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The computations presented here investigate the role that electron-electron interactions play in establishing
the magnitude of the nonresonant second hyperpolarizability of conjugated polymers. A sum-over-states for-
malism is used so that the connection between the structure of the excited electronic states and the nonlinear
response may be explored. The inclusion of electron correlation in calculations of the long-chain limit is made
possible by an essential excitation/scattering formalism. This approach identifies the important excitations and
explicitly calculates the scattering between these excitations that can occur in a two-photon process. The
approach has two important advantages. First, it provides a balanced description of the one-photon and two-
photon states, as required to obtain a size-consistent prediction for the hyperpolarizability when using a sum
over electronic states generated by an approximate but nonperturbative method. Second, the use of a con-
tracted, scattering basis set makes it computationally feasible to include both single- and double-electron-hole
pair configurations in calculations on long chains. Using the Pariser-Parr-Pople Hamiltonian of polyacetylene
with the unscreened Coulomb interactions of the Ohno parametrization, the essential excitation/scattering
approach yields a nonresonant hyperpolarizability that agrees with that of the independent electron model,
provided that the independent electron model is parametrized to yield the same optical gap as the correlated
model. This agreement is significant, since the excited states obtained in the correlated calculations exhibit
large effects from electron correlation, such as exciton formation and Iow-eh@gga}ates. This suggests that
even relatively strong electron-electron interactions need not be explicitly included in a model of the polymeric
limit of the nonresonant response, but can instead be absorbed into the effective parameters of an independent
electron model[S0163-182606)02331-4

[. INTRODUCTION using methods that include electron correlation at a high
level. The predicted polymeric limit of the hyperpolarizabil-

The nonresonant second hyperpolarizability of conjugatedty is then compared with that obtained from an independent
polymers may be useful for the construction of fast opticalelectron model. In making these comparisons, the indepen-
switching devices:? The calculations presented here inves-dent electron model is parametrized to yield the same optical
tigate the role that electron-electron interactions play in esgap as the correlated model. We find that even with the un-
tablishing the magnitude of the nonresonant responsécreened electron-electron interactions present in the
Electron-electron interactions are known to have large quali®hno parametrization of the Pariser-Parr-PoglePR
tative effects on the electronic states of polyénéand other Hamiltonian?® the nonresonant response predicted by the
Conjugated 0|ig0mer§‘_lo One such effect is the presence of correlated model is |n agreement with that of the i_ndependent
a highly correlated iAg state below the 1B, state in electron model. This suggests that even relatively strong
hexatriene and longer polyenes. The effects of e|ectronf—:-lectron—electron interactions need not be exphcnly_mcluded
electron interactions are also seen in polymers. For instancé] @ model of the nonresonant response, but can instead be
low-lying 1Ag states have recently been observed inabsorbed into the effective parameters of an independent
polydiacetylené! The resonant nonlinear optical response ofélectron model.
polymers also shows features that are not easily explained TO connect the nonlinear optical response to the structure
within an independent electron modét8 Despite the ef- of the excited electronic states, we work within the sum-
fects of electron correlation on the structure of the excited?ver-states formalism for the static hyperpolarizabiity,
electronic states, independent electron models give predic-
tions for the nonresonant nonlinear optical response that are Vxxxx~ Y+~ V-

in reasonable agreement with experim&nt2 Comparisons (GSRIAYAIX|B)BIXICHCIXGS)
with experiment do however involve a number of assump- =
tions that are difficult to test. For instance, the calculations ABC EaEsEc
assume perfectly ordered materials and introduce a local- ° S ° c
field factor that increases the calculated response by an order - <G$X|A><A|X|GSZ<G3X|C><C|X|GS> ,
of magnitude?®?! AC EAEc
The question addressed here is whether it is reasonable to 1)

expect electron-electron interactions to have large effects on

the structure of the excited electronic states, yet minor effectahere|GS) is the ground electronic statg), |B), and|C)

on the magnitude of the nonresonant response. To addrease excited electronic states, adis the energy of statd)

this issue, we perform calculations on long polymer chaingelative to the ground state. This paper considers only the
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Yexxx COmMponent of the hyperpolarizability, where lies

along the backbone of the polymer. In essential states mod- L - T _

L essential 2 essential
els, those states that make large contributions to the summa-(|By two-photon B one-photon
tion of Eq. (1) are identified and characteriz&t26:12-14 excitation excitations
Such models account for many aspects of the nonlinear op- T T \L -
tical response. In particular, Mazumdar and co-workeré ICy essential ICy _essential [C) _cssential
have identified the essential states that give rise to the domi- | oy one-photon |A) one-photon one-photon

excitation excitation |A) “excitation

nant resonances in the nonlinear optical response of conju-
gated polymers. Here, we take what has been learned abou
the nature of the excitations in conjugated polymers and con- ||GS> —| ||GS) ]
sider the implications for the polymeric limit of the nonreso-
nant response.

The essential excitation/scattering method presented be- ) ) o
low takes advantage of the local character of the excitations F'C- 1. Schematic representation of the two contributions to the
to make calculations on long-chains computationally fea-"YPerPolarizability, Eq(1), that arise in the essential excitation/
sible. A local many-body basis set is used to describe thgcattering approach. n th.e migration contribution(af, the f!r.St
essential one-photon and two-photon excitations. In additio hoton creates an excitation and the second photon modifies that

a contracted manv-body basis set is used to describe scatt éx_citation. In the scattering contribution @), two excitations are
y y ! %leated and the cancellation betwegnand y_ ensures that these

Ing petween two Qne—photon excitations. Th,e Scattering forE:ontribute to the hyperpolarizability only to the extent that the ex-
malism also provides a balanced description of the ON€zjiations interact or scatter with one another.

photon and two-photon states, as required to achieve size

consistency when using a sum over approximate eXC'tegtates containing two different excited molecules scales as

states. . . . . N2, this leads to aN? dependence iry, . This is canceled
The paper is organized as follows. Section Il discusses thSy a similar N? dependence iny_ that arises from terms

motivation for developing an essential excitation/scatteringNhere statedA) and |C) contain excitations on different

procedure. Section Ill describes the essential eXCitatio%olecules As shown in Appendix A, terms4n where|B)
scattering method and presents calculations on polyacety:- | '

¥ontains two noninteracting excitations are canceled b
lene. Section IV demonstrates that the calculations presentg 9 y

h tisfy th ) s of si ot Secti %rms in v_ and make no contribution to the hyperpolariz-
ere sa isfy the requirements of size consistency. Section bility. Since the creation of two excitations contributes to
discusses the results.

the hyperpolarizability only to the extent that the excitations
interact or scatter with one another, we refer to the contribu-
tion shown in Fig. 1b) as a scattering contribution.

Even for noninteracting molecules, Pauli exclusion leads
to an effective interaction between excitations, whereby the

The essential excitation/scattering approach is motivategresence of an excitation suppresses the creation of an addi-
by the large cancellation betweep, and y_ of Eg. tional excitation on the same molecule. We refer to this satu-
(1).2227=31n the limit of a large polymer wittN unit cells,  rable absorbance contribution as a Pauli scattering contribu-
both y, and y_ scale asN? and it is only the difference tion. For a collection ofN noninteracting molecules, the
v=1v,—v_ that has the correct linear dependenceNorThe  Pauli scattering contribution i times y_ of a single mol-
size-nonlinear terms iy, and y_ result from the unlinked ecule and we recover that the hyperpolarizability\Nofion-
clusters present in fourth-order perturbation theory of the eninteracting molecules il times that of a single molecule.
ergy with respect to an applied electric field. The scattering When electron correlation is ignored, the excitations of a
formalism developed here builds the cancellation betweeronjugated polymer are electron-hole pairs and the migration
v, and y_ into a sum-over-states model by identifying the and scattering contributions correspond to intraband and in-
essential excitations and considering the two contributions téerband contributions, respectively. The migration process is
the hyperpolarizability shown in Fig. 1. intraband since both the one-photon sté#e, and the two-

The contributions in Fig. 1 can be illustrated by consider-photon state|B), contain a single-electron-hole pair and the
ing a system oN noninteracting molecules. For this system, second photor|,A|X|B) of Eq. (1), moves either an electron
the essential excitations are the excited states of the indir hole within the conduction or valence band. In the scat-
vidual molecules. The migration contribution of Fig(al tering process, the second photon operates interband, creat-
arises from virtual two-photon absorption processesyin ing an additional electron-hole pair.
where the first photorifGS)—|A) of Eq. (1), excites one of The effects of electron correlation on the intraband, mi-
the molecules and the second photph)— |B), promotes gration process may be modeled by single-configuration-
this same molecule to a different excited stdt&ince|A), interaction(S-Cl) theory, which constrains the excited states
|B), and|C), are the excited states of a single molecule, thdo contain a single-electron-hole pair. Withirs-Cl
summation is over individual molecules and the migrationtheory2%15-1" the hyperpolarizability is dominated by the
contribution to the hyperpolarizability isl times y, of a  1'B,, m*A,, andn 'B, states of Fig. 2° The 1'B, and
single molecule. The cancellation of size-nonlinear terms apm 1Ag states contain bound electron-hole pairs, or excitons,
pears in the scattering contribution of Figbl where the and then B, state is a nearly free electron-hole pair state
first photon iny, excites one of the molecules and the sec-that occurs at the edge of the conduction band. Although the
ond photon excites another. Since the number of excited B, state carries little one-photon intensity, it has a large

(a) Migration (b) Scattering

II. MOTIVATION FOR AN ESSENTIAL
EXCITATION/SCATTERING APPROACH



54 NONLINEAR OPTICAL RESPONSE OF CONJUGATE. . . 4611

zero-differential overlap between these orbifsd$The elec-

1
n'By tronic portion of the PPP Hamiltonian may be written,
mlAg
1B, H:Ei {_I_; I aiTai+iZj Bijala;
+1 > T, .alal 2
llA 2 = i’jaiajajai, ( )

(@) ®) (©)

wherea' anda; are the creation and destruction operators
FIG. 2. Essential states identified from exact solutions of thefor an electron in the spin orbital on tith carbon atomg; ;

PPP Hamiltonian by Mazumdar and co-workéRef. 13. The is the one-electron matrix element between the orbitals on

terms of Eq.(1) that dominate the hyperpolarizability are shown carbonsi and j, and T is the Coulomb repulsion energy

schematically in(a) through(c). The terms represented It and  petween electrons on carbonsind j. The first term of Eq.

(b) appear iny, , while that represented bg) appears iny_ . (2) describes the interaction between the electrons and the

- . 1 . ... nuclei with | being the ionization potential of carbon. The

transition r.“on?em with then “A, statg a”?'. makes a S|g’n|f|- calculations presented here are performed on a polyacetylene

cant contribution to the hyperpolarizabilit-Cl theory's - g,ctre with carbon-carbon double and single bond lengths

description of the migration process is supported by exac f 1.35 and 1.46 A, and bond angles of 120°. One-electron

SO|léti0nS of t23e PPP I-:}amilton:anl for poI;f{eges with .uﬁ’ 10 12 atrix elements are included between bonded carbons, with
carbon atoms; since these calculations find essential states; _ _ 5 509 ev for double bonds angj=—2.2278 eV for

that are similar to those @&-Cl theory (Fig. 2. single bond$. The Ohno parametrizatiéhis used for the
The scattering formalism is an extension€l theory to Coulomb energy
include the interband scattering contribution, and in particu- ’

lar, the Coulomb scattering between excitations. To deter- 14.397 eV A

mine the relative importance of Coulomb scattering in the I(r)= ' (3)
long-chain limit, we must include states containing two 14.397 eV A?

excitationg® and determine what remains of the contribution \/ Tj +r?

of such states tg, after theN? dependence is canceled by
the N? dependence of._ . (Note that since&s-Cl theory does  where the Hubbard parameteris 11.15 eV, the difference
not include double-electron-hole pair statgs, must be ex-  between the ionization potential and electron affinity of car-
cluded from S-CI calculations®*>=*j A full summation  bon. Since we are interested in the polymeric limit, periodic
over the complete set of exact excited states properly incosoundary conditions are used in the essential excitation/
porates these cancellations, but such an approach is not cogeattering calculations.

putationally feasible on long chains. When truncating the In comparing the results of the correlated models with
summation or using approximate excited states, we must enhose of Huckel theory, the transfer paramej@rand 3, are

sure that the cancellations between and y_ are handled adjusted to the B, optical gap of the correlated model. In
properly and a size-extensive hyperpolarizability is obtainedthe correlated calculations presented here, the one-photon
For instance, truncating the summation by including only thestates are modeled t§Cl theory. With the above param-
four states of Fig. 2 and ignoring states containing two excieters, S-Cl theory places the 1B, state at 2.5 eV in the
tations will yield a hyperpolarizability that scales incorrectly long-chain limit>® Choosing the Huckel parameters
with chain length in the long-chain limit, due to thN¢ de-  8,=—3.03 eV andB,=—1.78 eV keepsB,+ B, the same as
pendence ofy_ [Fig. 2c)]. The essential excitation/ in the PPP Hamiltonian, while leading to a Huckel optical
scattering method presented in the next section truncates thyap ofE,=2|8,—8,|=2.5 eV. Note tha{3;—8;/=1.25 eV in
number of one-photon excitations included in the model, buthe Huckel Hamiltonian, but only 0.353 eV in the PPP
does not truncate the states resulting from scattering betwee#amiltonian. The reduced bond alternation in the PPP
these excitations. Ensuring a proper cancellation of sizeHamiltonian reflects the fact that electron-electron repulsions
nonlinear terms is further complicated by the large mixingmake a significant contribution to the optical g&By pa-
between single- and double-electron-hole pair configurationsametrizing the Huckel theory to the optical gap of the cor-
in thelAg states of conjugated polymets’*3"This mixing  related model, we ignore the effects electron-electron inter-
makes it difficult to rigorously assign a state as containingactions play in establishing the optical gap. This approach is
one versus two excitations. By using a scattering basis sefragmatic since in actual applications of Huckel theory, the
the method developed below allows mixing between singleparameters would almost certainly be chosen to yield the
and double-electron-hole pair configurations, while insuringobserved optical gap. The question being addressed here is

a proper cancellation of size-nonlinear contributions. whether a Huckel model parametrized in this manner cap-

tures the essentials of the nonresonant nonlinear optical re-

Ill. THE ESSENTIAL sponse, or whether the effects of electron correlation on the
EXCITATION/SCATTERING FORMALISM structure of the 1B, state, and on both the structure and

energy of states other than théB,, state, must be included
to understand the nonlinear optical response.

We use the PPP Hamiltonian, &electron model that The Ohno potential ignores the Coulomb screening
includes onep orbital on each carbon atom and assumesresent in the solid state. For instan8eCI calculations with

A. The PPP and Huckel Hamiltonians
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the Ohno potential of E¢(3) find that the energy difference theory?’ The difference between SD-EOM theory and
between the 1B, state and the start of the charge-separatedingles-doubles configuration-interacti¢8D-CI) theory is
states, the exciton binding energy, is about 3.5(B¥f. 3)  that the EOM method constrains the ground state to remain
in polyacetylene and about 3 eV in p@bhara-phenylene the Hartree-Fock ground state, afid is used strictly to de-
vinylene).®® This is much larger than that seen experimen-fine the difference between the ground and excited states.
tally in conjugated polymers. For instance, the exciton bind{The matrix to be diagonalized in SD-EOM theory is identi-
ing energy in polydiacetylene’s is about 0.5 #&7#2while  cal to that of SD-CI theory, except that in SD-EOM theory,
the one-photon excitation in polyacetylene rapidly dissocithere are no matrix elements connecting the ground state to
ates into both charged and neutral solit6#/4° We choose double excitation’) The use ofS-Cl theory for the one-

to work with an unscreened Coulomb potential since evemphoton states and SD-EOM theory for the two-photon states
with the strong electron-electron interactions of the Ohnds necessary to provide a balanced description of the excited
parametrization, the correlated calculations presented belostates and achieve a size-consistent theory. This and other
yield a nonresonant hyperpolarizability that is in qualitativeaspects of this combination &CI and SD-EOM theory are
agreement with that of Huckel theory. Weakening thediscussed in Sec. IV.

electron-electron interactions is not likely to alter this find- To allow for local approximations, Wannier functidfs
ing. We have also found, using the SD-CI and SD-EOMare used such that the electron and hole creation operators
methods discussed below, that adjusting the Coulomb poterreate or remove electrons from the Wannier function cen-
tial, I'(r) of Eq. (3), to the exciton binding energy weakens tered on a particular unit cell. For a polymer withunit cells
electron-electron interactions to such an extent that 1~’I1x=g2 and translational symmetry, the excited state of @g.may
state occurs above the'B, state in polyenes. However, the be written,

2'A, state has been observed below théB] state in

polydlacetylené1 This suggests that altering the Coulomb N
potential of Eq(3) does not completely capture the nature of lexcited statp= — 1 Z elknQf IHF), (5)
the screening process in these materials. Finally, using the JN A= n

unscreened Coulomb potential allows us to compare our re-
sults with previous work on polyenes done using the Ohno
parametrization of the PPP model. whereK is the wave vector and)! creates electron-hole

The transition moment operatox,of Eq. (1), is that ap-  pairs centered on theth unit cell. The summation over unit
propriate for a ring of &l evenly spaced carbon atoms with a cells describes the delocalization of the “center-of-mass” of
radius Na/2r, wherea is the unit-cell length of 2.44 A and the electrons and holes over the polymer, and the linear ex-
is the number of unit cell¥ Although the transition moment pansion of the operatdfl,‘: in terms of electron-hole pair-
operator is that for a ring of carbon atoms, when evaluatingreation operators describes the motion of the electrons and
the electron-electron repulsionis, ; of Egs.(2) and(3), the  holes relative to one another. With tiReoperator described
distance between carbon atoms is calculated assuming a liim Sec. Il A, one-photon allowed states hake= =2#/N
ear polyacetylene chain with the geometry discussed abovend two-photon allowed states hakie=0, +4#/N. In evalu-
This implementation ensures a periodic transition momenéting Eg. (1), a full summation over the appropriate wave
operator, while removing the effects of curvature Bry.  vectors is performed. Appendix B discusses the evaluation of
Such curvature effects would only serve to slow the converHamiltonian andk-operator matrix elements in a manner that
gence to the polymeric limit. Reference 30 shows that thisakes advantage of translational symmetry.
choice for thex operator gives the proper polymeric limit for
the response within Huckel theory.

C. Description of the one-photon states|A) and |C)

B. Equation of motion methods and translational symmetry We include a single essential one-photon excitation, that
In the equation-of-motion methods used h&& the Of the 1'B, state, and describe this excitation usiggCl
ground and excited electronic states are written, theory. S-Cl theory should provide a reasonable description
of this state, since higher-level configuration interaction cal-
lground state=|HF), culations on polyenes find that thelElu state is composed
primarily of single-electron-hole pair configuratichWith
lexcited state=Q'[HF), (4)  the Ohno parametrization used here, théB ] state carries

most of the one-photon intensity. A higher-energy state, the
where HF is the Hartree-Fock ground state. The excitatiom B, state, carries little one-photon intensity, but makes a
operatorQ' is a linear combination of electron-hole pair- significant contribution to the hyperpolarizability, due to a
creation operators and the expansion coefficients are detdarge transition moment with the lAg state. Since this as-
mined by solving the corresponding linear variational prob-pect of then !B, state is observed i6-Cl solutions of the
lem. In the description of the one-photdB, states,Q'  PPP model® we may uses-Cl theory to estimate the effects
includes only single-electron-hole pair-creation operator®f ignoring then B, state. The open and filled squares of
and this procedure is identical ®CI theory. In describing Fig. 3 show that using-Cl theory and restricting the one-
the two-photoriLAg states, we want to include both intraband photon state to the B, state yields a predicted hyperpolar-
and interband processes, so both single- and double-electroizability that is within 10% of the fullS-Cl result.
hole pair configurations are included §'. We refer to this The 1'B, state ofS-Cl theory can be written in the form
method as singles-doubles equation-of-moti@D-EOM) of Eqg. (5) as follows:
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1.0 . . . ' . D. Description of the two-photon states|B)

The two-photon state$B) of Eq. (1), are determined us-
ing SD-EOM theory. Due to the large number of double-
electron-hole pair excitations on a long chain, a contracted
scattering basis set is used. The contracted basis funttions
» are linear combinations of primitive electron-hole pair exci-
tations and are used to describe that portion of the interband
intensity that creates two weakly interacting excitations. To
determine the form of the contracted functions, it is useful to
consider the state formed by the creation of twaminteract-
ing one-photon excitations. The creation of two noninteract-
ing K=2mx/N excitations leads to € =4=/N state with the
form,

ek mge, =4
08T a—a Myey=3

My =2
OO myey=1

06

B S-CI (full result) 71

0O S-CI (one-photon
state restricted

N
to 1'B, state) 1 i ’
0.2+ u | N E e|27r/N(n+n )BEZW/N)TB;Z,WN)T|HF>

nn =1

Yxxxx (scattering calculation)/Y,,x (Huckel theory)

1
N

0 2 4 6 8 10

N-1
2 el (2m/N)A
A=0

=l

mey, (unit cells) 1 N .
. o . . 3| — Z el(471'/N)|’]BE127T/N)TB£12_:TA/N)T|HF> ’ (8)
FIG. 3. Results of the essential excitation/scattering calculation \/N n=1

on a periodic chain with 71 unit cells, as a function of the two
convergence parameters that define the scattering basimggt: whereB{" is the creation operator determined fr&Cl
andmg.p, . The static hyperpolarizability is shown relative to that of theory in Eq.(7). The term in square brackets describes two
a Huckel model parametrized to yield the same optical gap as the !B, excitations separated hy unit cells and delocalized
essential excitation/scattering calculation. The filled square showgyer the polymer with a wave vectét=4=/N. [This term
the result of a fullS-Cl calculation. The open square shows the h35 the form of Eq(5), with the excitation operatoﬂﬁ

result of aS-Cl calculation, where the one-photon states), and
|C) of Eq. (1), are restricted to the B, state.

N
1 .
|1leJK)>: _N nzl elKnt.lK)WHF), (6)

whereB{¥" creates an exciton centered on tith unit cell,

1 Me—h

BT 3

(Krat T
C [a b
Vs - S5 N+X.+ 828N+ X — /2

=T N
+ an+ Xo T 6/2bn+ Xe— 6/2] . (7)

+

creating two 1'B,, excitations separated ly unit cells] The
set of contracted basis functions

N
1 :
= n§:l el(4W/N)nBE12W/N)TB$1%_WA/N)T|HF), (9)

for all A, would then provide a complete basis for noninter-
acting excitations. For the interacting excitations considered
here, a scattering approximation is invoked by assuming that
there is some separation beyond which the interactions be-
tween excitations has little effect on the form of the excita-
tions. This distance is the size of the scattering regog,

unit cells, and the basis set for the two-photon states includes
all contracted basis functions of EQ) with A>mg,. Al-
though these contracted functions are linear combinations of
a large number of primitive functions, each contracted func-

a, creates an electron in the conduction-band Wannier funcgop introduces only one variational parameter into the SD-

tion centered on theth unit cell, ancb creates a hole inthe EQOM calculation.

valence-band Wannier function centered onrikie unit cell.

Bars are used to indicat@ as opposed ta electron spin.

The contracted basis functions for tke= —47/N states
have a form similar to that of Eq9), and describe two

The term in brackets creates a singlet-coupled electron-holg = — 2 7/N excitations separated by a distanteSince a

pair separated by unit cells and centered on theh unit
cell whené is even and centered half way between ttie

K=0 state results from either the creation oKa=2#/N
excitation followed by the creation ofl@=—27x/N excita-

and (n+1jth unit cell whendis odd (x;=0 for 5 even and  tjon, or from the creation of & =—2#/N excitation fol-
1 for 8 odd). With the Hamiltonian parameters used here, thggowed by the creation of & =2/N excitation, the con-
11B, state contains a bound electron-hole pair and a locakacted basis functions fd€ =0 have the form
approximation can be invoked by including only those basis
functions in which the separation between the electron and
hole is less than or equal 1., as in Eq.(7). The coeffi-
cients,c{ of Eq. (7), are determined using-Cl theory.
States withK=*=27/N are one photon allowed. (10

N
1
27IN —2@IN —2@IN 27N
L AT L e )
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To simplify the calculations, the contracted functions of Eqstion for scattering to occur. The second case leads to a mi-

(9) and(10) are multiplied by normalization constants. gration contribution to the hyperpolarizability and a local
Within the scattering regiold<m.,,, the interactions be- basis will be sufficient if the essential two-photon excitations

tween excitations significantly alter the form of the excita-have a local character. These local approximations are tested

tions. Since the contracted basis functions of E§s.and by increasing the parameters defining the basig,, and

(10) do not provide an adequate description within the scatMs., until convergence is achieved.

tering region, a truncated primitive basis set for the operator The above discussion implies that the important two-

Q! of Eq. (5) is constructed. We begin with a complete photon states contain either an essential two-photon excita-

primitive basis of single and double excitations, spin adaptedon or two interacting one-photon excitations. However,

for S=0. (In the following discussion, we consider only the since any linear combination of the basis functions is al-

spatial labels of the electrons and holes, with the understandowed, such a distinction is not enforced by the calculation.

ing that all possiblés=0 basis functions are includéd). All Due to the mixing between these two different characters, it

functions that are not consistent with a maximum electroniS not possible to rigorously separate the migration and scat-

hole pair separation ofn,,, are then eliminated from the tering contributions of Fig. 1. Instead, we determine the im-

primitive basis. This is straightforward for single-electron- portance of scattering by comparing the results S€l

hole pair functions. For double-electron-hole pair functionstheory, which ignores the creation of two-electron-hole pairs,

each electron is paired with the nearest hole and the basWith the results of the essential excitation/scattering ap-

function is eliminated if either electron-hole pair separationproaCh-

is greater thamm,_,,. The rationale for this approach is that

the interactions between excitons is not likely to significantly E. Results

change the size of the excitons. We also assume that the The computer code used for these and the other calcula-
contracted basis functions provide a good description ofions presented in this paper was verified in the following
electron-hole pairs separated Ay-mg,, and thus eliminate  pmanner. We have developed two sets of computer code. One
all functions in the primitive basis that are already present i'brogram, written iFFORTRAN, assumes translational symme-
the contracted basis functions. This has the added benefit thﬁy and allows for the construction of contracted basis func-
the primitive basis functions are orthogonal to the contractegions. The other, written irc++, does not assume transla-
basis functions. With translational symmetry, the size of &jgnal symmetry. There is no duplication of code between
full primitive basis set of single and double excitations scaleshese two programs. They do, however, use the same algo-
asN® By using basis set contraction, the scaling has beefithm for evaluating many-electron matrix elements between
reduced taN+mgcme.p. Note that excitations separated by primitive basis functions. These matrix elements are identi-
greater thamg.,,may still interact. The use of the contracted 5| to those that appear in SD-CI theory. Our algorithm for
basis functions merely prevents the interactions from distortyajuating these matrix elements was verified by substitut-
ing the form of the excitations. _ _ ing, in theFORTRAN version of the code, an implementation

In addition to describing two strongly interacting one- of the method of Cizek® Comparison of these results and of
photon excitations, the primitive basis 0 of Eq.(5) used  results from theFORTRAN and c++ programs verified all
“inside the scattering region” serves as a local basis foraspects of the code, except the construction of the contracted,
states containing a single essential two-photon excitationscattering basis set. This was checked by examining the be-
These essential two-photon excitations give rise to the mihavior of the calculated results with respectiig.,,for small
gration contribution of Fig. (). Me.h» and by examining the dependence of the hyperpolar-

The above basis set uses local approximations and igability on chain length for long chains.
meant to describe those states that carry significant one- Figure 3 shows the results of calculations performed on a
photon or two-photon intensity. For the Hamiltonian usedring of polyacetylene with 142 carbon atoms, using the PPP
here, the first photon creates an exciton. Although the exciqamiltonian of Sec. Ill A and implementing translational
ton is delocalized over the entire polymer, as in E5), the  symmetry as described in Sec. Ill B and Appendix B. The
operatorQﬁ creates an excitation with a limited size. In the predicted hyperpolarizability is shown relative to that of a
“center-of-mass” coordinate system ﬂ‘ﬁ in Eq.(5), part of  Huckel model parametrized to yield the same optical gap as
the polymer remains in the ground electronic state. If thethe correlated modékee Sec. Ill A. Two parameters define
second photon operates on a ground-state portion of thiéne scattering basis set, , the maximum separation be-
chain, it will create an additional one-photon excitation.tween electrons and holes andg.,,, the size of the scattering
Two-photon states with this character may be described witlhegion within which the interactions between excitations are
the contracted basis functions of Eq8) and (10) that de- allowed to alter the form of the excitations. The convergence
scribe two well-separated excitations in a “center-of-mass”of the calculated hyperpolarizability with respect to these
coordinate system. These contracted functions provide parameters is shown in Fig. 3. The converged result corre-
good description of the action of the second photon, excepdponds to a calculation in which&Cl calculation is used to
when(i) the second photon creates electrons and holes in theescribe the essential B, one-photon stateother !B,
vicinity of the excitation created by the first photon(dj the  states are not includedind a full SD-EOM calculation is
second photon directly modifies the excitation created by theised to describe the two-photon states. The converged result
first photon. In both cases, a local primitive basis should bés nearly identical to that of Huckel theory. The significance
sufficient. The first case leads to a scattering contribution t@f these results is discussed in Sec. V.
the hyperpolarizability and a local basis is sufficient, since Figure 4 shows the convergence of the results with re-
the second excitation must be produced near the first excitapect to the number of unit cells. Since periodic boundary
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FIG. 4. The convergence of the essential excitation/scattering FIG. 5. Excited energy levels obtained for a “polymer” of non-
calculations to the polymeric limit, compared to Huckel &I interacting butadiene molecules arranged in the geometry of a poly-
theory. Scattering calculations witim, ;=10 and mg,~4 are  acetylene chain. Any dependence on the number of butadiene mol-
shown for up to 71 unit cells. To aid comparisons of the rate ofecules is a result of size inconsistency in the computational
convergence, all results are scaled to their value at 71 unit cells. approach.

conditions are used, these calculations do not reflect the agize consistency used below, the results obtained on a dimer
tual chain-length-dependence of the hyperpolarizabilityconsisting of two identicainoninteracting monomers are
They are provided to demonstrate that the scattering calcul&ompared with the results obtained on a monoffiér size-
tions of Fig. 3 are near the polymeric limit. While the scat- consistent method should find the hyperpolarizability and
tering calculations converge more slowly than those ofother extensive properties of the dimer to be twice those of
S-Cl or Huckel theory, the 71 unit-cell result with, ,=10, the monomer. The po_Iymerlc limit refers to the ch_a|n I_ength
Mea=4 is near the long-chain limit. Results with, ,=4  beyond which doubling the length of the chain simply
and mg.,=2 are shown for up to 131 unit cells, to demon- doubles the size of the response. For a method to correctly
strate that the hyperpolarizability obtained from the scatteridentify and describe this limit, it must treat a long chain
ing formalism approaches the long-chain limit in a manneWith an accuracy that is equivalent to that of a shorter chain.
similar to that ofS-Cl theory. For instance, Figs. 5 and 6 show results obtained from cal-
We are currently extending this method to the resonangulations on between_ 1 andr@minteractingbutadiene_mol-_
response. The scattering basis set is designed to provide€gules, arranged as if to form a polyacetylene chain. Since
valid description of those states that carry significant onethe molecules do not interact, there should be no dependence
and two-photon intensity. The nonresonant response is a sufif! the number of butadiene molecules. However, due to size
over these states and convergence of this highly averaged
qguantity does not imply that the positions and intensities of 10
all of the excited states are converged. This is especially true S-CI
for states such as thelag state that do not carry much
two-photon intensity. The resonant response converges more
slowly, since it is more sensitive to the positions and inten-
sities of the excited states. It may be possible to speed con-
vergence by allowing a larger electron-hole pair separation,
M., in the singly excited configurations of the SD-EOM
basis; however, using a larger,.,, for the doubly excited ) . i
portion could lead to an unbalanced description of the one- Essential excitations/scattering
photon and two-photon states and introduce size inconsisten- 2 i
cies(see Sec. Y. To study the resonant response, it is also r SD-EOM
necessary to take Coulomb screening into account, since the 0
Ohno parametrization is known to substantially overestimate ) ] )
the exciton binding energies relative to those seen in solid- Number of noninteracting butadiene molecules
state materials®

Yoo (10737 esu)

1 2 3

FIG. 6. Static hyperpolarizability obtained for the “polymer” of
noninteracting butadiene molecules of Fig. $CI, SD-CI, and
IV. SIZE CONSISTENCY SD-EOM refer to the use of these methods to generate the excited
OF THE SCATTERING FORMALISM states of Eq(1). [As discussed in Sec. I§-Cl theory ignoresy_ of
Eqg. (1).] The essential excitation/scattering approach uSe3l
A size-consistent method is one that describes both smatheory for the one-photon states and SD-EOM theory for the two-
and large systems with equivalent accuracy. In the test fophoton states.
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inconsistencies in SD-CI theory, a single butadiene molecule

! . _ o e el e aPa® o
is described more accurately than two or more butadiene | ; RPN
molecules. This leads to a large, spurious chain-length de- %’ SDEOM | ? {Brillioun |
pendence in both the excited-state energies and the hyperpo- of Ir - *I - 7| - ‘: T
larizability per butadiene molecule. This effect was seen by 2%’ Monomerl | =0 000
Tavan and Schultehwho found that the SD-CI excited-state N R P e T
energies increase with chain length on long chaifibe en- o [ 1| SDEOM | ipritlioun|
ergies initially decrease with chain length, since the energy o | 4, T *I of IF T “I‘ T
stabilization from the increase in conjugation length offsets o I | Monomer2 {8 @
the rise due to size inconsistencjeShese spurious chain- N R e e i
length dependencies make it difficult to use SD-CI theory or ~ %* % ! | | monomery
other size-inconsistent methods to study the polymeric limit Jre T _: T 41 T _:_ T 7 7| charge”

|
of the hyperpolarizability. ' | I l
This section considers the requirements of size consis-
tency and how these requirements are met by the scattering _ _ . o
formalism of Sec. Ill. We begin by showing that SD-EOM FIG. 7. Schematic representation of the matrix that arises in

. . - .. splving the linear variational problem of SD-EOM theory, for a
theory provides a size-consistent approach to the exmteg?mer consisting of two noninteracting monomers, Exp). Those

states. We then show that to obtain size consistency in gi,cks labeleds are zero, because the Hamiltonian of the dimer is

sum-over-states approach to the hyperpolarizability, it is neCseparable. Those blocks labele@Brillioun” are zero only due to
essary not only to use a size-consistent approach to the eRgrillioun’s theorem.

cited states, but also to use a balanced description of the one-

and two-photon states. This balance is achieved by using lground state=|HF),

S-Cl theory to describe the one-photon states and SD-EOM

theory to describe the two-photon states. Finally, we Shoviexcited Statb:(QT(1)+QT(1)+QT(2)+QT(2)+QT(1)QT(2)

that the contracted, scattering basis set maintains the balance s b s b s s

needed for size consistency. +QTCD)|HF), (12)
The scattering calculations of Sec. Il are designed to ex- . fin _ o _

plore the effects of Coulomb scattering between excitationswhere Q50 (L0 is a linear combination of single-

This requires the inclusion of at least double-electron-holddouble) electron-hole pair creation operators on fith

pair configurations. But SD-Cl theory would use thesemonomer and)™©7 is a linear combination of both single

double-electron-hole pair configurations not only to describeind double-electron-hole pair-creation operators that transfer

the excitations present in the excited states, it would also migharge between monomers. The variational determination of

these configurations into the ground state in a sizelhe linear parameters defining these operators leads to the

inconsistent attempt to describe dynamic correlatiorplock'd_iagonal_ matrix shown _scher_natically in Fig. 7. This
effects® This unwanted side effect of SD-CI theory can be Matrix is identical to that obtained in SD-CI theory except,

removed by constraining the ground state to remain th ue to the constraint of Eq11), there are no connections

Hartree-Fock ground state, as in the SD-EOM approach o et‘(ve‘?” 4t7he Hartree-Fock 'ground state_ and' double
Eq. (4). We refer to this method as an equation-of-motionexc'tat'ons' Those blocks of Fig. 7 labeled with an isolated

method, since constraining the ground state to remain th are zero because the Hamiltonian for a dimer of noninter-
’ i i — (1) (2)
Hartree-Fock ground state is equivalent to the “killer” con- 8Cting Monomers is separablé;= H™ '+ H". However, the

dition of equation-of-motion theorf. The killer condition separability of the Hamiltonian does not by itself lead to the

requires that none of the excitations createdBybe present Iblgdl( 3'?%036!::.2""“9?. oth'he7SD-EOM maltnxc.i Thte %IQICkS
in the ground state: abele rillioun” in Fig. 7 are zero only due to Bril-

lioun’s theorem. These blocks connect single excitations on
one monomerQ L") to double excitations involving both
0|ground statg=0, (11) monomer.sﬂg(l)ﬂg(z). That off-diagonal blocks of this type
are zero is a special result for SD-EOM theory that does not
apply when triple or higher electron-hole pair excitations are
where() is the destruction operator conjugate@®. In the  included inQ' of Eq. (4). For example, in SDT-EOM theory,
SD-EOM theory used herd)' is a linear combination of the block connecting & to Q{0 [ would be nonzero.
single- and double-electron-hole pair-creation operators. Two blocks of the SD-EOM matrix in Fig. 7 are identical
Note that due to Brillioun’s theorefff the S-CI ground state to those that would be obtained in SD-EOM calculations on
remains the Hartree-Fock ground state &@l theory and each of the monomers. This demonstrates that SD-EOM
S-EOM theory are equivalent. The SD-EOM procedure cartheory provides a size-consistent description of the excited
also be viewed as equation-of-motion coupled-clustestates, in the sense that an SD-EOM calculation on a nonin-
theory®®> with the cluster operator set to zero. teracting dimer produces excited states that are identical to
The size consistency of SD-EOM theory can be exploredhose obtained in an SD-EOM calculation on a monomer.
by applying the method to a noninteracting dimer. TheFigure 5 confirms this by showing that the excited-state en-
ground and excited states of the dimer are given by the folergies predicted by SD-EOM theory are independent of the
lowing: number of noninteracting butadienes. However, Fig. 6 shows
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that using SD-EOM theory to generate the excited states fang region, a full SD-EOM calculation is used for the two-
a sum-over-states calculation of the hyperpolarizability, Eqphoton states. In addition to states containing two separated
(1), leads to a predicted hyperpolarizability per butadienel !B, excitations, a full SD-EOM calculation produces states
molecule that depends on the number of butadiene molecule®ntaining, for example, two separated'B, excitations.
and so is not size consistent. The contribution of these states4q should be balanced by
The size inconsistency of SD-EOM theory’s prediction terms iny_ involving two n *B,, excitations. But such terms
for the hyperpolarizability is a result of an unbalanced de-are not present in the calculations of Sec. Ill, where the one-
scription of the one- and two-photon states in Ef. In photon states of._ are restricted to the B, state. This is a
addition to excited states in which one of the monomers igpotential source of size inconsistency, since states containing
excited, the dimer calculation produceés excited states in- two n 1Bu excitations make a contribution tg, that scales
volving charge transfer between the monomers @ndex-  asN2 This size inconsistency will arise in the limit of a large
cited states in which both monomers are excited. The chargecattering region when a one-photon excitation other than the
transfer states do not carry optical intensity and so do not 1B, state carries significant one-photon intensity. As a test,
contribute to the summations of El). (Charge-transfer the interband portion of the transition moment operaasf
states also appear B-Cl calculations on the dimgrHow-  Eq. (1), was modified such that the'B, state carried all of
ever, states in which both monomers are excited do Carr}he interband intensity_ The Change in the predicted hyperpo-
intensity and it is these states that lead to a size-inconsistedrizability was about-4% (for m, ;=9 andmg.,=4), indi-
prediction for the hyperpolarizability. As discussed in Ap- cating that the results of Fig. 3 are not contaminated by this

pendix A, two-photon state$B) of Eq. (1), containing two  potential source of size inconsistency.
noninteracting excitations do not contribute to the hyperpo-

larizability, since their contribution toy, is canceled by
terms iny_. But for this cancellation to occur, the two ex-
citations present in the two-phonon sta®) must be de-
scribed with the same accuracy as a single excitation in the Figure 3 compares the essential excitation/scattering cal-
one-photon statefA) or |C). This is not the case in SD- culations withS-Cl theory and a Huckel model parametrized
EOM theory. In states where only one of the monomers igo yield the same optical gap as the scattering &l meth-
excited, the excitation is identical to that obtained in an SD-ods. In discussing the agreement between these three meth-
EOM calculation on a monomer; whereas in states whereds, it is useful to consider how each describes the nonlinear
both monomers are excited, each of the excitations containsptical process.
one electron-hole pair and is identical to that obtained from a In the independent electron approximation of Huckel
S-ClI calculation on a monomer. Thus, in states containingheory>*°2the response is dominated by the intraband, mi-
one excitation, the excitation is described at the SD-EOMgration process of Fig. (&).3430°3-5Qualitatively, we ex-
level, while in states containing two excitations, the excita-pect this to be a very nonlinear process, since the first photon
tions are described at th®-Cl level. This unbalanced de- sees an insulator and must create an electron-hole pair, while
scription interferes with the cancellation betwegnand y_ the second photon sees a conductor and moves the electron
and leads to a spurious and size-inconsistent contribution tor hole within the one-dimensional band structure. Huckel
the hyperpolarizability from states containing two noninter-theory includes only Pauli exclusion interactions between ex-
acting excitations. citations and, for the parameters of Sec. Il A, the resulting

This imbalance is removed by usirgCl theory to de- Pauli scattering/saturable absorbance contribution is about
scribe the one-photon states of Efj) and SD-EOM theory 25% of, and opposite in sign to, the migration contributi®n.
to describe the two-photon states. In this manner, a single S-Cl theory®**~1"models the effects of electron correla-
excitation in a one-photon state is described with the sam#on on the intraband, migration process by constraining the
accuracy as two excitations in a two-photon state. The sizexcited states to contain a single-electron-hole pair and in-
consistency of this hybri®-Cl/SD-EOM scattering formal- cluding Coulomb interactions between the electron and hole.
ism is demonstrated for noninteracting butadiene molecule€oulomb interactions may limit the degree of charge separa-
in Fig. 6. tion in the low-energy excited states through the formation of

The construction of a contracted basis set for the scattebound electron-hole pairs or excitons. For the Hamiltonian
ing calculations must also be done in a manner that ensuresused here, the B, state carries most of the one-photon
balanced description of the one- and two-photon states. Thiatensity and contains an exciton with the separation between
calculations of Sec. Ill include a single essential one-photorthe electron and hole limited to about four unit céfi4’
excitation, the B, excitation of S-Cl theory. The two- Despite the small size of this exciton, the migration process
photon states are described with SD-EOM theory and th@as modeled bys-Cl theory makes a contribution to the hy-
“outside the scattering region” portion of the basis consistsperpolarizability that is about half the migration contribution
of functions containing two separatedf,, excitations. The  of Huckel theory®® This suggests that even with unscreened
form used for the separated excitations in the two-photorCoulomb interactions, the electron-hole pair separation in the
states is identical to the form of the excitation in the one-excitons is sufficiently close to the free-electron-hole pair
photon states. This ensures a balanced description of statlsit that Huckel theory provides a valid description of the
containing one versus two excitations. migration process.

There is a potential source of size inconsistency in the The essential excitation/scattering method use€l
calculations of Sec. lll, relating to the truncation of the num-theory to describe the one-photon states, and SD-EOM
ber of one-photon excitations. In the limit of a large scatter-theory to describe the two-photon states. So in addition to

V. DISCUSSION
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8 . . , , independent electron model, strongly suggests that electron
E—aS-CI2'A, correlation does not play a central role in establishing the
q 6—oS5-CI11'B, magnitude of the nonresonant hyperpolarizability of conju-

7 o-oSD-CI1B, A gated polymers.
A-ASD-CI2!A, A number of issues remain to be examined, including the
< <aSD-EOM 1'B, study of a broader range of chemical structures and Hamil-

tonian parameters. This paper also does not consider the re-
sponse of short polymer chains. We expect Huckel theory to
provide a better description of polymers than of short chains,
since it may be only in the polymeric limit that the hyperpo-
larizability is dominated by the long-range charge transfer
present in the migration process of Huckel theory. Another
issue that needs further study is the mixing between single-
and double-electron-hole pair configurations in SD-EOM
theory and what this means for the separation of the intra-
-------- band, migration and interband, scattering contributions. Fi-
------- nally, the calculations presented here use the Hartree-Fock
ground state and thus ignore the effects of dynamic correla-
4 6 8 10 12 14 tion.

Although further investigations are needed, the agreement
found here between the essential excitation/scattering model
and the independent electron model suggests that it is not
necessary to include electron correlation in models of the
nonresonant nonlinear optical response.

including the effects of Coulomb interactions on the form of
the excitations, the scattering formalism includes Coulomb ACKNOWLEDGMENTS

interactions between the excitations. That the scattering for- Ack led (i de tothe D f The Petrol
malism yields a nonresonant hyperpolarizability that is in cknowledgment IS made 1o the onors of The Fetroleum
o : Research Fund, administered by the American Chemical So-
gualitative agreement with Huckel theory suggests that Cou-. .
o . . . _ciety, for the support of this research.

lomb scattering is not a major contributor to the polymeric
limit of the nonresonant response.

Since the excited states predicted by the scattering formal- APPENDIX A: CANCELLATION
ism exhibit large effects due to electron correlation, the OF SIZE-NONLINEAR TERMS

agreement between the essential excitation/scattering calcu- 1, ndix shows that terms-n of Eq. (1) where th
lation and Huckel theory is significant. For instance, the exy s appendix shows that termsjn of Eq. (1) where the

. - . . . wo-photon statéB) contains two noninteracting excitations
cited states exhibit exciton formation and IOW'IW}@‘Q . are canceled by terms im_ and therefore do not contribute
states. The .QA.Q state does not carry much two-phot(_)n N 1o the hyperpolarizability. Noninteracting means that the
tensity, but it is a highly corrgla.ted state that prowde_s resence of the first excitation has no effect on either the
ugeful benchmark f%; the deslcrlptlon of elegtron CorreI""t'onenergy or transition moment involved in the creation of the
Figure 8 shows the 1B, and_2 A, states obtained from both second excitation. For convenience, we introduce two exci-
S-Cl and SD-EOM calculat!ons on p(_)lyenes. The_ SD'EOMtations, exg and exg. E; is the energy of a state containing
method used by the scattering formalism to describe the two

X - , _“eXG, mMoi IS the transition moment for creating exan the
photon states reprO(_juces the behavior seen in conﬁguranoa—round electronic state, ang, is the Hermitian conjugate of
interaction calculation®;”*¢%" namely, mixing between ’

, T L Moi- Consider terms iy, where the first photon creates gxc
single and_ double excitations significantly lowers th%Ag_ ar?d the second photor;rcreates2e>t{:the two excitations do
lstatethrelaﬂve to_thelét_ pr%d'gng%fﬁl ttrr]leory. Fo(rj_thte chain not interact, then the transition moment for the creation of
etn? s IS OV;’Q ";B Ig.t t' r'].l . theorylpre Ic SI éAt% i the second excitation igy, and the energy of the state con-
state below the Ib, siate, while in the eo ymer|c47|m|_, "' taining both excitations i€, +E,. Creation of these two
predicts a 21LAg state that lies above the*B, state®’ This

behavior in the long-chain Iigit is in disagreergsnent with ex- excitations leads to the following terms i,
trapolations from experimentsand calculations on short

chains, and with the recent observation'sf; states below Vi= foiftoztzoit1o | Houtoftioit2o
the 1'B, state in polydiacetylen¥. Although SD-EOM Ei(Es+Ex)Ey  Eo(Es+Er)E,
theory apparently does not provide a quantitative descriptio
of the 21Ag state in the long-chain limit, mixing between
singly and doubly excited configurations lowers th

state from 2.2 eV above the'B, state inS-Cl theory to
only 0.35 eV above the 1B, state in SD-EOM theor§/’
That SD-EOM theory captures this effect of electron corre-

V- VSD-EOM 2'A, 1

Energy (eV)

number of carbon atoms

FIG. 8. Excited-state energies fro8Cl, SD-CI, and SD-EOM
calculations on polyenes.

(A1)

th the first term, stat¢éC) contains exg and in the second
term, state|C) contains exg. The terms in Eq(Al) are
canceled by terms ir_, where statéA) contains exgand
state|C) contains exg,

lation yet the essential excitation/scattering method gives a y = Fotioftodtz (A2)
nonresonant hyperpolarizability that agrees with that of the EiE2
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This cancellation will be present for all terms 41, where  center of thenth unit cell has coordinates=R cos(2mn/N)

|B) contains two noninteracting excitations. andy=Rsin(27n/N). We assume a planar system wih

andy; the coordinates of th¢th atom of the Oth unit cell,

APPENDIX B: EVALUATION OEF MATRIX ELEMENTS relative to the center of the unit cell. Tih¢h unit cell may be
USING TRANSLATIONAL SYMMETRY obtained by displacing the center of the Oth unit cell to the

) ~_appropriate position on the ring and rotating the unit cell by
To take advantage of translational symmetry, the primi- -n/N. Thex coordinate of thgth atom in thenth unit cell

tive basis functions are written as in &), is then given by
N—-1
1 : 2mn 2mn 2mn
(I)K — elKnOaT HF , Bl L = = . P et )
|DK) N nz,o ' HF) (B1) Xnj=R co§ — = | +cog = | X+ sin ==

where the sum is oveX unit cells andO2" creates electron-
hole pairs displacedh unit cells from those created by
02", The Hamiltonian is diagonal ifK with matrix ele-
ments,

1 . :
:§{(R+dj)el(2ﬂ'n)/N+[(R+dj)el(Zﬂ'n)/N]T}, (84)

Yvheredj =X;—ly;. Itis convenient to introduce an operator,
X, that is diagonal in the atomic basis with matrix elements
A N1 (R+d))e@™N The X operator of Eg.(1) is then
(DFIH|DKY= D, e ""(HF|OPHOZTHF), (B2) x=x+x'. The advantage of this decomposition of the
n=0 operator is that a rotation of the ring Iayunit cells causeg
. b to be multiplied by the phase factet?™/N. The X matrix
(®f|H|HF) = VN(HF|OgH|HF), (B3 elements are then,
whereO2 is the destruction operator conjugateQﬂT. The N—1
matrix elements in EA%S(.BZ) and (B3) are evaluated using <q)§’|§(|q)§>: E e—iK'n[<HF|Og)A(Og*r|HF>5KI’K+2W/N
standard proceduréd®: n=0
To obtain a periodix operator, we use that for a ring of

b2 tHat
polymer withN unit cells. In the scattering calculations, we +(HFIORX Og'|HF) 6k k—2min], (BS)
also assumed that the carbon atoms are uniformly spaced on Kia b~
the ring (see Sec. Il A, but the equations derived here do (PplX|HF)= \/N[<HF|00X|HF>5K,ZW/N

not rely on this assumption. Reference 30 shows that this
choice for thex operator gives the proper polymeric limit for
the response within Huckel theory. The radius of the ring isy is a one-electron operator and the matrix elements of Egs.
R=Na/2m, wherea is the length of the unit cell, and the (B5) and(B6) are evaluated using standard proced?és.

+(HF|OgX[HF) 8¢ _omn].  (BO)
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