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The computations presented here investigate the role that electron-electron interactions play in establishing
the magnitude of the nonresonant second hyperpolarizability of conjugated polymers. A sum-over-states for-
malism is used so that the connection between the structure of the excited electronic states and the nonlinear
response may be explored. The inclusion of electron correlation in calculations of the long-chain limit is made
possible by an essential excitation/scattering formalism. This approach identifies the important excitations and
explicitly calculates the scattering between these excitations that can occur in a two-photon process. The
approach has two important advantages. First, it provides a balanced description of the one-photon and two-
photon states, as required to obtain a size-consistent prediction for the hyperpolarizability when using a sum
over electronic states generated by an approximate but nonperturbative method. Second, the use of a con-
tracted, scattering basis set makes it computationally feasible to include both single- and double-electron-hole
pair configurations in calculations on long chains. Using the Pariser-Parr-Pople Hamiltonian of polyacetylene
with the unscreened Coulomb interactions of the Ohno parametrization, the essential excitation/scattering
approach yields a nonresonant hyperpolarizability that agrees with that of the independent electron model,
provided that the independent electron model is parametrized to yield the same optical gap as the correlated
model. This agreement is significant, since the excited states obtained in the correlated calculations exhibit
large effects from electron correlation, such as exciton formation and low-energy1Ag states. This suggests that
even relatively strong electron-electron interactions need not be explicitly included in a model of the polymeric
limit of the nonresonant response, but can instead be absorbed into the effective parameters of an independent
electron model.@S0163-1829~96!02331-4#

I. INTRODUCTION

The nonresonant second hyperpolarizability of conjugated
polymers may be useful for the construction of fast optical
switching devices.1,2 The calculations presented here inves-
tigate the role that electron-electron interactions play in es-
tablishing the magnitude of the nonresonant response.
Electron-electron interactions are known to have large quali-
tative effects on the electronic states of polyenes3–7and other
conjugated oligomers.8–10One such effect is the presence of
a highly correlated 21Ag state below the 11Bu state in
hexatriene and longer polyenes. The effects of electron-
electron interactions are also seen in polymers. For instance,
low-lying 1Ag states have recently been observed in
polydiacetylene.11 The resonant nonlinear optical response of
polymers also shows features that are not easily explained
within an independent electron model.12–18 Despite the ef-
fects of electron correlation on the structure of the excited
electronic states, independent electron models give predic-
tions for the nonresonant nonlinear optical response that are
in reasonable agreement with experiment.19–22Comparisons
with experiment do however involve a number of assump-
tions that are difficult to test. For instance, the calculations
assume perfectly ordered materials and introduce a local-
field factor that increases the calculated response by an order
of magnitude.20,21

The question addressed here is whether it is reasonable to
expect electron-electron interactions to have large effects on
the structure of the excited electronic states, yet minor effects
on the magnitude of the nonresonant response. To address
this issue, we perform calculations on long polymer chains

using methods that include electron correlation at a high
level. The predicted polymeric limit of the hyperpolarizabil-
ity is then compared with that obtained from an independent
electron model. In making these comparisons, the indepen-
dent electron model is parametrized to yield the same optical
gap as the correlated model. We find that even with the un-
screened electron-electron interactions present in the
Ohno parametrization of the Pariser-Parr-Pople~PPP!
Hamiltonian,23 the nonresonant response predicted by the
correlated model is in agreement with that of the independent
electron model. This suggests that even relatively strong
electron-electron interactions need not be explicitly included
in a model of the nonresonant response, but can instead be
absorbed into the effective parameters of an independent
electron model.

To connect the nonlinear optical response to the structure
of the excited electronic states, we work within the sum-
over-states formalism for the static hyperpolarizability,1
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whereuGS& is the ground electronic state,uA&, uB&, and uC&
are excited electronic states, andEI is the energy of stateuI &
relative to the ground state. This paper considers only the

PHYSICAL REVIEW B 15 AUGUST 1996-IVOLUME 54, NUMBER 7

540163-1829/96/54~7!/4609~12!/$10.00 4609 © 1996 The American Physical Society



gxxxx component of the hyperpolarizability, wherex lies
along the backbone of the polymer. In essential states mod-
els, those states that make large contributions to the summa-
tion of Eq. ~1! are identified and characterized.24–26,12–14

Such models account for many aspects of the nonlinear op-
tical response. In particular, Mazumdar and co-workers12–14

have identified the essential states that give rise to the domi-
nant resonances in the nonlinear optical response of conju-
gated polymers. Here, we take what has been learned about
the nature of the excitations in conjugated polymers and con-
sider the implications for the polymeric limit of the nonreso-
nant response.

The essential excitation/scattering method presented be-
low takes advantage of the local character of the excitations
to make calculations on long-chains computationally fea-
sible. A local many-body basis set is used to describe the
essential one-photon and two-photon excitations. In addition,
a contracted many-body basis set is used to describe scatter-
ing between two one-photon excitations. The scattering for-
malism also provides a balanced description of the one-
photon and two-photon states, as required to achieve size
consistency when using a sum over approximate excited
states.

The paper is organized as follows. Section II discusses the
motivation for developing an essential excitation/scattering
procedure. Section III describes the essential excitation/
scattering method and presents calculations on polyacety-
lene. Section IV demonstrates that the calculations presented
here satisfy the requirements of size consistency. Section V
discusses the results.

II. MOTIVATION FOR AN ESSENTIAL
EXCITATION/SCATTERING APPROACH

The essential excitation/scattering approach is motivated
by the large cancellation betweeng1 and g2 of Eq.
~1!.21,27–31In the limit of a large polymer withN unit cells,
both g1 and g2 scale asN2 and it is only the difference
g5g12g2 that has the correct linear dependence onN. The
size-nonlinear terms ing1 andg2 result from the unlinked
clusters present in fourth-order perturbation theory of the en-
ergy with respect to an applied electric field. The scattering
formalism developed here builds the cancellation between
g1 andg2 into a sum-over-states model by identifying the
essential excitations and considering the two contributions to
the hyperpolarizability shown in Fig. 1.

The contributions in Fig. 1 can be illustrated by consider-
ing a system ofN noninteracting molecules. For this system,
the essential excitations are the excited states of the indi-
vidual molecules. The migration contribution of Fig. 1~a!
arises from virtual two-photon absorption processes ing1

where the first photon,uGS&→uA& of Eq. ~1!, excites one of
the molecules and the second photon,uA&→uB&, promotes
this same molecule to a different excited state.32 SinceuA&,
uB&, anduC&, are the excited states of a single molecule, the
summation is over individual molecules and the migration
contribution to the hyperpolarizability isN times g1 of a
single molecule. The cancellation of size-nonlinear terms ap-
pears in the scattering contribution of Fig. 1~b! where the
first photon ing1 excites one of the molecules and the sec-
ond photon excites another. Since the number of excited

states containing two different excited molecules scales as
N2, this leads to anN2 dependence ing1 . This is canceled
by a similarN2 dependence ing2 that arises from terms
where statesuA& and uC& contain excitations on different
molecules. As shown in Appendix A, terms ing1 whereuB&
contains two noninteracting excitations are canceled by
terms ing2 and make no contribution to the hyperpolariz-
ability. Since the creation of two excitations contributes to
the hyperpolarizability only to the extent that the excitations
interact or scatter with one another, we refer to the contribu-
tion shown in Fig. 1~b! as a scattering contribution.

Even for noninteracting molecules, Pauli exclusion leads
to an effective interaction between excitations, whereby the
presence of an excitation suppresses the creation of an addi-
tional excitation on the same molecule. We refer to this satu-
rable absorbance contribution as a Pauli scattering contribu-
tion. For a collection ofN noninteracting molecules, the
Pauli scattering contribution isN timesg2 of a single mol-
ecule and we recover that the hyperpolarizability ofN non-
interacting molecules isN times that of a single molecule.

When electron correlation is ignored, the excitations of a
conjugated polymer are electron-hole pairs and the migration
and scattering contributions correspond to intraband and in-
terband contributions, respectively. The migration process is
intraband since both the one-photon state,uA&, and the two-
photon state,uB&, contain a single-electron-hole pair and the
second photon,̂Aux̂uB& of Eq. ~1!, moves either an electron
or hole within the conduction or valence band. In the scat-
tering process, the second photon operates interband, creat-
ing an additional electron-hole pair.

The effects of electron correlation on the intraband, mi-
gration process may be modeled by single-configuration-
interaction~S-CI! theory, which constrains the excited states
to contain a single-electron-hole pair. WithinS-CI
theory,30,15–17 the hyperpolarizability is dominated by the
1 1Bu , m

1Ag , andn
1Bu states of Fig. 2.15 The 11Bu and

m 1Ag states contain bound electron-hole pairs, or excitons,
and then 1Bu state is a nearly free electron-hole pair state
that occurs at the edge of the conduction band. Although the
n 1Bu state carries little one-photon intensity, it has a large

FIG. 1. Schematic representation of the two contributions to the
hyperpolarizability, Eq.~1!, that arise in the essential excitation/
scattering approach. In the migration contribution of~a!, the first
photon creates an excitation and the second photon modifies that
excitation. In the scattering contribution of~b!, two excitations are
created and the cancellation betweeng1 andg2 ensures that these
contribute to the hyperpolarizability only to the extent that the ex-
citations interact or scatter with one another.
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transition moment with them 1Ag state and makes a signifi-
cant contribution to the hyperpolarizability.S-CI theory’s
description of the migration process is supported by exact
solutions of the PPP Hamiltonian for polyenes with up to 12
carbon atoms,13 since these calculations find essential states
that are similar to those ofS-CI theory ~Fig. 2!.

The scattering formalism is an extension ofS-CI theory to
include the interband scattering contribution, and in particu-
lar, the Coulomb scattering between excitations. To deter-
mine the relative importance of Coulomb scattering in the
long-chain limit, we must include states containing two
excitations35 and determine what remains of the contribution
of such states tog1 after theN2 dependence is canceled by
theN2 dependence ofg2 . ~Note that sinceS-CI theory does
not include double-electron-hole pair states,g2 must be ex-
cluded from S-CI calculations.30,15–17! A full summation
over the complete set of exact excited states properly incor-
porates these cancellations, but such an approach is not com-
putationally feasible on long chains. When truncating the
summation or using approximate excited states, we must en-
sure that the cancellations betweeng1 and g2 are handled
properly and a size-extensive hyperpolarizability is obtained.
For instance, truncating the summation by including only the
four states of Fig. 2 and ignoring states containing two exci-
tations will yield a hyperpolarizability that scales incorrectly
with chain length in the long-chain limit, due to theN2 de-
pendence of g2 @Fig. 2~c!#. The essential excitation/
scattering method presented in the next section truncates the
number of one-photon excitations included in the model, but
does not truncate the states resulting from scattering between
these excitations. Ensuring a proper cancellation of size-
nonlinear terms is further complicated by the large mixing
between single- and double-electron-hole pair configurations
in the1Ag states of conjugated polymers.

4–7,36,37This mixing
makes it difficult to rigorously assign a state as containing
one versus two excitations. By using a scattering basis set,
the method developed below allows mixing between single-
and double-electron-hole pair configurations, while insuring
a proper cancellation of size-nonlinear contributions.

III. THE ESSENTIAL
EXCITATION/SCATTERING FORMALISM

A. The PPP and Huckel Hamiltonians

We use the PPP Hamiltonian, ap-electron model that
includes onep orbital on each carbon atom and assumes

zero-differential overlap between these orbitals.4,23 The elec-
tronic portion of the PPP Hamiltonian may be written,

H5(
i

F2I2(
jÞ i

G i , j Gai†ai1(
i j

b i , jai
†aj

1
1

2 (
i , j

G i , jai
†aj

†ajai , ~2!

whereai
† and ai are the creation and destruction operators

for an electron in the spin orbital on thei th carbon atom,bi , j
is the one-electron matrix element between the orbitals on
carbonsi and j , andGi , j is the Coulomb repulsion energy
between electrons on carbonsi and j . The first term of Eq.
~2! describes the interaction between the electrons and the
nuclei with I being the ionization potential of carbon. The
calculations presented here are performed on a polyacetylene
structure, with carbon-carbon double and single bond lengths
of 1.35 and 1.46 Å, and bond angles of 120°. One-electron
matrix elements are included between bonded carbons, with
b2522.5809 eV for double bonds andb1522.2278 eV for
single bonds.4 The Ohno parametrization23 is used for the
Coulomb energy,

G~r !5
14.397 eV A

AF14.397 eV A

U
G21r 2

, ~3!

where the Hubbard parameterU is 11.15 eV, the difference
between the ionization potential and electron affinity of car-
bon. Since we are interested in the polymeric limit, periodic
boundary conditions are used in the essential excitation/
scattering calculations.

In comparing the results of the correlated models with
those of Huckel theory, the transfer parametersb1 andb2 are
adjusted to the 11Bu optical gap of the correlated model. In
the correlated calculations presented here, the one-photon
states are modeled byS-CI theory. With the above param-
eters,S-CI theory places the 11Bu state at 2.5 eV in the
long-chain limit.30 Choosing the Huckel parameters
b2523.03 eV andb1521.78 eV keepsb11b2 the same as
in the PPP Hamiltonian, while leading to a Huckel optical
gap ofEg52ub12b2u52.5 eV. Note thatub12b2u51.25 eV in
the Huckel Hamiltonian, but only 0.353 eV in the PPP
Hamiltonian. The reduced bond alternation in the PPP
Hamiltonian reflects the fact that electron-electron repulsions
make a significant contribution to the optical gap.38 By pa-
rametrizing the Huckel theory to the optical gap of the cor-
related model, we ignore the effects electron-electron inter-
actions play in establishing the optical gap. This approach is
pragmatic since in actual applications of Huckel theory, the
parameters would almost certainly be chosen to yield the
observed optical gap. The question being addressed here is
whether a Huckel model parametrized in this manner cap-
tures the essentials of the nonresonant nonlinear optical re-
sponse, or whether the effects of electron correlation on the
structure of the 11Bu state, and on both the structure and
energy of states other than the 11Bu state, must be included
to understand the nonlinear optical response.

The Ohno potential ignores the Coulomb screening
present in the solid state. For instance,S-CI calculations with

FIG. 2. Essential states identified from exact solutions of the
PPP Hamiltonian by Mazumdar and co-workers~Ref. 13!. The
terms of Eq.~1! that dominate the hyperpolarizability are shown
schematically in~a! through~c!. The terms represented by~a! and
~b! appear ing1 , while that represented by~c! appears ing2 .
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the Ohno potential of Eq.~3! find that the energy difference
between the 11Bu state and the start of the charge-separated
states, the exciton binding energy, is about 3.5 eV~Ref. 30!
in polyacetylene and about 3 eV in poly~para-phenylene
vinylene!.39 This is much larger than that seen experimen-
tally in conjugated polymers. For instance, the exciton bind-
ing energy in polydiacetylene’s is about 0.5 eV,40–42 while
the one-photon excitation in polyacetylene rapidly dissoci-
ates into both charged and neutral solitons.43–45We choose
to work with an unscreened Coulomb potential since even
with the strong electron-electron interactions of the Ohno
parametrization, the correlated calculations presented below
yield a nonresonant hyperpolarizability that is in qualitative
agreement with that of Huckel theory. Weakening the
electron-electron interactions is not likely to alter this find-
ing. We have also found, using the SD-CI and SD-EOM
methods discussed below, that adjusting the Coulomb poten-
tial, G(r ) of Eq. ~3!, to the exciton binding energy weakens
electron-electron interactions to such an extent that the 21Ag
state occurs above the 11Bu state in polyenes. However, the
2 1Ag state has been observed below the 11Bu state in
polydiacetylene.11 This suggests that altering the Coulomb
potential of Eq.~3! does not completely capture the nature of
the screening process in these materials. Finally, using the
unscreened Coulomb potential allows us to compare our re-
sults with previous work on polyenes done using the Ohno
parametrization of the PPP model.

The transition moment operator,x̂ of Eq. ~1!, is that ap-
propriate for a ring of 2N evenly spaced carbon atoms with a
radius Na/2p, wherea is the unit-cell length of 2.44 Å andN
is the number of unit cells.30 Although the transition moment
operator is that for a ring of carbon atoms, when evaluating
the electron-electron repulsions,Gi , j of Eqs.~2! and ~3!, the
distance between carbon atoms is calculated assuming a lin-
ear polyacetylene chain with the geometry discussed above.
This implementation ensures a periodic transition moment
operator, while removing the effects of curvature onGi , j .
Such curvature effects would only serve to slow the conver-
gence to the polymeric limit. Reference 30 shows that this
choice for thex̂ operator gives the proper polymeric limit for
the response within Huckel theory.

B. Equation of motion methods and translational symmetry

In the equation-of-motion methods used here,46,47 the
ground and excited electronic states are written,

uground state&5uHF&,

uexcited state&5V†uHF&, ~4!

where HF is the Hartree-Fock ground state. The excitation
operatorV† is a linear combination of electron-hole pair-
creation operators and the expansion coefficients are deter-
mined by solving the corresponding linear variational prob-
lem. In the description of the one-photon1Bu states,V†

includes only single-electron-hole pair-creation operators
and this procedure is identical toS-CI theory. In describing
the two-photon1Ag states, we want to include both intraband
and interband processes, so both single- and double-electron-
hole pair configurations are included inV†. We refer to this
method as singles-doubles equation-of-motion~SD-EOM!

theory.47 The difference between SD-EOM theory and
singles-doubles configuration-interaction~SD-CI! theory is
that the EOM method constrains the ground state to remain
the Hartree-Fock ground state, andV† is used strictly to de-
fine the difference between the ground and excited states.
~The matrix to be diagonalized in SD-EOM theory is identi-
cal to that of SD-CI theory, except that in SD-EOM theory,
there are no matrix elements connecting the ground state to
double excitations.47! The use ofS-CI theory for the one-
photon states and SD-EOM theory for the two-photon states
is necessary to provide a balanced description of the excited
states and achieve a size-consistent theory. This and other
aspects of this combination ofS-CI and SD-EOM theory are
discussed in Sec. IV.

To allow for local approximations, Wannier functions30

are used such that the electron and hole creation operators
create or remove electrons from the Wannier function cen-
tered on a particular unit cell. For a polymer withN unit cells
and translational symmetry, the excited state of Eq.~4! may
be written,

uexcited state&5
1

AN (
n51

N

eiKnVn
†uHF&, ~5!

whereK is the wave vector andVn
† creates electron-hole

pairs centered on thenth unit cell. The summation over unit
cells describes the delocalization of the ‘‘center-of-mass’’ of
the electrons and holes over the polymer, and the linear ex-
pansion of the operatorVn

† in terms of electron-hole pair-
creation operators describes the motion of the electrons and
holes relative to one another. With thex̂ operator described
in Sec. III A, one-photon allowed states haveK562p/N
and two-photon allowed states haveK50,64p/N. In evalu-
ating Eq. ~1!, a full summation over the appropriate wave
vectors is performed. Appendix B discusses the evaluation of
Hamiltonian andx̂-operator matrix elements in a manner that
takes advantage of translational symmetry.

C. Description of the one-photon states,zA‹ and zC‹

We include a single essential one-photon excitation, that
of the 11Bu state, and describe this excitation usingS-CI
theory.S-CI theory should provide a reasonable description
of this state, since higher-level configuration interaction cal-
culations on polyenes find that the 11Bu state is composed
primarily of single-electron-hole pair configurations.4,7 With
the Ohno parametrization used here, the 11Bu state carries
most of the one-photon intensity. A higher-energy state, the
n 1Bu state, carries little one-photon intensity, but makes a
significant contribution to the hyperpolarizability, due to a
large transition moment with them 1Ag state. Since this as-
pect of then 1Bu state is observed inS-CI solutions of the
PPP model,15 we may useS-CI theory to estimate the effects
of ignoring then 1Bu state. The open and filled squares of
Fig. 3 show that usingS-CI theory and restricting the one-
photon state to the 11Bu state yields a predicted hyperpolar-
izability that is within 10% of the fullS-CI result.

The 11Bu state ofS-CI theory can be written in the form
of Eq. ~5! as follows:
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u11Bu
~K !&5

1

AN (
n51

N

eiKnBn
~K !†uHF&, ~6!

whereBn
(K)† creates an exciton centered on thenth unit cell,

Bn
~K !†5

1

&
(

d52me2h

me2h

cd
~K !@an1xc1d/2

† bn1xc2d/2
†

1ān1xc1d/2
† b̄n1xc2d/2

† #. ~7!

an
† creates an electron in the conduction-band Wannier func-
tion centered on thenth unit cell, andbn

† creates a hole in the
valence-band Wannier function centered on thenth unit cell.
Bars are used to indicateb as opposed toa electron spin.
The term in brackets creates a singlet-coupled electron-hole
pair separated byd unit cells and centered on thenth unit
cell whend is even and centered half way between thenth
and ~n11!th unit cell whend is odd ~xc50 for d even and
1
2 for d odd!. With the Hamiltonian parameters used here, the
1 1Bu state contains a bound electron-hole pair and a local
approximation can be invoked by including only those basis
functions in which the separation between the electron and
hole is less than or equal tome-h , as in Eq.~7!. The coeffi-
cients,c d

(K) of Eq. ~7!, are determined usingS-CI theory.
States withK562p/N are one photon allowed.

D. Description of the two-photon states,zB‹

The two-photon states,uB& of Eq. ~1!, are determined us-
ing SD-EOM theory. Due to the large number of double-
electron-hole pair excitations on a long chain, a contracted
scattering basis set is used. The contracted basis functions48

are linear combinations of primitive electron-hole pair exci-
tations and are used to describe that portion of the interband
intensity that creates two weakly interacting excitations. To
determine the form of the contracted functions, it is useful to
consider the state formed by the creation of twononinteract-
ing one-photon excitations. The creation of two noninteract-
ing K52p/N excitations leads to aK54p/N state with the
form,

1

N (
n,n851

N

ei2p/N~n1n8!Bn
~2p/N!†Bn8

~2p/N!†uHF&

5
1

AN (
D50

N21

ei ~2p/N!D

3F 1

AN (
n51

N

ei ~4p/N!nBn
~2p/N!†Bn1D

~2p/N!†uHF&G , ~8!

whereBn
(K)† is the creation operator determined fromS-CI

theory in Eq.~7!. The term in square brackets describes two
1 1Bu excitations separated byD unit cells and delocalized
over the polymer with a wave vectorK54p/N. @This term
has the form of Eq.~5!, with the excitation operatorVn

†

creating two 11Bu excitations separated byD unit cells.# The
set of contracted basis functions

1

AN (
n51

N

ei ~4p/N!nBn
~2p/N!†Bn1D

~2p/N!†uHF&, ~9!

for all D, would then provide a complete basis for noninter-
acting excitations. For the interacting excitations considered
here, a scattering approximation is invoked by assuming that
there is some separation beyond which the interactions be-
tween excitations has little effect on the form of the excita-
tions. This distance is the size of the scattering region,mscat
unit cells, and the basis set for the two-photon states includes
all contracted basis functions of Eq.~9! with D.mscat. Al-
though these contracted functions are linear combinations of
a large number of primitive functions, each contracted func-
tion introduces only one variational parameter into the SD-
EOM calculation.

The contracted basis functions for theK524p/N states
have a form similar to that of Eq.~9!, and describe two
K522p/N excitations separated by a distanceD. Since a
K50 state results from either the creation of aK52p/N
excitation followed by the creation of aK522p/N excita-
tion, or from the creation of aK522p/N excitation fol-
lowed by the creation of aK52p/N excitation, the con-
tracted basis functions forK50 have the form

1

AN (
n51

N

@Bn
~2p/N!†Bn1D

~22p/N!†1Bn
~22p/N!†Bn1D

~2p/N!†#uHF&.

~10!

FIG. 3. Results of the essential excitation/scattering calculation
on a periodic chain with 71 unit cells, as a function of the two
convergence parameters that define the scattering basis set:mscat
andme-h . The static hyperpolarizability is shown relative to that of
a Huckel model parametrized to yield the same optical gap as the
essential excitation/scattering calculation. The filled square shows
the result of a fullS-CI calculation. The open square shows the
result of aS-CI calculation, where the one-photon states,uA& and
uC& of Eq. ~1!, are restricted to the 11Bu state.
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To simplify the calculations, the contracted functions of Eqs.
~9! and ~10! are multiplied by normalization constants.

Within the scattering region,D<mscat, the interactions be-
tween excitations significantly alter the form of the excita-
tions. Since the contracted basis functions of Eqs.~9! and
~10! do not provide an adequate description within the scat-
tering region, a truncated primitive basis set for the operator
Vn

† of Eq. ~5! is constructed. We begin with a complete
primitive basis of single and double excitations, spin adapted
for S50. ~In the following discussion, we consider only the
spatial labels of the electrons and holes, with the understand-
ing that all possibleS50 basis functions are included.48! All
functions that are not consistent with a maximum electron-
hole pair separation ofme-h are then eliminated from the
primitive basis. This is straightforward for single-electron-
hole pair functions. For double-electron-hole pair functions,
each electron is paired with the nearest hole and the basis
function is eliminated if either electron-hole pair separation
is greater thanme-h . The rationale for this approach is that
the interactions between excitons is not likely to significantly
change the size of the excitons. We also assume that the
contracted basis functions provide a good description of
electron-hole pairs separated byD.mscat, and thus eliminate
all functions in the primitive basis that are already present in
the contracted basis functions. This has the added benefit that
the primitive basis functions are orthogonal to the contracted
basis functions. With translational symmetry, the size of a
full primitive basis set of single and double excitations scales
asN3. By using basis set contraction, the scaling has been
reduced toN1mscatme-h

2 . Note that excitations separated by
greater thanmscatmay still interact. The use of the contracted
basis functions merely prevents the interactions from distort-
ing the form of the excitations.

In addition to describing two strongly interacting one-
photon excitations, the primitive basis forVn

† of Eq. ~5! used
‘‘inside the scattering region’’ serves as a local basis for
states containing a single essential two-photon excitation.
These essential two-photon excitations give rise to the mi-
gration contribution of Fig. 1~a!.

The above basis set uses local approximations and is
meant to describe those states that carry significant one-
photon or two-photon intensity. For the Hamiltonian used
here, the first photon creates an exciton. Although the exci-
ton is delocalized over the entire polymer, as in Eq.~5!, the
operatorVn

† creates an excitation with a limited size. In the
‘‘center-of-mass’’ coordinate system ofVn

† in Eq. ~5!, part of
the polymer remains in the ground electronic state. If the
second photon operates on a ground-state portion of the
chain, it will create an additional one-photon excitation.
Two-photon states with this character may be described with
the contracted basis functions of Eqs.~9! and ~10! that de-
scribe two well-separated excitations in a ‘‘center-of-mass’’
coordinate system. These contracted functions provide a
good description of the action of the second photon, except
when~i! the second photon creates electrons and holes in the
vicinity of the excitation created by the first photon or~ii ! the
second photon directly modifies the excitation created by the
first photon. In both cases, a local primitive basis should be
sufficient. The first case leads to a scattering contribution to
the hyperpolarizability and a local basis is sufficient, since
the second excitation must be produced near the first excita-

tion for scattering to occur. The second case leads to a mi-
gration contribution to the hyperpolarizability and a local
basis will be sufficient if the essential two-photon excitations
have a local character. These local approximations are tested
by increasing the parameters defining the basis,me-h and
mscat, until convergence is achieved.

The above discussion implies that the important two-
photon states contain either an essential two-photon excita-
tion or two interacting one-photon excitations. However,
since any linear combination of the basis functions is al-
lowed, such a distinction is not enforced by the calculation.
Due to the mixing between these two different characters, it
is not possible to rigorously separate the migration and scat-
tering contributions of Fig. 1. Instead, we determine the im-
portance of scattering by comparing the results ofS-CI
theory, which ignores the creation of two-electron-hole pairs,
with the results of the essential excitation/scattering ap-
proach.

E. Results

The computer code used for these and the other calcula-
tions presented in this paper was verified in the following
manner. We have developed two sets of computer code. One
program, written inFORTRAN, assumes translational symme-
try and allows for the construction of contracted basis func-
tions. The other, written inC11, does not assume transla-
tional symmetry. There is no duplication of code between
these two programs. They do, however, use the same algo-
rithm for evaluating many-electron matrix elements between
primitive basis functions. These matrix elements are identi-
cal to those that appear in SD-CI theory. Our algorithm for
evaluating these matrix elements was verified by substitut-
ing, in theFORTRAN version of the code, an implementation
of the method of Cizek.49 Comparison of these results and of
results from theFORTRAN and C11 programs verified all
aspects of the code, except the construction of the contracted,
scattering basis set. This was checked by examining the be-
havior of the calculated results with respect tomscatfor small
me-h , and by examining the dependence of the hyperpolar-
izability on chain length for long chains.

Figure 3 shows the results of calculations performed on a
ring of polyacetylene with 142 carbon atoms, using the PPP
Hamiltonian of Sec. III A and implementing translational
symmetry as described in Sec. III B and Appendix B. The
predicted hyperpolarizability is shown relative to that of a
Huckel model parametrized to yield the same optical gap as
the correlated model~see Sec. III A!. Two parameters define
the scattering basis set,me-h , the maximum separation be-
tween electrons and holes andmscat, the size of the scattering
region within which the interactions between excitations are
allowed to alter the form of the excitations. The convergence
of the calculated hyperpolarizability with respect to these
parameters is shown in Fig. 3. The converged result corre-
sponds to a calculation in which aS-CI calculation is used to
describe the essential 11Bu one-photon state~other 1Bu
states are not included! and a full SD-EOM calculation is
used to describe the two-photon states. The converged result
is nearly identical to that of Huckel theory. The significance
of these results is discussed in Sec. V.

Figure 4 shows the convergence of the results with re-
spect to the number of unit cells. Since periodic boundary
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conditions are used, these calculations do not reflect the ac-
tual chain-length-dependence of the hyperpolarizability.
They are provided to demonstrate that the scattering calcula-
tions of Fig. 3 are near the polymeric limit. While the scat-
tering calculations converge more slowly than those of
S-CI or Huckel theory, the 71 unit-cell result withme-h510,
mscat54 is near the long-chain limit. Results withme-h54
andmscat52 are shown for up to 131 unit cells, to demon-
strate that the hyperpolarizability obtained from the scatter-
ing formalism approaches the long-chain limit in a manner
similar to that ofS-CI theory.

We are currently extending this method to the resonant
response. The scattering basis set is designed to provide a
valid description of those states that carry significant one-
and two-photon intensity. The nonresonant response is a sum
over these states and convergence of this highly averaged
quantity does not imply that the positions and intensities of
all of the excited states are converged. This is especially true
for states such as the 21Ag state that do not carry much
two-photon intensity. The resonant response converges more
slowly, since it is more sensitive to the positions and inten-
sities of the excited states. It may be possible to speed con-
vergence by allowing a larger electron-hole pair separation,
me-h , in the singly excited configurations of the SD-EOM
basis; however, using a largerme-h for the doubly excited
portion could lead to an unbalanced description of the one-
photon and two-photon states and introduce size inconsisten-
cies ~see Sec. IV!. To study the resonant response, it is also
necessary to take Coulomb screening into account, since the
Ohno parametrization is known to substantially overestimate
the exciton binding energies relative to those seen in solid-
state materials.39

IV. SIZE CONSISTENCY
OF THE SCATTERING FORMALISM

A size-consistent method is one that describes both small
and large systems with equivalent accuracy. In the test for

size consistency used below, the results obtained on a dimer
consisting of two identicalnoninteractingmonomers are
compared with the results obtained on a monomer.48 A size-
consistent method should find the hyperpolarizability and
other extensive properties of the dimer to be twice those of
the monomer. The polymeric limit refers to the chain length
beyond which doubling the length of the chain simply
doubles the size of the response. For a method to correctly
identify and describe this limit, it must treat a long chain
with an accuracy that is equivalent to that of a shorter chain.
For instance, Figs. 5 and 6 show results obtained from cal-
culations on between 1 and 3noninteractingbutadiene mol-
ecules, arranged as if to form a polyacetylene chain. Since
the molecules do not interact, there should be no dependence
on the number of butadiene molecules. However, due to size

FIG. 4. The convergence of the essential excitation/scattering
calculations to the polymeric limit, compared to Huckel andS-CI
theory. Scattering calculations withme-h510 and mscat54 are
shown for up to 71 unit cells. To aid comparisons of the rate of
convergence, all results are scaled to their value at 71 unit cells.

FIG. 5. Excited energy levels obtained for a ‘‘polymer’’ of non-
interacting butadiene molecules arranged in the geometry of a poly-
acetylene chain. Any dependence on the number of butadiene mol-
ecules is a result of size inconsistency in the computational
approach.

FIG. 6. Static hyperpolarizability obtained for the ‘‘polymer’’ of
noninteracting butadiene molecules of Fig. 5.S-CI, SD-CI, and
SD-EOM refer to the use of these methods to generate the excited
states of Eq.~1!. @As discussed in Sec. II,S-CI theory ignoresg2 of
Eq. ~1!.# The essential excitation/scattering approach usesS-CI
theory for the one-photon states and SD-EOM theory for the two-
photon states.
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inconsistencies in SD-CI theory, a single butadiene molecule
is described more accurately than two or more butadiene
molecules. This leads to a large, spurious chain-length de-
pendence in both the excited-state energies and the hyperpo-
larizability per butadiene molecule. This effect was seen by
Tavan and Schulten,6 who found that the SD-CI excited-state
energies increase with chain length on long chains.~The en-
ergies initially decrease with chain length, since the energy
stabilization from the increase in conjugation length offsets
the rise due to size inconsistencies.! These spurious chain-
length dependencies make it difficult to use SD-CI theory or
other size-inconsistent methods to study the polymeric limit
of the hyperpolarizability.

This section considers the requirements of size consis-
tency and how these requirements are met by the scattering
formalism of Sec. III. We begin by showing that SD-EOM
theory provides a size-consistent approach to the excited
states. We then show that to obtain size consistency in a
sum-over-states approach to the hyperpolarizability, it is nec-
essary not only to use a size-consistent approach to the ex-
cited states, but also to use a balanced description of the one-
and two-photon states. This balance is achieved by using
S-CI theory to describe the one-photon states and SD-EOM
theory to describe the two-photon states. Finally, we show
that the contracted, scattering basis set maintains the balance
needed for size consistency.

The scattering calculations of Sec. III are designed to ex-
plore the effects of Coulomb scattering between excitations.
This requires the inclusion of at least double-electron-hole
pair configurations. But SD-CI theory would use these
double-electron-hole pair configurations not only to describe
the excitations present in the excited states, it would also mix
these configurations into the ground state in a size-
inconsistent attempt to describe dynamic correlation
effects.48 This unwanted side effect of SD-CI theory can be
removed by constraining the ground state to remain the
Hartree-Fock ground state, as in the SD-EOM approach of
Eq. ~4!. We refer to this method as an equation-of-motion
method, since constraining the ground state to remain the
Hartree-Fock ground state is equivalent to the ‘‘killer’’ con-
dition of equation-of-motion theory.46 The killer condition
requires that none of the excitations created byV† be present
in the ground state:

Vuground state&50, ~11!

whereV is the destruction operator conjugate toV†. In the
SD-EOM theory used here,V† is a linear combination of
single- and double-electron-hole pair-creation operators.
Note that due to Brillioun’s theorem,48 theS-CI ground state
remains the Hartree-Fock ground state andS-CI theory and
S-EOM theory are equivalent. The SD-EOM procedure can
also be viewed as equation-of-motion coupled-cluster
theory,50,51with the cluster operator set to zero.

The size consistency of SD-EOM theory can be explored
by applying the method to a noninteracting dimer. The
ground and excited states of the dimer are given by the fol-
lowing:

uground state&5uHF&,

uexcited state&5~VS
†~1!1VD

†~1!1VS
†~2!1VD

†~2!1VS
†~1!VS

†~2!

1V†~CT!!uHF&, ~12!

where VS
†(i ) (VD

†(i )) is a linear combination of single-
~double-! electron-hole pair creation operators on thei th
monomer andV†~CT! is a linear combination of both single
and double-electron-hole pair-creation operators that transfer
charge between monomers. The variational determination of
the linear parameters defining these operators leads to the
block-diagonal matrix shown schematically in Fig. 7. This
matrix is identical to that obtained in SD-CI theory except,
due to the constraint of Eq.~11!, there are no connections
between the Hartree-Fock ground state and double
excitations.47 Those blocks of Fig. 7 labeled with an isolated
B are zero because the Hamiltonian for a dimer of noninter-
acting monomers is separable,H5H (1)1H (2). However, the
separability of the Hamiltonian does not by itself lead to the
block diagonalization of the SD-EOM matrix. The blocks
labeled ‘‘B Brillioun’’ in Fig. 7 are zero only due to Bril-
lioun’s theorem. These blocks connect single excitations on
one monomer,VS

†(i ) to double excitations involving both
monomers,VS

†(1)VS
†(2) . That off-diagonal blocks of this type

are zero is a special result for SD-EOM theory that does not
apply when triple or higher electron-hole pair excitations are
included inV† of Eq. ~4!. For example, in SDT-EOM theory,
the block connectingVS

†(1) to VS
†(1)VD

†(2) would be nonzero.
Two blocks of the SD-EOM matrix in Fig. 7 are identical

to those that would be obtained in SD-EOM calculations on
each of the monomers. This demonstrates that SD-EOM
theory provides a size-consistent description of the excited
states, in the sense that an SD-EOM calculation on a nonin-
teracting dimer produces excited states that are identical to
those obtained in an SD-EOM calculation on a monomer.
Figure 5 confirms this by showing that the excited-state en-
ergies predicted by SD-EOM theory are independent of the
number of noninteracting butadienes. However, Fig. 6 shows

FIG. 7. Schematic representation of the matrix that arises in
solving the linear variational problem of SD-EOM theory, for a
dimer consisting of two noninteracting monomers, Eq.~12!. Those
blocks labeledB are zero, because the Hamiltonian of the dimer is
separable. Those blocks labeled ‘‘B Brillioun’’ are zero only due to
Brillioun’s theorem.

4616 54DAVID YARON



that using SD-EOM theory to generate the excited states for
a sum-over-states calculation of the hyperpolarizability, Eq.
~1!, leads to a predicted hyperpolarizability per butadiene
molecule that depends on the number of butadiene molecules
and so is not size consistent.

The size inconsistency of SD-EOM theory’s prediction
for the hyperpolarizability is a result of an unbalanced de-
scription of the one- and two-photon states in Eq.~1!. In
addition to excited states in which one of the monomers is
excited, the dimer calculation produces~i! excited states in-
volving charge transfer between the monomers and~ii ! ex-
cited states in which both monomers are excited. The charge-
transfer states do not carry optical intensity and so do not
contribute to the summations of Eq.~1!. ~Charge-transfer
states also appear inS-CI calculations on the dimer.! How-
ever, states in which both monomers are excited do carry
intensity and it is these states that lead to a size-inconsistent
prediction for the hyperpolarizability. As discussed in Ap-
pendix A, two-photon states,uB& of Eq. ~1!, containing two
noninteracting excitations do not contribute to the hyperpo-
larizability, since their contribution tog1 is canceled by
terms ing2 . But for this cancellation to occur, the two ex-
citations present in the two-phonon stateuB& must be de-
scribed with the same accuracy as a single excitation in the
one-photon statesuA& or uC&. This is not the case in SD-
EOM theory. In states where only one of the monomers is
excited, the excitation is identical to that obtained in an SD-
EOM calculation on a monomer; whereas in states where
both monomers are excited, each of the excitations contains
one electron-hole pair and is identical to that obtained from a
S-CI calculation on a monomer. Thus, in states containing
one excitation, the excitation is described at the SD-EOM
level, while in states containing two excitations, the excita-
tions are described at theS-CI level. This unbalanced de-
scription interferes with the cancellation betweeng1 andg2

and leads to a spurious and size-inconsistent contribution to
the hyperpolarizability from states containing two noninter-
acting excitations.

This imbalance is removed by usingS-CI theory to de-
scribe the one-photon states of Eq.~1! and SD-EOM theory
to describe the two-photon states. In this manner, a single
excitation in a one-photon state is described with the same
accuracy as two excitations in a two-photon state. The size
consistency of this hybridS-CI/SD-EOM scattering formal-
ism is demonstrated for noninteracting butadiene molecules
in Fig. 6.

The construction of a contracted basis set for the scatter-
ing calculations must also be done in a manner that ensures a
balanced description of the one- and two-photon states. The
calculations of Sec. III include a single essential one-photon
excitation, the 11Bu excitation of S-CI theory. The two-
photon states are described with SD-EOM theory and the
‘‘outside the scattering region’’ portion of the basis consists
of functions containing two separated 11Bu excitations. The
form used for the separated excitations in the two-photon
states is identical to the form of the excitation in the one-
photon states. This ensures a balanced description of states
containing one versus two excitations.

There is a potential source of size inconsistency in the
calculations of Sec. III, relating to the truncation of the num-
ber of one-photon excitations. In the limit of a large scatter-

ing region, a full SD-EOM calculation is used for the two-
photon states. In addition to states containing two separated
1 1Bu excitations, a full SD-EOM calculation produces states
containing, for example, two separatedn 1Bu excitations.
The contribution of these states tog1 should be balanced by
terms ing2 involving two n 1Bu excitations. But such terms
are not present in the calculations of Sec. III, where the one-
photon states ofg2 are restricted to the 11Bu state. This is a
potential source of size inconsistency, since states containing
two n 1Bu excitations make a contribution tog1 that scales
asN2. This size inconsistency will arise in the limit of a large
scattering region when a one-photon excitation other than the
1 1Bu state carries significant one-photon intensity. As a test,
the interband portion of the transition moment operator,x̂ of
Eq. ~1!, was modified such that the 11Bu state carried all of
the interband intensity. The change in the predicted hyperpo-
larizability was about24% ~for me-h59 andmscat54!, indi-
cating that the results of Fig. 3 are not contaminated by this
potential source of size inconsistency.

V. DISCUSSION

Figure 3 compares the essential excitation/scattering cal-
culations withS-CI theory and a Huckel model parametrized
to yield the same optical gap as the scattering andS-CI meth-
ods. In discussing the agreement between these three meth-
ods, it is useful to consider how each describes the nonlinear
optical process.

In the independent electron approximation of Huckel
theory,34,52 the response is dominated by the intraband, mi-
gration process of Fig. 1~a!.34,30,53–55Qualitatively, we ex-
pect this to be a very nonlinear process, since the first photon
sees an insulator and must create an electron-hole pair, while
the second photon sees a conductor and moves the electron
or hole within the one-dimensional band structure. Huckel
theory includes only Pauli exclusion interactions between ex-
citations and, for the parameters of Sec. III A, the resulting
Pauli scattering/saturable absorbance contribution is about
25% of, and opposite in sign to, the migration contribution.30

S-CI theory30,15–17models the effects of electron correla-
tion on the intraband, migration process by constraining the
excited states to contain a single-electron-hole pair and in-
cluding Coulomb interactions between the electron and hole.
Coulomb interactions may limit the degree of charge separa-
tion in the low-energy excited states through the formation of
bound electron-hole pairs or excitons. For the Hamiltonian
used here, the 11Bu state carries most of the one-photon
intensity and contains an exciton with the separation between
the electron and hole limited to about four unit cells.30,47

Despite the small size of this exciton, the migration process
as modeled byS-CI theory makes a contribution to the hy-
perpolarizability that is about half the migration contribution
of Huckel theory.30 This suggests that even with unscreened
Coulomb interactions, the electron-hole pair separation in the
excitons is sufficiently close to the free-electron-hole pair
limit that Huckel theory provides a valid description of the
migration process.

The essential excitation/scattering method usesS-CI
theory to describe the one-photon states, and SD-EOM
theory to describe the two-photon states. So in addition to
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including the effects of Coulomb interactions on the form of
the excitations, the scattering formalism includes Coulomb
interactions between the excitations. That the scattering for-
malism yields a nonresonant hyperpolarizability that is in
qualitative agreement with Huckel theory suggests that Cou-
lomb scattering is not a major contributor to the polymeric
limit of the nonresonant response.

Since the excited states predicted by the scattering formal-
ism exhibit large effects due to electron correlation, the
agreement between the essential excitation/scattering calcu-
lation and Huckel theory is significant. For instance, the ex-
cited states exhibit exciton formation and low-lying1Ag
states. The 21Ag state does not carry much two-photon in-
tensity, but it is a highly correlated state that provides a
useful benchmark for the description of electron correlation.
Figure 8 shows the 11Bu and 2

1Ag states obtained from both
S-CI and SD-EOM calculations on polyenes. The SD-EOM
method used by the scattering formalism to describe the two-
photon states reproduces the behavior seen in configuration-
interaction calculations,4–7,36,37 namely, mixing between
single and double excitations significantly lowers the 21Ag
state relative to that predicted byS-CI theory. For the chain
lengths shown in Fig. 8, SD-EOM theory predicts a 21Ag
state below the 11Bu state, while in the polymeric limit, it
predicts a 21Ag state that lies above the 11Bu state.

47 This
behavior in the long-chain limit is in disagreement with ex-
trapolations from experiments3 and calculations6 on short
chains, and with the recent observation of1Ag states below
the 11Bu state in polydiacetylene.11 Although SD-EOM
theory apparently does not provide a quantitative description
of the 21Ag state in the long-chain limit, mixing between
singly and doubly excited configurations lowers the 21Ag
state from 2.2 eV above the 11Bu state inS-CI theory to
only 0.35 eV above the 11Bu state in SD-EOM theory.47

That SD-EOM theory captures this effect of electron corre-
lation yet the essential excitation/scattering method gives a
nonresonant hyperpolarizability that agrees with that of the

independent electron model, strongly suggests that electron
correlation does not play a central role in establishing the
magnitude of the nonresonant hyperpolarizability of conju-
gated polymers.

A number of issues remain to be examined, including the
study of a broader range of chemical structures and Hamil-
tonian parameters. This paper also does not consider the re-
sponse of short polymer chains. We expect Huckel theory to
provide a better description of polymers than of short chains,
since it may be only in the polymeric limit that the hyperpo-
larizability is dominated by the long-range charge transfer
present in the migration process of Huckel theory. Another
issue that needs further study is the mixing between single-
and double-electron-hole pair configurations in SD-EOM
theory and what this means for the separation of the intra-
band, migration and interband, scattering contributions. Fi-
nally, the calculations presented here use the Hartree-Fock
ground state and thus ignore the effects of dynamic correla-
tion.

Although further investigations are needed, the agreement
found here between the essential excitation/scattering model
and the independent electron model suggests that it is not
necessary to include electron correlation in models of the
nonresonant nonlinear optical response.
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APPENDIX A: CANCELLATION
OF SIZE-NONLINEAR TERMS

This appendix shows that terms ing1 of Eq. ~1! where the
two-photon stateuB& contains two noninteracting excitations
are canceled by terms ing2 and therefore do not contribute
to the hyperpolarizability. Noninteracting means that the
presence of the first excitation has no effect on either the
energy or transition moment involved in the creation of the
second excitation. For convenience, we introduce two exci-
tations, exc1 and exc2. Ei is the energy of a state containing
exci , m0i is the transition moment for creating exci on the
ground electronic state, andmi0 is the Hermitian conjugate of
m0i . Consider terms ing1 where the first photon creates exc1
and the second photon creates exc2. If the two excitations do
not interact, then the transition moment for the creation of
the second excitation ism02 and the energy of the state con-
taining both excitations isE11E2 . Creation of these two
excitations leads to the following terms ing1 ,

g15
m01m02m20m10

E1~E11E2!E1
1

m01m02m10m20

E1~E11E2!E2
. ~A1!

In the first term, stateuC& contains exc1 and in the second
term, stateuC& contains exc2. The terms in Eq.~A1! are
canceled by terms ing2 , where stateuA& contains exc1 and
stateuC& contains exc2,

g25
m01m10m02m20

E1
2E2

. ~A2!

FIG. 8. Excited-state energies fromS-CI, SD-CI, and SD-EOM
calculations on polyenes.
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This cancellation will be present for all terms ing1 , where
uB& contains two noninteracting excitations.

APPENDIX B: EVALUATION OF MATRIX ELEMENTS
USING TRANSLATIONAL SYMMETRY

To take advantage of translational symmetry, the primi-
tive basis functions are written as in Eq.~5!,

uFa
K&5

1

AN (
n50

N21

eiKnOn
a†uHF&, ~B1!

where the sum is overN unit cells andOn
a† creates electron-

hole pairs displacedn unit cells from those created by
O0
a† . The Hamiltonian is diagonal inK with matrix ele-

ments,

^Fb
KuĤuFa

K&5 (
n50

N21

e2 iKn^HFuOn
bHO0

a†uHF&, ~B2!

^Fb
KuĤuHF&5AN^HFuO0

bĤuHF&, ~B3!

whereOn
a is the destruction operator conjugate toOn

a† . The
matrix elements in Eqs.~B2! and ~B3! are evaluated using
standard procedures.48,49

To obtain a periodicx̂ operator, we use that for a ring of
polymer withN unit cells. In the scattering calculations, we
also assumed that the carbon atoms are uniformly spaced on
the ring ~see Sec. III A!, but the equations derived here do
not rely on this assumption. Reference 30 shows that this
choice for thex̂ operator gives the proper polymeric limit for
the response within Huckel theory. The radius of the ring is
R5Na/2p, wherea is the length of the unit cell, and the

center of thenth unit cell has coordinatesx5R cos(2pn/N)
andy5R sin(2pn/N). We assume a planar system withxj
and yj the coordinates of thej th atom of the 0th unit cell,
relative to the center of the unit cell. Thenth unit cell may be
obtained by displacing the center of the 0th unit cell to the
appropriate position on the ring and rotating the unit cell by
2pn/N. Thex coordinate of thej th atom in thenth unit cell
is then given by

xn, j5R cosS 2pn

N D1cosS 2pn

N D xj1sinS 2pn

N D yj
5
1

2
$~R1dj !e

i ~2pn!/N1@~R1dj !e
i ~2pn!/N#†%, ~B4!

wheredj5xj2 iy j . It is convenient to introduce an operator,
x̂, that is diagonal in the atomic basis with matrix elements
(R1dj )e

i (2pn)/N. The x̂ operator of Eq. ~1! is then
x̂5x̂1x̂†. The advantage of this decomposition of thex̂
operator is that a rotation of the ring byn unit cells causesx̂
to be multiplied by the phase factorei (2pn)/N. The x̂ matrix
elements are then,

^Fb
K8ux̂uFa

K&5 (
n50

N21

e2 iK 8n@^HFuOn
bx̂O0

a†uHF&dK8,K12p/N

1^HFuOn
bx̂†O0

a†uHF&dK8,K22p/N#, ~B5!

^Fb
Kux̂uHF&5AN@^HFuO0

bx̂uHF&dK,2p/N

1^HFuO0
bx̂†uHF&dK,22p/N#. ~B6!

x̂ is a one-electron operator and the matrix elements of Eqs.
~B5! and ~B6! are evaluated using standard procedures.48,49
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