densitynX within the first 200 ps after 500 fs
pulses of different energies. The values of lattice temperature
~4.2 K! and the final pair density (1014 cm23) are kept fixed.
The upper three curves correspond to RE, where the initial
peak of the electron distribution or its first or second phonon
satellite coincide with the sensitive spot. The condition for
the lower three curves is ORE. The results forDE534 and
76 meV are quite similar: a rapid increase ofnX is followed
by saturation at values slightly above 1.531013 cm23. ORE,
in turns, yields in all cases a remarkably slower exciton pro-

FIG. 5. Relaxation after optical excitation with a Gaussian laser pulse of 500 fs duration and excess energy ofDE534 meV over the gap.
The final pair density is 1014 cm23. Distribution functions of electrons~a!, holes~b!, and excitons~c! at different times.~d! Temporal
evolution of the total exciton density for different lattice temperatures.
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duction and smaller final values ofnX'831012 cm23. The
curve forDE5117 meV is in between, concerning both the
slope and the saturation density. During the LO-phonon
cascade—it is the second satellite that is on the sensitive
spot—the electron distribution has already been broadened to
a large extent.

The densitynX itself is not observed in the experiments.
Excitons are created at several meV above the band edge and
have to be scattered into states close toK50 before they can
recombine radiatively. The measured time dependence of the
luminescence signal will reflect the intrinsic formation time
and the time needed to relax within the exciton band. We
have determined the potentially ‘‘radiative’’ fraction of ex-
citons within the homogeneous linewidth,26 D, by integra-
tion over the distribution function:

dnX~ t !}E
0

D

der~e! f X~e! ~4.3!

@r(e) is the density of states#. It is assumed that the lumi-
nescence intensity is proportional to this quantity:I (t)
}dnX(t). A two-parameter exponential fit of the form

I ~ t !5I 0~12e2~ t2t0!/tR! ~4.4!

yields the rise time of luminescence,tR . The introduction of
a delay timet0 substantially improves the fit, especially for
ORE. As shown before, the sharp structures in the electron
distribution are broadened with increasing time and particles
are scattered up in energy, where they can bind. Furthermore,
the initial mean energy of the excitons in the 1s band~and its
variance! depends onDE. t0 accounts for just these facts.

FIG. 6. Relaxation after optical excitation with an excess energy ofDE568 meV over the gap. The other parameters are those of Fig.
5. Distribution functions of electrons~a!, holes~b!, and excitons~c! at different times.~d! Temporal evolution of the total exciton density for
different lattice temperatures.

FIG. 7. Time dependence of the total density of excitons for
various laser energies. The final pair density is 1014 cm23 and the
lattice temperature 4.2 K. Labels on the curves give the mean ex-
cess energies of the generatede-h pairs.
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Figure 8 presents the results fortR and t0 which have
been obtained assuming three different values for the homo-
geneous linewidthD. For both quantities we find an oscilla-
tory dependence on laser energy with period
\v0(11me /mh) as expected46 for a mechanism that relies
on LO-phonon-related structures in the electron distribution
function. The rise time of luminescencetR , Fig. 8~a!, has
minima of '50 ps at energies that correspond to RE. The
maxima for ORE depend on the value chosen for the line-
width D and lie in the range of 100–150 ps. A similar be-
havior is found for the delay timet0 on a much shorter time
scale@Fig. 8~b!#.

It is not only the time evolution of the generated exciton
density that changes in a systematic way with the laser en-
ergy, but its maximum value finally reached, too. It has to be
expected that theintegratedluminescence, which is propor-
tional to the time integral of~4.3!, will depend onDE. This
is indeed the case as can be seen in Fig. 9. The~relative!
luminescence intensity integrated over the first 200 ps after
the pulse has minima at energies where the LO-phonon-
related formation process is slow and not very effective
~maxima in Fig. 8!.

The sharp structures in the transition probability, Fig. 2,
are the basis for the results of this subsection. As discussed,
they are always present and there are in fact possible ‘‘sen-
sitive spots’’ for phonon-assisted excitonic binding. How-

ever, the other prerequisite, the sharply peaked electron dis-
tribution function, is obtained under certain conditions only.
The laser pulse must not be too short to avoid the generation
of a broad initial distribution due to energy-time uncertainty.
Further, in simulations for higher temperatures and densities
~where the scattering mechanisms that broaden the electron
distribution gain importance! the oscillations found in lumi-
nescence are strongly damped. The same has to be expected
for a more realistic band-structure model. The inclusion of
more than just one~heavy! hole band and of valence-band
warping may lead to additional smearing of the structures in
f e and reduce the effects.
As a final application of our theory we will present results

for low-temperature simulations of RE withDE534 meV
for different final pair densitiesn0 , i.e., for different inten-
sities of the exciting laser pulse. The rate of our exciton-
formation mechanism, is of course, density dependent, since
it depends on the occupation of the initial free-carrier states.
The Coulomb scattering among the free carriers is important
for the shape of their distribution functions and influences
the physical processes in the system in another, nontrivial
way.

Figure 10 reveals that increasing the particle density
quickens the initial buildup of the exciton distribution. For
comparison we have plotted the total exciton density normal-
ized to the final pair densityn0 . The excitation conditions
are again those of Fig. 5: electrons are generated 30 meV
above the band edge on the sensitive spot and the lattice
temperature is 4.2 K. For the lowest simulated density a
steady slow increase ofnX during 200 ps is found. Finally,
only a fraction of 8% ofe-h pairs are bound into excitons. At
higher densities the initial phase of rapid binding shortens
and is followed by a much slower increase of the population.
The overall efficiency of the exciton formation increases and
the final densitiesnX at t5200 ps scale with the total density
of generatede-h pairsn0 approximately asnX}n0

g with an
exponentg51.3. A rate-equation analysis for steady state
excitations~where some additional loss mechanism like free-
carrier and exciton recombination has to be introduced ex-
plicitly to obtain stationary solutions! would give46 nx}n0

2 .
Although both cases cannot be compared directly, it becomes

FIG. 8. Rise time of luminescencetR ~a! and delay timet0 ~b!
as obtained from a two-parameter exponential fit~see text! for three
values of the homogeneous linewidthD as a function of the laser
energy.

FIG. 9. Calculated time-integrated luminescence signal vs en-
ergy of the exciting laser for three values of the homogeneous line-
width D.
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apparent again that the free carriers do not take part in the
exciton formation in a common way but according to their
time-dependent microscopic distribution functions.

V. SUMMARY AND OUTLOOK

The main purpose of this paper was the development of a
consistent semiclassical model of the coupled relaxation ki-
netics of free carriers and excitons in semiconductors after
ultrafast optical excitation at energies high in the bands in
the low-density regime. This has been achieved by an exten-
sion of the system of free-carrier Boltzmann equations by a
similar equation for the distribution function of 1s excitons.
Transition probabilities have been calculated quantum me-
chanically for intraband scattering of excitons as well as for
phonon-mediated exciton binding and dissociation processes
using Fermi’s golden rule. For the solution of the resulting
system of kinetic equations, an ensemble Monte Carlo
method based on a cell discretization inkW space has been
extended to include the exciton distribution and the various
reaction mechanisms that transmute freee-h pairs into exci-
tons, and vice versa.

The simulation method has been applied to a simple two-
band model of a bulk semiconductor with parameters typical
for GaAs. It has been found that the pronounced energy de-
pendence of the probabilities for LO-phonon-assisted transi-
tions between free-pair states and excitons has a strong in-
fluence on the efficiency of the exciton formation process
and on the temporal evolution of the resulting population. By
varying the energy of the exciting laser, it is possible to
generate an initial electron distribution such that it peaks in a
region in phase space with a high or a low probability for

exciton formation, respectively, after the initial LO-phonon
cascade. This has a systematic effect on the rise time of
luminescence and on the time-integrated luminescence. Even
for the low excitation intensities considered here, the forma-
tion kinetics turn out to be strongly density dependent, partly
due to the fact that the elementary binding requires the si-
multaneous presence of an electron and a hole in a given
phase-space volume, and partly because the shape of the
free-carrier distributions is influenced by carrier-carrier scat-
tering.

For two reasons we see this investigation as the starting
point for further work in the field. First, we have considered
up to now just the exciton-phonon interaction as responsible
for intrinsic formation, dissociation, and relaxation of exci-
tons. These are to lowest order the most important processes
in the low-density limit. However, it is desirable to include
exciton-exciton scattering, which acts to establish a quasi-
equilibrium within the distribution, and exciton–free-carrier
interaction. Also, competing mechanisms such as free-carrier
capture by impurities49 could be considered.

The second reason is even more important. Here we have
presented model calculations for a bulk semiconductor. In
the case of GaAs it has to be expected that theabsolute
emitted luminescence intensity is rather small and difficult to
observe with appropriate time resolution. Nonintrinsic pro-
cesses like impurity-bound exciton recombination will tend
to overwhelm the free-exciton recombination50 and thus
mask the predicted effects even in high-quality bulk material.
The situation becomes much better in quasi-two-dimensional
systems like quantum wells: the additional spatial confine-
ment of the exciton enhances its binding energy and oscilla-
tor strength18 and perturbing processes are reduced.50 Conse-
quently, intrinsic excitonic effects are better observed and
this explains why time resolved experiments of the type con-
sidered here have been performed solely on quantum wells.
The present kinetic model can be applied to such systems by
a proper choice of the free-particle and exciton basis states
and the numerical method can be generalized. It will be,
however, necessary to include the radiative recombination of
excitons as a loss mechanism since it will act in an effective
manner at shorter times due to the increased optical matrix
element. The application of our approach to quantum wells is
under way and will lead us to a direct comparison of theo-
retical results with experimental data.

ACKNOWLEDGMENTS

P.E.S. wishes to thank R. Zimmermann for many stimu-
lating discussions. This work was supported in part by the
European Commission through the HCM network ‘‘UL-
TRAFAST.’’

1See, e.g., U. Keller, inPhotons and Local Probes, edited by O.
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