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We have studied the dynamics of single bistable defects in submicron disordered Bi wires at temperatures
0.1–2 K. The wires are sufficiently small so that the motion of a single defect can be detected as a random
telegraph signal in the resistance time trace. The amplitude of the resistance jumps increases as the temperature
is lowered due to the physics of universal conductance fluctuations. The defect transitions obey Poisson
statistics and detailed balance, indicating that the defect is a two-state system. We interpret the signal as arising
from incoherent tunneling of an atom or group of atoms between the two wells of a double-well potential. The
temperature dependence of the tunneling rates agrees quantitatively with the predictions of dissipative quantum
tunneling theory, which describes tunneling of a defect in the presence of strong dissipation from the electron
bath. Our measurements exploit the previous discovery that the energy asymmetry« of the defect varies with
magnetic field. By varying both the temperature and magnetic field, we can probe the behavior of the tunneling
rates spanning two very different regimes, fromkT!« to kT@«. Data from a single defect at several values
of magnetic field suggest that the defect-bath coupling constanta and the renormalized tunneling matrix
elementD r are nearly independent of magnetic field.@S0163-1829~96!05131-4#

I. INTRODUCTION

The quantum-mechanical problem of a particle tunneling
in a double-well potential arises in many different contexts in
physics and chemistry. An example of great historical sig-
nificance is the problem of two-level tunneling systems in
glasses.1 It was proposed in the early 1970’s~Ref. 2! that the
presence of two-level systems~TLS’s! with a broad distribu-
tion of energies and relaxation rates could account for the
anomalous low-temperature thermal properties of glasses.3

TLS’s arise from the presence of many nearly degenerate
local minima in the potential-energy surface of the solid, due
to disorder. If a pair of minima are sufficiently close in con-
figuration space, and separated by a barrier that is not too
high, then the system can move between the minima on ex-
perimentally acessible time scales. At high temperatures, the
dynamics of atomic rearrangements are thermally activated
over the barrier, while at low temperatures the dynamics are
due to tunneling through the barrier. If the temperature is
sufficiently low so that the particle is restricted to only the
lowest vibrational level in each well, then the problem re-
duces to that of a two-level system. In disordered materials,
the energies and relaxation rates of the tunneling systems are
distributed over wide ranges. By making a few straightfor-
ward assumptions about the distributions of parameters de-
scribing the double-well potentials in disordered materials,2

one can successfully explain the low-temperature thermal,
acoustic, and dielectric properties of glasses.1

The original ‘‘tunneling model’’ described above was
very successful at describing the low-temperature properties
of insulating glasses; however, it was less successful when
applied to metallic glasses.4,5 Another difficulty with the
model is that, until quite recently, there was no direct evi-
dence of the individual tunneling entities—all the predictions
were based on the statistical properties of the ensemble of
TLS’s. This latter difficulty, although more philosophical

than practical, would nevertheless be eliminated if one were
able to measure the properties of an individual tunneling
system in a very small sample of disordered material.

The development of submicrometer fabrication tech-
niques over the past decade gives us a tool to address the
issues described above. Now one can routinely fabricate
samples of sufficiently small size such that there are only a
few tunneling systems within an experimentally determined
energy range and bandwidth.~For a disordered sample of
dimensions 13 0.1 3 0.01mm3, one expects on the order
of ten TLS’s within an energy range of 1 K and a bandwidth
of several decades of time or frequency.6! With samples of
such small size, one is not able to perform the traditional
measurements of TLS’s, such as specific heat, thermal con-
ductivity, or sound propagation and absorption. One can,
however, measure the electrical resistance of such small
samples quite readily. In fact, we will show below that the
electrical resistance of small samples at low temperature is
quite sensitive to the motion of individual atoms, due to the
physics of universal conductance fluctuations.7–10 This sug-
gests a powerful technique for studying the physical behav-
ior of individual TLS’s within electrically conducting
samples of submicrometer dimensions.

Several groups have studied the motion of individual de-
fects in metals.11–15 Experiments performed by Golding,
Zimmerman, and Coppersmith14 and by us15 focus on the
tunneling dynamics of defects, at temperatures down to 0.1
K.15We restrict ourselves to TLS’s that are observable in the
time trace of the electrical resistance, i.e. those that undergo
slow, incoherent tunneling.~Fast TLS’s are not observable in
the time domain, but they give rise instead to anomalies in
the I -V characteristic of ultrasmall samples.16! The outline of
the paper is as follows: first we outline the theoretical under-
standing of tunneling systems interacting with the conduc-
tion electrons in metals, then we summarize the theory of
universal conductance fluctuations necessary to understand
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our experiments. We then present our measurements of a
single tunneling defect in a Bi wire, over a wide range of
both temperature and magnetic field. We compare the data
with theory, and discuss the magnetic-field dependence of
the parameters of the theory. A preliminary discussion of this
work has already appeared.15

Experimental measurements of dissipative tunneling have
also been carried out in crystalline metals.17–19Those studies
are limited to the special case of the symmetric multiwell
potential, whereas the defect potentials in our disordered
samples have no symmetry constraint.

II. DISSIPATIVE QUANTUM TUNNELING THEORY

The TLS model describes a defect in a double-well poten-
tial at sufficiently low temperature so that the excited energy
levels of the system are inaccessible, and the dynamics of a
particle only involves the tunneling back and forth between
the lowest states of each potential well. Figure 1~b! shows a
schematic diagram of a double-well potential. For an isolated
tunneling system, the Hamiltonian for a single defect moving
in an asymmetric double-well potential isH05(«/2)sz
2(\D0/2)sx , wheres i are Pauli spin matrices,« is the
energy asymmetry, andD0 is the bare tunneling matrix ele-
ment, given by the WKB approximation in one dimension as
D05v0exp@2A(2mV0 /\

2)dr #. The tunneling dynamics for
this Hamiltonian are coherent, with energy eigenstates that
are linear conbinations of the states in each well.

In a metal, the defect interacts strongly with the bath of

conduction electrons, resulting in Ohmic dissipation of the
tunneling system. When the temperature is much greater than
the tunneling matrix element, dissipative tunneling shows the
following features:20–22 ~1! incoherent tunneling of the de-
fect, arising from the continuous dephasing of the defect
wavefunction by interactions with the electron bath;~2!
renormalization of the bare tunneling matrix element due to
interaction of the defect with the high-energy~adiabatic!
electron-hole excitations; and~3! a striking temperature de-
pendence of the tunneling rates—forkT.«, the rates in-
crease with decreasing temperature, following a power law
g f ,gs;T2a21,23 with 0,a,1/2 for metals.24

The theoretical approach to the dissipative quantum tun-
neling problem proceeds as follows:20 if the barrier height
between the two wells is much larger than the small un-
damped oscillation frequencyv0 in either well, then the bare
tunneling rate D0 satisfies D0!v0 . If, in addition,
kT!\v0 , then the double-well problem can be reduced to
an effective, biased two-level system. The bath of electron-
hole excitations can be separated into two classes, which
play two quite different roles. The electron-hole excitations
of frequency greater than a cutoff frequencyvc are able to
follow the tunneling defect adiabatically.25 Herevc is a theo-
retical quantity introduced in the course of reduction to a
TLS, and is assumed to beD0!vc,v0 . This leads to a
renormalization of the tunneling matrix elementD through
the relation

D5D0~vc /v0!
a. ~1!

The remaining electron-hole excitations with frequency
smaller thanvc cannot follow the defect adiabatically; they
are directed toward the center of the well.25 This nonadia-
batic character of the bath has a striking effect on the tun-
neling dynamics, as we show below. The assumption of the
system being reduced to an effective TLS and the incorpo-
ration of the high-energy electron-hole excitations into a
renormalized matrix element give rise to a truncated Hamil-
tonian, given by

H5
«

2
sz2

\D

2
sx1sz(

j
Gj~bj1bj

1!1(
j

\v jbj
1bj .

~2!

Caldiera and Leggett26 showed that the influence of the low-
energy electron-hole excitations on the tunneling defect can
be modeled by a bath of harmonic oscillators. The third term
describes the interaction between the defect and the bath,
wherebj

1 andbj are creation and annihilation operators of
the harmonic oscillators, andGj are coupling coefficients
between the defect and the harmonic oscillators. The fourth
term is the Hamiltonian of the harmonic-oscillator bath itself.

The effect of the bath on the defect dynamics depends
only on the spectral density of the bath excitations,
J(v)5(2/\2)( jGj

2d(v2v j ). For a metal, the spectral den-
sity in the continuum limit takes the formJ(v)5av for v
,vc.

27 The coupling of the defect to the bath is character-
ized in terms of the single parametera.

If the Hamiltonian of Eq.~2! is to represent faithfully the
dynamics of a particle double-well potential, then its solution
must not depend on the arbitrary choice of the cutoff fre-

FIG. 1. ~a! Schematic diagram of the sample with five leads.~b!
Schematic diagram of a double-well potential. At low temperatures
(kT,\v0), the dynamics are dominated by tunneling between the
ground states in each well.~c! Resistance changedR as a function
of time, atB56.997 T andT50.132 K. The resistance switches
between two values, corresponding to the tunneling of the single
defect between two states. The resistance of each arm of the sample
is about 1 KV, anddR in this case is about 30V.
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quencyvc , that enters into Eq.~1!.20 In fact, the tunneling
rate calculated from Eq.~2! depends only on a new renor-
malized rateD r , defined as

D r5D~D/vc!
a/~12a!5D0~D0 /v0!

a/~12a!, ~3!

where the second equality makes use of Eq.~1!. Note that
vc does indeed drop out of the final result.

When \D r!«, akT, the coupling of the defect to the
bath is so strong that the fluctuations of the bath break the
phase coherence of the tunneling defect, and the tunneling
becomes incoherent.20 The dynamics of the tunneling transi-
tions are characterized by the occupation probability of the
defectP(t)5^sz(t)&, given that fort,0 the particle is lo-
calized in thesz511 state. For a double-well potential with
energy asymmetry «, one finds P(t)52tanh(«/2kT)
1@11tanh(«/2kT)#e2g, with a tunneling rate20–22of

g5
D r

2 S 2pkT

\D r
D 2a21 coshS «

2kTD
G~2a!

UGS a1 i
«

2pkTD U
2

,

~4!

whereG(x1 iy) is the complexg function. The above equa-
tion describes incoherent relaxation with a transition rate
g. For a single TLS, the energy asymmetry« is related to the
ratio of the average time spent in each state, averaged over
many transitions. This must obey the principle of detailed
balanceg f /gs5e«/kT, whereg f andgs are the fast and slow
transition rates, i.e., the reciprocals of the lifetimes of the
excited or ground states, respectively. The total rate equals
the sum of the fast and slow rates,g5g f1gs . From detailed
balance, we finally have

g f5
D r

4 S 2pkT

\D r
D 2a21 e«/2kT

G~2a!
UGS a1 i

«

2pkTD U
2

and gs5g fe
2«/kT. ~5!

For 0,a,1/2, there are two regimes depending on the
relative magnitude ofkT and«. WhenkT.«, the tunneling
rates increase with decreasing temperature,g f ,gs
;T2a21,23 which is a striking feature of dissipative quantum
tunneling. WhenkT,«, the tunneling rates follow a simple
picture of stimulated absorption and spontaneous emission.
The fast rateg f is determined by the sum of the spontaneous
and stimulated emission rates, while the slow rate is deter-
mined by the stimulated absorption rate. As temperature is
lowered, the fast rate is roughly temperature independent,
and the slow rate decreases rapidly ase2«/kT.

III. QUANTUM TRANSPORT

Our interest in dissipative quantum tunneling arose from
the problem of tunneling systems in disordered materials, as
described in Sec. I. Since the parameters describing the tun-
neling systems~barrier asymmetry, tunneling matrix ele-
ment! are widely distributed in disordered materials, we re-
quire a measurement technique that allows us to measure the
properties of a single tunneling system. Fortunately we have
such a tool, in the electrical resistance of a metal wire with
submicrometer dimensions. It is not obvious, however, that

we can detect the motion of a single TLS in a metal wire at
low temperature. Although we can limit the number of active
TLS’s in a sample by shrinking the sample size, detection of
a TLS via the electrical resistance requires passing a current
through the sample, which necessarily entails Ohmic heating
of the conduction electrons. The problem of electron heating
becomes increasingly severe as sample size decreases and
temperature is lowered, due to the shrinking electronic heat
capacity and the rapidly decreasing electron-phonon scatter-
ing rate. As a result, the applied current, and hence the mea-
sured voltage, must be decreased rapidly as the temperature
is lowered.

As it turns out, nature has been kind to us; the sensitivity
of the electrical resistance to the motion of an atomic defect
increasesas the temperature is lowered,9,10 due to the phys-
ics of universal conductance fluctuations, or UCF.7,8 Al-
though the increase is not large enough to offset the decrease
in signal that follows from the lower drive necessary to avoid
electron heating, it is nevertheless large enough to allow the
measurements described here to be performed at tempera-
tures as low as 0.1 K.

The physics of UCF arises from quantum interference of
multiply scattered conduction electrons due to disorder. UCF
theory is valid whenever the phase-breaking rate for conduc-
tion electrons~due to inelastic or spin-flip scattering, for ex-
ample! is much less than the elastic scattering rate from the
disorder. In this regime the motion of the charge carriers is
diffusive, with diffusion constantD5 1

3nFl e , wherenF is the
Fermi velocity andl e is the elastic mean free path. Electron
transport is diffusive in polycrystalline metals below several
tens of K, and in amorphous metals up to room temperature.
In the diffusive regime, the distance over which conduction
electrons maintain phase coherence isLf5ADtf, which is
typically of order one micrometer at a temperature of 1 K.
The electrical conductance on a length scale less thanLf
cannot be derived simply by adding independently the scat-
tering rates from all the scattering centers, but rather the
conductance is given by the coherent sum of the amplitudes
of multiply scattered waves from different trajectories.

The consequences of quantum interference are quite ap-
parent in mesoscopic samples, i.e., samples with dimensions
comparable toLf .

7 The conductance of such samples is sen-
sitive not only to the details of the atomic disorder potential,
but also to the application of a magnetic field. The magnetic
field changes the relative phases of different electron trajec-
tories through the sample, hence it changes the interference
pattern and thus the sample conductance. Traces of conduc-
tance versus magnetic field show a random, static pattern of
fluctuations, called the ‘‘magnetofingerprint.’’ The amplitude
of the conductance fluctuations are of ordere2/h, hence the
name universal conductance fluctuations.8

Another way to observe universal conductance fluctua-
tions in a mesoscopic sample is to change the locations of the
scattering centers, i.e., the impurities and defects.9,10 If a
scatterer moves, it changes the phases of all the paths that
scatter from it, resulting in a conductance change. For a dis-
ordered metal in the diffusive regime, multiple elastic scat-
tering is very much like a random walk process with a step
size l e . In quasi-one-dimensional systems, a typical electron
trajectory passes through a given site many times; therefore
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the motion of a single scatterer can affect all the scattered
paths and accumulate sufficient phase shift to change the
conductance by the full amountdG'e2/h, as much as if all
the scatterers are moved around. The average conductance
change of a quasi one-dimensional~1D! wire due to the mo-
tion of a single scatterer forl e!Lx'Ly!Lz,Lf , where
Lx , Ly , and Lz are thickness, width, and length,
respectively,10 is

~dG1!
25CS e2h D 2 1

~kFl e!
2a~kFdr !

l eLz
LxLy

. ~6!

Here C is a constant of order unity, and the function
a(x)512sin2(x/2)/(x/2)2 accounts for the phase shift due
to moving a scatterer a distancedr .

At finite temperature, the magnitude of the conductance
fluctuations is reduced due to the effect called ‘‘energy av-
eraging.’’ When kT.\tf

21 , the conductance fluctuations
are reduced in magnitude due to averaging overkT/\tf

21

uncorrelated patterns. The expression for (dG)2 is thus mul-
tiplied by the factor \tf

21/kT5LT
2/Lf

2 , where LT
5A\D/kT is the thermal length.

IV. EXPERIMENTAL MEASUREMENT AND ANALYSIS

Our samples are polycrystalline Bi wires 20 nm thick,
prepared by thermal evaporation at room temperature onto
oxidized Si substrates at a pressure of about 131026 Torr.
The wires were patterned using electron-beam lithography
into five-terminal devices for use in a Wheatstone bridge.
The two arms of the sample have nominally identical sample
regions with areas of 531022 mm2 ~a linewidth of 0.1
mm and a length of 0.5mm!. Figure 1~a! shows the configu-
ration of a sample and its leads. Each arm of the sample has
a resistance of about 1 kV. The difference of the resistances
of the two arms is measured using an ac source and a lock-in
amplifier at a few hundred Hz.

We have measured the electrical conductance of several
Bi wires in the five-terminal configuration. All samples show
signs of individual defects at temperatures below 1 K. The
signature of a single defect is a random telegraph signal,
such as that shown in Fig. 1~c!, in the time trace of the
differential resistance of the bridge. The resistance jumps
dR across the bridge are due to the motion of a single defect
in either arm of the sample. In this paper we focus on data
from a single sample where we found very clean signals
from a particular defect. This defect not only gave rise to a
relatively large value ofdR, but the jump rate was relatively
slow (;1 s21), allowing us to limit our experimental band-
width and thereby limit the background noise due to the
preamplifier and to other, faster, defects. In addition, the de-
fect was extremely stable—the data reported here were ac-
cumulated over a period of two months. We note that this
defect is typical of many defects we have observed in Bi
samples; the data reported here are unusual only in the sense
that the signal-to-noise ratio was the best we have achieved
to date; hence we were able to obtain measurements of the
transition rates over a very broad temperature range~see be-
low!.

The magnitude of the conductance jumps due to the de-
fect motion increases with decreasing temperature, due to the

increase in the phase-breaking length,Lf , in the sample. For
this defect, the jumps in conductance (dG5dR/R2) were
of order 0.2 e2/h at 1 K and 1.0 e2/h at 0.1 K
(e2/h'431025 V21). Even in this sample, however, one
does not observe time traces like that shown in Fig. 1~c!
under all circumstances. Just as the conductance of the
sample depends on magnetic field in a random way~the
‘‘magnetofingerprint’’ mentioned earlier!, so the conduc-
tance jumpdG due to a particular defect also varies with
magnetic field in a random way. Figure 2~b! illustrates this
random variation ofdG with respect to the applied magnetic
field, for one defect at a temperature of 0.3 K. In the figure,
the absolute value ofdG is shown only where it is signifi-
cantly larger than the background noise of the measurement.
At other values of the magnetic field, the signal due to this
defect was masked either by preamplifier noise or by con-
ductance jumps from other defects.

The data presented in this paper were obtained at those
values of magnetic field shown in Fig. 2~b!, where the con-
ductance signaldG has its maximum value, and where the
total noise from other defects was much smaller. Magnetic
fields where we observed mixed signals from several defects
were not used for analysis. We found five different magnetic
fields where the signal for a single fluctuator was particularly

FIG. 2. ~a! Energy asymmetry« vs magnetic field for a single
defect. The data points with the small uncertainties were obtained
from fits to the detailed balance relation~Ref. 15!; the other values
were determined from data taken at a single temperature.~b! Con-
ductance changedG vs magnetic field atT50.3 K. The plot shows
only those values of magnetic field where the conductance signal
due to the motion of a single defect was maximum. The inset in~a!
shows« over a narrow range ofB, where we attempted~but failed!
to determine if« changes sign. The relative sign of« and of dG
cannot be determined for data sets far apart inB, since either quan-
tity may change sign in a region of magnetic field where the defect
signal is not observable.
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clean:B50.140, 2.170, 2.274, 2.286, and 6.997 T. At each
of these magnetic fields, we measured the transition rates of
the defect as a function of temperature. For good statistics,
several hundred transitions of the defect were recorded and
analyzed at each temperature.

It is not obviousa priori that the data sets taken at the five
values of magnetic field listed above arise from the same
defect. In fact, we were able to follow the defect signal
nearly continuously as a function of field from 0 to 3 T, but
there were vast ranges between 3 and 7 T where no defect
signal was visible. Fortunately, as we will show below, the
data set at 7 T can be described with the same values of the
fitting parameters~most importantly the renormalized tunnel-
ing matrix element! as the other data sets. Given that the
tunneling matrix element is essentially a random variable for
defects in disordered materials, we therefore have stronga
posteriori evidence that the 7-T data arise from the same
defect as the other data sets.

Our measurements were limited to temperatures between
0.1 and 2.0 K. Above 2.0 K, several defects became very
active, so it was difficult to follow the dynamics of a particu-
lar defect at any magnetic field. Below 0.1 K the signal-to-
noise ratio was very small. AlthoughdG increases as the
temperature is lowered, the drive current must be decreased
even faster to avoid sample heating.28 We used a drive cur-
rent of 0.7 nA at 0.1 K. The conductance~measured as the
voltage at the output of the lock-in amplifier! was low-pass
filtered, then sampled by the computer at a sampling fre-
quency of 20 or 50 Hz, depending on the fast tunneling rate
g f of the defect.

Raw data of voltage versus time were analyzed using two
independent methods. With the first method we set two com-
parator levels to locate the transitions between the two states,
and then we measure the dwell times in each state. Figure 3
shows a histogram of dwell times in one of the states at
B56.997 T andT50.132 K as a result of the analysis. The
straight line is a fit to an exponential,N(t)
5N0(e

2t/t2e2(t1Dt)/t), whereDt is the bin size. The fit
determines the mean dwell time in that statet, and shows
that the dwell times follow a Poisson distribution. The tun-
neling rate to the other stateg is then obtained from the

relationg5t21. In general the two tunneling rates are un-
equal; we call the fast and slow ratesg f and gs , respec-
tively.

The second analysis method uses a combination of two
different fitting procedures; we fit the power spectrum of the
voltage time trace~after background subtraction! to a Debye-
Lorentzian line shape29 to find the sum of the two tunneling
rates,g5g f1gs , and we fit the histogram of the raw volt-
age values to the sum of two Gaussians to obtain the ratio of
the rates,g f /gs . Figure 4~a! shows a fit of a power spectrum
to a Debye-Lorentzian function. The power spectral density
SV( f ) for the single defect was obtained over the frequency
range 1022–10 Hz, using a fast Fourier transform of the raw
voltage data.

We expect the voltage values in each state to have a
Gaussian distribution with standard deviations, due to ther-
mal and preamplifier noise. Since the voltage jump due to the
motion of a defect is given asdV5V22V1 , the overall dis-
tribution of raw voltage values should be the sum of two
independent Gaussians centered at peak values,V1 andV2 .
Figure 4~b! illustrates the fit of a histogram of the raw volt-
age values to the sum of two Gaussians. The fit gives the
areas and peak values of each Gaussian. The ratio of the two
areas is the ratio of the dwell times, and hence the transition
ratesg f /gs . There is good agreement between the data and
the fit. The value ofg obtained from the fit to the power
spectrum and the value of the ratiog f /gs from the two-
Gaussian fit, together determine bothg f andgs . The results

FIG. 3. The dwell times in each state are histogrammed and fit
to a single-exponential decay function to find the mean transition
time, t, and the tunneling rate to the other state,g5t21.

FIG. 4. ~a! The power spectrum of the time trace data. The
spectrum is fit with a Debye-Lorentzian function to determine the
sum of the transition rates for the two-level system.~b! Histogram
of raw values of resistance. The solid line is a fit to the sum of two
Gaussians. The ratio of the areas of the two Gaussians determines
the ratio of the two transition rates.
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of this analysis are in good agreement with those obtained
from the first analysis method.

The exponential distribution of dwell times in each state
of the fluctuator suggests that the data correspond to a two-
level system in the sample. We also expect the transition
rates to obey the principle of detailed balance,
g f /gs5e«/kT, where« is the energy asymmetry of the defect
potential. Plots of ln(g f /gs) versus 1/T for the data taken at
four different values of magnetic field are shown in Fig. 2 of
Ref. 15. The excellent linear fits through the origin confirm
the above relation. The slopes of the lines forB 5 6.997,
0.140, 2.286, and 2.274 T gives values for«/kB of 402, 213,
92, and 40 mK, respectively, with a standard deviation less
than 10 mK.

Figure 2~a! shows the absolute value of« versus magnetic
field for this defect.~We cannot determine the relative sign
of « between data sets widely spaced in field, since the sign
of dG varies randomly with field.! The five data points with
small uncertainties were obtained from the fits in Ref. 15,
plus an additional fit atB52.170 T. The other values of«
were obtained from measurements at a single temperature,
0.24 K. Figure 2~a! shows that« varies randomly withB. A
random variation of« with B in a disordered sample was
predicted by Al’tshuler and Spivak,30 and first observed ex-
perimentally by Zimmerman, Golding, and Haemmerle.14

The energy asymmetry of the defect is determined in part by
the local-electron charge density at the defect site, which
fluctuates spatially due to the Friedel oscillations caused by
the neighboring scattering centers.31 Application of a mag-
netic field alters the interference pattern of the Friedel oscil-
lations, and thereby changes the local charge density. The
theory predicts that« can either increase or decrease with
B.32 By chance, the three defects studied by Zimmerman and
co-workers14 all showed an increase in« with B. Our data
show that« for this particular defect decreases withB ~near
B50), so there is no need to postulate anad hoccorrelation
between the bare value of« and the effect of magnetic
field.32

The magnetic-field scale characterizing the variation of
« is determined by the magnetic length,LB5A\/eB. ~This
is in contrast to the case of the conductance itself, which
fluctuates randomly with magnetic field with a scale deter-
mined by the phase-breaking lengthLf .) The order of mag-
nitude of the expected change in« with field is given by30,32

^@«~B!2«~0!#2&5
ln2aEB

2

6p\Dn~0!
'a~\vc!

2
l e
Lx

'~kB0.3KB!2, ~7!

where EB52DeB, D is the carrier diffusion constant,
n~0! is the effective 2D density of states at the Fermi level,
andLx is the sample thickness.

33 To obtain the final estimate,
whereB is in T, we plugged in the values for our Bi sample:
l55 nm andLx520 nm, and we used the free-electron mass
in vc . According to this estimate, typical fluctuations in
«/kB over a magnetic field range of 7 T are of order 2 K.
Hence the observed variation of«/kB for our defect is some-
what smaller than typical.

One of the goals of this work is to compare our experi-
mental measurement of the defect tunneling rates with the

predictions of dissipative quantum tunneling theory. In par-
ticular, we wish to test the theory over a temperature range
spanning the two limiting cases,kT!« and kT@«. In our
experiment we were able to measure defect transitions over
the temperature range 0.1–2.0 K. This factor of 20 in tem-
perature is substantial, but would not be entirely adequate for
our purpose if« were fixed at a single value for each defect
studied. Hence the variation of« with field discussed above
is quite fortuitous. Figure 5, which is the central result of this
work, shows how the rates for the defect vary with tempera-
ture at the five different values of magnetic field we studied
in depth. The data show clearly the different temperature
regimes of dissipative quantum tunneling. AtB50.140 T,
with «/kB 5 213 mK, the data most clearly illustrate three
distinct temperature regimes. WhenkT,«, g f is roughly
temperature independent, whilegs decreases rapidly with de-
creasing temperature. This behavior is in accord with the
picture of spontaneous emission and stimulated absorption.
As the temperature is raised so thatkT.«, the rates cross
over to a qualitatively different regime. The ratio of the two
rates still obeys detailed balance, but both ratesdecrease
with increasing temperature. AtB52.274, 2.170, and 2.286
T, where most of the data are in the regimekT.«, it is
shown more vividly that the temperature dependence of the
rates follows a power law,T2a21. This behavior is one of
the essential features of dissipative quantum tunneling in
metals. Above 1.2 K, the rates increase rapidly for all values
of magnetic field, due first to phonon-assisted tunneling, and
eventually to thermal activation over the barrier.

The theory of dissipative quantum tunneling discussed
earlier describes the tunneling of a particle between only two
states in the presence of conduction electrons, and does not
describe the rapid increase of the rates above 1.2 K. We
believe that the rapid increase arises from thermal excitation
to the first excited vibrational state in each well, followed by
rapid tunneling through the reduced barrier.34 ~An alternative
proposed mechanism involves coupling of the two-state sys-
tem to phonons.35! The rate increase is not included in the
theoretical result of Eq.~5!, hence we limit quantitative
analysis here to the temperature range below 1.2 K. The
temperature dependence of the tunneling ratesg f andgs was
fit to Eq. ~5!, with a andD r as free parameters.~The value of
the energy asymmetry« was fixed by the results of the de-
tailed balance fits discussed earlier. The dotted lines in Fig. 5
are the two-parameter least-square fits, which show excellent
agreement with the data at all temperatures below 1.2 K. The
parameter values are consistent with the dissipative tunneling
model in the limit of incoherent tunneling, i.e.,
\D r!«, akT, and 0,a, 1

2.
The least-square fits appear to indicate thata andD r vary

with magnetic field. We have found, however, that the qual-
ity of the fits are rather insensitive to a specific correlated
change ofa andD r . This can be seen in Fig. 6, which shows
the values ofa andD r determined from the five fits. The
values ofa andD r from the fits are highly correlated, and
fall on a straight line when plotted as ln(Dr) vs a/12a. In
fact, thex2 for any one of the fits changes very slowly when
a andD r move along the straight line connecting the five
points in the figure. This suggests that all five data sets can
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be fit with a unique set of parametersa andD r . When we
perform such a global fit, we find that we are left with re-
siduals that indicate a slight systematic shift in the overall
tunneling rate as a function of magnetic field. The data for
B56.997 T, in particular, require a slightly higher value of
D r than the other data sets. So, instead, we have chosen to fit
all the data with a single value of the parametera, while
letting D r vary between sets. The solid lines in Fig. 5 repre-
sent the results of that global fit. The global minimum of
x2 was achieved with the valuea50.195, and withD r vary-
ing only slightly with magnetic field. The data are clearly
consistent with a single value ofa that is independent of
magnetic field for this defect.

Figure 7 shows the dependence ofD r on magnetic field,
obtained from the global fits to the data witha50.195. As
discussed earlier, the local-electron densityn(B), and hence
the density of electron-hole excitations near the defect, is

sensitive to magnetic field. This results in a modification of
the polaron effect due to the nonadiabatic excitations that do
not follow the defect when it tunnels. It is plausible that the
modification of the polaron effect gives rise to the observed
magnetic-field dependence of the tunneling matrix element
D r .

32

V. CONCLUSIONS

We have measured the tunneling rates of single defects in
submicron Bi wire over a broad range of temperature and
magnetic field. Our data for a particular defect, over the tem-
perature range from 0.1 to 2 K, allow us to make a thorough
comparison between experiment and theory. Below 1.2 K,
the temperature dependence of the tunneling rates agrees
quantitatively with predictions of dissipative quantum tun-
neling theory, spanning the regimes fromkT!« to kT@«.

FIG. 6. Plot ofD r vsa/12a given from the five two-parameter
fits shown in Fig. 5.

FIG. 7. Plot of D r vs magnetic field. The values ofD r are
obtained from the global fits~solid lines in Fig. 5! with a50.195.

FIG. 5. Fast and slow transition rates vs tem-
perature, for five values of the applied magnetic
field. Dashed lines are two-parameter fits of Eq.
~5! to the data forT,1.2 K. The values of«/k
are fixed by the fits shown in Fig. 2 of Ref. 15.
They are 402 and 213 mK~right!, and 92, 73, and
40 mK ~left!, from top to bottom. The values of
a from the fits are 0.22 and 0.16~right!, and 0.14,
0.24, and 0.21~left!, respectively, with an uncer-
tainty of 60.01. Solid lines are global fits to all
five data sets with the single value ofa50.195,
as discussed in the text.
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In agreement with previous work,14 we observe a random
variation of «, with magnetic field, but unlike the defects
studied previously, the minimum value of« for this defect
occurs forBÞ0. Our data are consistent with the hypothesis
that the defect-electron bath coupling constanta is indepen-
dent of magnetic field.

It is worthwhile to ask whether the defects observed in
these experiments are a generic feature of disordered mate-
rials, or whether they are particular to polycrystalline Bi
samples. There is much evidence to suggest that they are
generic. First, other workers have observed discrete conduc-
tance fluctuations at low temperature in other disordered
materials.11,12 Although those studies did not encompass
measurements of tunneling rates below 1 K, they did estab-
lish the existence of discrete fluctuators in a wide variety of
disordered metals. Second, we know that Bi samples larger
than ~but otherwise similar to! those studied here, exhibit
low-frequency 1/f noise in their conductance at temperatures
as low as 0.3 K, due presumably to a superposition of fluc-

tuators of the type reported here.36We have observed similar
1/f noise in Ag and Li samples,37 and we have no reason to
believe that other disordered metals would behave differ-
ently. Finally, low-temperature studies of metals using
probes other than the conductance have shown that tunneling
systems are a ubiquitous feature of disordered materials, and
that the density of the TLS’s is rather insensitive to the na-
ture or degree of the disorder.38
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