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Influence of lattice effects on the electron-positron interaction in metals
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We describe the influence of the crystal lattice on the enhancement of the electron-positron annihilation rate
in metals by the use of an alternative version of the Bloch-modified la@MLt ) theory, which we call the
optimizedBML approximation. This approach to the problem of positrons interacting with an inhomogeneous
electron gas can be reliably applied to metals with high and medium valence electron density, especially to
transition metals, but is less efficient for metals with low electron densities such as, e.g., alkali metals. It
enables us to describe the role of lattice effects in an approximative but nevertheless physically reasonable
way. The paper offer§) an extensive presentation of the theory @inda summary of momentum-dependent
enhancement results obtained for a series of simpledaband metalgAl, Cu, Pd, Mn, and VY both for the
central momentum region and for near umklapp regions. These BML enhancement factors are compared with
corresponding results of the local-density approximation and with enhancement factors extracted from two-
dimensional angular correlation experiments. The main result of this paper is that we are able to demonstrate
that for all metals and for all regions of the momentum space investigated, the lattice effects on the electron-
positron enhancement are significant and therefore should not be neglected in theoretical work.
[S0163-182696)02131-3

I. INTRODUCTION positrons, namely, at first, the appearance of high-
momentum(umklapp componentgHMC's) whose intensity
For a reliable interpretation of positron annihilation ex-is relatively small forsp-like valence electrons but may be
periments (e.g., lifetime or angular correlation measure- considerably large fod-like or f-like electrons in transition
ments in metallic systems, an understanding of the Coulom-or noble metals or for tightly bound core electrons. Second,
bic electron-positrond-p) interaction and thenhancement there is some evidence that both the strength and the momen-
of the annihilation rate due to this interaction is of vital im- tum dependence of the enhancement deiike and f-like
portance. Usually, theoretical investigations about ¢hg  electrons is different from the results of the Kahana theory.
interaction in metals start with the correspondifjium Both effects can be empirically decribed by using Kahana-
problem, i.e., with the study of the behavior of electron-like but energy-dependent enhancement fadtacsording to
positron pairs in ghomogeneouslectron gas. A successful an idea of ®b>° and, independently, Mijnarends and
calculation of the momentum-dependent enhancement of th8ingru) and by state-dependent enhancement factors with
electron density at positron position in jellium was done bydifferent coefficients fos p-like andd-like electron state$?
Kahana by a summation of ladder diagrams of the electron-These ideas were successfully used in many other investiga-
positron two-particle Green's function. There is a generations; see, e.g., Refs. 10-15.
agreement that this approximative description of a typical An important aspect in the theory of the electron-positron
many-body problem by electron-positron pairs embedded iinteraction was the use décal enhancement factors. This
an electron gas is reasonable as long as the electron densitiea goes back to papers by Bonderghall® and
within the metal is not too low and the probability of the Chakraborty’ and was further developed by Daniuk
creation ofe-p bound states is small. Later refinements ofet al'®!° and similarly by Jarlborg and Sindgf.All these
Kahana's theory are due to Bomski et al? and to Rubaszek efforts led to a local-density approximatighDA) for the
and StachowiaR,who presented a fully self-consistent solu- calculation of thee-p enhancement in condensed matter. The
tion of the Kahana equation. Other independent theories ohasic principles of the LDA are given in Sec. Ill of this
positron enhancement in jellium elaborated by several aupaper; for more detailed information see the recent review
thors can be found in the literatui@ee, e.g., the review article by ! and the references therein.
article by Stachowiak and RubasZelnd the references During the past decade, different versions of the LDA
therein. Due to all these efforts, we can say that the physicsvere successfully used for investigations on positron annihi-
of positrons annihilating in a homogeneous electron gas ifation in various materials such as simple metal&ali met-

essentially well understood. als, magnesiumf?>-2°3d and 4 metals!®-20-22.26.27]|gys 28
However, this is by no means the case for ép inter-  and highT, superconductor® 3! Systematic investigations
action within aninhomogeneouslectron gag“beyond jel-  on electron-positron enhancement factors in metals based on

lium” ) where one has to face the problem that both the electhe LDA may be found in Refs. 32—37 and their mutual

trons and positrons are submitted to an external potential thaomparison with respect to the agreement with experiment in
is periodic with respect to the lattice of the metal ions. ThisRef. 38; a thorough theoretical analysis of the LDA for pos-

lattice potential causes two important features in the momeritrons is performed in Ref. 39.

tum density of annihilation pair@DAP) of electrons and Extensively discussed in many of these LDA investiga-
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tions is the question whether the high-momentum compoin the ladder expansion of the-p Green’s function the
nents of the MDAP aréessor moreenhanced by-p inter-  “Bloch character” of the interacting electrons and positrons
action effects than the components of the central-momentuns at least partly taken into account. Because of the approxi-
region. In the literature, such effects are caltbnhance- mations included in this approach, which is described in de-
ment or overenhancementf the annihilation rate, respec- tail in Refs. 43 and 50 and in Sec. VI, it was called the
tively. An exact definition of these effects is given at the quasifree(QF) BML theory. An application of the QF BML
beginning of Sec. VIII D 2. A deenhancement effect was pretheory to the enhancement of the HMC's in alkali meftals
dicted by Fujiwaraet al*® and was studied in some early gave a qualitative indication of a more or less pronounced
papers by Hede and Carboffe,Sormannet al?**® and deenhancement effect. At least for lithium, the QF BML re-
Sob3°44-460ver the past years, the possibility of the con-sults within the(110 umklapp regiof® led to significantly
troversial overenhancement effect of HMC's has been studbetter agreement between experimérgnd theory. Addi-
ied in Refs. 23 24, and 27. tionally, the QF BML theory also yields the typical non-

A second important feature of tieep annihilation in met-  Kahana-like momentum dependence of enhancement factors
als, namely, the decrease of tieelectron enhancement fac- of d-electrons in metals, as it was shown for the noble metals
tor with increasing momentum, for which there is some eX-copper and silvéf and the transition metals nickel and
perimental evidenc®™ was also observed in LDA jgp53
studies?®?® Both this topic and the question of deenhance- ~ oyer the past years, some efforts were made to improve
ment or overenhancement of HMC annihilation rates in Metine ladder approach for the inhomogeneous electron gas by a

alSDW'" t_)te iirl]scgssed in Sec. Vllltl offtthr:s pLaDFfr.th' r{)hysically more realistic description of the electron and pos-
espite the Impressing resutts ot the » (IS approact}, ., scattering states. We mention here in particular the

is incomplete in the following sense: it does not explicitly P 56
take into account the influence of the crystal lattice on the\t’)vgsrg dOfOiorfhresk'éssrr(l&?;?éﬂigd e(::\(/)a\lltlj(z)aili(ié’of V\{E':h Bithe-

electron-positron interaction. It is clear that all Coulombic . X : . :
>oldstone equation using single-particle Bloch functions for

interactions between electrons and positrons can be consi | d ed ; f X Th
ered as scattering processes where the particles are scatteff €'ectrons and parametrized positron wave functions. The

out of their occupied states. As we shall show in Sec. Il fromeffectivee-p interaction potential is given as a local function
a more mathematical point of view, we have to deal with twod_epend_ent on the position of the positron. From this point of
quite different types of scattering processes, nam@lype-  View, this work of Borosski and Jarlborg represents a com-
tween the electron and positron that constitute the annihilaination of the LDA with Bloch state scattering effects. We
ing pair and(ii) between all other electrons that react to theshall return to this approach in Secs. VII A and VIII E.
existence of the disturbing positron by a polarization of the In 1992, the present author started to develop the QF
electron gas. In both cases, unoccupied electron and positrd@ML approach with the aim of a more efficient inclusion of
Bloch states appear that are not included in the local-densitlattice effects into the theory. Apart from some preliminary
approach. reportsS’~®Cthis paper offers an extensive presentation of the
The influence of these lattice effects on the positron anniresult of those efforts, the so-callegtimizedBML (OBML)
hilation in metals is the main topic of the present papertheory. Mathematical and numerical details of this approach,
where we focus our attention on the interaction of thermaliincluding a discussion about its applicability, are given in
zed positrons withitinerant electrons, i.e., witlsp-like and  gec. ViI. It turns out that the OBML theory is very efficient
nearly free valence electrons, and wiHike electrons in  for |l metals with high and medium valence electron density
transition and noble metals, which also have an itineran(such as, e.g., aluminum, copper, and transition methis
character but are more tightly bound to the atomic nucleig |ess qualified for metals with low electron densities such
than thesp electrons. The annihilation of positrons with core as, e.g., alkali metals. In Sec. VIII, after some general re-
electrons and of positrons trapped in defects of the lattice arg -rks on thee-p interaction potential, we present a compari-

not tre.ated n the present mvestl'gatlon. son between OBML and LDA enhancement results for the
An inclusion of lattice effects in the enhancement theory .
o o ; - simple metal Al and thel-band metals Cu, Pd, Mn, and V

of metals is, in principle, possible by an application of Ka-

hana’s theory to the nonjellium case, i.e., to an inhomogfqr both the central momentum region and near HMC re-

enous electron gas. Such a procedure was proposed ions. A confrontation of OBML and LDA resglts with en-
Carbottd” and was used for an approximative calculation of'@ncement factors extracted from two-dimensid@&)) an-
the enhancement for core electrdfisThis approach{for gular _correlat_|0n of p(_)Sltro_n annihilation radiatiGhCPAR)
which the present author proposed the nafech-modified e_xperlments is alsp given in Sec. VIII, followed by a conclu-
ladder (BML ) theony] is based on a numerical solution of the Sion of this paper in Sec. IX.

Bethe-Goldstone equation for the inhomogeneous electron

gas. The mathematical background of the BML is given in

detail in Refs. 47 and 49 and is briefly reviewed in Secs. IV Il. BASIC NOTIONS AND DEFINITIONS

and V of this paper.

Unfortunately, Carbotte’s approach is much too compli- All theoretical investigations on the electron-positron in-
cated to be used for a calculation of the enhancement of thieraction in metals, especially if one deals with itinerant elec-
annihilation rate of positrons interacting with itinerant metaltrons as we do in this paper, are based on the well-known
electrons. Therefore, based on Carbotte’'s work, Sormanformula for the two-particle momentum density of annihila-
and Puff® published a lattice-modified Kahana theory, wheretion pair$*
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pa(D)=(~1)2 f“d3xd3yexp[—ip-<x—y>]

X Geg(Xt,xt;yt " yt"), (1)

wherefip is the photon-pair momenturf), is the volume of
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with the positron Bloch states,, and the corresponding
eigenenergie&, . Due to the fact that in a positron annihi-
lation experiment there is usually only one positron in the
sample, the only occupied positron state will be situated at
the bottom of the lowest bandnE&l) at the I' point
(k=0). Taking this into account, in Eg5), the step function

the crystal, and@, represents the zero-temperature electrony¢ Eq. (4) has to be replaced by the Kronecker delta.

positron Green’s function. The arguments of this function

The ¢, and ¢, are solutions of the single-particle

describe the propagation of an electron-positron pair fronschrginger-like equations

space pointx to space pointy during the (infinitesimally
small) time differencet* —t. The corresponding momentum-
dependent ratR,,(p) for a two-photon (%) annihilation is
given by

2

romc
RZy(p)ZZTPZV(p)i (2)

with ry andc the classical electron radius and the velocity of

2

A
- ﬁMVE(fHVx‘c(r)}«ﬂnk(r):Enkwnk(r), (6)

|

2

h
—ﬁA+V;(r)+V+7

corr

(r)}‘Pnk(r)zE;k‘Pnk(r)- (7)

In these equationsy, means the Coulombic potential en-

light, respectively, and the factor 2 accounting for the spin€rgy of the particle due to theigid) lattice of the atomic

degeneracy.

Following Kahana and his enhancement theory for the
homogeneous electron g&s,, can be approximated by the
integral equation

Gy(X, X5,y )= Ge(X,Y)Gp(X',y")

i
+ %J dzdZGe(x,2)Gp(x',2")Ve(z,2")

3

with x=xt,, y=yt,, x'=x"ty, y'=y't,, z=zt,, and
2'=7't,. G, and G, are the single-particle Green'’s func-
tions for an electron and a positron, respectively, &8

XGgy(z,2'3yy'),

ions and the Hartree potentiad, . represents the LDA of the
exchange and thestatig correlation of the electron with the
other electrons, an¥_,,, in Eq. (7) is the single-particle
electron-positron correlation potential, also in the LDA,
eventually in a parametrized form as it has been published by
Bororski and Nieminerf® This potential must be distin-
guished from the two-particle-p interaction potentialV/€P,
which appears in Eq(3) for the electron-positron Green'’s
function. From the point of view of a perturbation expansion
of Gep, V., represents a self-energy insertion into the pos-
itron Green’'s function, wherea¥®P describes the two-
particle interaction of the annihilating electron-positron pair.
Concerning the enhancement, this potential is usually much
more important than the self-energy effect. For this reason,

the V,, in Eq. (7) is neglected in many theoretical investi-

describes the effective interaction potential between the twgations and also in the work presented. But it should be

fermions. The superscrifit in Eq. (3) stands forladder ap-
proximation orladder expansion because of the ladder form
of the corresponding Feynman diagrams. The single-particl

Green’s function for a noninteracting electron propagatingy* —

within a lattice-periodic potential is given by the
expressioff
R R .
Celxteyty) = lim 5] dwe™ 72 yn(X)(y)
0+ —o0 n,k

O(Er—En)
w—E/fi—in

O(En—Er)
(,()_Enk/ﬁ+i n ’

(4)

where ,, means an electron wave function with the band
indexn and the Bloch vectdk within the first Brillouin zone

(BZ). E, is the corresponding eigenenergy, and the stef

function ® accounts for the Fermi-Dirac distribution of oc-
cupied fermions at zero temperature. Similarly, the single
particle Green’s function for a positron has the f6fm

+ o0 )
Gp(Xty,yty)= lim doe ETY Y o (X) @f(y)
] nk

n—07" 2m) -
1) 1-4
> — :k,lo_. — nk,lO. ’ (5)
w—EjJh—in ow—-Ey/htin

emphasized that this neglect might not be justified in each

case. For example, as we learned from a paper of Daniuk,

8ob, and Rubaszek for the core annihilation, the effect of
«orr Might be significant.

According to Egs(1)—(5), all lattice effects result from
the fact that, in crystalline systems, the electron and positron
Green’s functions(4) and (5) have to be based on Bloch
waves. Therefore, we have to deal with two principally dif-
ferent influences of the crystal lattice on the electron-
positron Green’s functiorG,, and, consequently, on the
MDAP: (i) the lattice effect on the scattering processes be-
tween the annihilating electrons and positrons is included in
the single-particle Green'’s functior@, andG,, that appear
explicitly in the integral equatiofB) and(ii) the lattice effect
on the polarization of the electron gas is included in the
lectron Green's function&, that implicitly appear in the
interaction potentiaV®P in Eq. (3); more details about this
subject are given in Sec. V. Henceforth in this paper, the

compact terms “lattice effect on the-p scattering” and
“lattice effect on the polarization” will be used in the sense
described above.

Taking into account only the first term of the ladder ex-
pansion(3), i.e., the term of zeroth order with respect to
VEP and also neglecting the effect of the correlation poten-
tial Vi, in the single-particle Schdinger equatior{7), one
gets the electron-positron Green’s function according to the
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independent-particle mod@PM), which is simply a product use the formulation of Daniukt al,'®1%33whereg is taken
of the electron and positron single-particle Green’s functiongrom the enhancement theory of the homogeneous electron

IPM ’ ’ 1oyt gas
Gep (XX"1y,Y") =Ge(X,¥)Gp(X",y").

Inserting this approximation into Eql) and using the 9(rink) = €noni (1) Xnic]- (12)
Green'’s functiong4) and (5), one obtains the well-known r(r)=[4mn(r)/3]" 2 is the local-density parametén(r)

formula for the MDAP in the IPM, namely, being the total local electron densjtsnd
Q - _ —
P~ OE—En)dy « qd | o Xok= (Enc= E10)/ (B¢ —Eno), (12
a 0 whereE,, and Ex mean the energy of the initial electronic
2 state|nk) and the Fermi energy, respectively, dag is the

Xexp(—ip-1)¢ng(r) @1o(r)| (8 bottom energy of the electron conduction bands. This
energy-dependent enhancement for individual states was
whereK denotes a reciprocal-lattice vector such thatk  proposed by 8b>° and independently by Mijnarends and
lies in the first BZ andp,, means the only occupied bottom Singru!
state of the positrorg is also a vector of the first BZ. The It must be noted here that E(.2) does not correspond to
spatial integral is over the volume of a unit cell of the crystalthe original LDA formulation by Daniulet al,'***where the
(Q) and the unusual factd/Q, before the integral comes Momentum-dependent part gfwas also considered a local
from the fact that, in this paper, all electron and positronfunction, namely,
Bloch states are consequently normalized with respect to the
crystal volume(). For practical reasons, it is advantageous Xnk(N=V[Ew—V (N[E—V~(N)],
to write the vectop as a sum of a vectds that is an element
of the first BZ and a reciprocal-lattice vect@r. Henceforth,
we callk areducedvector andp an extendedvector of the
momentum space. Then the above expression gets the re
tively simple form

whereV™(r) =V, (r)+V,(r) is the crystal potential energy

of a Bloch electron according to E¢f). There is some evi-
ence that a nonlocal momentum factor as defined by Eq.
2) is more appropriate from the physical point of viét*

but the discussion about this detail of the LDA approach is

Q not yet finished. In this connection, it should be expressed

Q—J d®r that it is one of the advantages of the BML theory described
090 in the following sections that, in contrast to the LDA, no

2 assumptions about the momentum or energy dependence of
, (90  the local enhancement is necessary. It should also be men-

tioned here that some more basic objections concerning the

LDA were recently formulated by Stachowiék.

p'zi“”<k+e>=; O(Er—Ep)

Xexg —i(K+G)-r]in(r)eor)

whereG=0 corresponds to photon-pair momenta within the
first BZ, i.e., to the low-momentum componghMC) of the
MDAP, whereasG+ 0 describes the high-momentum com- IV. THE BLOCH-MODIFIED LADDER THEORY

ponent(HMC) of the MDAP centered around the veci@r The attempt of an application of the Kahana theldgs.

(1) and (3)] to the inhomogeneous electron gas was pre-
IIl. THE LOCAL-DENSITY APPROXIMATION sented by Carbott¥.In principle, this procedure is straight-
As we already mentioned in the Introduction, in this sec-forward by inserting the electron and positron Green's func-
tion, we describe only some of the key points of the LDA. It ions based on Bloch statgggs. (5) and(6)] into Kahana's
is based on a MDAP formula that is very similar to the [PM iNteégral equation3) and the MDAP formula(1). For this
expression Eq9) but includes electron-positron correlations Mathematical treatment, it is useful to expand the electron
by the insertion of alocal pair-correlation function &nd positron Bloch functions into plane waves, namely,
g(r;nk), which is an electron-state-dependent function of
the electron density at a given pomnand describes the local
enhancement of the electron-positron interaction:

1 _
ufnk<r>=¢—§; an(K)exdi(k+K)-r] (13

and
p;BA<k+G>=; O (Eg—Epy)

1 .
Q e =—=2, by(K)exdi(k+K)-r], (14
3 ; VO K
X Q—J direxg —i(k+G)-r]
074 respectively, withK being a reciprocal-lattice vector and
5 ; ; -

a,(K) and b, (K) the corresponding Fourier coefficients.

XAG(r;nK) (1) @a0(1) | (10 In the following, we take advantage of the fact that &g

and b, are real numbers for all Bravais lattices and some
For our comparative calculations between the LDA and thedther high-symmetrical lattices such as hcp. With the use of
BML approximation presented in Sec. VI, we decided tothe above expansions, one gets, after a rather lengthy and
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tedious calculatio? which cannot be presented here in de-Egs. (15) and (16). The theory of fermion-fermion interac-
tail, the basic formulas of the so-called exBbbch-modified tions in spatially inhomogeneous systems is extensively dis-
ladder theory cussed in the literaturesee, e.g., Refs. 66—68 and references
therein and we shall give here only a short summary of this
BML SUbjeCt.

(k+G)= 2 O (e~ “k)[ ; ank(K)b1o(G=K) Due to the spatial inhomogeneity of the electron gas, the
two-particle interaction potential between the electron and

12 2 . E £ positron can be expressed as a functM(x,y;t,—t,),
04 ik (Enk—Eix which depends explicitly on the positions of both interacting

particles and not simply on the relative coordinatey.

+Ejo—Ej)  xia(k) Such a function can be Fourier transformed as

XE Z Vel G2 Q){KEZ ank(Ky) VEP(X,y; ty—ty) =5 QZ E elP1XgiP2-y

P1 P2

+o .
% f dwe™ YV (py,pyw),
17

2
x KES blO(KS)biq(K?’JFGZ)H ’ where p, and p, are vectors of the extended momentum
(15  Space and/®P(p;,p,; w) is the corresponding Fourier coef-

: . " i ficient. With the vector sums
including the Bloch-modified Bethe-Goldstone amplitude

XM P1=U1+G1, Pa=02+ Gy,
whereq, andq, are vectors of the first BZ an@, andG,

XEVE(k) =2 @i (Kp)bjg(G—Ky+L) are reciprocal-lattice vectors, E€L7) may be written in the

K form

—E > O(Egw—Ef) VER(X, Y5t —ty)
S K"
:_2 2 2 2 el (A1 +G1) xg=i(d2+G) -y
XZ (Enk_Esk//‘FE]J_rO_E:q,)il ql a2 Gl GZ
t

+ oo
, . x f doe U YVER(gy+ Gy, byt Goj ).
EVék)E Ve gi(d") e B
This function must have the same symmetry group as the
crystal structure of the solid, with respect to both spatial
argumentx andy. In particular, the condition

X KZ aikr(Kz)aSkH(Kz_G/ + L”)
2

" _— VEP(X+ R,y + R;t,— 1) =VER(X,y;t,—ty)
X KEs bjq(Ka)big (Ks+G"—L+L"—L )}. o Y

must be fulfilled for each lattice translation vectrof the
(16)  crystal. After a short calculation, this leads to

In Egs.(15) and(16), the a,,, mean the Fourier coefficients q1=p=0

of the occupied electron states and thg are the corre- 12

sponding energies. The only occupied positron state is regand consequently to the expression

resented by the Fourier coefficierttso(K) and the corre-

sponding energyEfO. All other Fourier coefficients and VEP(x,y;t,—t,) :_2 el (x= y)E 2 eiG1-Xgi1G2y

energies with the band indicesj, s, t, etc., and the reduced Gy

Bloch vectorsk’, q, k", q', etc., belong to unoccupied elec-

tron and positron(scattering states. The reciprocal-lattice v f A dewe- ity

vectorsL, L', andL"” in Egs.(15) and(16) are defined by

the conditions that the vectors g=k—k'—

q'=k—k”"—L’, andq"=k’—k”—L" must also belong to XVeP(g+G1,q+ Gy w). (18

the first BZ. Due to the fact thaG; and G, are discrete quantities, the
Fourier transform o#/®P can be considered a matrix

— o

V. THE EFFECTIVE ELECTRON-POSITRON .
INTERACTION VER(Q+G1,0+Gyi0) =V, 6, (0 o). (19

Until now, we did not say anything about the effective For a system with infinitesimal translation invarian@eg.,
electron-positron interaction potenti®®P that appears in for the jellium), the matrix simplifies substantially to a diag-
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onal matrix, which means that all information about the spa€_,, anda,, are the energies and the Fourier coefficients of
tial inhomogeneity(i.e., about local-field effectof thee-p  the occupied electron statdsk’); correspondingly, the
interaction potential is contained in the off-diagonal element€ ., and a,» belong to the unoccupied electron states
of V?s'i,ez- Imk”). The vectork” and the reciprocal-lattice vecttr are

Analogous to the theory of the homogeneous electron gaglefined by the condition th&t'=k’ —qg—L is an element of
the Fourier transform of the effective electron-positron inter-the first BZ, where botlk’ andq also belong to the first BZ.
action potential can be written ®s It should be mentioned here that, in the literature, the
dielectric and the polarizability matrices are usually denoted

1 20 € andy, respectively. The unusual notatiorsaandP in this

]9+ G4|[q+ Gy [x(q,0)]e, 6, (20 paper come from the fact that, in positron physics, the letters
e and y are reserved for the enhancement factor and the
Bethe-Goldstone amplitude.

4re?

Ve 6,0 0)=

with e as the electron charge ard! as the inverse of the
Hermitian dielectric matri&’

4e? VI. THE QUASIFREE BML APPROXIMATION

,0) =6 -——=T17-—~ P ), . . .
K6,,6,(0@)= b6, c, |q+G,||g+ G, 61,6,(0h) An uncompromising evaluation of the BML equations

(21) (15 and (16) including the potential matriX19) is practi-
whereP represents the matrix of the Fourier transform of theC@lly impossible due to insuperable mathematical and nu-

polarizability of the electron gas, which is defined by an merical problems. Therefore, it is desirable to develop ap-
expression similar to Eq18), namely, proximative versions of these formulas. Such an

approximation was presented in 1985 by Sormann andPuff

1 . 4 . and is called thguasifreeBloch-modified ladder expansion.
PGy t—ty)= 277_92 e'q'(x_wg ; elC1e %2 Mathematically, the QF BML expansion can be easily ob-
a 1o tained from Eqgs(15) and (16) by using the two following
+oo . approximations.
X f_x doe™ " YPg o .(0,0). (22 (i) All eigenenergies of thenoccupiedelectron and pos-

itron wave functions are approximated by the Sommerfeld-
The simplest approximation oP, the random-phase ap- like expressions
proximation(RPA), is, in real space, given B
Eik=Eiot aclk+K|?,  Ej=Ejotaplg+Kj|?, 6
26

where E;4 and E;, mean the electron and positron bottom

If the electron Green’s functions in this equation are base@nergies and thi; andK; are the reciprocal-lattice vectors
on Bloch wavedsee Eq.4)], we have to expect lattice ef- that belong to theth and jth empty electron or positron
fects on the polarization as they were defined in Sec. IIband, respectively. The corresponding wave functions

Combining Egs.(4), (22), and (23) and using the Fourier
expansion of the electron wave functiofis3), we get the
matrix eIementsPGlYGZ(q,w) in the RPA. If we neglect the

dynamical aspects of the screening of #ip interaction, as

is frequently done in positron physi¢see the discussion in 1
Sec. VIII A), we obtain according to Adler and Wis&rbut pjq(r)~—=e
in a somewhat different formulation, ‘/5

RP. 2i
PRPAX, Yt —t,) = — 7 GelXty,ty) Gel(yty ,Xty). (23

1 .
l//ik(r)%\/_ﬁemkwi)'r,

i(a+Kj-r

have Fourier coefficients

4
RPA _ pRPA =——>>
Pg,.6,(0.0=Pg c,(q) 0% = O(Eg ai(K) = 8 k., qu(K)ng’Kj. (27

As can be seen from E@26), all lattice effects included in
—Enk,)E O(Em—Eg) the unoccupied electron and positron states are roughly ap-
m proximated by the parametesg and a, .
1 (i) The electron-positron interaction matrix is approxi-
X (Emir—Epkr) ™M nk’;mk” mated by

X(9,G1)Mnkr;mi(, Go), 24 VE 6,(@=VeR(|a+Gyl;Nerr) g, o, (28)
with i.e., all off-diagonal elements of the matrix are neglected,
which means that local-field effects of thep interaction are
not taken into accountcompare the discussion about this
Mnkr;mk"(q,G)=; e (K)amer(K=G+L). (29 point in Sec. V. Additionally, the diagonal elements are ap-
proximated by a scalar interaction potential as it is used in
In the above equationd) means the crystal volume and the jellium theory, with the consequence that all lattice ef-
Er is the Fermi energy of the electron gas. The quantitiedects on the polarization of the electron gas are only repre-
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sented by the quantiti;, which is the effective number of

BML _ .
electrons per unit cell that contribute to the polarization. This P2y (K+G)= ; O(Er—Enlo(nk;G)
neglect of all local-field effects of the-p interaction is the
most problematic feature of the QF BML approximation and + lim TM(nk;G)]2+ . (32
is in complete contrast to the LDA. M — o0

Inserting the approximation26)—(28) into the BML for- ith
mulas (15 and (16), one obtains the relatively simple Wit
expressiorfs*0
a(nkiG) =2 an(K)byg(G—K) (33
pdy M (k+G)=2 @(EF—EM{; an(K)byo(G—K)
and
1
X| 14+ = O(k'—ko)VeP([k—k’ M
Q kl 1
™m(NK;G)= _Zl > O(Ejw—Eg)
2 =1 K
+KJNem) xida™ (K1} (29 =
x 2, [E 2 (Kp)bjg(G—Ky+L)
. j=1| Kq
with
X (Epk—Ejw +Ejo—Ejp) 7t
ko=[(Er—Exo)lac] (30 (Enk™Bik + Ea07 By
and the corresponding Bethe-Goldstone equation Xé é ng,ez(q){% an(Ko)ai (Ko

XE;FGBML(k’):(Enk_Elo_ ack'? = aplk+G—k'[?) 7t

1 —G+L) || X blo(Ks)qu(Ks‘FGz)}-
X[” G O(K' —ko)VeP(|K' ~K"|;Ner) E
kH (34)
X yQEBML ) | (31) In Eq. (32), o represents the independent-particle part and
kiG v IS the first-order term with respect to tleep interaction

potential withM the number of unoccupied electron bands
The QF BML approach represented a successful attempt {@en into consideration. These two expressions can be nu-

obtain a practically feasible version of the BML theory that merically evaluated with some expense, but without any ad-
could be used for theoretical ~enhancementyitional approximation. Some numerical aspects and prob-

; 3,50,52,53 . . . . .
calculations! ~ lems of this evaluation are summarized in Sec. VII C of this
For a further development of the BML approach, which is paper.

the main topic of this paper, the QF BML approximation  Now we are going to reduce E(B4) to the corresponding
gained further importance by a more sophisticated treatmerbr expression. We do this in two steps. First, we apply the

of the parametersre, ap and Ney, Which occur in EQs.  approximation(28) for the e-p interaction potential, which
(29—(31). This treatment of the problem leads to anotherimmediately leads to the result

version of the BML approach, which we call tlogtimized
Bloch-modified ladder theory. 1M
m(nkiG)= o 2 2 O(Ejw—Ee)

VII. THE OPTIMIZED BML APPROXIMATION =1y

A. Optimization of the parameters N¢, ae, and a,

X (Kb o(G—K;+L
The major problem in order to go beyond the QF BML J'Zl {% e (K2)Biol 1+

theory is the following. How can we determine the param-
etersa,, ap, andNg that occur in Egs(29)—(31) such that,
despite the approximations described in the preceding sec-

X (Enk— Ejkr + Eqo— Ejg) 7t

tion, the lattice effects are taken into account as realistically XE VeP(|g+ Gy|;Negs)
as possible? G1
We start with the first term of the Bethe-Goldstone am-
plitude of the BML theory, which gives, according to Eq. X ; an(Koaj (Ko—Gi+L)
(16), 2

X . (35

; b1o(K3)bjq(K3+Gy)
3

xﬁ??é(k'>=K2 A (K1)bjg(G—Ky+L)+-- -,
1

with g=k—k’—L an element of the first BZ. Inserting this  As a second step, we also use the approxima{@&sand
expression into Eq.15), one gets (27), where all electron and positron scattering states are
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replaced by quasifree states and we obtain, after some nony, are influenced by several lattice effects, namely, by lattice
trivial but elementary manipulations, the QF approximationeffects(i) on the electron and positron energy leveis, on

of 7y, the electron and positron Bloch waves, and 4l on the
1 shape of the Fermi surface of the crystal electrons. This last
7F(nk;G) = v =S a,(K)by(G—K) mflue.nce can directly be seen by f[he fact that the effective
m) K Fermi momentunk, [Eq. (30)] used in the QF BML expres-

sion is a function ofx, and is therefore also momentum and
Xj d3k’ — —, band dependent. For these reasons, the paramejeasd
Enk— E10— @k _“p|k+G_k | a, must not be simply interpreted as inversely proportional
(36)  to electron and positron band masses as it might be expected
at first sight from the analytical form of E¢26). The mo-
mentum dependence of the optimized parameteZ¥",

VEPR(lk=k' +K|;Nefr)

with the conditionky<|k’| <k h.{M) and withk, given by

Eq. (30). The integral ovek’ requires a comment: it has to o ¢
be calculated oveM Brillouin zones: the central one, and %e: @nda, for Al, Cu, Pd, Mn, and V'is discussed in more
M—1 zones around. In our calculation, we reset this relad€t@il at the end of Secs. VIII D 1 and VIII D 2 of this paper.

tively complicated region by a sphere of the same volume NOW we reset the very complicated exact BML expres-
with the radius sions(15) and (16) by the corresponding QF BML expres-

sions (29—(31) including the optimized parameteNgy'-
3 113 @, anda,, with respect to all orders of the Bethe-Goldstone
M-—0Q amplitude. This procedure, which we call tregptimized
4 BZ 1 . . .
m BML theory, contains both types of lattice effects discussed

kma)&M )=

_ _ ] in Sec. Il more realistically than any other actual theoretical
where{)g; is the (reciproca) volume of the first BZ. approach dedicated to this problem. If we say “more realis-
_ An important questloq concerning the numerical evaluaﬂca"yn we want to express that the OBML procedure is
tion of Egs.(34) and(35) is the convergence of these func- more efficient for a theoretical description of lattice effects
tions with respect to the suni§ andX; over the unoccupied jnfluencing thee-p annihilation in metals than the LDA or
electron and positron bands, respectively. As we shall demyrevious formulations of the BML approach. This pretension
onstrate in Sec. VII C, the convergence with respect to thgpg|| pe justified in the following.
unoccupied positron bands is satisfactory. However, this is as described above, the LS process, which leads to the

by no means the case for the unoccupied electron bands. fynd- and momentum-dependent parameméﬁéL ., and
fact, for each theoretical approach that claims to describe thgp, is based on the Born approximation, i.e., on the BML

electron-scattering states realistically, the poor convergencg QF BML quantitiesy, , 7y, andT%F [according to Egs.

of the sumZ; in Egs.(34) and(35) is a crucial obstacle to 34), (35), and(36), respectively, which are all of first order

overcome. Of course, it is reasonable to expect that th ith respect to the-p interaction potential. It is therefore no

higher the electron bands lie a_bove the Fermi Ievel_, the bettesrurprise that the use of these parameters in the OBML theory
these bands can be approximated by free-particle band ives excellent agreement with the corresponding exact

Therefore, the simplest procedure would be as follows: on ML theory, as long as we use the Born approximation. As

calculates the sum over the unoccupied electron bands up 9 have proved by a great number of numerical tests, this is

a ce_rtaln band ”“mb‘?*" using _reallst|c Bloch s_tate§ and valid for all metals and for all momenta investigated, both
continues the calculation analytically by approximating the,

high lect d itron bands by ol S hwithin the central-momentum region and within the near um-
Igher electron and positron bands by plan€ waves. 4uc app regions. An example of these tests will be presented in
procedure was used in the paper of Bakirand Jarlborg: ec. VI B
For the present contribution, we use a somewhat different " 5" 00e must be aware that the parameters de-
and more reliable procedure: we numerically evaluate bott% - Lo ; -
. cribed above might be less effective for higher-order ladder
the complicated formula fory,(nk;G) [Eqg. (34)] and the ! ve mg v 9

corresponding parametrized approximationg(nk:G) [Eq. terms of the exact BML expansion than for the first-order

QF ot ; term. Nevertheless, if we compare this term with the terms of
(35)] and 7y7°(nk; G) [Eq. (36)] as functions of the number qqqer greater than 2 with respect WP according to Egs.

M of unopcypigd electron bands taken into account. Ther(,15) and (16), we see that, apart from some additional fea-
for an optimization of the parametel&, @, andap, We  yres that appear in the higher-order terfits particular,
perform the following two-step proces8) we optimize the  gyms of products of Fourier coefficients of unoccupied elec-

parameterNe; by a least-squarefl.S) comparison of the  on wave functions and also of unoccupied positron wave
v and 7y curves(henceforth, this optimized parameter is fynctions, the mathematical structure of these terms is rather
called Ngg; ) and (ii) we optimize the parametems, and  sjmijlar to the ladder term of first order. Due to this similarity,
ap by a LS comparison of theyy and 7y curves using one can assume that the useMf¥", a., and a, in all
Nef'}"L- terms of the ladder expansion will not seriously deteriorate
This two-step procedure has to be done for each initathe reliability of the MDAP and enhancement results ob-
(occupied electron staténk) and for each reciprocal-lattice tained by the OBML theory, especially if the terms of order
vector G under investigation. As a result, we get the greater than 1 with respect ¥°P play only a subordinate
momentum- and band-dependent paramelNﬁ%"(nk;G), role in the MDAP calculation.
ae(nk;G), and ay(nk;G). Here it has to be emphasized Due to enormous numerical problems, it is not possible to
that, according to the procedure described abovegthend  check the amount of the contribution of higher-order terms
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for the exact BML theory; therefore, we studied this question 0.4 . .
for the mathematically simpler LDA. For this purpose, we (@)

evaluated the LDA formula in the Born approximation, i.e.,
we included in Eq(10) the local enhancement factor

0.2 -
9(r;nk) = epomL "s(1); Xni] (37 |
)
and we compared these results with the corresponding '€ 00, 2'0 4'0
MDAP values obtained by the “complete” LDA according :
to Egs.(10) and(11). What we learned from this test is that, 5 04 : :
at least concerning the LDA, for all metals and annihilation ;

momenta investigated in this paper, the contribution of the
sum of all ladder terms of order greater than 1 with respect to
VeP to the MDAP is only about 30%, which means that the
contribution of the first-order ternfaccording to the Born
approximation amounts to about 70% and is therefore by far
the dominant one. This marked dominance of the first-order

ladder term is typical for metals in the high and medium 00, 20 20
electron density regime, i.e., with small values of the density M
parameter, as is the case for all metals investigated in this
paper. It is very important to emphazise here that this argu-
ment is valid not only for the average ele_ctron dens_ities Oﬁng to Eqgs.(36) and (34), respectivelyM is the number of unoc-
these metals, but also from the point of view of thieical cupied electron bands included into the calculation and the arrows

electron densities. For example, even in the outer parts of thgicate that the LS process was starteil at M=3 and (b) at
Wigner-Seitz cell of copper where the density of thelec- =23

trons is very small, the local value of that is due to the

single 4 electron does not exceed 2.7 a.u. Due to the fact

that, apart from all interesting differences between the LDA__..
and BML enhancement factors, which are the main topic mzanon process for the OBML parameters carefully by a large

this paper, the LDA and BML results are at least principallynu:nb?r: c:; Euwvencnalt teggs.nvc;/hat vafouind oﬂt :s”thatx_the
comparable, it is justified to assume that this dominance o?g”eet ef ﬁ. hee hey” ) g'\" Ciu tes sbgede aly € ;
the first-order ladder term will be also a general feature oFe;{‘ Aor '?] Tlr hunocfcuple .e?C ron Ia_n IS:" "ei’ c(>jr
the BML theory. As a consequence of these results, we thin : s_wets ail s o(;/vto_: a?’ﬁ"ga eff’]‘”_‘p ?. In Fgs. ar:j
that it is acceptable to use the optimized paramet&g-, : ggcgrb|nlg 0 sgm(.af' N alj ot this opblmlza '%F prczjcess e
ae, anday, for terms of all orders of the OBML approach, Scribe eO\;v, S|gn|”|car:t e:'atlpnsf etV\lleet an 7,'[';"
especially for metals with high and medium valence electror{“aybapge?r_ or slma | vakl)Jes th, "Fe" or elec ronv\?ca er-h
densities. However, it is important to mention that the dom;-N9 Pands lying closely above the Fermi enérgy. vve empna-
size here that this does not mean that our optimized BML

nance of the ladder term of first order with respecvt® is . SO L e
dramatically reduced for metals with lower average or locaP@rameters are insufficient in describing the contributions of
these scattering bands tg, . Namely, it is not important that

electron densitieghigher r, values. For example, for so- Lo
shigher I’ 4 P the two curvesry, and 7o agree for the contribution any

dium with r¢=3.9 a.u., the contribution of the first-order s M C
term to the MDAP amounts only about 30% and the situatiorscattering band_. Decisive is only that both curves r_epresent,
as well as possible, the same sum over all contributions of all

is even worse for metals such as potassiug+@.9 a.u) or )
rubidium (.=5.2 a.u). According to the argumentation of scattering bands and, consequently, lead to the same values
of the MDAP and the enhancement factor.

this subsection, the application of our OBML method on ) ; o
such metals may possibly lead to erroneous answers and js AS a_tYP'Ca' example, this behawor is demonstrated for Pd
therefore not recommended. for the initial electron statgl0), i.e., for the lowest valence

band at thel' point of the BZ. As we mentioned above, a
free-electron-like behavior of the electron scattering bands
o o can only be expected far abo® for relatively high band
B. Applicability of the optimization process numbers. The consequence of this fact is that one should
The central idea of the method described in the precedingvoid starting the LS comparison betwergp and 7y at too
subsection is an extrapolation af [Eq.(34] (M = 1upto small values ofM. This is demonstrated in Figs. 1 and 2,
a finite value of about 50—6®y the mathematically simpler where we presenty, and =5 as functions ofM. For Fig.
expressionry [Eq. (36)] for M—, including the opti- 1(a), the LS process was startedMt = 3 (indicated by an
mized parameteri®y" | a., anda,. It is therefore of fun- ~ arrow) and yielded good overall agreement between tfje
damental importance for the reliability of our OBML theory and 73" curves. Nevertheless, one observes that the slope of
that this extrapolation ofy by 73" is as perfect as possible the 73" curve for the region of higheM becomes signifi-
concerning both the values and the slopes of these functionsantly smaller than the slope of the correspondifgcurve.
For this reason, we checked the applicability of the optimi-In our test calculations for thgl0) electron state in Pd, we

FIG. 1. Correspondence of" (solid lineg andry, (¢ ) accord-
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005 , . exchange-correlation parts of the crystal potentials, in the

(a) electron case, we used the parametrized approximation by

Hedin and Lundqvisf® In the case of the positron, all self-
energy correlation parts of the crystal potential were ne-

/\/\ glected(see our discussion about this point in Se¢. No

| relativistic corrections to the crystal potentials, in particular

no spin-orbit corrections, were taken into account.

In order to check the numerical reliability of our results,
'0-050 2'0 ' we performed extensive convergence tests for the quantities
o(nk;G) and 7 (nk;G) defined in Eqs(33) and (34), re-
005 . : spectively. It was the aim of these test calculations to guar-
{b) antee that the numerical accuracy of our BML results was,
for all values of the MDAP except values that are very low in
| magnitude, better than 3%. This does not sound very ambi-
0.0 tious, but due to the high numerical expense of the BML
method it is not realistic to aspire to a higher accuracy. It is
impossible to report all these tests in detail, but we shall give

-005 ' , here at least an overview.
o 20 40 Equationq33)—(36) contain sums of products of electron-
M positron, electron-electron, and positron-positron Fourier co-
efficients. The question was how many terms have to be

FIG. 2. 737— 7 in units of 7y for the maximum value oM, included into the evaluation of these sums. It was also im-
with 7§ and 7 according to Eqs(36) and(34), respectivelyM is  portant to know how many reciprocal-lattice vect@s and
the number of unoccupied electron bands included into the calculzaG2 had to be used for the sums in E¢84) and (35). We
tion and the arrows indicate that the LS process was stéaleat  optained that, for the accuracy mentioned above, it was suf-
M =3 and(b) atM =23. ficient to use about 200 Fourier coefficients for each electron

and positron Bloch state and about 130 vectBisG,.
estimated an error of about 8% for the enhancement factor another important influence on the quality of the numeri-

due to this imperfect extrapolation. This behavior is evensg| evaluation of Eqs(34) and (35) is given by the number
better observable in Fig.(@, where we show the relative of gjoch vectorsk’ used for the sum over the unoccupied
difference betweeny” andry as a function oM. If, how-  part of the first BZ. This summation, which was done by the
ever, the LS process is started at a higher valuBldM = ;56 of the well-known integration method of Gilat and
23 in ourFexampIe, see Figs(t) and 2b)], deviations be- R nenheimet: required only a relatively small number of
tween 73 and 7, for the scattering bands immediately primary k’ points within the irreducible wedgéW) of the
aboveE; appear due to lattice effects, but, on the other handBZ’ namely, 40(70) k’ vectors for the electron states and

v,\\//le alcf;levte): ar? ‘;‘]'”?OSt ;deal agdreﬁmentl of the t\r/:/_ohcurves fO{12(125) k' vectors for the positron states in bdcc) struc-
>1 for both their values and their slopes, which guarany o - o special difficulty is caused by the fact that, for an

tees a reliable extrapolation process. | f th for th i
As a summary of our tests we can say that the optimizafiverage value of the momentum vecwRr the resu ting
BML Bloch vectorq=k—k’—L for the positron states in Egs.

f'eo; dgr,g) Ciz‘:‘isf?ywi\rlwe‘ci(far{ dal‘; n?ggtaga[;fssiltceg én msfecé¥2nAt (34) and (35) does not necessarily coincide with one of the
9 precalculated primark’ points within the IW. We solved

between the BML theory and tienathematically much sim- ) o ) L
pler) QF BML approach for all metals investigated and notthls problem by a combination of Qllat and -Raubenhelr;ers
only for initial electron states inside the first BZ but also for Schéme and the well-approvédp interpolation method?
states in the umklapp regions. To save computer time, all symmetry properties of the crys-
tal lattice were carefully taken into account.

The accuracy of the components of the matr’@éi’Gz of
the electron-positron interaction potential plays an important

Before we present a discussion about our enhancememtle for the good quality of the numerical results of
results, we think it is useful to refer at least some importantry (nk;G). In agreement with Hybertsen and Lodfewe
aspects of the numerical evaluation of the relatively compli-also realized that the most crucial point of the numerical
cated expressiormy,(nk;G) given in Eg.(34). All plane- calculation of these matrix elements is to secure the conver-
wave coefficients of théoccupied and unoccupigelectron  gence of the sum over unoccupied electron bands in the ex-
and positron states used in our calculations were obtained lyression(24) for the polarizability matrixP. In our calcula-
Fourier expansiongsee Egs.(13) and (14)] of the corre- tions, we used 60-70 unoccupied electron bands and
sponding wave functions, which were calculated by a conachieved a convergence of most of the matrix elements of
ventional augmented-plane-wave program. For each Bloch®P within a few percentsee Table), except for very small
vector, single-particle eigenenergies for up to 80 electron andlements with negligible influence on the MDAP results. For
positron bands were determined by a self-consistent solutiosuch components, relative errors of 100% and more may
of the Schrdinger-like equationgs) and(7). Concerning the appear.

0.0

AT

C. Numerical evaluation of 7 (nk; G)
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TABLE I. Selected elements of the electron-positron interactionfor VEP. On the other hand, the use of a RPA potential con-
matrix —Vg® ¢ (k) for vanadium as functions of the number of siderably simplified our calculations. Therefore, for all re-
unoccupied electron bands taken into account for the numericagults presented in the following, we used the matrix of the
evaluation of Eq(24). The Bloch vectok lies at theN point onthe  e-p potential according to static approximations of E@S)

boundary of the Brillouin zone. and (21) in Sec. V in connection with the RPA for the po-
larizability matrix, given by Eqs(22)—(25). Of course, in

Gy G, 34 bands 49 bands 63 bands  order to compare commensurable BML and LDA results, we
000 000 0.4360 0.4350 0.4348 also r|1ac_j tofevalgate_ thﬁ Lgé\ :xpressllﬁrﬁ)) with the pair-
110 110 01918 0.1896 0.1890 correlation function in the , hamely,
220 220 0.0784 0.0782 0.0781 RP
110 110  —0.0096 ~0.0092 ~0.0090 9(r;nk) = €efoml Fs(r); Xni-
200 110 —0.0082 —0.0083 —0.0084 . . L

f— Further remarks on the-p interaction potential in real met-
220 1_13 0.00032 0.00027 0.00026 als, in particular concerning approximations\é “beyond
110 112 —0.00012 —0.000080 —0.000019  the RPA” and the inclusion of dynamical aspects, are given

in Appendix A.

In Sec. VII A we already discussed the insufficient con- .
vergence ofry, with respect to the numbéd of unoccupied B. The choice of the test metals
electron bands taken into account and we also proposed a | the following, we shall discuss results of our recent
way to overcome this difficulty. Fortunately, this problem jnyestigations on positron enhancement in a simple metal
does not arise for the sum over unoccupied positron band_ aluminumn), a noble metaicoppey, and three transition met-
as a result of our tests, we obtained that the convergence wit)g (palladium, bcc manganese, and vanadiufihe choice
respect to these bands is well established in all cases iNVesf these metals is by no means arbitrary but is motivated by
tigated in this paper. Some test results that demonstrate thiiejr different electron band structures and corresponding
positive behavior are summarized in Table Il, where Wedensity of state$DOS 74
show the dependence of;(nk;G) for different metals and  The DOS curve for Al with its three valence electrons is,
different initial electron stategk) on the numbed of pos-  of course, very similar to the free-electron case. The two
itron bands taken into account, calculated for a fixed numbeyglence bandéhe lower one is completely occupied and the

M of unoccupied electron bands. higher one is partially occupig¢chave predominantlysp
character with a relatively small addition ofcacharacter.
VIIl. RESULTS AND DISCUSSION The electronic structure of all other metals investigated is

more or less strongly influenced loybands and it is one of
the main purposes of our work to investigate how the lattice
All results presented in this paper are based onsthic  effects acting on the enhancement factors in these metals
RPA for the effectivee-p interaction potential. Such a pro- depend on the energetic position of thdands with respect
cedure, which ignores the existence of better approximationg E. . For Cu, the upper edge of tliebands lies about 0.15
for this potential " requires some justification. The reason is Ry belowEy . In the case of Pd, the Fermi level is localized
that, for the present investigation, we were especially interjust below the upper edge of tiiebands, whereas in bce Mn,
ested in a comparison of BML and LDA enhancement fac-3 considerable part of thé-band DOS lies abov&;, a
tors and we found that the relations between these two typesituation that is even more pronounced in V, where the great-
of results do not significantly depend on the approximationest part of thed bands is unoccupied. Therefore, we would
expect that deviations of the rate enhancement from the free-
electron (jellium) case increase along the series Al Cu
— Pd— Mn — V, and this is, in principle, exactly what we
learn from our results.
Concerning the occupieghitial) electron statefnk), we
performed our calculations for the fcc metals Al, Cu, and Pd
along the[111] direction and for the bcc metals Mn and V

A. The e-p interaction potential

TABLE Il. Demonstration of the convergence ef; according
to Eq. (34) with fixed M and with respect to the numbér of
positron scattering band€a) Copper: k=(0.820.0,00), second
band,M =51. (b) Vanadium:k=(0.247,0.247,0.0), second band,
M=70.k is in units of 2m/a with a = 6.8308 and 5.7145 a.u. for
Cu and V, respectively.

@ (b) along the[110] direction in momentum space. Additionally,
for all occupied electron states investigated, we analyzed the

J t J t character of each state with respect to the qguantum number
35 0.368 51 0.0869 | of the orbital angular momentum.
40 0.373 56 0.0879 Additionally, it results that for the metals and momentum
45 0.376 61 0.0886 directions investigated, there are only two totally or partially
50 0.379 66 0.0890 occupied valence electron bands that contribute to the
55 0.382 71 0.0892 MDAP. In Figs. 3 and 4, where we show the electron band
60 0.383 76 0.0894 structures for Al, Cu, and Pd along tli& direction and for
65 0.384 81 0.0895 Mn and V along thd'N direction, these bands are indicated
70 0.384 86 0.0895 by the numbers 1 and 2 and will be called the “first band”

and the “second band,” respectively, in the following text.
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with p,,(n;k+G) and p)'(n;k+G) the contributions of

the nth occupied electron band to the MDAP including and

excluding the electron-positron interaction, respectively, and

p3," given by Eq.(9).

As we extensively discussed in Sec. Il, the BML enhance-
ment contains two different types of lattice effects, which we
called the lattice effect on the-p scattering and the lattice
effect on the polarization. For a proper physical interpreta-
1 1 /\ tion of our results, it is desirable to distinguish between these

two types of effects. For this purpose, we define the follow-
o 4 ing three enhancement factors.
(i) The LDA enhancement factor

075 T

0.50

025 N

E (Ry)

s L OUL © ePA(n;k+G) = pEA Mk + G)pfH(nik+G), (39
r LT Lr L

with p5°* as given in Egs(10)—(12). This enhancement

factor contains none of the lattice effects defined in Sec. Il.
of the bands whose electrons contribute to the MDAP are indicate%l (".) Thbet secgnd efn?lancgment tfact:t]?r us?r(]j nglX :cnvestllga-
by thick solid lines and by the numbers 1 and 2. The horizontalfIon r']s obtained as of_ows. we start from the ormula
dash-dotted lines denote the Fermi energies. pr the MDAP and_ define a state- and ba”d'd¢Pe”dﬁﬂt'

tive electron density parameteg .« by the condition

FIG. 3. Electron band structures &) Al, (b) Cu, and(c) Pd
along the[111] direction in momentum space. The occupied parts

C. Three types of enhancement factors péBA(n; k+G)=0O(Er—En)

The results of our investigation are presented in the Figs.
5-17, where we show theoretical state-dependent enhance- X
ment factors for annihilation vectokst G with k an element
of the first BZ and bottG=0 (LMC) andG# 0 (HMC). The
partial enhancement factors belonging to tite band are X \enond (1) Xnicl k(1) ()| 2
defined by

Qf d*rexgd —i(k+G)-r]
W),

e(n;k+G):p2y(n;k+ G)/p'zpyM(n;kJrG), = €hom [rs,eﬁ(n;k+G);xnk]

X py(n;k+G). (39

/ < The corresponding effective number of electrons per unit cell
4 Q, is given by
075

_4_\\*,‘._._ 3QO
\\\\2 Nléfl?A(n!k—'_G): A r3 ﬁ(nk+G) '
S, € !

(40)

Using theseNLR* values, one can execute the second step of
the optimization process described in Sec. VII A for getting
the corresponding values for the remaining parametgrs
anday, . Surprisingly, we obtain that the differences between
1 1 the a, anda,, values belonging to the paramet&t&'- (ob-
tained by the LS process described in Sec. Vil and
NLP” [obtained by the use of Eq&39) and (40)] are rather
small. Therefore, in the following, we do not distinguish be-
@ (b) tween the parameters; ', o, andag™ ;> . The en-
r NT N hancement factors that result from QF BML calculations in-
cludingN§* , @, anda, are calledes™®"®(n;k+G); they
FIG. 4. Electron band structures @& Mn and (b) V along the ~ €@n be consid(_ere_d as resm_JIts where only the lattice effect on
[110] direction in momentum space. The occupied parts of thdN€€-p Scatteringis taken into account.
bands whose electrons contribute to the MDAP are indicated by (iii) The OBML enhancement factor according to the QF
thick solid lines and by the numbers 1 and 2. The horizontal dashBML theory including the parameteZ" , a,, and ap
dotted lines denote the Fermi energies. optimized in the way described in Sec. VII A is given by
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FIG. 5. State-dependent enhancemeftr the first band in fcc r L
aluminum as a function of the extended momentpralong the P

[111] direction. Solid line, enhancemerPEM-~ 5@’ Note that

in this figure, these two types of enhancement curves are graphi- FIG. 6. Enhancement of the sum of the contributions of the

cally indistinguishable. Dash-dotted line, enhanceméfift. The  first and the second band in fcc aluminum as a function of the

exact meaning ofOBML, ¢ scater andlPA is given in Sec. VI Cof ~ extended momenturp along the[111] direction. Solid line, en-

this paper. Dots at the beginning or the end of enhancement curvéncement®®V'; dash-dotted line, enhancemestt. For com-

indicate MDAP values too small for a reliable numerical determi-parison, the dash—double-dotted line shows the Kahana enhance-

nation ofe. The solid curve at the bottom of the figure means thement curve for the electron density parametgr=2.07 a.u.

MDAP according to the IPM. according to a lattice constant of 7.6395 a.u. and three valence
electrons per unit cell. The solid curve at the bottom of the figure
means the MDAP according to the IPM.

6OBML(n;k+G):pg’fML(n;kJrG)/p'zpyM(n;k-i- G).

4 LMC of the MDAP show the typical Kahana-like shape, i.e.,
This enhancement factor contains both types of lattice efs monotonic increase with increasing momentum. As ex-
fects, namely, on the-p scattering and on the polarization plained in the preceding subsection, the influence of lattice
of the electron gas. effects on the polarization of the inhomogeneous electron
The three quantitieg'®*, @] and €°®M- are very gas can be studied by a comparison of the enhancements

helpful for a relevant physical interpretation of our results,¢°BM- and 53" As can be seen in Fig. 5, the correspond-
for we can say thati) differences betweer™***'and €:®* ing curves are completely indistinguishable, which indicates
describe how the enhancement is influenced by lattice effectat, in the case of Al, lattice effects on the polarization are
on the e-p scattering, (i) differences betweer®®*™- and  almost negligible, which means that the polarization of the
e**"give information about lattice effects on the polariza- inhomogeneous electron gas in Al is very similar to the po-
tion, and(iii) differences betwees®®M- and e "°* describe larization of a homogeneous gas. This is also evident if one
the combined effect of both types of lattice effects. considers the effective number of electrons per unit cell con-

tributing to the polarization: th&l5P* value extracted from

LDA results(as described in Sec. VIIIds practically inde-

D. Discussion of the enhancement results pendent of the momentum and amounts to 3.22, a number
that agrees within 3% to the corresponding optimized BML
parameter of 3.32. On the other hand, a comparison of the

A selection of our enhancement results for the centrabnhancementss®ae ¢OBML and ¢-PA shows that the influ-
momentum region is given in Figs. 5-10. Each figure conence of lattice effects on the-p scattering leads to a mod-
tains the three different enhancement factg?8VL, 5% erate increase of the enhancement of about 5—6 %.
and €-P* as solid, dashed, and dash-dotted lines, respec- The partly occupied second valence band of Al contains
tively. Additionally, at the bottom of each figure, we presentthe third valence electron and therefore has its highest con-
the MDAP according to the IPM, where the dashed partdribution to the MDAP outside the central BZ. This band has
represent the unoccupied regions of the corresponding elesp character and is, consequently, also Kahana-like en-
tron band. hanced. OBML and LDA enhancement results for the sum of

Let us start with a discussion of the enhancement of thdoth the first and second valence band of Al to the MDAP
first band in Al along thg¢111] direction(Fig. 5. Due to its  are presented in Fig. 6. For comparison, this figure also con-
simple electron band structufgypical sp-like bands with a tains the corresponding ‘“simple” Kahana enhancement
small content ofd character of less than 1Q%it is not  curve belonging to a homogeneous electron gas with density
surprising that the enhancement curves of this metal for thparameterg = 2.07 a.u.

1. Central momentum-region
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FIG. 7. State-dependent enhancemeirt fcc copper as a func- FIG. 8. State-dependent enhancemerih fcc palladium as a

tion of the reduced momentuknalong the[111] direction: (a) first function of the reduced momentuknalong the[111] direction: (a)
band andb) second band. Solid line, enhancemefifV"; dashed first band andb) second bandpartially occupiedl Solid line, en-
line, BML enhancement>*a including N5?* according to Eqs. hancement©®ML; dashed line, BML enhancemeet®®*including
(39) and (40); Dash-dotted line, enhancemest®®. The exact NL* according to Eqs(39) and (40); dash-dotted line, enhance-
meaning ofe®BML| ¢SCatter and eLPA is given in Sec. VIII C of this  mente'®”. The exact meaning af®BM-, ¢5°3r andePA s given
paper. Dots at the beginning or the end of enhancement curvas Sec. VIII C of this paper. Dots at the beginning or the end of
indicate MDAP values too small for a reliable numerical determi-enhancement curves indicate MDAP values too small for a reliable
nation ofe. The solid curves at the bottom of the figure mean thenumerical determination of. The curves at the bottom of the figure
MDAP according to the IPM. mean the MDAP according to the IPM, where the occugistbc-
cupied parts are given by soli(dashedl lines.

In Figs. 1a) and qb), we show enhancement factors in
Cu along the[111] direction for the first and the second first BZ, we observed.; values between 3.1 and 3.7 for the
band, respectively. Concerning the corresponding enhancé&DA and only between 2.1 and 2.7 for our OBML approach.
ment curves, it is important to keep in mind theharacter of These smalleN . values mean a smaller effective electron
these bands: at the point in the center of the BZ, the first density and, consequently, a higher enhancement.
band starts purelg-like, but with increasing momentum the  The electron band structure of fcc palladium is similar to
s character decreases to about 20% in favor ofdteharac- that of Cu with the important difference that thebands lie
ter. On the other hand, the second band starts puldilye significantly higher with respect to the Fermi energy and
and becomes more and mogpelike if the momentum in- even slightly intersedE . It is interesting to investigate how
creasescompare the band structure in Fig. 3his behavior these differences of the band structure affect the enhance-
is clearly reflected by the corresponding enhancemenment curves of PdFig. 8). Concerning the first band in the
curves: as long as theor sp character of a band dominates, [111] direction, the enhancement curves are, in principle,
the enhancement is Kahana-like, as we observed for Alsimilar to the corresponding results in Cu, but with a more
However, if thed character becomes more and more domi-marked negative slope of the curves in the neighborhood of
nant, the increase a@fwith increasing momentum is strongly the boundary of the BZ, which probably can be attributed to
reduced or even converted into a decrease. Both our LDA different energy dependence of the Cu and Pd bands. For
and BML results in Cu support this interpretatiGend we the second band, however, the enhancement curves for Cu
found this behavior, in principle, also for the othédband and Pd are more significantly different: as one can see by
metals investigated but there are quantitative differences: comparing Figs. (b) and &b), the enhancement in Pd is
the negative slope oé with respect tolk| is significantly — much more Kahana-like than the corresponding curve in Cu.
more marked for the BML enhancement factors than for thelhis different behavior can also be explained by a somewhat
LDA results. A more detailed analysis of the results of Fig. 7different energy dependence of the two bands that influences
shows that this difference in the momentum dependence dheir | character. For Pd, the second band comes up to the
€ between the LDA and BML approximation is mainly due Fermi surface fofk|=0.695 and the corresponding state has
to the lattice effect on the-p scatteringlcompare the curves the charactes-p-d=17%-70%-10%, i.e., it is almost purely
€5°%and ¢-P*), which also causes a significant increase ofsp-like. In the case of Cu, however, the electron state of the
the enhancement for both bands investigated. The lattice ebecond band for the same value|&f has the charactes-
fect on the polarization further increases the enhancememt-d=11%-59%-27% with a percentage dfthat is about
but does not change the momentum dependence very mudtree times as large as that observed for Pd. This leads to the
This increase of the enhancement indicates that the effectivelatively flat shape of the BML enhancement curves in Fig.
number of electrons contributing to the polarization of the7(b). A comparison of thes®3""and - curves in Fig. 8
electron gas in Cu is overestimated by the LDA: within theshows a strong influence of the lattice effect on¢he scat-
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FIG. 9. State-dependent enhancemeti bcc manganese as a FIG. 10. State-dependent enhancemeirt bce vanadium as a
function of the reduced momentuknalong the[110] direction:(@)  function of the reduced momentuknalong the[110] direction: (a)
first band andb) second bandpartially occupiedl The notations of  first band andb) second bandpartially occupiegl The notations of
this figure are the same as in Fig. 8. this figure are the same as in Fig. 8.

tering; close to thd” point, we observe an increase of the
enhancement of about 20%. Surprising is the small differcorresponding*****'curves(dashed lines i.e., in the case of
ence of thee®®M and 53 curves for the first and espe- Mn, the number of electrons engaged in the polarization pro-
cially for the second band, which indicates that the effectivecess is underestimated by the LDA. This effect is moderate
number of polarizing electrons per unit cell is similar for the for the first band with momentum-depend@hy; values be-
BML approximation and the LDA. So we can say that thetween 3.9 and 4.2 and between 4.0 and 4.5 for the LDA and
LDA gives a good description of the polarization of the in- the BML approximation, respectively, but is rather strong for
homogeneous electron gas in palladium. This statement #e second band withle; around 3.8 for the LDA and be-
also supported by the calculated values\gf; according to  tween 5.5 and 6.5 for the BML approximation. Unlike Cu
Egs. (39 and (40) and the corresponding optimized BML and Pd, in manganese, the two lattice effects onehe
values. For the first band of Pd, we obtainiigy; values scattering and on the polarization partly compensate each
between 4.3 and 4.8 for the LDA and 3.6—3.7 for the BML Other, leading to a significant reduction of differences be-
approximation. For the second band, g values are even tween the LDA and OBML enhancement factors.
more similar, namely~4.1 for the LDA and~3.9 for the This effect is even larger for vanadium, where the en-
BML approximation. hancement curves alo@10] are shown in Fig. 10. For this

If the different strength of the lattice effect on the polar- metal, whosed bands are mainly situated above the Fermi
ization process in Cu and Pd has something to do with thenergy, the considerable differences betweéff"* and
different energetic position of thd bands with respect to €->" due to lattice effects on the-p scattering are largely
Eg, this behavior can be expected to become more and mo&gompensated for the first band and even overcompensated
significant for manganese and vanadium, where more ant®r the second band by the influence of the lattice effect on
mored electrons have energies higher than the Fermi energyhe polarization(compare the curves far°®M- and ¢%°"¢j.
We shall demonstrate in the following that this expectation isThis situation is also reflected by ti\ values, which are
fulfilled. significantly lower for the LDA than for the BML approach:

Figure 9 contains some results for bcc manganese, th@r the first band along th¢110] direction, we obtained
fourth example in the series of metals investigated. For thi®er Values of 3.8—4.1 for the LDA and 5.7-6.2 for the BML
material, a great part of the DOS of thestates is situated approximation. This effect is even more drastic for the small
above the Fermi energy. Obviously, this fact does not changeccupied part of the second band, which is predominantly
the momentum dependence of the enhancement drastically ¢hlike. For these initial electron states, we calculatég;
comparison with the metals described before. We see that théalues of about 3.4 for the LDA and about 8 for the BML
shape of both the LDA and BML enhancement curves forapproximation. These results indicate a marked underestima-
Mn along the[110] direction is similar to what we observed tion of the effective electron density by the LDA concerning
for Cu. This similarity is also evident for the influence of the the polarization of the inhomogenous electron gas in vana-
lattice effect on the-p scattering, which increases the LDA dium.
enhancement factors by about 15—20 %. However, and this In Tables Il and IV we present a summary of the band-
is important, we see that the relation between the enhanc&nd momentum-dependent parametes@“, Nthf)A. Qe
ment curves including or excluding the lattice effect on theand «,, within the central-momentum region as they were
polarization is opposite the previously discussed results fopbtained by the optimization process described in Sec. VIl A
Cu and Pd: here the®®M" curves(solid line9 lie belowthe  and Egs(39) and(40). The N andNLR* values of Table
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TABLE lll. N values per unit cell for the polarization of the 2. High-momentum region
inhomogeneous electron gas in different metals within the central

momentum region along tH410] and[111] directions for bcc and

fcc metals, respectively. The lattice constaatsire given in a.u. d dent enh t delike elect tatasi
The NBYL values are results of the BML optimization described in 2€PENAENt €nhancement curves delrike electron sta osis

Sec. VII A and theN“2* values were extracted from LDA results the question whether the enhancement factors in metals are
: 5 A
according to Eqs(39) and(40). The terms “First band” and “Sec- MOre or. less thg same for the LMC and the HMC, i.e., if one
ond band” are explained in Sec. VIII B and in Figs. 3 and 4 of this N@s €(n;k)~e(n;k+G) for all G#0, or whether the anni-
paper. Regions ol values in the table correspond to increasing hilation rate within the high-momentum regions deen-

As already mentioned in the Introduction, a second point
of discussion(apart from the negative slope of momentum-

order of momenta. hancedor overenhancedwhich means that we have
First band Second band

Metal Structure a BML LDA BML LDA e(n;k+G)<e(n;k) or e(n;k+G)>e(nk) (42

Al fcc 7.6395 3.32 3.22

Cu fcc 6.8308 25-2.7 3.4-3.7 23-21 3.1-3.2

for G#0, respectively. Here we would like to emphasize
that the above definitions of de- and overenhancement are
not identical to the corresponding ones in recent papers by
Kontrym-Sznajd and RubaszékThese authors speak about
deenhancement and overenhancement if the unequalities
) o ) e(n;k+G)<e(n;k+G,) and e(n;k+G)>e(n;k+Gyy),

[ll have been already discussed in this subsection. Conce”Péspectively, are fulfilled, whereG,, represents the
ing the momentum dependence of the corresponding paramciprocal-lattice vector belonging to the “main component”
etersa, and a;, along thel'L (T'N) direction for the fcc o the MDAP for the electron statek). Despite the fact that
(bcg metals investigated, one observes almost constant vajhis definition is more relevant from a physical point of view,
ues for the first band of Al and a relatively Wegk momentuMsoy this paper, we prefer the definitidd2) because it is more
dependence ofr, and «y, for all other metals in study, for 45hropriate for the interpretation of our MDAP curves.

both the first and the second band. It has already been men- |, order to investigate the question of de- or overenhance-

tioned in SecéM\I{III C that the parametedg, e, , which be-  ment from the point of view of lattice effects, we also calcu-
long to theNg values, are almoswithin a few percent  |ated BML and LDA enhancement factors in Al, Cu, Pd and
identical to the corresponding parameters that belong to thgin for the nearesf(111), (110] umklapp regions. Some
Ng* values. Therefore, in Table IV, only the. and a,  results of this investigation are presented in Figs. 5 and 11—
values belonging to2"" are shown. Due to the definition of 13.

ae and a, in Eq. (26), it is clear that deviations of these In Fig. 5 we show BML and LDA enhancement curves
parameters from the unity reflect deviations of the correfor the first valence band of Al along t&11] direction both
sponding occupied and nonoccupied electron and positrofor the central and the nearest umklapp region. It is interest-
states from free-particle states. From this point of view, it ising to see that for momenta within tti&11) umklapp region

not surprising that one observes relatively small deviationgi.e., along the pointd —I''—L"), there appear consider-
of a,a,, from the unity for Al and Cu with their nearly free able quantitative differences between the LDA and BML en-
valence electron states for energies close to the Fermi efancement factors that are almost completely due to lattice
ergy, in some contrast to the,,«|, values for the transition effects on thee-p scattering, whereas the effects on the po-
metals Pd, Mn, and V, where the energy region arddgpds  larization play only a subordinate role. Concerning the mo-
dominated byd states. mentum dependence of the enhancement factor iflth#

umklapp region, the BML and LDA results are qualitatively

Pd fcc 7.33 3.6-3.7 4.3-48 3.8-4.0 4.1-4.2
Mn bce 5.397 45-40 3.9-42 6.5-55 3.7-3.9
\% bce 5.7145 5.7-6.2 3.8-4.1 =8.0 ~3.4

TABLE IV. «a. anday, values according to the optimization process described in Sec. VII A for momenta
within the central region along thil11] and [110] directions for fcc and bcc metals, respectively. The
parameters belonging to tie5"- values and to th&lS?” values are almost identicékithin a few percent
Therefore, only thex, and e, values that belong to thNEf“f"L are presented. The terms “First band” and
“Second band” are explained in Sec. VIII B and in Figs. 3 and 4 of this paper. RegidNgiofalues in the

table correspond to increasing order of momenta.

First band Second band
Metal Structure e ap Qe ap
Al fcc 0.86-0.89 1.02-1.03
Cu fcc 0.91-0.75 1.17-1.43 1.13-0.93 0.92-1.19
Pd fcc 0.57-0.42 1.33-1.63 0.65-0.59 1.22-1.30
Mn bcc 0.71-0.59 1.30-1.58 0.81-0.68 1.09-1.30

\% bcc 0.68-0.56 1.33-1.55 0.77-0.71 1.15-1.19
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FIG. 11. State-dependent enhancemenf the second band in
fcc copper as a function of the extended momenuralong the |, manganese as a function of the extended momeptaong

et id i BML. i
[111] direction. Solid line, en?gﬁcemea? ; dashed line, BML 116 [110] direction. The notations of this figure are the same as in
enhancement>**includingN;;" according to Eqg39) and(40); Fig. 12.

dash-dotted line, enhancemert®®. The exact meaning of

€OBML - gscatiel and ¢LPA s given in Sec. VIII C of this paper. Dots

at the beginning or the end of enhancement curves indicate MDAP

values too small for a reliable numerical determinationeoffhe  tected by the BML method, contradicts a statement that can

solid curve at the bottom of the figure means the MDAP accordingoe frequently found in the literatufeee Refs. 4, 24, and 89

to the IPM. namely, that the BML theory necessarily leads to a deen-
hancement of the annihilation rate in umklapp regions. Un-

similar, but with a stronger momentum dependence of thdortunately, a quantitative experimental check of this theo-

BML enhancement factors. Of particular interest is the over+etical prediction will hardly be possible because of the very

enhancement of the MDAP of Al in the whold1l) um-  small intensity of the annihilation rate belonging to the first

klapp region, an effect that is predicted by both theoriessalence band in Al in the umklapp regiofmmpare the IPM
(stronger for the BML approximation, weaker for the LDA  curve in Fig. 5.

This result which respresents an overenhancement effect de- More chances for an experimenta| check of BML or LDA

enhancement results in the HMC are given in the umklapp

5 regions ofd-band metals such as Cu, Pd, and Mn, especially
concerning the second valence bands of these metals along
[111] or [110] due to the relatively high intensities of the
corresponding MDARsee the IPM curves in Figs. 1113
At present, we are not able to give a detailed explanation of
the HMC enhancement curves presented in these figures; all
what we can say is the following. In the whole umklapp
regions investigatedl(111) for Cu and Pd,(110 for Mn],
2L 1 one observes a deenhancement of the partial annihilation
rate, relatively moderate for the LDA results, but very sig-
nificant for the BML results. These strong differences be-
1r 7 tween LDA and the BML approximation are obviously

mainly caused by lattice effects on thep scattering,
/ N whereas the effects on the polarization are comparatively un-
r L r L important indicated by the relatively small differences be-

P tween thee®BM- and 5" curves.

FIG. 12. State-dependent enhancemenf the second band in In this connection, we think it is necessary to comment on

fce palladium as a function of the extended momenfuaiong the the strong Increa§e Of the ”m"'aF’p enhr_;mcement in the neig-
[111] direction. Solid line, enhancemes®®V; dashed line, ML~ P0urhood of thel.” paint for aluminum(Fig. 5 and copper
enhancements®@®includingN2* according to Eq(39) and (40); (Fig. 12): in this region, the IPM curve has a zero point and,
dash-dotted line, enhancemert®?. The exact meaning of as @ consequence, for a numerical evaluation of the corre-
€OBML - gscatter a4 (LDA s given in Sec. VIII C of this paper. The Sponding enhancement, one has to divide very small en-
curve at the bottom of the figure means the MDAP according to thédianced rates by very small IPM rates. Due to unavoidable
IPM, where the occupiedunoccupiedl parts are given by solid numerical uncertaintiegcompare the statements in Sec.
(dashedl lines. VII C) of both numbers, large errors of the numerically ob-

FIG. 13. State-dependent enhancemenf the second band in

enhancement
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12 beyond that, the overlap of these Bloch functions and the
0 L@ (b) /\ shape of the Fermi surface.

7, . . .
- /,’ \ - E. Comparison of theoretical and experimental
/]
e enhancement factors
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N ] Of course, neither enhancement factors of the electron-
positron annihilation rate nor corresponding IPM rates are
observable from a physical point of view. All that can be
3 [ T N directly measured are fully integrated values of the
p g P momentum-dependent annihilation rate by the use of lifetime
measurements or one- or two-dimensional rate distributions
L r L'N rr N’ by 1D ACPAR, 2D ACPAR, or Doppler-broadening experi-
Pu Poo ments. Therefore, a comparison of theoretical MDAP results
with experimental data requirdaside from the use of rela-
FIG. 14. Momentum-dependent optimized BML parameterstively complicated 3D reconstruction meth&dsnumerical
Nggr, @, anda, for the second bands ¢& copper andb) man-  integrations of the theoretical results with respect to one,
ganese within the111) and (110) umklapp region, respectively. two, or three momentum components. Such integrations are
Solid lines,NEM" (see Sec. VIl A; dashed linesN:2” accordingto  No great problem for the relatively simple LDA formalism,
Egs. (39) and (40); dash-dotted linesy, (see Sec. VIl A. Dash—  but, at least at present, extraordinarily time consuming for
double-dotted linesy, (see Sec. VII A BML calculations, despite all efforts to accelerate our BML
programs as much as possible.
For this reason, we had to use another way to confront our

tained enhancement factors may appear. For this reason, Vg%e):oretical enhancement results with experiments. One pos-
I

do not physically interpret our enhancement results in thesg llity is to extract enhapceg;ent factors from experimental
very regions ata, as proposed by oB>” who combined energy-

. . . dependent enhancement factors witiependent adjustable

We shall now briefly discuss the behavior of the - : o . :

coefficients, which were optimized by a comparison with 1D
momentum-dependent BML parametéMgy, ae, andap — AcpaR data. This method was successfully applied on FeAl
within the(llll) or (110 umk!app region for fcc orMchc Met- and Cuznt213 Somewhat later, a similar technique of com-
aIlesArespectlver. Concerning the parametetg.ﬁ and  haring theory and experiment was applied by the Geneva
Ner  , one observes, in general, the same relations betV"eQﬂniversity Positron Grou*7® to vanadium, chromium,
these parameters as for the central momentum regemthe iron, and nickel and by Matsumoto and WakdiP to chro-
discussion in Sec. VI D}t for metals withd bands lying  mjum and copper. These authors use a more flexible theo-
below the Fermi energy(Cu and Pd we have (gtical enhancement curve including more adjustable param-
Ne~<Ngg " within the whole umklapp region, whereas, for eters than in the original work ofc®.
metals whosel bands lie both below and abot (Mn and In the following, we refer to the summarizing work of
V), one observedlg'>Ng2* . However, in contrast to the Genoud” one-p correlation effects in transition metals. This
relatively weak momentum dependence N within the  paper is based on theoretical MDAP values that were ob-
central-momentum regiofcompare Table 1) this quantity  tained by the linear muffin-tin orbital formalism including
is strongly momentum dependent within the umklapp region|-dependent enhancement factors as
as is shown in Figs. 14) and 14b) for copper and manga-
nese. Due to correlations between the BML parameters, the e(y)=apt+a; y+ay’+(a5sy’) (43
marked momentum dependence Ny within the umklapp
regions also leads to a relatively strong variation of the pafthe last term in parentheses is optignalwith
rametersy, anda,, with the momentum vectq, a behavior  y=(E.—E10)/(Er—E;0) according to the semiempirical
that can also be studied in Fig. 14. ansatz of 8b>° and of Mijnarends and SingruThe quanti-

In connection with these curves for copper and mangatiesa,; , with |=s,p,d,f, ..., areadjustable parameters that
nese, we would like to mention that the roughly symmetricalwere determined by comparing the theoretical results with
shape of these curves with respecinte 1 indicates a rela- experimental 2D ACPAR data. Some of these parameters,
tively strong correlation betweea, and a,. Nevertheless, given in Ref. 77 for Cu, Pd, and V are presented in Table V.
we found the minima of the LS optimization processagf By the use of these optimized parameters, the Geneva Uni-
and a, usually very “sharp,” which means that the corre- versity Positron Group was able to extract band- and
sponding momentum-dependent parameters are numericallgomentum-dependent enhancement factors from their ex-
well defined, despite their mutual correlations. Additionally, periments. Therefore, despite the fact that these enhancement
a remark of Sec. VIl A should be repeated here, namely, thatctors were, of course, not directly measured, we shall call
the parametera, and @, must not be interpreted as inverse them, in the following, “experimental” enhancement factors
values of effective electron and positron band masses, re=>*"
spectively, because of the fact that these parameters reflect However, because of some risky aspects of this procedure
not only the Bloch energies of the electron and positron scattsee Appendix Band because of the lack of self-consistency
tering states but also the shapes of their wave functions andh the theoretical approaches used for this investigation, it is

e
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TABLE V. Parameters,; for the s-, p-, andd-state enhance-

ment according to Eq43) for copper, palladium, and vanadium as (a) (b)
given in Ref. 77.
14 &
aj; Cu Pd Y, -
c /
ag 1.0 1.0 1.0 £ T /
apo 1.0 1.0 1.2 ] 2
Aqo 0.9 0.85 1.0 g 12+ S i
ay 0.1 0.15 0.2 < N
ap 0.1 0.15 0.1 © | ]
au 0.0 0.1 0.0 [ g
ag; 0.0 0.0 0.0 1 17
apy 0.0 0.0 0.0 10
NP -0.5 -0.3 0.0
r LT L

k ™

k m

clear that, at least for the present, a comparison of our LDA
and BML enhancement results widi** can only be quali-

tative and not quantitative. Nevertheless, as we shall demon- FIG. 15. State-d_ependent relative enhancement of the first and
the second ban@ndicated by numbers 1 and i fcc copper as a

isrf;g:fn;?iot:zgglljl?mgg’hsgif:gl ?efeczgﬁggi;rghgI}Iaetzc\éaél;fizltefunction of the reduced momentuknalong the[111] direction. (a)
pny xperimental enhancement factgfef. 77 and(b) theoretical en-

investigated in this paper. Some results of this comparisor;‘alncement factors obtained by the OBNolid lines and by the

for Cu, Pd, and V are presented in Figs. 15-17, where We€pa approach(dash-dotted lings Dots at the beginning or the end

show relative enhancement factors, i.e., factors normalizedys gnhancement curves indicate MDAP values too small for a reli-
to the corresponding value of the first band at thgoint  4pie numerical determination af

along the[111] direction for Cu and Pd an@inlike the mo-

mentum direction for this metal in the previous subseciions

along the[100] direction for V within the first BZ. The ex-

perimental enhancement curves according to Ref. 77 argomentum-dependent enhancement curves for Pd along the
given on the left-hand sidé) of these figures, and on the [110] direction (see Fig. 2 in Ref. 54 The most striking
right-hand sidegb), we present the corresponding theoreticalPrOPerty of these enha_ncemgnt curves in comparison to the
curves obtained by the BML approximati¢solid line9 and BML and LDA results is their relatively weak momentum
by the LDA (dash-dotted lines dependence, which seems to be in contradiction toeff&

We start the discussion with copp@fig. 15. Concerning  Vvalues discussed in this section. On the other hand, there is
the first band, the experimental curve shows a marked neg&ome indication that the Borski-Jarlborg(BJ) approach of-
tive slope in the neighborhood of the boundary of the BZ fers a better description of enhancement curves belonging to
where this band is dominantiy-like. The shape of this en- d states close to the Fermi surface than the BML approxima-
hancement curve is relatively well described by the corretion and the LDA. Anyway, for the future work on positron
sponding BML curve, much better than by the LDA result.
The experimental enhancement curve belonging to the sec-
ond band decreases monotonically with increasing momen-
tum, which is typical for al band. The significant change of
the (negative slope close to the boundary of the BZ is due to
the fact that the band becomes more and nsqréike in this
momentum region. For small and medium momenta, the cor-
responding BML curve shows the same momentum depen-
dence, but close to the boundary of the BZ, it reacts more
sensitively upon the increasingp character of the band,
leading to a marked increase ef®V', in contrast to the
experimental curve. But despite this difference, it is obvious
that the BML result describes the experimentally observed
effects better than the LDA curve, which behaves almost
purely Kahana-like. For palladiurtFig. 16), the situation is
similar. One observes a principal agreement between the ex-
perimental and the theoretical enhancement curves with a
significantly better performance of the BML approximation K K
in comparison to the LDA.

At this point, it would be useful to include into the dis-  FIG. 16. State-dependent relative enhancement of the first and
cussion also enhancement results obtained by the theory @fe second ban@indicated by numbers 1 and i fcc palladium as
Bororski and Jarlborg? Until now, however, only few re- a function of the reduced momentuknalong the[111] direction.
sults yielded by this approach are available, for exampleThe notations of this figure are the same as in Fig. 15.

enhancement

rel.
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IX. CONCLUSIONS

The main purpose of this paper is an investigation of the
influence of lattice effects on the scattering between annihi-
VN lating electrons and positrons. There are two different types
/ ' of these lattice effects, namely, those that influence directly
y the interactinge-p pair and those that influence the polariza-
11 /\ tion of the inhomogeneous electron gas and therefore the
e-p interaction potential. The theoretical description of these
lattice effects requires an inclusion of unoccupied electron
r XT X and positron scattering states into the theory. This require-
K 0 K o0 ment is at least approximately fulfilled by our OBML theory,
reghich is presented in this paper. As we extensively discussed

. ! . Ih Sec. VII A, this theoretical approach can be reliably ap-
in bcc vanadium as a function of the reduced momenkueiong . - . .
the [100] direction. The notations of this figure are the same as inp_“ed to metals with high and meO!'F*m valence electro.n den-
Fig. 15. sity (such as Al, Cu, and the transition mejalsut only with
some reservation to metals with lower electron density.
Within the first BZ, the lattice effect on thep scattering
Qe . . causes, for all metals and all occupied electron states inves-
annihilation in metals, a more extensive comparison of th§jyateq 5 considerable increase of the enhancement factors in
BML approximation and the LDA with(BJ) enhancement  omparison with the corresponding LDA results: close to the
results would be desirable. _ I" point, one observes an increase of about 6% for Al and
Summarizing the information from Figs. 15 and 16, we petween 10% and 23% for thieband metals Cu, Pd, Mn,
can say that the inclusion of lattice effects in our OBML anq v. Additionally, for bands with a more or less marked
theory leads to improved qualitative agreement betweel character, the shape of the LDA enhancement curves is
theoretical and experimental enhancement factors. We caflso changed by this lattice effect: if tiecharacter domi-
therefore conclude that the lattice effects described in thigates, one observes a negative momentum dependence of the
paper are of some importance for a proper theoretical deenhancement that is significantly stronger than for the LDA
scription of positron annihilation in metals and should beresults. On the other hand, if the band is dominantly
taken into account. sp-like, the positive(Kahana-like momentum dependence
However, at first sight, this conclusion seems to be towf the corresponding LDA enhancement factors is reduced.
hasty if one observes Fig. 17, where we show experimentalhis argumentation is also supported by a comparison of our
and theoretical results for the first band in vanadium alongesults with enhancement factors extracted from 2D ACPAR
the'X line. In this case, it is evident that, in contrast to the experiments’
two examples discussed before, the LDA enhancement curve Very interesting is the role of the second effect called the
corresponds better to the experimental curve than the BMLlattice effect on the polarization,” which does not drasti-
result. This different behavior of V in comparison to Cu andcally change the momentum dependence of the enhancement
Pd is also significant if one compares the optimized parameurves but considerably influences the magnitude of the en-
etersay, for these metals according to E@3) (see the last hancement: in fact, it shifts the enhancement curves to higher
line in Table V). We think that the reason for this strange or lower values depending on the energetic position of the
behavior is that we are confronted with the limits of thed bands with respect to the Fermi energy. This shift is neg-
procedure of obtaining enhancement factors from the experiigible in the absence ofl bands, as is the case for Al. For
ment, as proposed in Refs. 10, 11, 76, andctmpare Ap- the d-band metals Cu and Pd, we observe a moderate and
pendix B: namely, in the case of vanadium, the contributionsmall positive shift of the enhancement curves, respectively.
of electrond states to the annihilation rate is much smallerOn the contrary, Mn shows a moderatelana strong nega-
than for Cu and Pd due to the fact that the second band in Vive shift, i.e., to smaller values of the enhancement, which
contributing to the rate is mainly unoccupiécbmpare Fig. leads to a more or less marked cancellation of the lattice
4), with the consequence that the content af-enhanced effect on thee-p scattering. For the second band of vana-
annihilation rate in the experimental data is much smalledium, the lattice effect of the polarization even overcompen-
than in the othed metals discussed before. Consequently,sates the lattice effect on tleep scattering, with the conse-
one cannot expect a reliable fit for theg; enhancement quence that, in this case, the enhancement according to our
parameters in the model functidd3). Therefore, we sup- OBML theory is smaller than the corresponding LDA result.
pose that the poor correspondence between the experimental In this paper, we also present a comparison of BML and
curve and the BML curve for V is not caused by a badLDA enhancement factors in simple adeband metals for
performance of the BML theory but by exceeding the limits high-momentum components of the MDAP. In general, the
of the method of extracting enhancement results out of th&ML and LDA results are comparable from a qualitative
2D ACAR data. In fact, there is no reasonable argument thgpoint of view. Quantitatively, however, the momentum de-
the first occupied valence band of vanadium should showendence of the enhancement is more marked for the BML
completely different lattice effects of the enhancement tharthan for the LDA enhancement curves. This can be observed
the first band of the othet-band metals investigated in this for Al, where both theoretical methods show an overen-
work. hancement within th€111) umklapp region, but also for the

12 F 1

rel. enhancement
4
17

FIG. 17. State-dependent relative enhancement of the first ba
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d-band metals Cu, Pd, and Mn, where we observed a modhe electron gas. For the present paper, we take over Car-
erate deenhancement for the LDA results and a strong deebotte’s argumentation in the following way: as we exten-
hancement for the BML results. These differences betweenively pointed out in Sec. Il, the electron and positron
BML and LDA are mainly due to the lattice effect on the Green’s functions used in the BML approximation are based
e-p scattering, whereas the lattice effect on the polarizatioron the Schrdinger-like equation$6) and(7). In these equa-
is less important. tions, the effects of interactions of a single particle with the
Summarizing our results, we can say that, for a propeother electrons in the crystal are included by single-particle
theoretical description of the electron-positron annihilationHartree and exchange-correlation potentials. We can say that
process both in simple and itband metals and both for the these potentials have approximately the same effect on the
central momentum region and the umklapp regions, the inelectron and positron propagators as the inclusion of Hartree-
fluence of the crystal lattice is significant and should not be~ock andstatic correlation self-energy insertions into these
neglected. propagators. According to Carbotte, the use of a dynamical
e-p interaction potentiaV®P in our BML formulas would
also require the inclusion of the dynamical part of these self-
energy insertions into the single-particle Green’s functions
ACKNOWLEDGMENTS (4) and (5) which would be an extremely complicated task.
The author thanks Dr. P. Genoud for sending him hisFor this reason, until now, there have been no investigations
enhancement results prior to publication. He is also indebte@n the question whether the cancellation of the dynamical
to many colleagues, especially from the group of Professoparts of electron and positron self-energy terms ®fi#lin
H. Stachowiak from the Polish Academy of Sciences inthe ladder diagrams is as effective for the inhomogeneous
Wroclaw and from the group of Professor M. Peter of theelectron gas as for the homogeneous one.
University of Geneva, for many interesting and helpful dis- Nevertheless, special studies on both topics discussed in
cussions about the electron-positron interaction in metalghis appendix, namely, concernirtg the use ofe-p poten-
His special thanks are due to Dr. MolS$ for valuable sug- tials beyond the RPA, eventually by an inclusion of
gestions and for his continuing interest in this work and toexchange-correlation field corrections to ¥&” matrix, and
the Fonds zur Falerung der Wissenschaftlichen Forschung(ii) the role of dynamical corrections to these potentials in
of Austria for its financial support under Project No. P09265-theoretical MDAP calculations for real metals would be
TEC. highly desirable; the present author plans efforts in both di-
rections for the future.

APPENDIX A APPENDIX B

It is clear that the use of the RPA for tleep interaction The procedure of extracting band- and momentum-
potential has the consequence that our BML and LDA resultslependent enhancement factors from 2D ACPAR experi-
are not self-consistent with respect\éP, a fact that makes ments, as proposed by the Geneva University Positron
a direct comparison of our results with experimental annihi-Groug®"®"%is without any doubt of great importance for
lation rates more difficult. However, concerning the sensitiv-comparisons between theoretical and experimental enhance-
ity of the MDAP and enhancement factors on differeqp = ment results. Nevertheless, one should be aware that this
interaction potentials, we learn from a comparison of RPAprocedureg(described in Sec. VIII Eincludes some risks.
potentials with fully self-consistent potentials for the homo- At first, one might be concerned that the simple analytical
geneous electron gashat this sensitivity is very strong in form of the enhancement model E@3) might be inappro-
the medium and low electron density region for, say, forpriate for the given problem. We do not think so because the
r<>3 a.u., but is moderate for smaller values of the electronmodel includes enough parameters to offer sufficient flexibil-
density parameter, which means, in the regiomgfwhich  ity. However, for several reasof$the a;; coefficients pub-
is especially interesting for our calculatiofisompare the lished in Refs. 10, 11, 76, and 77 do not follow from a LS
discussion in Sec. VII A Therefore, if we use this result for comparison of theory and experiment, but reflect the best
the inhomogeneous electron gases of the metals that wagreement of the theoretical and experimental data for a rela-
study in this paper, we expect that the application of mordively small number of trials. So, for example, many of the
elaboratee-p potentials than the RPA would not signifi- asy anda,, parameters are simply set to one, which might
cantly change the results and the physical conclusions of ourot always be the best choice. Another problematic point is
work. due to the fact that the model paramet@tsare the same for

A second point concerns the use aftaticapproximation  both the LMC and the HMC regions, which means that these
to the dynamicak-p interaction potential. For the homoge- parameters only reflect average values for the whole momen-
neous electron gas, this simplification of the theory is justi-tum space. This might be risky especially for transition met-
fied by earlier results of Carbotte and Kah&haho pointed  als where thel-band enhancement is quite different for LMC
out that dynamical corrections to the annihilation rate due tand HMC regions. A third point that should be kept in mind
the e-p interaction potential are largely compensated by dy-is that some parameters in Eg.3) might be unreliably de-
namical corrections due to electron and positron self-energtermined because of too small a content of the MDAP with
terms. In his work on positron annihilation in real metHis, respect to these parameters, an objection that has already
Carbotte repeats the arguments of Ref. 61 without discussingeen mentioned in Ref. 10 and is discussed for the example
any new aspects that might occur from the inhomogeneity ofanadium in Sec. VIII E of the present paper.
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