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We describe the influence of the crystal lattice on the enhancement of the electron-positron annihilation rate
in metals by the use of an alternative version of the Bloch-modified ladder~BML ! theory, which we call the
optimizedBML approximation. This approach to the problem of positrons interacting with an inhomogeneous
electron gas can be reliably applied to metals with high and medium valence electron density, especially to
transition metals, but is less efficient for metals with low electron densities such as, e.g., alkali metals. It
enables us to describe the role of lattice effects in an approximative but nevertheless physically reasonable
way. The paper offers~i! an extensive presentation of the theory and~ii ! a summary of momentum-dependent
enhancement results obtained for a series of simple andd-band metals~Al, Cu, Pd, Mn, and V! both for the
central momentum region and for near umklapp regions. These BML enhancement factors are compared with
corresponding results of the local-density approximation and with enhancement factors extracted from two-
dimensional angular correlation experiments. The main result of this paper is that we are able to demonstrate
that for all metals and for all regions of the momentum space investigated, the lattice effects on the electron-
positron enhancement are significant and therefore should not be neglected in theoretical work.
@S0163-1829~96!02131-5#

I. INTRODUCTION

For a reliable interpretation of positron annihilation ex-
periments ~e.g., lifetime or angular correlation measure-
ments! in metallic systems, an understanding of the Coulom-
bic electron-positron (e-p) interaction and theenhancement
of the annihilation rate due to this interaction is of vital im-
portance. Usually, theoretical investigations about thee-p
interaction in metals start with the correspondingjellium
problem, i.e., with the study of the behavior of electron-
positron pairs in ahomogeneouselectron gas. A successful
calculation of the momentum-dependent enhancement of the
electron density at positron position in jellium was done by
Kahana1 by a summation of ladder diagrams of the electron-
positron two-particle Green’s function. There is a general
agreement that this approximative description of a typical
many-body problem by electron-positron pairs embedded in
an electron gas is reasonable as long as the electron density
within the metal is not too low and the probability of the
creation ofe-p bound states is small. Later refinements of
Kahana’s theory are due to Boron´ski et al.2 and to Rubaszek
and Stachowiak,3 who presented a fully self-consistent solu-
tion of the Kahana equation. Other independent theories on
positron enhancement in jellium elaborated by several au-
thors can be found in the literature~see, e.g., the review
article by Stachowiak and Rubaszek4 and the references
therein!. Due to all these efforts, we can say that the physics
of positrons annihilating in a homogeneous electron gas is
essentially well understood.

However, this is by no means the case for thee-p inter-
action within aninhomogeneouselectron gas~‘‘beyond jel-
lium’’ ! where one has to face the problem that both the elec-
trons and positrons are submitted to an external potential that
is periodic with respect to the lattice of the metal ions. This
lattice potential causes two important features in the momen-
tum density of annihilation pairs~MDAP! of electrons and

positrons, namely, at first, the appearance of high-
momentum~umklapp! components~HMC’s! whose intensity
is relatively small forsp-like valence electrons but may be
considerably large ford-like or f -like electrons in transition
or noble metals or for tightly bound core electrons. Second,
there is some evidence that both the strength and the momen-
tum dependence of the enhancement ford-like and f -like
electrons is different from the results of the Kahana theory.
Both effects can be empirically decribed by using Kahana-
like but energy-dependent enhancement factors~according to
an idea of Sˇob5,6 and, independently, Mijnarends and
Singru7! and by state-dependent enhancement factors with
different coefficients forsp-like andd-like electron states.8,9

These ideas were successfully used in many other investiga-
tions; see, e.g., Refs. 10–15.

An important aspect in the theory of the electron-positron
interaction was the use oflocal enhancement factors. This
idea goes back to papers by Bonderupet al.16 and
Chakraborty17 and was further developed by Daniuk
et al.18,19 and similarly by Jarlborg and Singh.20 All these
efforts led to a local-density approximation~LDA ! for the
calculation of thee-p enhancement in condensed matter. The
basic principles of the LDA are given in Sec. III of this
paper; for more detailed information see the recent review
article by Šob21 and the references therein.

During the past decade, different versions of the LDA
were successfully used for investigations on positron annihi-
lation in various materials such as simple metals~alkali met-
als, magnesium!,22–253d and 4d metals,18–20,22,26,27alloys,28

and high-Tc superconductors.
29–31 Systematic investigations

on electron-positron enhancement factors in metals based on
the LDA may be found in Refs. 32–37 and their mutual
comparison with respect to the agreement with experiment in
Ref. 38; a thorough theoretical analysis of the LDA for pos-
itrons is performed in Ref. 39.

Extensively discussed in many of these LDA investiga-
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tions is the question whether the high-momentum compo-
nents of the MDAP arelessor moreenhanced bye-p inter-
action effects than the components of the central-momentum
region. In the literature, such effects are calleddeenhance-
ment or overenhancementof the annihilation rate, respec-
tively. An exact definition of these effects is given at the
beginning of Sec. VIII D 2. A deenhancement effect was pre-
dicted by Fujiwaraet al.40 and was studied in some early
papers by Hede and Carbotte,41 Sormann et al.42,43 and
Šob.5,9,44–46Over the past years, the possibility of the con-
troversial overenhancement effect of HMC’s has been stud-
ied in Refs. 23 24, and 27.

A second important feature of thee-p annihilation in met-
als, namely, the decrease of thed-electron enhancement fac-
tor with increasing momentum, for which there is some ex-
perimental evidence,10,11 was also observed in LDA
studies.20,26 Both this topic and the question of deenhance-
ment or overenhancement of HMC annihilation rates in met-
als will be discussed in Sec. VIII of this paper.

Despite the impressing results of the LDA, this approach
is incomplete in the following sense: it does not explicitly
take into account the influence of the crystal lattice on the
electron-positron interaction. It is clear that all Coulombic
interactions between electrons and positrons can be consid-
ered as scattering processes where the particles are scattered
out of their occupied states. As we shall show in Sec. II from
a more mathematical point of view, we have to deal with two
quite different types of scattering processes, namely,~i! be-
tween the electron and positron that constitute the annihilat-
ing pair and~ii ! between all other electrons that react to the
existence of the disturbing positron by a polarization of the
electron gas. In both cases, unoccupied electron and positron
Bloch states appear that are not included in the local-density
approach.

The influence of these lattice effects on the positron anni-
hilation in metals is the main topic of the present paper,
where we focus our attention on the interaction of thermali-
zed positrons withitinerant electrons, i.e., withsp-like and
nearly free valence electrons, and withd-like electrons in
transition and noble metals, which also have an itinerant
character but are more tightly bound to the atomic nuclei
than thesp electrons. The annihilation of positrons with core
electrons and of positrons trapped in defects of the lattice are
not treated in the present investigation.

An inclusion of lattice effects in the enhancement theory
of metals is, in principle, possible by an application of Ka-
hana’s theory to the nonjellium case, i.e., to an inhomog-
enous electron gas. Such a procedure was proposed by
Carbotte47 and was used for an approximative calculation of
the enhancement for core electrons.48 This approach@for
which the present author proposed the nameBloch-modified
ladder~BML ! theory# is based on a numerical solution of the
Bethe-Goldstone equation for the inhomogeneous electron
gas. The mathematical background of the BML is given in
detail in Refs. 47 and 49 and is briefly reviewed in Secs. IV
and V of this paper.

Unfortunately, Carbotte’s approach is much too compli-
cated to be used for a calculation of the enhancement of the
annihilation rate of positrons interacting with itinerant metal
electrons. Therefore, based on Carbotte’s work, Sormann
and Puff43 published a lattice-modified Kahana theory, where

in the ladder expansion of thee-p Green’s function the
‘‘Bloch character’’ of the interacting electrons and positrons
is at least partly taken into account. Because of the approxi-
mations included in this approach, which is described in de-
tail in Refs. 43 and 50 and in Sec. VI, it was called the
quasifree~QF! BML theory. An application of the QF BML
theory to the enhancement of the HMC’s in alkali metals43

gave a qualitative indication of a more or less pronounced
deenhancement effect. At least for lithium, the QF BML re-
sults within the~110! umklapp region50 led to significantly
better agreement between experiment51 and theory. Addi-
tionally, the QF BML theory also yields the typical non-
Kahana-like momentum dependence of enhancement factors
of d-electrons in metals, as it was shown for the noble metals
copper and silver52 and the transition metals nickel and
iron.53

Over the past years, some efforts were made to improve
the ladder approach for the inhomogeneous electron gas by a
physically more realistic description of the electron and pos-
itron scattering states. We mention here in particular the
work of Boroński, Jarlberg, and co-workers,54–56 which is
based on the approximative evaluation of the Bethe-
Goldstone equation using single-particle Bloch functions for
the electrons and parametrized positron wave functions. The
effectivee-p interaction potential is given as a local function
dependent on the position of the positron. From this point of
view, this work of Boron´ski and Jarlborg represents a com-
bination of the LDA with Bloch state scattering effects. We
shall return to this approach in Secs. VII A and VIII E.

In 1992, the present author started to develop the QF
BML approach with the aim of a more efficient inclusion of
lattice effects into the theory. Apart from some preliminary
reports,57–60this paper offers an extensive presentation of the
result of those efforts, the so-calledoptimizedBML ~OBML!
theory. Mathematical and numerical details of this approach,
including a discussion about its applicability, are given in
Sec. VII. It turns out that the OBML theory is very efficient
for all metals with high and medium valence electron density
~such as, e.g., aluminum, copper, and transition metals!, but
is less qualified for metals with low electron densities such
as, e.g., alkali metals. In Sec. VIII, after some general re-
marks on thee-p interaction potential, we present a compari-
son between OBML and LDA enhancement results for the
simple metal Al and thed-band metals Cu, Pd, Mn, and V
for both the central momentum region and near HMC re-
gions. A confrontation of OBML and LDA results with en-
hancement factors extracted from two-dimensional~2D! an-
gular correlation of positron annihilation radiation~ACPAR!
experiments is also given in Sec. VIII, followed by a conclu-
sion of this paper in Sec. IX.

II. BASIC NOTIONS AND DEFINITIONS

All theoretical investigations on the electron-positron in-
teraction in metals, especially if one deals with itinerant elec-
trons as we do in this paper, are based on the well-known
formula for the two-particle momentum density of annihila-
tion pairs61
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r2g~p!5~2 i !2E
V
d3xd3yexp@2 ip•~x2y!#

3Gep~xt,xt;yt
1,yt1!, ~1!

where\p is the photon-pair momentum,V is the volume of
the crystal, andGep represents the zero-temperature electron-
positron Green’s function. The arguments of this function
describe the propagation of an electron-positron pair from
space pointx to space pointy during the ~infinitesimally
small! time differencet12t. The corresponding momentum-
dependent rateR2g(p) for a two-photon (2g) annihilation is
given by

R2g~p!52
r 0
2pc

V
r2g~p!, ~2!

with r 0 andc the classical electron radius and the velocity of
light, respectively, and the factor 2 accounting for the spin
degeneracy.

Following Kahana1 and his enhancement theory for the
homogeneous electron gas,Gep can be approximated by the
integral equation

Gep
L ~x,x8;y,y8!5Ge~x,y!Gp~x8,y8!

1
i

\E dzdz8Ge~x,z!Gp~x8,z8!Vep~z,z8!

3Gep
L ~z,z8;y,y8!, ~3!

with x[xtx , y[yty , x8[x8tx8, y8[y8ty8, z[ztz , and
z8[z8tz8. Ge andGp are the single-particle Green’s func-
tions for an electron and a positron, respectively, andVep

describes the effective interaction potential between the two
fermions. The superscriptL in Eq. ~3! stands forladder ap-
proximation orladderexpansion because of the ladder form
of the corresponding Feynman diagrams. The single-particle
Green’s function for a noninteracting electron propagating
within a lattice-periodic potential is given by the
expression62

Ge~xtx ,yty!5 lim
h→01

1

2pE2`

1`

dve2 iv~ tx2ty!(
n,k

cnk~x!cnk* ~y!

3F Q~EF2Enk!

v2Enk /\2 ih
1

Q~Enk2EF!

v2Enk /\1 ih G , ~4!

wherecnk means an electron wave function with the band
indexn and the Bloch vectork within the first Brillouin zone
~BZ!. Enk is the corresponding eigenenergy, and the step
functionQ accounts for the Fermi-Dirac distribution of oc-
cupied fermions at zero temperature. Similarly, the single-
particle Green’s function for a positron has the form62

Gp~xtx ,yty!5 lim
h→01

1

2pE2`

1`

dve2 iv~ tx2ty!(
nk

wnk~x!wnk* ~y!

3F dnk,10
v2E10

1 /\2 ih
1

12dnk,10
v2Enk

1 /\1 ihG , ~5!

with the positron Bloch stateswnk and the corresponding
eigenenergiesEnk

1 . Due to the fact that in a positron annihi-
lation experiment there is usually only one positron in the
sample, the only occupied positron state will be situated at
the bottom of the lowest band (n51! at the G point
(k50). Taking this into account, in Eq.~5!, the step function
of Eq. ~4! has to be replaced by the Kronecker delta.

The cnk and wnk are solutions of the single-particle
Schrödinger-like equations

F2
\2

2m
D1Vc

2~r !1Vxc
2 ~r !Gcnk~r !5Enkcnk~r !, ~6!

F2
\2

2m
D1Vc

1~r !1Vcorr
12~r !Gwnk~r !5Enk

1 wnk~r !. ~7!

In these equations,Vc
6 means the Coulombic potential en-

ergy of the particle due to the~rigid! lattice of the atomic
ions and the Hartree potential,Vxc

2 represents the LDA of the
exchange and the~static! correlation of the electron with the
other electrons, andVcorr

12 in Eq. ~7! is the single-particle
electron-positron correlation potential, also in the LDA,
eventually in a parametrized form as it has been published by
Boroński and Nieminen.63 This potential must be distin-
guished from the two-particlee-p interaction potentialVep,
which appears in Eq.~3! for the electron-positron Green’s
function. From the point of view of a perturbation expansion
of Gep , Vcorr

12 represents a self-energy insertion into the pos-
itron Green’s function, whereasVep describes the two-
particle interaction of the annihilating electron-positron pair.
Concerning the enhancement, this potential is usually much
more important than the self-energy effect. For this reason,
theVcorr

12 in Eq. ~7! is neglected in many theoretical investi-
gations and also in the work presented. But it should be
emphasized that this neglect might not be justified in each
case. For example, as we learned from a paper of Daniuk,
Šob, and Rubaszek,33 for the core annihilation, the effect of
Vcorr

12 might be significant.
According to Eqs.~1!–~5!, all lattice effects result from

the fact that, in crystalline systems, the electron and positron
Green’s functions~4! and ~5! have to be based on Bloch
waves. Therefore, we have to deal with two principally dif-
ferent influences of the crystal lattice on the electron-
positron Green’s functionGep and, consequently, on the
MDAP: ~i! the lattice effect on the scattering processes be-
tween the annihilating electrons and positrons is included in
the single-particle Green’s functionsGe andGp that appear
explicitly in the integral equation~3! and~ii ! the lattice effect
on the polarization of the electron gas is included in the
electron Green’s functionsGe that implicitly appear in the
interaction potentialVep in Eq. ~3!; more details about this
subject are given in Sec. V. Henceforth in this paper, the
compact terms ‘‘lattice effect on thee-p scattering’’ and
‘‘lattice effect on the polarization’’ will be used in the sense
described above.

Taking into account only the first term of the ladder ex-
pansion~3!, i.e., the term of zeroth order with respect to
Vep, and also neglecting the effect of the correlation poten-
tial V corr

12 in the single-particle Schro¨dinger equation~7!, one
gets the electron-positron Green’s function according to the
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independent-particle model~IPM!, which is simply a product
of the electron and positron single-particle Green’s functions

Gep
IPM~x,x8;y,y8!5Ge~x,y!Gp~x8,y8!.

Inserting this approximation into Eq.~1! and using the
Green’s functions~4! and ~5!, one obtains the well-known
formula for the MDAP in the IPM, namely,

r2g
IPM~p!5(

n,q
Q~EF2Enq!dp2K2q,0U V

V0
E

V0

d3r

3exp~2 ip•r !cnq~r !w10~r !U2, ~8!

whereK denotes a reciprocal-lattice vector such thatp2K
lies in the first BZ andw10 means the only occupied bottom
state of the positron.q is also a vector of the first BZ. The
spatial integral is over the volume of a unit cell of the crystal
(V0) and the unusual factorV/V0 before the integral comes
from the fact that, in this paper, all electron and positron
Bloch states are consequently normalized with respect to the
crystal volumeV. For practical reasons, it is advantageous
to write the vectorp as a sum of a vectork that is an element
of the first BZ and a reciprocal-lattice vectorG. Henceforth,
we call k a reducedvector andp an extendedvector of the
momentum space. Then the above expression gets the rela-
tively simple form

r2g
IPM~k1G!5(

n
Q~EF2Enk!U V

V0
E

V0

d3r

3exp@2 i ~k1G!•r #cnk~r !w10~r !U2, ~9!

whereG50 corresponds to photon-pair momenta within the
first BZ, i.e., to the low-momentum component~LMC! of the
MDAP, whereasGÞ0 describes the high-momentum com-
ponent~HMC! of the MDAP centered around the vectorG.

III. THE LOCAL-DENSITY APPROXIMATION

As we already mentioned in the Introduction, in this sec-
tion, we describe only some of the key points of the LDA. It
is based on a MDAP formula that is very similar to the IPM
expression Eq.~9! but includes electron-positron correlations
by the insertion of a local pair-correlation function
g(r ;nk), which is an electron-state-dependent function of
the electron density at a given pointr and describes the local
enhancement of the electron-positron interaction:

r2g
LDA~k1G!5(

n
Q~EF2Enk!

3U V

V0
E

V0

d3rexp@2 i ~k1G!•r #

3Ag~r ;nk!cnk~r !w10~r !U2. ~10!

For our comparative calculations between the LDA and the
BML approximation presented in Sec. VIII, we decided to

use the formulation of Daniuket al.,18,19,33whereg is taken
from the enhancement theory of the homogeneous electron
gas

g~r ;nk!5ehom@r s~r !;Xnk#. ~11!

r s(r )5@4pn(r )/3#21/3 is the local-density parameter@n(r )
being the total local electron density# and

Xnk5A~Enk2E10!/~EF2E10!, ~12!

whereEnk andEF mean the energy of the initial electronic
stateunk& and the Fermi energy, respectively, andE10 is the
bottom energy of the electron conduction bands. This
energy-dependent enhancement for individual states was
proposed by Sˇob5,6 and independently by Mijnarends and
Singru.7

It must be noted here that Eq.~12! does not correspond to
the original LDA formulation by Daniuket al.,18,19where the
momentum-dependent part ofg was also considered a local
function, namely,

Xnk~r !5A@Enk2V2~r !#/@EF2V2~r !#,

whereV2(r )5Vc
2(r )1V xc

2 (r ) is the crystal potential energy
of a Bloch electron according to Eq.~6!. There is some evi-
dence that a nonlocal momentum factor as defined by Eq.
~12! is more appropriate from the physical point of view,33,64

but the discussion about this detail of the LDA approach is
not yet finished. In this connection, it should be expressed
that it is one of the advantages of the BML theory described
in the following sections that, in contrast to the LDA, no
assumptions about the momentum or energy dependence of
the local enhancement is necessary. It should also be men-
tioned here that some more basic objections concerning the
LDA were recently formulated by Stachowiak.65

IV. THE BLOCH-MODIFIED LADDER THEORY

The attempt of an application of the Kahana theory@Eqs.
~1! and ~3!# to the inhomogeneous electron gas was pre-
sented by Carbotte.47 In principle, this procedure is straight-
forward by inserting the electron and positron Green’s func-
tions based on Bloch states@Eqs.~5! and~6!# into Kahana’s
integral equation~3! and the MDAP formula~1!. For this
mathematical treatment, it is useful to expand the electron
and positron Bloch functions into plane waves, namely,

cnk~r !5
1

AV
(
K

ank~K !exp@ i ~k1K !•r # ~13!

and

wnk~r !5
1

AV
(
K

bnk~K !exp@ i ~k1K !•r #, ~14!

respectively, withK being a reciprocal-lattice vector and
ank(K ) and bnk(K ) the corresponding Fourier coefficients.
In the following, we take advantage of the fact that theank
and bnk are real numbers for all Bravais lattices and some
other high-symmetrical lattices such as hcp. With the use of
the above expansions, one gets, after a rather lengthy and
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tedious calculation,49 which cannot be presented here in de-
tail, the basic formulas of the so-called exactBloch-modified
ladder theory

r2g
BML~k1G!5(

n
Q~EF2Enk!H(

K
ank~K !b10~G2K !

1
1

V(
i

(
k8

Q~Eik82EF!(
j

~Enk2Eik8

1E10
1 2Ejq

1 !21x i , j ;G
BML ~k8!

3(
G1

(
G2

VG1 ,G2

ep ~q!F(
K2

ank~K2!

3aik8~K22G11L !G
3F(

K3

b10~K3!bjq~K31G2!G J 2,
~15!

including the Bloch-modified Bethe-Goldstone amplitude
xBML

x i , j ;G
BML ~k8!5(

K1

aik8~K1!bjq~G2K11L !

1
1

V(
s

(
k9

Q~Esk92EF!

3(
t

~Enk2Esk91E10
1 2Etq8

1
!21

3xs,t;G
BML ~k9! (

G8,G9
VG8,G9
ep

~q9!

3F(
K2

aik8~K2!ask9~K22G81L 9!G
3F(

K3

bjq~K3!btq8~K31G92L1L 82L 9!G .
~16!

In Eqs.~15! and ~16!, theank mean the Fourier coefficients
of the occupied electron states and theEnk are the corre-
sponding energies. The only occupied positron state is rep-
resented by the Fourier coefficientsb10(K ) and the corre-
sponding energyE10

1 . All other Fourier coefficients and
energies with the band indicesi , j , s, t, etc., and the reduced
Bloch vectorsk8, q, k9, q8, etc., belong to unoccupied elec-
tron and positron~scattering! states. The reciprocal-lattice
vectorsL , L 8, andL 9 in Eqs. ~15! and ~16! are defined by
the conditions that the vectors q5k2k82L ,
q85k2k92L 8, and q95k82k92L 9 must also belong to
the first BZ.

V. THE EFFECTIVE ELECTRON-POSITRON
INTERACTION

Until now, we did not say anything about the effective
electron-positron interaction potentialVep that appears in

Eqs. ~15! and ~16!. The theory of fermion-fermion interac-
tions in spatially inhomogeneous systems is extensively dis-
cussed in the literature~see, e.g., Refs. 66–68 and references
therein! and we shall give here only a short summary of this
subject.

Due to the spatial inhomogeneity of the electron gas, the
two-particle interaction potential between the electron and
positron can be expressed as a functionVep(x,y;tx2ty),
which depends explicitly on the positions of both interacting
particles and not simply on the relative coordinatex2y.
Such a function can be Fourier transformed as

Vep~x,y;tx2ty!5
1

2pV(
p1

(
p2

eip1•xe2 ip2•y

3E
2`

1`

dve2 iv~ tx2ty!Vep~p1 ,p2 ;v!,

~17!

where p1 and p2 are vectors of the extended momentum
space andVep(p1 ,p2 ;v) is the corresponding Fourier coef-
ficient. With the vector sums

p15q11G1 , p25q21G2 ,

whereq1 andq2 are vectors of the first BZ andG1 andG2
are reciprocal-lattice vectors, Eq.~17! may be written in the
form

Vep~x,y;tx2ty!

5
1

2pV(
q1

(
q2

(
G1

(
G2

ei ~q11G1!•xe2 i ~q21G2!•y

3E
2`

1`

dve2 iv~ tx2ty!Vep~q11G1 ,q21G2 ;v!.

This function must have the same symmetry group as the
crystal structure of the solid, with respect to both spatial
argumentsx andy. In particular, the condition

Vep~x1R,y1R;tx2ty!5Vep~x,y;tx2ty!

must be fulfilled for each lattice translation vectorR of the
crystal. After a short calculation, this leads to

q15q25q

and consequently to the expression

Vep~x,y;tx2ty!5
1

2pV(
q
eiq•~x2y!(

G1
(
G2

eiG1•xe2 iG2•y

3E
2`

1`

dve2 iv~ tx2ty!

3Vep~q1G1 ,q1G2 ;v!. ~18!

Due to the fact thatG1 andG2 are discrete quantities, the
Fourier transform ofVep can be considered a matrix

Vep~q1G1 ,q1G2 ;v![VG1 ,G2

ep ~q;v!. ~19!

For a system with infinitesimal translation invariance~e.g.,
for the jellium!, the matrix simplifies substantially to a diag-
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onal matrix, which means that all information about the spa-
tial inhomogeneity~i.e., about local-field effects! of the e-p
interaction potential is contained in the off-diagonal elements
of VG1 ,G2

ep .

Analogous to the theory of the homogeneous electron gas,
the Fourier transform of the effective electron-positron inter-
action potential can be written as66

VG1 ,G2

ep ~q,v!52
4pe2

uq1G1uuq1G2u
@k~q,v!#G1 ,G2

21 , ~20!

with e as the electron charge andk21 as the inverse of the
Hermitian dielectric matrix67

kG1 ,G2
~q,v!5dG1 ,G2

2
4pe2

uq1G1uuq1G2u
PG1 ,G2

~q,v!,

~21!

whereP represents the matrix of the Fourier transform of the
polarizability of the electron gas, which is defined by an
expression similar to Eq.~18!, namely,

P~x,y;tx2ty!5
1

2pV(
q
eiq•~x2y!(

G1
(
G2

eiG1•xe2 iG2•y

3E
2`

1`

dve2 iv~ tx2ty!PG1 ,G2
~q,v!. ~22!

The simplest approximation ofP, the random-phase ap-
proximation~RPA!, is, in real space, given by69

PRPA~x,y;tx2ty!52
2i

\
Ge~xtx ,yty!Ge~yty ,xtx!. ~23!

If the electron Green’s functions in this equation are based
on Bloch waves@see Eq.~4!#, we have to expect lattice ef-
fects on the polarization as they were defined in Sec. II.
Combining Eqs.~4!, ~22!, and ~23! and using the Fourier
expansion of the electron wave functions~13!, we get the
matrix elementsPG1 ,G2

(q,v) in the RPA. If we neglect the

dynamical aspects of the screening of thee-p interaction, as
is frequently done in positron physics~see the discussion in
Sec. VIII A!, we obtain according to Adler and Wiser,66 but
in a somewhat different formulation,

PG1 ,G2

RPA ~q,0![PG1 ,G2

RPA ~q!52
4

V(
n

(
k8

Q~EF

2Enk8)(
m

Q~Emk92EF!

3~Emk92Enk8!
21Mnk8;mk9

3~q,G1!Mnk8;mk9~q,G2!,
~24!

with

Mnk8;mk9~q,G!5(
K

ank8~K !amk9~K2G1L !. ~25!

In the above equations,V means the crystal volume and
EF is the Fermi energy of the electron gas. The quantities

Enk8 andank8 are the energies and the Fourier coefficients of
the occupied electron statesunk8&; correspondingly, the
Emk9 and amk9 belong to the unoccupied electron states
umk9&. The vectork9 and the reciprocal-lattice vectorL are
defined by the condition thatk9[k82q2L is an element of
the first BZ, where bothk8 andq also belong to the first BZ.

It should be mentioned here that, in the literature, the
dielectric and the polarizability matrices are usually denoted
e andx, respectively. The unusual notationsk andP in this
paper come from the fact that, in positron physics, the letters
e and x are reserved for the enhancement factor and the
Bethe-Goldstone amplitude.

VI. THE QUASIFREE BML APPROXIMATION

An uncompromising evaluation of the BML equations
~15! and ~16! including the potential matrix~19! is practi-
cally impossible due to insuperable mathematical and nu-
merical problems. Therefore, it is desirable to develop ap-
proximative versions of these formulas. Such an
approximation was presented in 1985 by Sormann and Puff43

and is called thequasifreeBloch-modified ladder expansion.
Mathematically, the QF BML expansion can be easily ob-
tained from Eqs.~15! and ~16! by using the two following
approximations.

~i! All eigenenergies of theunoccupiedelectron and pos-
itron wave functions are approximated by the Sommerfeld-
like expressions

Eik'E101aeuk1K i u2, Ejq
1'E10

1 1apuq1K j u2,
~26!

whereE10 andE10
1 mean the electron and positron bottom

energies and theK i andK j are the reciprocal-lattice vectors
that belong to thei th and j th empty electron or positron
band, respectively. The corresponding wave functions

c ik~r !'
1

AV
ei ~k1K i !•r,

w jq~r !'
1

AV
ei ~q1K j !•r

have Fourier coefficients

aik~K !5dK ,K i
, bjq~K !5dK ,K j

. ~27!

As can be seen from Eq.~26!, all lattice effects included in
the unoccupied electron and positron states are roughly ap-
proximated by the parametersae andap .

~ii ! The electron-positron interaction matrix is approxi-
mated by

VG1 ,G2

ep ~q!'Vep~ uq1G1u;Neff!dG1 ,G2
, ~28!

i.e., all off-diagonal elements of the matrix are neglected,
which means that local-field effects of thee-p interaction are
not taken into account~compare the discussion about this
point in Sec. V!. Additionally, the diagonal elements are ap-
proximated by a scalar interaction potential as it is used in
the jellium theory, with the consequence that all lattice ef-
fects on the polarization of the electron gas are only repre-
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sented by the quantityNeff , which is the effective number of
electrons per unit cell that contribute to the polarization. This
neglect of all local-field effects of thee-p interaction is the
most problematic feature of the QF BML approximation and
is in complete contrast to the LDA.

Inserting the approximations~26!–~28! into the BML for-
mulas ~15! and ~16!, one obtains the relatively simple
expressions43,50

r2g
QF BML~k1G!5(

n
Q~EF2Enk!H(

K
ank~K !b10~G2K !

3F11
1

V(
k8

Q~k82k0!V
ep~ uk2k8

1K u;Neff)xk;G
QF BML~k8!#J 2, ~29!

with

k05@~EF2E10!/ae#
1/2, ~30!

and the corresponding Bethe-Goldstone equation

xk;G
QF BML~k8!5~Enk2E102aek8

22apuk1G2k8u2!21

3H 11
1

V(
k9

Q~k92k0!V
ep~ uk82k9u;Neff!

3xk;G
QF BML~k9!J . ~31!

The QF BML approach represented a successful attempt to
obtain a practically feasible version of the BML theory that
could be used for theoretical enhancement
calculations.43,50,52,53

For a further development of the BML approach, which is
the main topic of this paper, the QF BML approximation
gained further importance by a more sophisticated treatment
of the parametersae , ap and Neff , which occur in Eqs.
~29!–~31!. This treatment of the problem leads to another
version of the BML approach, which we call theoptimized
Bloch-modified ladder theory.

VII. THE OPTIMIZED BML APPROXIMATION

A. Optimization of the parameters Neff , ae , and ap

The major problem in order to go beyond the QF BML
theory is the following. How can we determine the param-
etersae , ap , andNeff that occur in Eqs.~29!–~31! such that,
despite the approximations described in the preceding sec-
tion, the lattice effects are taken into account as realistically
as possible?

We start with the first term of the Bethe-Goldstone am-
plitude of the BML theory, which gives, according to Eq.
~16!,

x i , j ;G
BML ~k8!5(

K1

aik8~K1!bjq~G2K11L !1•••,

with q5k2k82L an element of the first BZ. Inserting this
expression into Eq.~15!, one gets

r2g
BML~k1G!5(

n
Q~EF2Enk!@s~nk;G!

1 lim
M→`

tM~nk;G!#21•••, ~32!

with

s~nk;G!5(
K

ank~K !b10~G2K ! ~33!

and

tM~nk;G!5
1

V(
i51

M

(
k8

Q~Eik82EF!

3(
j51

` F(
K1

aik8~K1!bjq~G2K11L !G
3~Enk2Eik81E10

1 2Ejq
1 !21

3(
G1

(
G2

VG1 ,G2

ep ~q!F(
K2

ank~K2!aik8~K2

2G11L !GF(
K3

b10~K3!bjq~K31G2!G .
~34!

In Eq. ~32!, s represents the independent-particle part and
tM is the first-order term with respect to thee-p interaction
potential withM the number of unoccupied electron bands
taken into consideration. These two expressions can be nu-
merically evaluated with some expense, but without any ad-
ditional approximation. Some numerical aspects and prob-
lems of this evaluation are summarized in Sec. VII C of this
paper.

Now we are going to reduce Eq.~34! to the corresponding
QF expression. We do this in two steps. First, we apply the
approximation~28! for the e-p interaction potential, which
immediately leads to the result

t̂M~nk;G!5
1

V (
i51

M

(
k8

Q~Eik82EF!

3(
j51

` F(
K1

aik8~K1!bjq~G2K11L !G
3~Enk2Eik81E10

1 2Ejq
1 !21

3(
G1

Vep~ uq1G1u;Neff!

3F(
K2

ank~K2!aik8~K22G11L !G
3F(

K3

b10~K3!bjq~K31G1!G . ~35!

As a second step, we also use the approximations~26! and
~27!, where all electron and positron scattering states are
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replaced by quasifree states and we obtain, after some non-
trivial but elementary manipulations, the QF approximation
of tM ,

tM
QF~nk;G!5

1

~2p!3(K ank~K !b10~G2K !

3E d3k8
Vep~ uk2k81K u;Neff!

Enk2E102aek8
22apuk1G2k8u2

,

~36!

with the conditionk0<uk8u<k max(M ) and withk0 given by
Eq. ~30!. The integral overk8 requires a comment: it has to
be calculated overM Brillouin zones: the central one, and
M –1 zones around. In our calculation, we reset this rela-
tively complicated region by a sphere of the same volume
with the radius

kmax~M !5SM 3

4p
VBZD 1/3,

whereVBZ is the ~reciprocal! volume of the first BZ.
An important question concerning the numerical evalua-

tion of Eqs.~34! and ~35! is the convergence of these func-
tions with respect to the sums( i and( j over the unoccupied
electron and positron bands, respectively. As we shall dem-
onstrate in Sec. VII C, the convergence with respect to the
unoccupied positron bands is satisfactory. However, this is
by no means the case for the unoccupied electron bands. In
fact, for each theoretical approach that claims to describe the
electron-scattering states realistically, the poor convergence
of the sum( i in Eqs. ~34! and ~35! is a crucial obstacle to
overcome. Of course, it is reasonable to expect that the
higher the electron bands lie above the Fermi level, the better
these bands can be approximated by free-particle bands.
Therefore, the simplest procedure would be as follows: one
calculates the sum over the unoccupied electron bands up to
a certain band numberM using realistic Bloch states and
continues the calculation analytically by approximating the
higher electron and positron bands by plane waves. Such a
procedure was used in the paper of Boron´ski and Jarlborg.54

For the present contribution, we use a somewhat different
and more reliable procedure: we numerically evaluate both
the complicated formula fortM(nk;G) @Eq. ~34!# and the
corresponding parametrized approximationst̂M(nk;G) @Eq.
~35!# and tM

QF(nk;G) @Eq. ~36!# as functions of the number
M of unoccupied electron bands taken into account. Then,
for an optimization of the parametersNeff , ae , andap , we
perform the following two-step process:~i! we optimize the
parameterNeff by a least-squares~LS! comparison of the
tM and t̂M curves~henceforth, this optimized parameter is
called Neff

BML) and ~ii ! we optimize the parametersae and
ap by a LS comparison of thetM and tM

QF curves using
Neff
BML .
This two-step procedure has to be done for each inital

~occupied! electron stateunk& and for each reciprocal-lattice
vector G under investigation. As a result, we get the
momentum- and band-dependent parametersNeff

BML(nk;G),
ae(nk;G), and ap(nk;G). Here it has to be emphasized
that, according to the procedure described above, theae and

ap are influenced by several lattice effects, namely, by lattice
effects~i! on the electron and positron energy levels,~ii ! on
the electron and positron Bloch waves, and also~iii ! on the
shape of the Fermi surface of the crystal electrons. This last
influence can directly be seen by the fact that the effective
Fermi momentumk0 @Eq. ~30!# used in the QF BML expres-
sion is a function ofae and is therefore also momentum and
band dependent. For these reasons, the parametersae and
ap must not be simply interpreted as inversely proportional
to electron and positron band masses as it might be expected
at first sight from the analytical form of Eq.~26!. The mo-
mentum dependence of the optimized parametersNeff

BML ,
ae , andap for Al, Cu, Pd, Mn, and V is discussed in more
detail at the end of Secs. VIII D 1 and VIII D 2 of this paper.

Now we reset the very complicated exact BML expres-
sions ~15! and ~16! by the corresponding QF BML expres-
sions ~29!–~31! including the optimized parametersNeff

BML ,
ae , andap with respect to all orders of the Bethe-Goldstone
amplitude. This procedure, which we call theoptimized
BML theory, contains both types of lattice effects discussed
in Sec. II more realistically than any other actual theoretical
approach dedicated to this problem. If we say ‘‘more realis-
tically’’ we want to express that the OBML procedure is
more efficient for a theoretical description of lattice effects
influencing thee-p annihilation in metals than the LDA or
previous formulations of the BML approach. This pretension
shall be justified in the following.

As described above, the LS process, which leads to the
band- and momentum-dependent parametersNeff

BML , ae , and
ap , is based on the Born approximation, i.e., on the BML
and QF BML quantitiestM , t̂M , andtM

QF @according to Eqs.
~34!, ~35!, and~36!, respectively#, which are all of first order
with respect to thee-p interaction potential. It is therefore no
surprise that the use of these parameters in the OBML theory
gives excellent agreement with the corresponding exact
BML theory, as long as we use the Born approximation. As
we have proved by a great number of numerical tests, this is
valid for all metals and for all momenta investigated, both
within the central-momentum region and within the near um-
klapp regions. An example of these tests will be presented in
Sec. VII B.

Of course, one must be aware that the parameters de-
scribed above might be less effective for higher-order ladder
terms of the exact BML expansion than for the first-order
term. Nevertheless, if we compare this term with the terms of
order greater than 2 with respect toVep according to Eqs.
~15! and ~16!, we see that, apart from some additional fea-
tures that appear in the higher-order terms~in particular,
sums of products of Fourier coefficients of unoccupied elec-
tron wave functions and also of unoccupied positron wave
functions!, the mathematical structure of these terms is rather
similar to the ladder term of first order. Due to this similarity,
one can assume that the use ofNeff

BML , ae , and ap in all
terms of the ladder expansion will not seriously deteriorate
the reliability of the MDAP and enhancement results ob-
tained by the OBML theory, especially if the terms of order
greater than 1 with respect toVep play only a subordinate
role in the MDAP calculation.

Due to enormous numerical problems, it is not possible to
check the amount of the contribution of higher-order terms
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for the exact BML theory; therefore, we studied this question
for the mathematically simpler LDA. For this purpose, we
evaluated the LDA formula in the Born approximation, i.e.,
we included in Eq.~10! the local enhancement factor

g~r ;nk!5ehom
Born@r s~r !;Xnk# ~37!

and we compared these results with the corresponding
MDAP values obtained by the ‘‘complete’’ LDA according
to Eqs.~10! and~11!. What we learned from this test is that,
at least concerning the LDA, for all metals and annihilation
momenta investigated in this paper, the contribution of the
sum of all ladder terms of order greater than 1 with respect to
Vep to the MDAP is only about 30%, which means that the
contribution of the first-order term~according to the Born
approximation! amounts to about 70% and is therefore by far
the dominant one. This marked dominance of the first-order
ladder term is typical for metals in the high and medium
electron density regime, i.e., with small values of the density
parameterr s , as is the case for all metals investigated in this
paper. It is very important to emphazise here that this argu-
ment is valid not only for the average electron densities of
these metals, but also from the point of view of theirlocal
electron densities. For example, even in the outer parts of the
Wigner-Seitz cell of copper where the density of thed elec-
trons is very small, the local value ofr s that is due to the
single 4s electron does not exceed 2.7 a.u. Due to the fact
that, apart from all interesting differences between the LDA
and BML enhancement factors, which are the main topic of
this paper, the LDA and BML results are at least principally
comparable, it is justified to assume that this dominance of
the first-order ladder term will be also a general feature of
the BML theory. As a consequence of these results, we think
that it is acceptable to use the optimized parametersNeff

BML ,
ae , andap for terms of all orders of the OBML approach,
especially for metals with high and medium valence electron
densities. However, it is important to mention that the domi-
nance of the ladder term of first order with respect toVep is
dramatically reduced for metals with lower average or local
electron densities~higher r s values!. For example, for so-
dium with r s53.9 a.u., the contribution of the first-order
term to the MDAP amounts only about 30% and the situation
is even worse for metals such as potassium (r s54.9 a.u.! or
rubidium (r s55.2 a.u.!. According to the argumentation of
this subsection, the application of our OBML method on
such metals may possibly lead to erroneous answers and is
therefore not recommended.

B. Applicability of the optimization process

The central idea of the method described in the preceding
subsection is an extrapolation oftM @Eq. ~34!# (M 5 1 up to
a finite value of about 50–60! by the mathematically simpler
expressiontM

QF @Eq. ~36!# for M→`, including the opti-
mized parametersNeff

BML , ae , andap . It is therefore of fun-
damental importance for the reliability of our OBML theory
that this extrapolation oftM by tM

QF is as perfect as possible
concerning both the values and the slopes of these functions.
For this reason, we checked the applicability of the optimi-

zation process for the OBML parameters carefully by a large
number of numerical tests. What we found out is that the
agreement between thetM

QF and tM curves is generally ex-
cellent for higher unoccupied electron bands, i.e., for
M@1. As we shall show for a typical example in Figs. 1 and
2, according to some details of this optimization process de-
scribed below, significant deviations betweentM

QF and tM
may appear for small values ofM , i.e., for electron scatter-
ing bands lying closely above the Fermi energy. We empha-
size here that this does not mean that our optimized BML
parameters are insufficient in describing the contributions of
these scattering bands totM . Namely, it is not important that
the two curvestM andtM

QF agree for the contribution ofany
scattering band. Decisive is only that both curves represent,
as well as possible, the same sum over all contributions of all
scattering bands and, consequently, lead to the same values
of the MDAP and the enhancement factor.

As a typical example, this behavior is demonstrated for Pd
for the initial electron stateu10&, i.e., for the lowest valence
band at theG point of the BZ. As we mentioned above, a
free-electron-like behavior of the electron scattering bands
can only be expected far aboveEF for relatively high band
numbers. The consequence of this fact is that one should
avoid starting the LS comparison betweentM andtM

QF at too
small values ofM . This is demonstrated in Figs. 1 and 2,
where we presenttM and tM

QF as functions ofM . For Fig.
1~a!, the LS process was started atM 5 3 ~indicated by an
arrow! and yielded good overall agreement between thetM
andtM

QF curves. Nevertheless, one observes that the slope of
the tM

QF curve for the region of higherM becomes signifi-
cantly smaller than the slope of the correspondingtM curve.
In our test calculations for theu10& electron state in Pd, we

FIG. 1. Correspondence oftM
QF ~solid lines! andtM (L) accord-

ing to Eqs.~36! and ~34!, respectively.M is the number of unoc-
cupied electron bands included into the calculation and the arrows
indicate that the LS process was started~a! at M53 and ~b! at
M523.
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estimated an error of about 8% for the enhancement factor
due to this imperfect extrapolation. This behavior is even
better observable in Fig. 2~a!, where we show the relative
difference betweentM

QF andtM as a function ofM . If, how-
ever, the LS process is started at a higher value ofM @M 5
23 in our example, see Figs. 1~b! and 2~b!#, deviations be-
tween tM

QF and tM for the scattering bands immediately
aboveEF appear due to lattice effects, but, on the other hand,
we achieve an almost ideal agreement of the two curves for
M@1 for both their values and their slopes, which guaran-
tees a reliable extrapolation process.

As a summary of our tests we can say that the optimiza-
tion process forNeff

BML , ae , andap presented in Sec. VII A
leads to satisfying~and in most cases excellent! agreement
between the BML theory and the~mathematically much sim-
pler! QF BML approach for all metals investigated and not
only for initial electron states inside the first BZ but also for
states in the umklapp regions.

C. Numerical evaluation of tM„nk;G…

Before we present a discussion about our enhancement
results, we think it is useful to refer at least some important
aspects of the numerical evaluation of the relatively compli-
cated expressiontM(nk;G) given in Eq. ~34!. All plane-
wave coefficients of the~occupied and unoccupied! electron
and positron states used in our calculations were obtained by
Fourier expansions@see Eqs.~13! and ~14!# of the corre-
sponding wave functions, which were calculated by a con-
ventional augmented-plane-wave program. For each Bloch
vector, single-particle eigenenergies for up to 80 electron and
positron bands were determined by a self-consistent solution
of the Schro¨dinger-like equations~6! and~7!. Concerning the

exchange-correlation parts of the crystal potentials, in the
electron case, we used the parametrized approximation by
Hedin and Lundqvist.70 In the case of the positron, all self-
energy correlation parts of the crystal potential were ne-
glected~see our discussion about this point in Sec. II!. No
relativistic corrections to the crystal potentials, in particular
no spin-orbit corrections, were taken into account.

In order to check the numerical reliability of our results,
we performed extensive convergence tests for the quantities
s(nk;G) and tM(nk;G) defined in Eqs.~33! and ~34!, re-
spectively. It was the aim of these test calculations to guar-
antee that the numerical accuracy of our BML results was,
for all values of the MDAP except values that are very low in
magnitude, better than 3%. This does not sound very ambi-
tious, but due to the high numerical expense of the BML
method it is not realistic to aspire to a higher accuracy. It is
impossible to report all these tests in detail, but we shall give
here at least an overview.

Equations~33!–~36! contain sums of products of electron-
positron, electron-electron, and positron-positron Fourier co-
efficients. The question was how many terms have to be
included into the evaluation of these sums. It was also im-
portant to know how many reciprocal-lattice vectorsG1 and
G2 had to be used for the sums in Eqs.~34! and ~35!. We
obtained that, for the accuracy mentioned above, it was suf-
ficient to use about 200 Fourier coefficients for each electron
and positron Bloch state and about 130 vectorsG1 ,G2 .

Another important influence on the quality of the numeri-
cal evaluation of Eqs.~34! and ~35! is given by the number
of Bloch vectorsk8 used for the sum over the unoccupied
part of the first BZ. This summation, which was done by the
use of the well-known integration method of Gilat and
Raubenheimer,71 required only a relatively small number of
primary k8 points within the irreducible wedge~IW! of the
BZ, namely, 40~70! k8 vectors for the electron states and
112~125! k8 vectors for the positron states in bcc~fcc! struc-
tures. A special difficulty is caused by the fact that, for an
average value of the momentum vectork, the resulting
Bloch vectorq5k2k82L for the positron states in Eqs.
~34! and ~35! does not necessarily coincide with one of the
precalculated primaryk8 points within the IW. We solved
this problem by a combination of Gilat and Raubenheimer’s
scheme and the well-approvedk•p interpolation method.72

To save computer time, all symmetry properties of the crys-
tal lattice were carefully taken into account.

The accuracy of the components of the matrixVG1 ,G2

ep of
the electron-positron interaction potential plays an important
role for the good quality of the numerical results of
tM(nk;G). In agreement with Hybertsen and Louie,68 we
also realized that the most crucial point of the numerical
calculation of these matrix elements is to secure the conver-
gence of the sum over unoccupied electron bands in the ex-
pression~24! for the polarizability matrixP. In our calcula-
tions, we used 60–70 unoccupied electron bands and
achieved a convergence of most of the matrix elements of
Vep within a few percent~see Table I!, except for very small
elements with negligible influence on the MDAP results. For
such components, relative errors of 100% and more may
appear.

FIG. 2. tM
QF2tM in units of tM for the maximum value ofM ,

with tM
QF andtM according to Eqs.~36! and~34!, respectively.M is

the number of unoccupied electron bands included into the calcula-
tion and the arrows indicate that the LS process was started~a! at
M53 and~b! atM523.
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In Sec. VII A we already discussed the insufficient con-
vergence oftM with respect to the numberM of unoccupied
electron bands taken into account and we also proposed a
way to overcome this difficulty. Fortunately, this problem
does not arise for the sum over unoccupied positron bands:
as a result of our tests, we obtained that the convergence with
respect to these bands is well established in all cases inves-
tigated in this paper. Some test results that demonstrate this
positive behavior are summarized in Table II, where we
show the dependence oftM(nk;G) for different metals and
different initial electron statesunk& on the numberJ of pos-
itron bands taken into account, calculated for a fixed number
M of unoccupied electron bands.

VIII. RESULTS AND DISCUSSION

A. The e-p interaction potential

All results presented in this paper are based on thestatic
RPA for the effectivee-p interaction potential. Such a pro-
cedure, which ignores the existence of better approximations
for this potential3,73 requires some justification. The reason is
that, for the present investigation, we were especially inter-
ested in a comparison of BML and LDA enhancement fac-
tors and we found that the relations between these two types
of results do not significantly depend on the approximation

for Vep. On the other hand, the use of a RPA potential con-
siderably simplified our calculations. Therefore, for all re-
sults presented in the following, we used the matrix of the
e-p potential according to static approximations of Eqs.~20!
and ~21! in Sec. V in connection with the RPA for the po-
larizability matrix, given by Eqs.~22!–~25!. Of course, in
order to compare commensurable BML and LDA results, we
also had to evaluate the LDA expression~10! with the pair-
correlation function in the RPA, namely,

g~r ;nk!5ehom
RPA@r s~r !;Xnk#.

Further remarks on thee-p interaction potential in real met-
als, in particular concerning approximations ofVep ‘‘beyond
the RPA’’ and the inclusion of dynamical aspects, are given
in Appendix A.

B. The choice of the test metals

In the following, we shall discuss results of our recent
investigations on positron enhancement in a simple metal
~aluminum!, a noble metal~copper!, and three transition met-
als ~palladium, bcc manganese, and vanadium!. The choice
of these metals is by no means arbitrary but is motivated by
their different electron band structures and corresponding
density of states~DOS!.74

The DOS curve for Al with its three valence electrons is,
of course, very similar to the free-electron case. The two
valence bands~the lower one is completely occupied and the
higher one is partially occupied! have predominantlysp
character with a relatively small addition of ad character.
The electronic structure of all other metals investigated is
more or less strongly influenced byd bands and it is one of
the main purposes of our work to investigate how the lattice
effects acting on the enhancement factors in these metals
depend on the energetic position of thed bands with respect
to EF . For Cu, the upper edge of thed bands lies about 0.15
Ry belowEF . In the case of Pd, the Fermi level is localized
just below the upper edge of thed bands, whereas in bcc Mn,
a considerable part of thed-band DOS lies aboveEF , a
situation that is even more pronounced in V, where the great-
est part of thed bands is unoccupied. Therefore, we would
expect that deviations of the rate enhancement from the free-
electron~jellium! case increase along the series Al→ Cu
→ Pd→ Mn→ V, and this is, in principle, exactly what we
learn from our results.

Concerning the occupied~initial! electron statesunk&, we
performed our calculations for the fcc metals Al, Cu, and Pd
along the@111# direction and for the bcc metals Mn and V
along the@110# direction in momentum space. Additionally,
for all occupied electron states investigated, we analyzed the
character of each state with respect to the quantum number
l of the orbital angular momentum.

Additionally, it results that for the metals and momentum
directions investigated, there are only two totally or partially
occupied valence electron bands that contribute to the
MDAP. In Figs. 3 and 4, where we show the electron band
structures for Al, Cu, and Pd along theGL direction and for
Mn and V along theGN direction, these bands are indicated
by the numbers 1 and 2 and will be called the ‘‘first band’’
and the ‘‘second band,’’ respectively, in the following text.

TABLE I. Selected elements of the electron-positron interaction
matrix 2VG1 ,G2

ep (k) for vanadium as functions of the number of
unoccupied electron bands taken into account for the numerical
evaluation of Eq.~24!. The Bloch vectork lies at theN point on the
boundary of the Brillouin zone.

G1 G2 34 bands 49 bands 63 bands

000 000 0.4360 0.4350 0.4348
110 110 0.1918 0.1896 0.1890
220 220 0.0784 0.0782 0.0781
110 1̄1̄0 –0.0096 –0.0092 –0.0090

200 11̄0 –0.0082 –0.0083 –0.0084

220 1̄1̄2 0.00032 0.00027 0.00026

110 1̄12̄ –0.00012 –0.000080 –0.000019

TABLE II. Demonstration of the convergence oftM according
to Eq. ~34! with fixed M and with respect to the numberJ of
positron scattering bands.~a! Copper: k5(0.820.0,00), second
band,M551. ~b! Vanadium:k5(0.247,0.247,0.0), second band,
M570. k is in units of 2p/a with a 5 6.8308 and 5.7145 a.u. for
Cu and V, respectively.

~a! ~b!

J t J t
35 0.368 51 0.0869
40 0.373 56 0.0879
45 0.376 61 0.0886
50 0.379 66 0.0890
55 0.382 71 0.0892
60 0.383 76 0.0894
65 0.384 81 0.0895
70 0.384 86 0.0895
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C. Three types of enhancement factors

The results of our investigation are presented in the Figs.
5–17, where we show theoretical state-dependent enhance-
ment factors for annihilation vectorsk1G with k an element
of the first BZ and bothG50 ~LMC! andGÞ0 ~HMC!. The
partial enhancement factors belonging to thenth band are
defined by

e~n;k1G!5r2g~n;k1G!/r2g
IPM~n;k1G!,

with r2g(n;k1G) and r2g
IPM(n;k1G) the contributions of

the nth occupied electron band to the MDAP including and
excluding the electron-positron interaction, respectively, and
r2g
IPM given by Eq.~9!.
As we extensively discussed in Sec. II, the BML enhance-

ment contains two different types of lattice effects, which we
called the lattice effect on thee-p scattering and the lattice
effect on the polarization. For a proper physical interpreta-
tion of our results, it is desirable to distinguish between these
two types of effects. For this purpose, we define the follow-
ing three enhancement factors.

~i! The LDA enhancement factor

eLDA~n;k1G!5r2g
LDA~n;k1G!/r2g

IPM~n;k1G!, ~38!

with r2g
LDA as given in Eqs.~10!–~12!. This enhancement

factor contains none of the lattice effects defined in Sec. II.
~ii ! The second enhancement factor used in our investiga-

tion is obtained as follows: we start from the LDA formula
for the MDAP and define a state- and band-dependenteffec-
tive electron density parameterr s,eff by the condition

r2g
LDA~n;k1G!5Q~EF2Enk!

3U V
V0

E
V0

d3rexp@2 i ~k1G!•r #

3Aehom@r s~r !;Xnk#cnk~r !w~r !U2

5
!

ehom @r s,eff~n;k1G!;Xnk#

3r2g
IPM~n;k1G!. ~39!

The corresponding effective number of electrons per unit cell
V0 is given by

Neff
LDA~n;k1G!5

3V0

4p

1

r s,eff
3 ~n;k1G!

. ~40!

Using theseNeff
LDA values, one can execute the second step of

the optimization process described in Sec. VII A for getting
the corresponding values for the remaining parametersae
andap . Surprisingly, we obtain that the differences between
theae andap values belonging to the parametersNeff

BML ~ob-
tained by the LS process described in Sec. VII A! and
Neff
LDA @obtained by the use of Eqs.~39! and ~40!# are rather

small. Therefore, in the following, we do not distinguish be-
tween the parametersae

BML ,ap
BML andae

LDA ,ap
LDA . The en-

hancement factors that result from QF BML calculations in-
cludingNeff

LDA , ae , andap are calledescatter(n;k1G); they
can be considered as results where only the lattice effect on
thee-p scatteringis taken into account.

~iii ! The OBML enhancement factor according to the QF
BML theory including the parametersNeff

BML , ae , and ap

optimized in the way described in Sec. VII A is given by

FIG. 3. Electron band structures of~a! Al, ~b! Cu, and~c! Pd
along the@111# direction in momentum space. The occupied parts
of the bands whose electrons contribute to the MDAP are indicated
by thick solid lines and by the numbers 1 and 2. The horizontal
dash-dotted lines denote the Fermi energies.

FIG. 4. Electron band structures of~a! Mn and ~b! V along the
@110# direction in momentum space. The occupied parts of the
bands whose electrons contribute to the MDAP are indicated by
thick solid lines and by the numbers 1 and 2. The horizontal dash-
dotted lines denote the Fermi energies.
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eOBML~n;k1G!5r2g
OBML~n;k1G!/r2g

IPM~n;k1G!.
~41!

This enhancement factor contains both types of lattice ef-
fects, namely, on thee-p scattering and on the polarization
of the electron gas.

The three quantitieseLDA, escatter, and eOBML are very
helpful for a relevant physical interpretation of our results,
for we can say that~i! differences betweenescatterandeLDA

describe how the enhancement is influenced by lattice effects
on the e-p scattering,~ii ! differences betweeneOBML and
escattergive information about lattice effects on the polariza-
tion, and~iii ! differences betweeneOBML ande LDA describe
the combined effect of both types of lattice effects.

D. Discussion of the enhancement results

1. Central momentum-region

A selection of our enhancement results for the central
momentum region is given in Figs. 5–10. Each figure con-
tains the three different enhancement factorseOBML, escatter,
and eLDA as solid, dashed, and dash-dotted lines, respec-
tively. Additionally, at the bottom of each figure, we present
the MDAP according to the IPM, where the dashed parts
represent the unoccupied regions of the corresponding elec-
tron band.

Let us start with a discussion of the enhancement of the
first band in Al along the@111# direction~Fig. 5!. Due to its
simple electron band structure~typical sp-like bands with a
small content ofd character of less than 10%!, it is not
surprising that the enhancement curves of this metal for the

LMC of the MDAP show the typical Kahana-like shape, i.e.,
a monotonic increase with increasing momentum. As ex-
plained in the preceding subsection, the influence of lattice
effects on the polarization of the inhomogeneous electron
gas can be studied by a comparison of the enhancements
eOBML andescatter. As can be seen in Fig. 5, the correspond-
ing curves are completely indistinguishable, which indicates
that, in the case of Al, lattice effects on the polarization are
almost negligible, which means that the polarization of the
inhomogeneous electron gas in Al is very similar to the po-
larization of a homogeneous gas. This is also evident if one
considers the effective number of electrons per unit cell con-
tributing to the polarization: theNeff

LDA value extracted from
LDA results~as described in Sec. VIII C! is practically inde-
pendent of the momentum and amounts to 3.22, a number
that agrees within 3% to the corresponding optimized BML
parameter of 3.32. On the other hand, a comparison of the
enhancementsescatter'eOBML andeLDA shows that the influ-
ence of lattice effects on thee-p scattering leads to a mod-
erate increase of the enhancement of about 5–6 %.

The partly occupied second valence band of Al contains
the third valence electron and therefore has its highest con-
tribution to the MDAP outside the central BZ. This band has
sp character and is, consequently, also Kahana-like en-
hanced. OBML and LDA enhancement results for the sum of
both the first and second valence band of Al to the MDAP
are presented in Fig. 6. For comparison, this figure also con-
tains the corresponding ‘‘simple’’ Kahana enhancement
curve belonging to a homogeneous electron gas with density
parameterr s 5 2.07 a.u.

FIG. 5. State-dependent enhancemente for the first band in fcc
aluminum as a function of the extended momentump along the
@111# direction. Solid line, enhancementeOBML'escatter. Note that
in this figure, these two types of enhancement curves are graphi-
cally indistinguishable. Dash-dotted line, enhancementeLDA. The
exact meaning ofeOBML, e scatter, andeLDA is given in Sec. VIII C of
this paper. Dots at the beginning or the end of enhancement curves
indicate MDAP values too small for a reliable numerical determi-
nation ofe. The solid curve at the bottom of the figure means the
MDAP according to the IPM.

FIG. 6. Enhancemente of the sum of the contributions of the
first and the second band in fcc aluminum as a function of the
extended momentump along the@111# direction. Solid line, en-
hancementeOBML; dash-dotted line, enhancementeLDA. For com-
parison, the dash–double-dotted line shows the Kahana enhance-
ment curve for the electron density parameterr s52.07 a.u.
according to a lattice constant of 7.6395 a.u. and three valence
electrons per unit cell. The solid curve at the bottom of the figure
means the MDAP according to the IPM.
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In Figs. 7~a! and 7~b!, we show enhancement factors in
Cu along the@111# direction for the first and the second
band, respectively. Concerning the corresponding enhance-
ment curves, it is important to keep in mind thel character of
these bands: at theG point in the center of the BZ, the first
band starts purelys-like, but with increasing momentum the
s character decreases to about 20% in favor of thed charac-
ter. On the other hand, the second band starts purelyd-like
and becomes more and morep-like if the momentum in-
creases~compare the band structure in Fig. 3!. This behavior
is clearly reflected by the corresponding enhancement
curves: as long as thes or sp character of a band dominates,
the enhancement is Kahana-like, as we observed for Al.
However, if thed character becomes more and more domi-
nant, the increase ofe with increasing momentum is strongly
reduced or even converted into a decrease. Both our LDA
and BML results in Cu support this interpretation~and we
found this behavior, in principle, also for the otherd-band
metals investigated!, but there are quantitative differences:
the negative slope ofe with respect touku is significantly
more marked for the BML enhancement factors than for the
LDA results. A more detailed analysis of the results of Fig. 7
shows that this difference in the momentum dependence of
e between the LDA and BML approximation is mainly due
to the lattice effect on thee-p scattering~compare the curves
escatterandeLDA), which also causes a significant increase of
the enhancement for both bands investigated. The lattice ef-
fect on the polarization further increases the enhancement
but does not change the momentum dependence very much.
This increase of the enhancement indicates that the effective
number of electrons contributing to the polarization of the
electron gas in Cu is overestimated by the LDA: within the

first BZ, we observedNeff values between 3.1 and 3.7 for the
LDA and only between 2.1 and 2.7 for our OBML approach.
These smallerN eff values mean a smaller effective electron
density and, consequently, a higher enhancement.

The electron band structure of fcc palladium is similar to
that of Cu with the important difference that thed bands lie
significantly higher with respect to the Fermi energy and
even slightly intersectEF . It is interesting to investigate how
these differences of the band structure affect the enhance-
ment curves of Pd~Fig. 8!. Concerning the first band in the
@111# direction, the enhancement curves are, in principle,
similar to the corresponding results in Cu, but with a more
marked negative slope of the curves in the neighborhood of
the boundary of the BZ, which probably can be attributed to
a different energy dependence of the Cu and Pd bands. For
the second band, however, the enhancement curves for Cu
and Pd are more significantly different: as one can see by
comparing Figs. 7~b! and 8~b!, the enhancement in Pd is
much more Kahana-like than the corresponding curve in Cu.
This different behavior can also be explained by a somewhat
different energy dependence of the two bands that influences
their l character. For Pd, the second band comes up to the
Fermi surface foruku50.695 and the corresponding state has
the characters-p-d517%-70%-10%, i.e., it is almost purely
sp-like. In the case of Cu, however, the electron state of the
second band for the same value ofuku has the characters-
p-d511%-59%-27% with a percentage ofd that is about
three times as large as that observed for Pd. This leads to the
relatively flat shape of the BML enhancement curves in Fig.
7~b!. A comparison of theescatterand eLDA curves in Fig. 8
shows a strong influence of the lattice effect on thee-p scat-

FIG. 7. State-dependent enhancemente in fcc copper as a func-
tion of the reduced momentumk along the@111# direction:~a! first
band and~b! second band. Solid line, enhancementeOBML; dashed
line, BML enhancementescatter including Neff

LDA according to Eqs.
~39! and ~40!; Dash-dotted line, enhancementeLDA. The exact
meaning ofeOBML, escatter, andeLDA is given in Sec. VIII C of this
paper. Dots at the beginning or the end of enhancement curves
indicate MDAP values too small for a reliable numerical determi-
nation ofe. The solid curves at the bottom of the figure mean the
MDAP according to the IPM.

FIG. 8. State-dependent enhancemente in fcc palladium as a
function of the reduced momentumk along the@111# direction:~a!
first band and~b! second band~partially occupied!. Solid line, en-
hancementeOBML; dashed line, BML enhancementescatterincluding
Neff
LDA according to Eqs.~39! and ~40!; dash-dotted line, enhance-

menteLDA. The exact meaning ofeOBML, escatter, andeLDA is given
in Sec. VIII C of this paper. Dots at the beginning or the end of
enhancement curves indicate MDAP values too small for a reliable
numerical determination ofe. The curves at the bottom of the figure
mean the MDAP according to the IPM, where the occupied~unoc-
cupied! parts are given by solid~dashed! lines.
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tering; close to theG point, we observe an increase of the
enhancement of about 20%. Surprising is the small differ-
ence of theeOBML and escattercurves for the first and espe-
cially for the second band, which indicates that the effective
number of polarizing electrons per unit cell is similar for the
BML approximation and the LDA. So we can say that the
LDA gives a good description of the polarization of the in-
homogeneous electron gas in palladium. This statement is
also supported by the calculated values ofNeff according to
Eqs. ~39! and ~40! and the corresponding optimized BML
values. For the first band of Pd, we obtainedNeff values
between 4.3 and 4.8 for the LDA and 3.6–3.7 for the BML
approximation. For the second band, theNeff values are even
more similar, namely,'4.1 for the LDA and'3.9 for the
BML approximation.

If the different strength of the lattice effect on the polar-
ization process in Cu and Pd has something to do with the
different energetic position of thed bands with respect to
EF , this behavior can be expected to become more and more
significant for manganese and vanadium, where more and
mored electrons have energies higher than the Fermi energy.
We shall demonstrate in the following that this expectation is
fulfilled.

Figure 9 contains some results for bcc manganese, the
fourth example in the series of metals investigated. For this
material, a great part of the DOS of thed states is situated
above the Fermi energy. Obviously, this fact does not change
the momentum dependence of the enhancement drastically in
comparison with the metals described before. We see that the
shape of both the LDA and BML enhancement curves for
Mn along the@110# direction is similar to what we observed
for Cu. This similarity is also evident for the influence of the
lattice effect on thee-p scattering, which increases the LDA
enhancement factors by about 15–20 %. However, and this
is important, we see that the relation between the enhance-
ment curves including or excluding the lattice effect on the
polarization is opposite the previously discussed results for
Cu and Pd: here theeOBML curves~solid lines! lie below the

correspondingescattercurves~dashed lines!, i.e., in the case of
Mn, the number of electrons engaged in the polarization pro-
cess is underestimated by the LDA. This effect is moderate
for the first band with momentum-dependentNeff values be-
tween 3.9 and 4.2 and between 4.0 and 4.5 for the LDA and
the BML approximation, respectively, but is rather strong for
the second band withNeff around 3.8 for the LDA and be-
tween 5.5 and 6.5 for the BML approximation. Unlike Cu
and Pd, in manganese, the two lattice effects on thee-p
scattering and on the polarization partly compensate each
other, leading to a significant reduction of differences be-
tween the LDA and OBML enhancement factors.

This effect is even larger for vanadium, where the en-
hancement curves along@110# are shown in Fig. 10. For this
metal, whosed bands are mainly situated above the Fermi
energy, the considerable differences betweenescatter and
eLDA due to lattice effects on thee-p scattering are largely
compensated for the first band and even overcompensated
for the second band by the influence of the lattice effect on
the polarization~compare the curves foreOBML andescatter).
This situation is also reflected by theNeff values, which are
significantly lower for the LDA than for the BML approach:
for the first band along the@110# direction, we obtained
Neff values of 3.8–4.1 for the LDA and 5.7–6.2 for the BML
approximation. This effect is even more drastic for the small
occupied part of the second band, which is predominantly
d-like. For these initial electron states, we calculatedNeff
values of about 3.4 for the LDA and about 8 for the BML
approximation. These results indicate a marked underestima-
tion of the effective electron density by the LDA concerning
the polarization of the inhomogenous electron gas in vana-
dium.

In Tables III and IV we present a summary of the band-
and momentum-dependent parametersNeff

BML , Neff
LDA , ae ,

and ap within the central-momentum region as they were
obtained by the optimization process described in Sec. VII A
and Eqs.~39! and~40!. TheNeff

BML andNeff
LDA values of Table

FIG. 9. State-dependent enhancemente in bcc manganese as a
function of the reduced momentumk along the@110# direction:~a!
first band and~b! second band~partially occupied!. The notations of
this figure are the same as in Fig. 8.

FIG. 10. State-dependent enhancemente in bcc vanadium as a
function of the reduced momentumk along the@110# direction:~a!
first band and~b! second band~partially occupied!. The notations of
this figure are the same as in Fig. 8.
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III have been already discussed in this subsection. Concern-
ing the momentum dependence of the corresponding param-
etersae and ap along theGL (GN) direction for the fcc
~bcc! metals investigated, one observes almost constant val-
ues for the first band of Al and a relatively weak momentum
dependence ofae andap for all other metals in study, for
both the first and the second band. It has already been men-
tioned in Sec. VIII C that the parametersae ,ap , which be-
long to theNeff

BML values, are almost~within a few percent!
identical to the corresponding parameters that belong to the
Neff
LDA values. Therefore, in Table IV, only theae and ap

values belonging toNeff
BML are shown. Due to the definition of

ae and ap in Eq. ~26!, it is clear that deviations of these
parameters from the unity reflect deviations of the corre-
sponding occupied and nonoccupied electron and positron
states from free-particle states. From this point of view, it is
not surprising that one observes relatively small deviations
of ae ,ap from the unity for Al and Cu with their nearly free
valence electron states for energies close to the Fermi en-
ergy, in some contrast to theae ,ap values for the transition
metals Pd, Mn, and V, where the energy region aroundEF is
dominated byd states.

2. High-momentum region

As already mentioned in the Introduction, a second point
of discussion~apart from the negative slope of momentum-
dependent enhancement curves ford-like electron states! is
the question whether the enhancement factors in metals are
more or less the same for the LMC and the HMC, i.e., if one
hase(n;k)'e(n;k1G) for all GÞ0, or whether the anni-
hilation rate within the high-momentum regions isdeen-
hancedor overenhanced, which means that we have

e~n;k1G!,e~n;k! or e~n;k1G!.e~n;k! ~42!

for GÞ0, respectively. Here we would like to emphasize
that the above definitions of de- and overenhancement are
not identical to the corresponding ones in recent papers by
Kontrym-Sznajd and Rubaszek.39 These authors speak about
deenhancement and overenhancement if the unequalities
e(n;k1G),e(n;k1Gnk) and e(n;k1G).e(n;k1Gnk),
respectively, are fulfilled, whereGnk represents the
reciprocal-lattice vector belonging to the ‘‘main component’’
of the MDAP for the electron stateunk&. Despite the fact that
this definition is more relevant from a physical point of view,
for this paper, we prefer the definition~42! because it is more
appropriate for the interpretation of our MDAP curves.

In order to investigate the question of de- or overenhance-
ment from the point of view of lattice effects, we also calcu-
lated BML and LDA enhancement factors in Al, Cu, Pd and
Mn for the nearest@~111!, ~110!# umklapp regions. Some
results of this investigation are presented in Figs. 5 and 11–
13.

In Fig. 5 we show BML and LDA enhancement curves
for the first valence band of Al along the@111# direction both
for the central and the nearest umklapp region. It is interest-
ing to see that for momenta within the~111! umklapp region
~i.e., along the pointsL→G8→L8), there appear consider-
able quantitative differences between the LDA and BML en-
hancement factors that are almost completely due to lattice
effects on thee-p scattering, whereas the effects on the po-
larization play only a subordinate role. Concerning the mo-
mentum dependence of the enhancement factor in the@111#
umklapp region, the BML and LDA results are qualitatively

TABLE III. Neff values per unit cell for the polarization of the
inhomogeneous electron gas in different metals within the central
momentum region along the@110# and@111# directions for bcc and
fcc metals, respectively. The lattice constantsa are given in a.u.
TheNeff

BML values are results of the BML optimization described in
Sec. VII A and theNeff

LDA values were extracted from LDA results
according to Eqs.~39! and~40!. The terms ‘‘First band’’ and ‘‘Sec-
ond band’’ are explained in Sec. VIII B and in Figs. 3 and 4 of this
paper. Regions ofNeff values in the table correspond to increasing
order of momenta.

First band Second band

Metal Structure a BML LDA BML LDA

Al fcc 7.6395 3.32 3.22
Cu fcc 6.8308 2.5–2.7 3.4–3.7 2.3–2.1 3.1–3.2
Pd fcc 7.33 3.6–3.7 4.3–4.8 3.8–4.0 4.1–4.2
Mn bcc 5.397 4.5–4.0 3.9–4.2 6.5–5.5 3.7–3.9
V bcc 5.7145 5.7–6.2 3.8–4.1 '8.0 '3.4

TABLE IV. ae andap values according to the optimization process described in Sec. VII A for momenta
within the central region along the@111# and @110# directions for fcc and bcc metals, respectively. The
parameters belonging to theNeff

BML values and to theNeff
LDA values are almost identical~within a few percent!.

Therefore, only theae andap values that belong to theNeff
BML are presented. The terms ‘‘First band’’ and

‘‘Second band’’ are explained in Sec. VIII B and in Figs. 3 and 4 of this paper. Regions ofNeff values in the
table correspond to increasing order of momenta.

First band Second band

Metal Structure ae ap ae ap

Al fcc 0.86–0.89 1.02–1.03
Cu fcc 0.91–0.75 1.17–1.43 1.13–0.93 0.92–1.19
Pd fcc 0.57–0.42 1.33–1.63 0.65–0.59 1.22–1.30
Mn bcc 0.71–0.59 1.30–1.58 0.81–0.68 1.09–1.30
V bcc 0.68–0.56 1.33–1.55 0.77–0.71 1.15–1.19
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similar, but with a stronger momentum dependence of the
BML enhancement factors. Of particular interest is the over-
enhancement of the MDAP of Al in the whole~111! um-
klapp region, an effect that is predicted by both theories
~stronger for the BML approximation, weaker for the LDA!.
This result which respresents an overenhancement effect de-

tected by the BML method, contradicts a statement that can
be frequently found in the literature~see Refs. 4, 24, and 39!,
namely, that the BML theory necessarily leads to a deen-
hancement of the annihilation rate in umklapp regions. Un-
fortunately, a quantitative experimental check of this theo-
retical prediction will hardly be possible because of the very
small intensity of the annihilation rate belonging to the first
valence band in Al in the umklapp regions~compare the IPM
curve in Fig. 5!.

More chances for an experimental check of BML or LDA
enhancement results in the HMC are given in the umklapp
regions ofd-band metals such as Cu, Pd, and Mn, especially
concerning the second valence bands of these metals along
@111# or @110# due to the relatively high intensities of the
corresponding MDAP~see the IPM curves in Figs. 11–13!.
At present, we are not able to give a detailed explanation of
the HMC enhancement curves presented in these figures; all
what we can say is the following. In the whole umklapp
regions investigated@~111! for Cu and Pd,~110! for Mn#,
one observes a deenhancement of the partial annihilation
rate, relatively moderate for the LDA results, but very sig-
nificant for the BML results. These strong differences be-
tween LDA and the BML approximation are obviously
mainly caused by lattice effects on thee-p scattering,
whereas the effects on the polarization are comparatively un-
important indicated by the relatively small differences be-
tween theeOBML andescattercurves.

In this connection, we think it is necessary to comment on
the strong increase of the umklapp enhancement in the neig-
bourhood of theL8 point for aluminum~Fig. 5! and copper
~Fig. 11!: in this region, the IPM curve has a zero point and,
as a consequence, for a numerical evaluation of the corre-
sponding enhancement, one has to divide very small en-
hanced rates by very small IPM rates. Due to unavoidable
numerical uncertainties~compare the statements in Sec.
VII C ! of both numbers, large errors of the numerically ob-

FIG. 12. State-dependent enhancemente of the second band in
fcc palladium as a function of the extended momentump along the
@111# direction. Solid line, enhancementeOBML; dashed line, BML
enhancementescatterincludingNeff

LDA according to Eqs.~39! and~40!;
dash-dotted line, enhancementeLDA. The exact meaning of
eOBML, escatter, andeLDA is given in Sec. VIII C of this paper. The
curve at the bottom of the figure means the MDAP according to the
IPM, where the occupied~unoccupied! parts are given by solid
~dashed! lines.

FIG. 11. State-dependent enhancemente of the second band in
fcc copper as a function of the extended momentump along the
@111# direction. Solid line, enhancementeOBML; dashed line, BML
enhancementescatterincludingNeff

LDA according to Eqs.~39! and~40!;
dash-dotted line, enhancementeLDA. The exact meaning of
eOBML, escatter, andeLDA is given in Sec. VIII C of this paper. Dots
at the beginning or the end of enhancement curves indicate MDAP
values too small for a reliable numerical determination ofe. The
solid curve at the bottom of the figure means the MDAP according
to the IPM.

FIG. 13. State-dependent enhancemente of the second band in
bcc manganese as a function of the extended momentump along
the @110# direction. The notations of this figure are the same as in
Fig. 12.
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tained enhancement factors may appear. For this reason, we
do not physically interpret our enhancement results in these
very regions.

We shall now briefly discuss the behavior of the
momentum-dependent BML parametersNeff , ae , and ap
within the ~111! or ~110! umklapp region for fcc or bcc met-
als, respectively. Concerning the parametersNeff

BML and
Neff
LDA , one observes, in general, the same relations between

these parameters as for the central momentum region~see the
discussion in Sec. VIII D 1!: for metals withd bands lying
below the Fermi energy ~Cu and Pd!, we have
Neff
BML,Neff

LDA within the whole umklapp region, whereas, for
metals whosed bands lie both below and aboveEF ~Mn and
V!, one observesNeff

BML.Neff
LDA . However, in contrast to the

relatively weak momentum dependence ofNeff within the
central-momentum region~compare Table III!, this quantity
is strongly momentum dependent within the umklapp region,
as is shown in Figs. 14~a! and 14~b! for copper and manga-
nese. Due to correlations between the BML parameters, the
marked momentum dependence ofNeff within the umklapp
regions also leads to a relatively strong variation of the pa-
rametersae andap with the momentum vectorp, a behavior
that can also be studied in Fig. 14.

In connection with these curves for copper and manga-
nese, we would like to mention that the roughly symmetrical
shape of these curves with respect toa51 indicates a rela-
tively strong correlation betweenae andap . Nevertheless,
we found the minima of the LS optimization process ofae
andap usually very ‘‘sharp,’’ which means that the corre-
sponding momentum-dependent parameters are numerically
well defined, despite their mutual correlations. Additionally,
a remark of Sec. VII A should be repeated here, namely, that
the parametersae andap must not be interpreted as inverse
values of effective electron and positron band masses, re-
spectively, because of the fact that these parameters reflect
not only the Bloch energies of the electron and positron scat-
tering states but also the shapes of their wave functions and,

beyond that, the overlap of these Bloch functions and the
shape of the Fermi surface.

E. Comparison of theoretical and experimental
enhancement factors

Of course, neither enhancement factors of the electron-
positron annihilation rate nor corresponding IPM rates are
observable from a physical point of view. All that can be
directly measured are fully integrated values of the
momentum-dependent annihilation rate by the use of lifetime
measurements or one- or two-dimensional rate distributions
by 1D ACPAR, 2D ACPAR, or Doppler-broadening experi-
ments. Therefore, a comparison of theoretical MDAP results
with experimental data requires~aside from the use of rela-
tively complicated 3D reconstruction methods75! numerical
integrations of the theoretical results with respect to one,
two, or three momentum components. Such integrations are
no great problem for the relatively simple LDA formalism,
but, at least at present, extraordinarily time consuming for
BML calculations, despite all efforts to accelerate our BML
programs as much as possible.

For this reason, we had to use another way to confront our
theoretical enhancement results with experiments. One pos-
sibility is to extract enhancement factors from experimental
data, as proposed by Sˇob,8,9 who combined energy-
dependent enhancement factors withl -dependent adjustable
coefficients, which were optimized by a comparison with 1D
ACPAR data. This method was successfully applied on FeAl
and CuZn.12,13 Somewhat later, a similar technique of com-
paring theory and experiment was applied by the Geneva
University Positron Group10,11,76 to vanadium, chromium,
iron, and nickel and by Matsumoto and Wakoh14,15 to chro-
mium and copper. These authors use a more flexible theo-
retical enhancement curve including more adjustable param-
eters than in the original work of Sˇob.

In the following, we refer to the summarizing work of
Genoud77 one-p correlation effects in transition metals. This
paper is based on theoretical MDAP values that were ob-
tained by the linear muffin-tin orbital formalism including
l -dependent enhancement factors as

e l~g!5al01al1g1al2g
21~al3g

3! ~43!

~the last term in parentheses is optional! with
g5(Enk2E10)/(EF2E10) according to the semiempirical
ansatz of Sˇob5,6 and of Mijnarends and Singru.7 The quanti-
tiesali , with l5s,p,d, f , . . . , areadjustable parameters that
were determined by comparing the theoretical results with
experimental 2D ACPAR data. Some of these parameters,
given in Ref. 77 for Cu, Pd, and V are presented in Table V.
By the use of these optimized parameters, the Geneva Uni-
versity Positron Group was able to extract band- and
momentum-dependent enhancement factors from their ex-
periments. Therefore, despite the fact that these enhancement
factors were, of course, not directly measured, we shall call
them, in the following, ‘‘experimental’’ enhancement factors
eexpt.

However, because of some risky aspects of this procedure
~see Appendix B! and because of the lack of self-consistency
in the theoretical approaches used for this investigation, it is

FIG. 14. Momentum-dependent optimized BML parameters
Neff , ae , andap for the second bands of~a! copper and~b! man-
ganese within the~111! and ~110! umklapp region, respectively.
Solid lines,Neff

BML ~see Sec. VII A!; dashed lines,Neff
LDA according to

Eqs. ~39! and ~40!; dash-dotted lines,ae ~see Sec. VII A!. Dash–
double-dotted lines,ap ~see Sec. VII A!.
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clear that, at least for the present, a comparison of our LDA
and BML enhancement results witheexpt can only be quali-
tative and not quantitative. Nevertheless, as we shall demon-
strate in the following, such a comparison gives valuable
information about the physical relevance of the lattice effects
investigated in this paper. Some results of this comparison
for Cu, Pd, and V are presented in Figs. 15–17, where we
show relative enhancement factors, i.e., factors normalized
to the corresponding value of the first band at theG point
along the@111# direction for Cu and Pd and~unlike the mo-
mentum direction for this metal in the previous subsections!
along the@100# direction for V within the first BZ. The ex-
perimental enhancement curves according to Ref. 77 are
given on the left-hand side~a! of these figures, and on the
right-hand side~b!, we present the corresponding theoretical
curves obtained by the BML approximation~solid lines! and
by the LDA ~dash-dotted lines!.

We start the discussion with copper~Fig. 15!. Concerning
the first band, the experimental curve shows a marked nega-
tive slope in the neighborhood of the boundary of the BZ,
where this band is dominantlyd-like. The shape of this en-
hancement curve is relatively well described by the corre-
sponding BML curve, much better than by the LDA result.
The experimental enhancement curve belonging to the sec-
ond band decreases monotonically with increasing momen-
tum, which is typical for ad band. The significant change of
the~negative! slope close to the boundary of the BZ is due to
the fact that the band becomes more and moresp-like in this
momentum region. For small and medium momenta, the cor-
responding BML curve shows the same momentum depen-
dence, but close to the boundary of the BZ, it reacts more
sensitively upon the increasingsp character of the band,
leading to a marked increase ofeOBML, in contrast to the
experimental curve. But despite this difference, it is obvious
that the BML result describes the experimentally observed
effects better than the LDA curve, which behaves almost
purely Kahana-like. For palladium~Fig. 16!, the situation is
similar. One observes a principal agreement between the ex-
perimental and the theoretical enhancement curves with a
significantly better performance of the BML approximation
in comparison to the LDA.

At this point, it would be useful to include into the dis-
cussion also enhancement results obtained by the theory of
Boroński and Jarlborg.54 Until now, however, only few re-
sults yielded by this approach are available, for example,

momentum-dependent enhancement curves for Pd along the
@110# direction ~see Fig. 2 in Ref. 54!. The most striking
property of these enhancement curves in comparison to the
BML and LDA results is their relatively weak momentum
dependence, which seems to be in contradiction to theeexpt

values discussed in this section. On the other hand, there is
some indication that the Boron´ski-Jarlborg~BJ! approach of-
fers a better description of enhancement curves belonging to
d states close to the Fermi surface than the BML approxima-
tion and the LDA. Anyway, for the future work on positron

FIG. 16. State-dependent relative enhancement of the first and
the second band~indicated by numbers 1 and 2! in fcc palladium as
a function of the reduced momentumk along the@111# direction.
The notations of this figure are the same as in Fig. 15.

TABLE V. Parametersali for the s-, p-, andd-state enhance-
ment according to Eq.~43! for copper, palladium, and vanadium as
given in Ref. 77.

ali Cu Pd V

as0 1.0 1.0 1.0
ap0 1.0 1.0 1.2
ad0 0.9 0.85 1.0
as1 0.1 0.15 0.2
ap1 0.1 0.15 0.1
ad1 0.0 0.1 0.0
as2 0.0 0.0 0.0
ap2 0.0 0.0 0.0
ad2 –0.5 –0.3 0.0

FIG. 15. State-dependent relative enhancement of the first and
the second band~indicated by numbers 1 and 2! in fcc copper as a
function of the reduced momentumk along the@111# direction.~a!
Experimental enhancement factors~Ref. 77! and~b! theoretical en-
hancement factors obtained by the OBML~solid lines! and by the
LDA approach~dash-dotted lines!. Dots at the beginning or the end
of enhancement curves indicate MDAP values too small for a reli-
able numerical determination ofe.
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annihilation in metals, a more extensive comparison of the
BML approximation and the LDA with~BJ! enhancement
results would be desirable.

Summarizing the information from Figs. 15 and 16, we
can say that the inclusion of lattice effects in our OBML
theory leads to improved qualitative agreement between
theoretical and experimental enhancement factors. We can
therefore conclude that the lattice effects described in this
paper are of some importance for a proper theoretical de-
scription of positron annihilation in metals and should be
taken into account.

However, at first sight, this conclusion seems to be too
hasty if one observes Fig. 17, where we show experimental
and theoretical results for the first band in vanadium along
theGX line. In this case, it is evident that, in contrast to the
two examples discussed before, the LDA enhancement curve
corresponds better to the experimental curve than the BML
result. This different behavior of V in comparison to Cu and
Pd is also significant if one compares the optimized param-
etersad2 for these metals according to Eq.~43! ~see the last
line in Table V!. We think that the reason for this strange
behavior is that we are confronted with the limits of the
procedure of obtaining enhancement factors from the experi-
ment, as proposed in Refs. 10, 11, 76, and 77~compare Ap-
pendix B!: namely, in the case of vanadium, the contribution
of electrond states to the annihilation rate is much smaller
than for Cu and Pd due to the fact that the second band in V
contributing to the rate is mainly unoccupied~compare Fig.
4!, with the consequence that the content of ad-enhanced
annihilation rate in the experimental data is much smaller
than in the otherd metals discussed before. Consequently,
one cannot expect a reliable fit for thead,i enhancement
parameters in the model function~43!. Therefore, we sup-
pose that the poor correspondence between the experimental
curve and the BML curve for V is not caused by a bad
performance of the BML theory but by exceeding the limits
of the method of extracting enhancement results out of the
2D ACAR data. In fact, there is no reasonable argument that
the first occupied valence band of vanadium should show
completely different lattice effects of the enhancement than
the first band of the otherd-band metals investigated in this
work.

IX. CONCLUSIONS

The main purpose of this paper is an investigation of the
influence of lattice effects on the scattering between annihi-
lating electrons and positrons. There are two different types
of these lattice effects, namely, those that influence directly
the interactinge-p pair and those that influence the polariza-
tion of the inhomogeneous electron gas and therefore the
e-p interaction potential. The theoretical description of these
lattice effects requires an inclusion of unoccupied electron
and positron scattering states into the theory. This require-
ment is at least approximately fulfilled by our OBML theory,
which is presented in this paper. As we extensively discussed
in Sec. VII A, this theoretical approach can be reliably ap-
plied to metals with high and medium valence electron den-
sity ~such as Al, Cu, and the transition metals!, but only with
some reservation to metals with lower electron density.

Within the first BZ, the lattice effect on thee-p scattering
causes, for all metals and all occupied electron states inves-
tigated, a considerable increase of the enhancement factors in
comparison with the corresponding LDA results: close to the
G point, one observes an increase of about 6% for Al and
between 10% and 23% for thed-band metals Cu, Pd, Mn,
and V. Additionally, for bands with a more or less marked
d character, the shape of the LDA enhancement curves is
also changed by this lattice effect: if thed character domi-
nates, one observes a negative momentum dependence of the
enhancement that is significantly stronger than for the LDA
results. On the other hand, if the band is dominantly
sp-like, the positive~Kahana-like! momentum dependence
of the corresponding LDA enhancement factors is reduced.
This argumentation is also supported by a comparison of our
results with enhancement factors extracted from 2D ACPAR
experiments.77

Very interesting is the role of the second effect called the
‘‘lattice effect on the polarization,’’ which does not drasti-
cally change the momentum dependence of the enhancement
curves but considerably influences the magnitude of the en-
hancement: in fact, it shifts the enhancement curves to higher
or lower values depending on the energetic position of the
d bands with respect to the Fermi energy. This shift is neg-
ligible in the absence ofd bands, as is the case for Al. For
the d-band metals Cu and Pd, we observe a moderate and
small positive shift of the enhancement curves, respectively.
On the contrary, Mn shows a moderate and V a strong nega-
tive shift, i.e., to smaller values of the enhancement, which
leads to a more or less marked cancellation of the lattice
effect on thee-p scattering. For the second band of vana-
dium, the lattice effect of the polarization even overcompen-
sates the lattice effect on thee-p scattering, with the conse-
quence that, in this case, the enhancement according to our
OBML theory is smaller than the corresponding LDA result.

In this paper, we also present a comparison of BML and
LDA enhancement factors in simple andd-band metals for
high-momentum components of the MDAP. In general, the
BML and LDA results are comparable from a qualitative
point of view. Quantitatively, however, the momentum de-
pendence of the enhancement is more marked for the BML
than for the LDA enhancement curves. This can be observed
for Al, where both theoretical methods show an overen-
hancement within the~111! umklapp region, but also for the

FIG. 17. State-dependent relative enhancement of the first band
in bcc vanadium as a function of the reduced momentumk along
the @100# direction. The notations of this figure are the same as in
Fig. 15.
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d-band metals Cu, Pd, and Mn, where we observed a mod-
erate deenhancement for the LDA results and a strong deen-
hancement for the BML results. These differences between
BML and LDA are mainly due to the lattice effect on the
e-p scattering, whereas the lattice effect on the polarization
is less important.

Summarizing our results, we can say that, for a proper
theoretical description of the electron-positron annihilation
process both in simple and ind-band metals and both for the
central momentum region and the umklapp regions, the in-
fluence of the crystal lattice is significant and should not be
neglected.
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APPENDIX A

It is clear that the use of the RPA for thee-p interaction
potential has the consequence that our BML and LDA results
are not self-consistent with respect toVep, a fact that makes
a direct comparison of our results with experimental annihi-
lation rates more difficult. However, concerning the sensitiv-
ity of the MDAP and enhancement factors on differente-p
interaction potentials, we learn from a comparison of RPA
potentials with fully self-consistent potentials for the homo-
geneous electron gas3 that this sensitivity is very strong in
the medium and low electron density region for, say, for
r s.3 a.u., but is moderate for smaller values of the electron
density parameter, which means, in the region ofr s , which
is especially interesting for our calculations~compare the
discussion in Sec. VII A!. Therefore, if we use this result for
the inhomogeneous electron gases of the metals that we
study in this paper, we expect that the application of more
elaboratee-p potentials than the RPA would not signifi-
cantly change the results and the physical conclusions of our
work.

A second point concerns the use of astaticapproximation
to the dynamicale-p interaction potential. For the homoge-
neous electron gas, this simplification of the theory is justi-
fied by earlier results of Carbotte and Kahana,61 who pointed
out that dynamical corrections to the annihilation rate due to
thee-p interaction potential are largely compensated by dy-
namical corrections due to electron and positron self-energy
terms. In his work on positron annihilation in real metals,47

Carbotte repeats the arguments of Ref. 61 without discussing
any new aspects that might occur from the inhomogeneity of

the electron gas. For the present paper, we take over Car-
botte’s argumentation in the following way: as we exten-
sively pointed out in Sec. II, the electron and positron
Green’s functions used in the BML approximation are based
on the Schro¨dinger-like equations~6! and~7!. In these equa-
tions, the effects of interactions of a single particle with the
other electrons in the crystal are included by single-particle
Hartree and exchange-correlation potentials. We can say that
these potentials have approximately the same effect on the
electron and positron propagators as the inclusion of Hartree-
Fock andstatic correlation self-energy insertions into these
propagators. According to Carbotte, the use of a dynamical
e-p interaction potentialVep in our BML formulas would
also require the inclusion of the dynamical part of these self-
energy insertions into the single-particle Green’s functions
~4! and ~5! which would be an extremely complicated task.
For this reason, until now, there have been no investigations
on the question whether the cancellation of the dynamical
parts of electron and positron self-energy terms andVep in
the ladder diagrams is as effective for the inhomogeneous
electron gas as for the homogeneous one.

Nevertheless, special studies on both topics discussed in
this appendix, namely, concerning~i! the use ofe-p poten-
tials beyond the RPA, eventually by an inclusion of
exchange-correlation field corrections to theVepmatrix, and
~ii ! the role of dynamical corrections to these potentials in
theoretical MDAP calculations for real metals would be
highly desirable; the present author plans efforts in both di-
rections for the future.

APPENDIX B

The procedure of extracting band- and momentum-
dependent enhancement factors from 2D ACPAR experi-
ments, as proposed by the Geneva University Positron
Group10,11,76,77is without any doubt of great importance for
comparisons between theoretical and experimental enhance-
ment results. Nevertheless, one should be aware that this
procedure~described in Sec. VIII E! includes some risks.

At first, one might be concerned that the simple analytical
form of the enhancement model Eq.~43! might be inappro-
priate for the given problem. We do not think so because the
model includes enough parameters to offer sufficient flexibil-
ity. However, for several reasons,10 the ali coefficients pub-
lished in Refs. 10, 11, 76, and 77 do not follow from a LS
comparison of theory and experiment, but reflect the best
agreement of the theoretical and experimental data for a rela-
tively small number of trials. So, for example, many of the
as0 andap0 parameters are simply set to one, which might
not always be the best choice. Another problematic point is
due to the fact that the model parametersali are the same for
both the LMC and the HMC regions, which means that these
parameters only reflect average values for the whole momen-
tum space. This might be risky especially for transition met-
als where thed-band enhancement is quite different for LMC
and HMC regions. A third point that should be kept in mind
is that some parameters in Eq.~43! might be unreliably de-
termined because of too small a content of the MDAP with
respect to these parameters, an objection that has already
been mentioned in Ref. 10 and is discussed for the example
vanadium in Sec. VIII E of the present paper.
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44M. Šob, Solid State Commun.53, 249 ~1985!.
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