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Applications of a tight-binding total-energy method for transition and noble metals:
Elastic constants, vacancies, and surfaces of monatomic metals
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A recent tight-binding scheme provides a method for extending the results of first-principles calculations to
regimes involving 18— 10° atoms in a unit cell. The method uses an analytic set of two-center, nonorthogonal
tight-binding parameters, on-site terms that change with the local environment, and no pair potential. The free
parameters in this method are chosen to simultaneously fit band structures and total energies from a set of
first-principles calculations for monatomic fcc and bcc crystals. To check the accuracy of this method we
evaluate structural energy differences, elastic constants, vacancy formation energies, and surface energies,
comparing to first-principles calculations and experiment. In most cases there is good agreement between this
theory and experiment. We present a detailed account of the method, a complete set of tight-binding param-
eters, and results for 29 of the alkaline-earth, transition, and noble mM&alk63-18206)01931-5

I. INTRODUCTION a system of electrons moving in a solid can be written in the
form
Recently, a total-energy tight-bindin@B) method was

introduced wherein the parameters were fit to the total en-
ergies and band structures obtained from a limited set of E[n(r)]=2 f(u—e)e+FIn(n)], (1)
first-principles calculations. The method produces very good !
structu_ral energy d|fferenqes, elastl_c constants, phonon fr?ﬂ/here n(r) is the electronic densityg; is the Kohn-Sham
guencies, vacancy formation energies, and surface energies . . . .

s . €igenvalue of theth electronic statey is the chemical po-
for the transition and noble metals. In this paper we thor-

) tential, and the sum is over all electronic states of the system.

oughly examine the method for these elements and for the . A . .
. ince we will be primarily interested in studying metals, we

alkaline-earth metals.

Section Il describes the method, including the analytictake the functiorf (11— &) to have the Fermi function forfn

expressions for the tight-binding parameters and the scheme

for fitting them to first-principles theory. The remainder of f(z)=

the paper discusses the predictions made by this method. 1+ef?
Section lll shows that the method correctly predicts the or-
dering of several metallic phases, including the 29-atom
aMn phase, and correctly predicts the energy differences
between the lower phases. Section IV discusses the calcula- N
tion of elastic constants. Since these calculations can also be 4| e
performed by first-principles techniqu&s,we compare our e, pde
TB results with those obtained from first-principles to assess
the accuracy of the method. We can also use the method to s o000 |
study systems that have relatively lang@—200 atornunit
cells, a regime that requires laborious first-principles calcu-
lations, but which can be done very quickly by our TB -0.05 |
method. In Sec. V we discuss the structure and energetics of
vacancies and in Sec. VI we consider surface energetics. Fi-
nally, in Sec. VIl we summarize our results, discuss possible -0.10 £
methods to improve our agreement with first-principles . . . . , . .
theory or experiment, and consider the course of future im- 46 50 55 60 65 70 75 80 85 90
provements to the method.
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II. TIGHT-BINDING METHOD FIG. 1. Values of the two-center Slater-Koster integrals for the
Hamiltonian matrix as a function of distance for molybdenum, ob-
Density-functional theoryDFT),® using the Kohn-Sham tained from the tight-binding parametef0). The integrals are
ansatz for the kinetic enerdytells us that the total energy of labeled according to the standard notati@efs. 17 and 19
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whereB=1/KT. Typically we takeT between 2 and 5 mRy. describe this local environment by introducing a “density”
The functionalF[n(r)] contains the remaining part of the associated with each atom, defined by
DFT total energy: the ion-ion interaction energy, the parts of
the Hartree and exchange-correlation energy not included in _ 1
the eigenvalue sums, and corrections for double counting in "i‘j;i X~ A7 RijIFe(Rij), ™
the eigenvalue sums. —~ o :
Many tight-binding methods usel) to provide a natural WhereT (j) denotes the type of atom on site(j), \ is a
separation between the partsBfn(r)] that can be treated Parameter that will depend on the atom typ8; is the
by tight binding and the parts that must be treated by othefliStance between atomsand j, and F¢(R) is a smooth
means~'6|n these cases the eigenvalue sum is calculated b§Utoff function
tight-binding methods andr[n(r)] is approximated by a _ —1
sum of pair potentials. Fe(R)={1+exd (R—Ro)/]} ", 8
We have developed an alternative method of applyingvhich we use to limit the range of the parameters. In the
tight binding to(1),* based on the fact that the Kohn-Sham calculations shown here we typically taky=14.08, and
method allows an arbitrary shift in the potential. If this shift | =0.5a, (wherea, denotes the Bohr radiyswhich effec-
is defined to be tively zeros all interactions for neighbors more than
16.5, apart. Depending on the structure and lattice constant,
Vo=F[n(r)]/Ne, (3 this radius will include 80 — 300 neighboring atoms.
where Although, in principle, the on-site terms should have off-
diagonal elements due to the overlap of the on-site wave
Ne=S f(u—e) @ functions with neighboring atomic potentidfswe follow
e” & TWHTE traditional practice and only include the diagonal terms,

keeping only the terms correspondingstop, andd orbitals.
is the number of electrons in the system, then the eigenvaluege on-site term for atorm is
g; are each shifted by an amouvig, to the new values
el — et Vo, 5) hio=a7,+ b7+ cropi >+ dip?, 9
wherea=s, p, ord andp; is given by(7). To show the
correspondence between this theory and previous theories,

note thatp in (7) has a form similar to a pair potential. Thus,

The total energy(1) then becomes

E[n(r)]=2 f(u' —el)el, (6) if (9) were linear inp, we restricted ourselves to an orthogo-
[ nal Hamiltonian, and keph;, independent of the angular
whereu’ = u+V, is the shifted chemical potential. momentum, therf9) would just be a method of parametriz-

By the density-functional theorefnthe shifted eigenval- "9 FLN(r)] by a simple pair potential. Seen in this light, the

uese! can be considered to be functions of the crystal strucdensity-dependent parts of the on-site tef@n can be re-

ture, including volume, primitive lattice vectors, and internal garded as a generahzgd pair potential.
In general, the Hamiltonian and overlap Slater-Koster pa-

parameters. A tight-binding method that reproducessthe o
X rameters may depend upon the structure and local environ
over a range of structures will then solve the total-energym(_}nt of the atoms, even in the case of the two-center ap-

problem(1) or (6) without resort to an additional term. proximation. This approach, while valid, will lead to many

The two-center Slater-Koster formulatigrof tight bind- complications when we extend the method to include other
ing with a nonorthogonal basis breaks the problem into the P

calculation of three types of parameters: on-site parametercrystal structures and binary alloys. We therefore constrain

. : €¥e form of these parameters so that they depend only on the
which represent the energy required to place an electron in istance between the two atoms. Both the Hamiltonian and
specific orbital; Hamiltonian parameters, which represent th%verlap parameters are assume dl to have the same functional
matrix elements for electrons hopping from one site to any m
other; and overlap parameters, which describe the mixing
between the nonorthogonal orbitals on neighbor sites. The _ N2
eigenvalues:; can be determined once the parameters are Py(RI=(e,+ 1, Riexd g5 RIFc(R), (10
evaluated for a given structure. The basic method we use ighere y indicates the type of interactiofe.g.,sso, pd,
to give the Slater-Koster parameters simple algebraic formsstc), R is the distance between the atoms, dhdR) is
with parameters chosen to reproduce first-principles resultgiven by (8).
over a wide range of structures. In the monatomic case, restricting ourselveste, and

In an orthogonal tight-binding calculation, applying the d orbitals, there are three on-site Slater-Koster parameters
shift (5) to each eigenvalue would be equivalent to shifting(9), with 13 parameters required to completely specify them.
each diagonal element of the Hamiltonian matrix by anSimilarly, there are 10 Hamiltonian and 10 overlap param-
amountV,. In the nonorthogonal case the effect is slightly eters(10), each requiring 3 parameters. Thus, to completely
more complicated. It is clear, however, that the Hamiltonianspecify the Slater-Koster tight-binding scheme in this model
and overlap parameters should not directly depend on theequires the determination of at most 73 parameters. In prac-
shift V. Thus the effect of5) can only be accounted for by tice, we only used thd~, found in(9) in the parametrization
changing the on-site parameters. These parameters must noiv Ti, Zr, and Hf, so for most elements we had only 70

be sensitive to the local environment around each atom. Wimdependent parameters. The parameters are determined by
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FIG. 2. Tight-binding electronic band structure of bcc Mo at the LDA equilibrium lattice con¢gah® A). The energies of the
eigenstates have been uniformly shifted to set the Fermi level to zero.

requiring that the eigenvalues determined by the Slaterthe range of distances where we are likely to require evalu-
Koster parametet8[(7)—(10)] reproduce the electronic band ation of the Slater-Koster matrix elements. Finally, we select
structure[including the eigenvalue shifB8)] produced by a our starting parameters guided by those found in previous
set of first-principles density-functional calculations and thatwork!® and ensure that the symmetry of the eigenstates is
the corresponding energi€8) reproduce the first-principles taken into account.

energies. For the metals discussed here we use either the As an illustration of the above technique, we present sev-
muffin-tin potential augmented plane wa%¢APW) or the  eral results for molybdenum. Using the APW program, we
full-potential linearized augmented plane w&v& (LAPW)  calculated the total energy and band structure of Mo at four
method to calculate the electronic band structure and totalolumes in the fcc structure and five volumes in the bcc
energies for 4—6 volumes in each of the fcc and bcc strucstructure. The parameters (@), (9), and(10) were then ad-
tures, using uniformk-point meshes that include the origin justed to best fit the total energies and the band structure in
and contain 89 and 55 points, respectively. In all cases weéhe lower six bands of Mo over all nine volumes. The result-
used the Hedin-Lundqvist parametrizafidrof the local- ing two center Slater-Koster parametéis) are shown in
density approximatioh(LDA) to DFT. Possible spin polar- Fig. 1 for the Hamiltonian matrix elements. We note that
ization is ignored. For a typical transition metal there arethere is a smooth and monotonic decay of the TB parameters
about 4000 eigenvalues and energies in the database. We usevards zero. To assess the quality of the fit, we calculate the
an IMsL package, based on a finite-difference Levenbergtight-binding band structure of Mo at the LDA equilibrium
Marquardt algorithn?! to adjust the 7@or 73 parameters to  volume(3.12 A) of the bcc structuréFig. 2 and compare it
reproduce this database by means of a nonlinear leaste the first-principles band structut€ig. 3).° We see that
squares fit, with the total energies typically weighted abouthe band structures are in close agreement over the entire
200 times larger than the eigenvalues in a single band. WBrillouin zone and a wide spectrum of energies, with some
place additional conditions on the minimization as follows. deterioration far above the Fermi level. We also calculate the
Since the overlap matrix defined by the parametd®  energy-volume behavior for a large number of phases and
must, physically, be positive definite, a function that penal-compare the fcc and bcc energies to those obtained from
izes small or negative determinant overlap matrices is inAPW calculations, as shown in Fig. 4. We see that there is
cluded. While this does not guarantee that our overlap matriexcellent agreement between the tight-binding and first-
will remain positive definite during the minimization pro- principles curves for the fcc and bcc structures and that all
cess, it does tend to keep the determinant from changingther structures, including hcp, are above the bcc ground
sign, meaning that an overlap matrix that is originally posi-state.

tive definite tends to stay that way. We also restrict the be- The above procedure works well for all of the metals
havior of the functiong10). Physically, we expect both the described here except vanadium, where the elastic constant
Hamiltonian and overlap parameters to decay steadily an@,, is predicted to be 172 GPa, compared to 30 GPa found
not change sign for distance® near or greater than the experimentally® and 43 GPa when found using the first-
nearest-neighbor distance. We thus add another contributigorinciples LAPW method. This discrepancy is probably due
to our minimization function, which penalizes parameter setso the high electronic density of states in vanadium near the

(e,, f,, g,) that cause eithe? (r) or P’y(r) to vanish over  Fermi level*® To better describe the electronic structure of
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FIG. 3. Self-consistent first-principles LDA electronic band structure of bcc Mo at the LDA equilibrium lattice co(&tEditd), as
determined by the muffin-tin APW progra(Ref. 20. The energies of the eigenstates have been uniformly shifted to set the Fermi level to

Zero.

vanadium we have made two changes to the above formaparameters, as above, we reduce the predicted elastic con-
ism. First, we split thal on-site energy9) into contributions  stantC,, to 92 GPa without significantly changing our other
from thet2g andeg levels!® Second, we increase our pa- predictions. While this is not in perfect agreement with ex-
rameter space by modifying the Slater-Koster parameter'seriment, it is a substantial improvement, so we will use

functional form(10) to include a quadratic term these parameters for vanadium in preference to the 73 pa-
L rameter set, which gives a worse elastic constant.
Py(R):(ey-i-fyR-{-fsz)exr[—giR]Fc( R). (11 We have used this method to determine tight-binding pa-

rameters for most of the alkaline-earth, transition, and noble
This procedure adds an additional 24 parameters to our basisetals. In the case of the antiferromagné@c and Mn and
set, for a total of 97. We reduce this by settig=0 in (9) magnetic(Fe, Co, and Nielements we restricted our calcu-
for a=s, p, t2g, andeg. When we fit the remaining 93 lations to the nonmagnetic case. This causes some difficulty
when comparing our results to experiment, as shown below.
. ' ‘ The parameters for La are not presented becaudehigads
0.04 T are located in the middle of thet bands® and therefore it is
SO impossible to fit within our formalism. The Appendix lists
various methods of obtaining the parameters used in this

paper.

Ill. GROUND-STATE BEHAVIOR
AND PHASE STABILITY

Energy/Atom (Ry)

We first test our parameter sets by looking at the equation
of state for the observed ground state of each element. For
the fcc and bcc honmagnetic cubic crystals, our parameters
should reproduce the first-principles results for these phases
. . 1 because of the fitting procedure. For the hcp elements and
110 15 120 manganese, these calculations serve as a tight-binding pre-
diction of the equation of state. The case of manganese has

FIG. 4. Energy-volume behavior of molybdenum in severalP&en discussed in more detail elsew_}"?ére.
phases, using the tight-binding method. The energy of the diamond Table | shows the equilibrium lattice constants and bulk
structure is not shown, as its minimum energy is 0.116 Ry abovdnoduli for all of the metals studied here, comparing them to
the origin. The small symbols¢) represent the APW energies of first-principles  LAPW calculation$? muffin-tin  APW
the bce and foc phases. The construction ofltflg andDO; lat-  calculations?? and to experimerft’?® For the nonmagnetic
tices is discussed in Table Il. The origin of the energy was chosegubic crystals, the equilibrium lattice constant is within 1%
arbitrarily. of the first-principles LDA value for all of the cubic elements

20 95 100

105
Volume/Atom (a.u.3)
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TABLE I. Equilibrium lattice constants and bulk moduli for the experimentally observed ground-state
structures of the elements, comparing the results of our tight-binding parametrigBBonfirst-principles
local density approximatiofLDA ) results, where available, and experiméexpt) (Refs. 27 and 28 Where

not referenced, the LAPW results were done for this paper, using previously developed ni&bbds.

a (A) c (A) Bo (GPa
Element Structure B LDA  Expt. TB LDA Expt. TB LDA Expt.
Ca fcc 5.30 5.33 5.58 a a a 21 19* 15
Sc hcp 3.26 3.2 331 491 50P 527 63 65 44
Ti hcp 2.97 2.87 295 480 4.55 468 122 120 105
\Y bcc 2.94 2.93 3.03 a a a 211 196 162
Cr bce 2.86 2.88 a a 283 190
Mn aMn 8.41 8.91 a a 320 60
Fe bce 2.71 2.87 a a 281 168
Co hcp 2.46 2.51 3.9¢° 4.07 384 191
Ni fcc 34% 342 352 a a a 268 261 186
Cu fce 3.52 352 3.61 a a a 189 190 137
Sr fcc 5.73 6.08 a a a 15 12
\4 hcp 3.59 359 3.65 535 5.6F 573 46 48 37
Zr hcp 2.99 3.17 3.23 557 5.1& 515 108 119 83
Nb bcc 3.25 3.25 3.30 a a a 187 193 170
Mo bce 3.12 3.12 3.15 a a a 283 2919 272
Tc hcp 2.72 2.74 4.34 4.40 304 297
Ru hcp 2.68 2.71 4.26 4.28 360 321
Rh fcc 3.77 3.76 3.80 a a a 306 309 270
Pd fcc 3.85 3.85 3.89 a a a 212 220 181
Ag fcc 4.01 401 4.09 a a a 142 142 101
Ba bcc 4.82 5.02 a a a 10 10
Hf hcp 3.07 3.18 3.19 5.08 5.1% 5.05 111 116 109
Ta bcc 3.30 3.24 3.30 a a a 185 224 200
W bce 3.14 3.14 3.16 a a a 319 333 323
Re hcp 2.78 2.7 2.76 439 450 4.46 371 388 372
Os hcp 2.75 2.73 2.74 431 439 432 441 446 418
Ir fce 3.86 3.8 3.84 a a a 389 4019 355
Pt fcc 3.90 3.90 3.92 a a a 318 305 278
Au fcc 4.06 4.06 4.08 a a a 187 205 173

First-principles LAPW calculationéRef. 3.
bFirst-principles APW calculation&Ref. 20.
°Nonmagnetic calculation. The experimental structure exhibits some form of magnetism.
drirst-principles LAPW calculationéRef. 5.

except tantalum and iridium, and in these cases the discrefirst-principles LDA methods in determining the structural
ancy is less than 2%. Similarly, the equilibrium bulk moduli parameters of hcp metals.
are in good agreement with the first-principles results, within To be successful, the tight-binding method must also
10% for all nonmagnetic cubic elements except tantalumshow that the experimental ground-state structure is, in fact,
where the error is 17%. the ground state predicted by the method. We have calcu-
The hexagonal close packed phases were not fit to firstated energy versus volume curves for several common crys-
principles results. As a result, the equations of state predictetl structures. As an example, Fig. 4 shows the resulting
by the tight-binding model are not as accurate as for thenergy-volume curves for molybdenum. The results for all of
cubic lattices. The largest error is for zirconium, wharés ~ the elements are summarized in Table Il, which shows the
7% smaller than experiment ads 8% larger. Yttrium and  equilibrium energy of each of these phases expressed as the
hafnium also show large discrepancies between the tighdifference in energy between that phase and the equilibrium
binding model and experiment, and tleefor titanium is  energy of the experimental ground state. The ratio of the
2.5% larger than experiment. The lattice constants for théacp phase has been chosen to minimize the tight-binding
other elements are within 2% of experiment, consistent wittenergy at each volume to obtain the hcp energies. The tight-
the errors we would find in first-principles calculations. We binding method correctly predicts the ground-state structure
conclude that the tight-binding method is nearly as good a$or all metals except the ferromagnetic metals iron and co-
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TABLE Il. Relative energies per atom of several structures for each of the metals examined by the
tight-binding model discussed in the text. The energy of the experimental ground-state structure is arbitrarily
set to zero. All energies are calculated at the equilibrium volume found by the tight-binding fit and are
expressed in mRy. Below the common name of each phase $ritkturberichtdesignation.

Structure
fcc bcc hcp diamond sc aMn BMn BW  AuCuz AlFe;

Element Al A2 A3 A4 An Al2 Al13  Al5 L1,? DO, "

Ca 0.0 2.8 0.5 83.5 13.3 2.1 3.1 0.7 19.8 24.4
Sc 4.7 8.5 0.0 101.1 34.3 10.2 11.0 194 39.7 33.9
Ti 5.2 9.1 0.0 157.7 64.9 16.7 154 224 56.1 63.8
\Y, 19.6 0.0 19.6 180.8 76.0 11.2 12.7 122 62.1 53.4
Cr 28.6 0.0 30.6 49.1 118.6 20.3 19.7 16.2 94.3 87.2
Mn 75 143 2.9 44.2 90.3 0.0 15 7.0 87.6 66.2
Fe -27.9 0.0 -35.0 79.8 545 -23.1 -250 -81 4.5 20.4
Co -29 210 0.0 135.0 8.2 19.2 72.7 75.2
Ni 0.0 8.0 2.8 142.3 75.9 7.7 46 15.0 48.7 57.1
Cu 0.0 3.5 1.2 70.8 24.7 6.2 54 101 14.7 22.0
Sr 0.0 2.1 1.0 73.0 22.0 3.2 3.2 1.4 22.2 254
Y 2.4 8.8 0.0 97.9 432.2 8.6 104 173 315 275
Zr 11 2.9 0.0 112.7 123.3 8.6 8.0 8.0 18.7 26.2
Nb 26.1 0.0 22.7 181.9 68.6 17.1 211 159 69.5 59.6
Mo 30.0 0.0 31.0 147.3 68.7 17.5 199 113 67.7 53.5
Tc 6.1 233 0.0 72.9 56.3 0.2 45 133 64.6 35.4
Ru 1.0 446 0.0 134.5 106.6 16.3 146 34.7 103.0 82.7
Rh 0.0 317 5.1 159.8 96.0 16.3 74 295 81.2 88.3
Pd 0.0 9.9 25 148.6 84.9 9.2 6.1 128 50.1 72.8
Ag 0.0 3.3 0.6 66.1 24.1 6.0 5.3 8.6 15.7 25.2
Ba 0.9 0.0 0.1 85.3 23.6 2.8 2.9 2.2 27.0 30.7
Hf 1.2 7.1 0.0 380.2 113 22.9 20.6 20.8 110.2 143.3
Ta 24.7 0.0 25.3 188.6 63.2 8.9 14.0 9.8 65.6 54.2
w 36.0 0.0 38.2 159.3 113.7 18.2 257 124 134.2 94.2
Re 134 277 0.0 28.6 55.6 0.2 1.8 191 61.0 22.1
Os 8.1 643 0.0 11.2 58.6 17.8 174 424 66.2 33.6
Ir 0.0 501 8.5 83.9 83.5 23.8 199 418 64.0 75.6
Pt 0.0 9.7 4.4 168.7 78.3 14.4 128 25.9 48.5 78.5
Au 0.0 14 0.6 96.1 241 8.7 8.4 152 17.5 32.3

&Calculations using thé-1, (AuCug) lattice, placing the metal atoms on the copper sites and leaving
vacancies on the gold sites.

bCalculations using th®0; (AlFe;) lattice, placing the metal atoms on the iron sites and leaving vacancies
on the aluminum sites.

balt. This is understandable, since we have not included spifor a monatomic lattice undergoing a trigonal strain with the
polarization. Especially satisfying is the fact the methodprimitive vectors
finds the correct ground states of the hcp metals and

manganes& since these phases are not included in the fit of ay a B B X
the tight-binding parameters. _ A

We can also assess the stability of the tight-binding pa- %=\ B a B Y ’ (12
rameters by studying crystal structures of lower symmetry. ag B B al \z

Thus Fig. 5 shows the energy of molybdenum under a ) )
volume-conserving tetragonal strain, the so-called Baifvherea andp are chosen so that the volume is the experi-
path2® at the experimentally observed equilibrium volume of Mentally observed volume of the bcc lattice, and the angle
the bce phase. The energy is properly a minimum for the beP€Ween the primitive vectors is given iy where

lattice, wherec/a=1, and attains a local maximum at the fcc

structure ¢/a=+/2), indicating thatC,;— C,<0, so that the cosd— (2at+B)B (13
fce structure is unstable. Similarly, Fig. 6 shows the energy a?+ 2,82 '
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binding ground state and it assesses the ability of the method

0.000

\ to determine properties not included in the fit of the tight-
-0.005 | j binding parameters.
The elastic constants of the cubic materig@gcept man-
0010 | boe fec . ganesg are shown in Table Ill. This table also shows the
elastic constants obtained from first-principles LAPW
5 001 ] computation® and experiment>°3L All calculations were
o performed at the experimental volume. The accuracy of the
-0.020 |- 1 elastic constant€,; andC,, is remarkably good. For the 12
elements for which we have first-principles results, none of
-0.025 - 1 the tight-binding elastic constants differs from the first-
principles results by more than 15%. For comparison, the
-0.030 | . first-principles results also differ from the experimental re-
T EETEETEE TRV R sults by less than 15%, a measure of the accuracy of the
cla LDA in determining these elastic constants. Thus the tight-

binding elastic constants are not significantly worse than
FIG. 5. Tight-binding calculation of the energy of molybdenum, those computed from first-principles. Considering only the
at the experimental equilibrium volume, under a tetragonal straimonmagnetic materials, the root-mean-sgyare) deviation
[the Bain path(Ref. 29], as a function ofc/a. The vertical lines  of the tight-bindingC,; compared to experiment is 38 GPa,
denote the positions of the bcc and fcc lattices. while the rms deviation o€, is 15 GPa.
The errors inC,, are somewhat larger, the rms deviation
The vectors(12) represent a fcc lattice wheAi=60°, a  from experiment being 49 GPa. In this case, if we exclude
simple cubic lattice wherd=90°, and a bcc lattice when calcium and strontium, discussed below, the maximum de-
0#=109.47°. The tight-binding calculations in Fig. 6 show viation of first-principles results from experiment is 22%, in
that the bcc phase is indeed the minimum-energy structurgnolybdenum. The maximum deviation of the tight-binding
Also, the simple cubic phase has a local maximum in theelastic constant from the first-principles result is in vana-
energy, indicating that it is elastically unstable with dium, where the error is 114%, even when we use the qua-
C4<0. dratic Slater-Koster parametrizati¢hl) and split the on-site
d terms. As noted above, this is probably due to the high
value of the density of states of vanadium near the Fermi
level!® Excluding vanadium, the maximum deviation is
Elastic constants are calculated by imposing an externé86%, in niobium. Hence, except for the anomaly of vana-
strain on the crystal, relaxing any internal parameters to obdium, the tight-binding results are only slightly worse than
tain the energy as a function of the strain, and numericallythe first-principles results in the determination of elastic con-
solving for the elastic constants as the curvature of the enstants.
ergy versus strain cur/e® We have calculated the elastic  Calculation ofC 4, in the alkaline-earth metals is difficult
constants for the ground-state phases of all of the elements lrecause the lattice is extremely soft. The error in calcium is
this study except manganese. This procedure serves two pufi% compared to first-principles results and 50% compared
poses: it tests the mechanical stability of the proposed tightto experiment. For strontium the situation is even worse,
since we predict the fcc lattice to be unstable to any strain
that is related t&C,,. In this regard, however, it is important

IV. ELASTIC CONSTANTS

0.04 | ' ' ' -] to note that even many of the best LDA elastic constant
calculations in Table Il have an absolute error of more than
0.08 | 1 10 GPa. Since the experimental values(yf, for both cal-

cium and strontium are less than 10 GPa, it is understandable
that we cannot reproduce the experimental elastic constants
0ot | ] for the alkaline-earth metals with any degree of accuracy.
We also note that this method correctly reproduces the
sign of the elastic consta@;,—C,4, even in rhodium and
001 b | iridium, where it is negative, though the predicted magnitude
|C1,—C44 is much larger than observed experimentally and
-002 1 in first-principles calculations for these two materials. The
negative sign cannot be obtained from the standard
. . embedded-atom metha&AM),3 though it can be found in
100 110 the modified embedded-atom methddEAM ).23
We have also calculated elastic constants for all of the
FIG. 6. Tight-binding calculation of the energy of molybdenum, NONMagnetic transition metals that take the hcp structure.
at the experimental equilibrium volume, under a trigonal strain ofHexagonal close packed crystals have two atoms per unit cell
the lattice given by(12), as a function of the angle between the and the internal parameter describing the atomic positions is
primitive vectorsd. The positions of the bcc, simple cubic, and fcc free to move when we strain the crystal to calculate elastic
lattices are denoted by the vertical lines. constants. Using the tight-binding approach, it is relatively

0.02 - fee sc bee

E(Ry)

-0.03

60 70 80 90
0 {deg)



4526 MEHL AND PAPACONSTANTOPOULOS 54

TABLE IlIl. Elastic constants for cubic elements. All elements for which we have constructed a set of
tight-binding parameters and which have a cubic ground $tateept manganes@re presented here. A
comparison is made between the results of our tight-binding parametrizd@t®yn first-principles full po-
tential LAPW resultLAPW), where available, and experime(iixpt,) (Ref. 25. Where unreferenced, the
LAPW results were done for this paper, using previously developed metirefs 4. Calculations were
performed at the experimental volume.

Cu Ci2 Cu
Element TB LAPW  Expt. TB LAPW  Expt. TB LAPW  Expt.
Ca 15 17 16° 10 102 12° 4 142 8P
\% 224 205 228 106 111 119 92 30 43
Cr 432 346 88 66 250 100
Fe -4 227 180
Ni 256 142 86
Cu 161 156 168 108 106 121 55 80 75
Sr 8 15 3 6 -3 10
Nb 204 230 246 137 122 139 34 25 29
Mo 453 4682 450°¢ 147 149 173° 120 982 125°
Rh 491 433 413 171 185 194 260 206 184
Pd 233 218 227 163 172 176 63 74 72
Ag 133 122 124 86 90 93 42 52 46
Ba 9 7 13
Ta 275 256 261 140 154 157 78 67 82
W 529 527 523 170 194 203 198 147 160
Ir 694 6212 590 260 256 249 348 260 262
Pt 380 381 347 257 189 251 71 83 76
Au 184 200 189 154 173 159 43 33 42

First-principles LAPW calculation&Ref. 5.
bExperiment from Ref. 30.
‘Experiment from Ref. 31.

simple to determine the value of the internal parameter thaight-binding elastic constants show larger relative deviations
minimizes the total energy for a given external strain androm experiment than found in the cubic crystals. The largest
then find the related elastic constant by standard techniquedeviation, 88%, occurs in the calculation 6f, in zirco-

This is more difficult for first-principles calculations, so we nium, where we predict a value of 4 GPa, compared to the 33
have not calculated LAPW elastic constants for hexagonaGPa found by experiment. The rms deviations of the tight-
materials. The tight-binding elastic constants are comparetinding elastic constants from experiment are 46 GPa for
to experimer®® in Table IV. For simplicity in interpreting Cj;, 17 GPa forC,,, 25 GPa forC,3, 54 GPa forCs;, and

the results, we calculated the elastic constants using th22 GPa forC,,. The rms deviation over all of the hcp elastic
tight-binding c/a ratio at the experimental volume. The hcp constants is 36 GPa. When compared to the rms deviation for

TABLE IV. Elastic constants for hexagonal close-packed elements. All elements for which we have
constructed a set of tight-binding parameters and which have a nonmagnetic hcp ground state are presented
here. A comparison is made between the results of our tight-binding parametri¢gBprand experiment
(Expt) (Ref. 30. The tight-binding results include internal relaxation. Calculations were performed at the
experimental volume, but at theéa ratio that minimized the energy for that volume. Note that in a hexagonal
crystal,Cge=(C11— C10)/2.

Cu Cp Cis Cass Cas
Element TB  Expt. TB  Expt. TB  Expt. TB Expt. TB  Expt.
Sc 73 99 30 40 31 29 78 107 25 28
Ti 171 160 58 90 46 60 203 181 64 47
Y 45 78 15 29 13 20 48 77 17 24
Zr 102 144 67 74 65 67 99 166 4 33
Tc 477 196 172 505 127
Ru 642 563 170 188 129 168 706 624 214 181
Re 559 616 283 273 250 206 621 683 136 161

Os 754 272 274 831 232
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TABLE V. Tight-binding vacancy formation energies compared lated vacancy formation energies of niobium, silver, tanta-
to first-principles calculations and experiment. Energies were comlum, and iridium are in excellent agreement with experiment.
puted using a 108-atom supercell. Calculations with the atoms afhe tight-binding parametrizations of rhodium, tungsten, and
the primitive lattice sites in the crystéFixed) and allowing relax-  pjatinum give the poorest vacancy formation energies, 1-2
ation around the vacandjRelaxed are shown. First-principles cal- ey above the experimental value.
culations of the vacancy formation energy are given in the column \ye note that the 1, andDO; lattices described in Table
labeled “LDA.” The experimental column shows a range of ener- Il can be considered vacancy-containing supercells with
gies if several experiments have been tabulated. Otherwise the egr_ 4 Though the vacancy-vacancy interaction in these cells
timated error in the experiment is given. is quite large, fitting the TB parametel&’)—(10)] to first-
principles results for these lattices will improve the vacancy
formation energy calculation. We have yet to implement this

Vacancy formation energy
Tight-binding

Element Fixed Relaxed LDA Experimeht procedure.

Cu 1.29 1.18 1.4%, 1.29¢ 1.28 — 1.42

Nb 2.84 2.82 2.65- 0.3 VI. SURFACES

Mo 2.63 2.46 3.0-36 The tight-binding model can be used to calculate surface
Rh 3.39 3.35 2.26 1.714 energies by the supercell techniqgue. A slab of metal is
Pd 2.46 2.45 1.57 1.85+ 0.25 formed by cleaving the crystal along the desired plane, cre-
Ag 1.31 1.24 1.26,1.06° 1.11-1.31 ating two identical free surfaces. The distance between the
Ta 3.17 2.95 2.9- 0.4 two surfaces in increased, creating a set of slabs that repeat
W 6.86 6.43 4.6+ 0.8 periodically in the direction perpendicular to the surfaces. Of
Ir 2.19 2.17 1.97 course, we must take care to separate the slabs by a large
Pt 2.79 2.79 1.35- 0.09 region of vacuum so that the electrons on one slab cannot
Au 1.24 1.12 0.89+ 0.04 hop to a neighboring slab. The slabs must be thick enough so

that the atoms at the center of the slab have the properties
®Experimental energies as tabulated by Schaé®ef. 37, unless  (e.g., local electronic density of statesf atoms in the bulk

otherwise noted. material and so that the two surfaces on the same slab cannot
bFirst-principles calculations of Dedericks al. (Ref. 35. interact with each other. For low indgx100, (110, and
‘First-principles calculations of Polatoglai al. (Ref. 36. (11D] faces of the nonmagnetic fcc and bcc metals we find
YExperimental energy tabulated by de Be¢ral. (Ref. 38. that a slab containing 25 atomic layers is sufficient to meet

these criteria. We also converge the calculations with respect
cubic materials(37 GPa, we see that on average the hcpto thek-point mesh. Depending on the surface and underly-
elastic constants are as accurate as those calculated in timg bulk structure this takes between 19 andkdfoints in
cubic case. the two-dimensional Brillouin zone. We estimate numerical
error in the TB surface energies to be about 0.12)/m
V. VACANCIES The surface energy, expressed as the energy required to

. . . _create a unit area of new surface, is then given by the for-
Vacancy formation energies are most easily determined, 4

by the supercell total-energy meth&tOne atom in the su-

percell is removed and neighboring atoms are allowed to
relax around this vacancy while preserving the symmetry of
the lattice. The great advantage of the tight-binding method
over first-principles calculations is that we can do the calcu-

lation in a very Iarge supe_rcell, elimipating the possibility of \\hereA is the area occupied by one unit cell on the surface
vacancy-vacancy interactions. We find that a supercell congs the slab,Eq,, is the total energy of the slaly is the

taining 108 atoms i_s sufficient to gliminate the interaction., mber of atoms in the unit cell, aril, is the energy of
The vacancy formation energy is given by one atom in the bulk at the lattice constant of the atoms in
_ TV I the interior of the slab. For simplicity, the calculations were
Erad V)=EsdN=1LLV) = (N= DB VIN), - (14 0 using the bulk equilibrium lattice parameters, with no
whereE,{M,Q;V) is the total energy of a supercell of vol- relaxation or reconstruction at the surface. Our calculations
umeV containingM atoms and) vacancies ané, (V) is  indicate that relaxatioenergiesare on the order of 1-10 %
the energy per atom of the bulk metal at a volumeper  of the total surface energy, so neglecting relaxation will not
atom. We use the experimental lattice constant to set thsignificantly alter our conclusions. Of course, relaxation and
volume of the system, since under experimental conditionseconstruction are necessary in order to understand surface
the lattice constant of a metal containing isolated vacancieproperties. We plan to address these issues in the future.
will be the lattice constant of the bulk metal. We have calculated the formation energies for bulk termi-
We have computed the vacancy formation energy of sevaated(i.e., unrelaxed and unreconstrugtddw index[(100),
eral of the cubic transition and noble metals using this tight{110), and (111)] surfaces of the nonmagnetic fcc and bcc
binding method, including relaxation around the vacancytransition and noble metals. Table VI compares these results
The results are presented in Table V, where we also compate experiment®#° first-principles calculation®*1~** and
to first-principles resulf§® and experiment’*® The calcu-  atomistic model$>*>4®Note that, except for thé€100) sur-

1
Esur= ﬁ (Estas— NEpyi) (15
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TABLE VI. Surface energies, calculated from the tight-binding the@r8), by first-principles local-
density method$LDA), by the embedded-atom meth@AM), or by the modified embedded-atom method
(MEAM), compared to experiment. Energies are given in units of.J/m

Element Orientation B LDA EAM MEAM Experiment

\Y; (111 3.34 1.81 2.6
(110 2.13 1.68 1.71
(100 3.04 1.8%F 2.49

Cu (111 1.73 1.94 1.17¢ 1.41 1.77
(110 2.04 1.40° 1.64
(100 1.93 1.28 1.65

Nb (111 2.44 2.02 2.3
(110 1.54 2.369, 2.9N 1.81°¢ 1.87
(100 2.37 2.869, 3.1" 1.97¢ 2.02

Mo (111 2.84 1.86 2.9
(110 3.04 3.14 2.13¢ 1.93
(100 2.12 3.5% 2.28¢ 2.12

Rh (112 2.46 2.54% 2539 2.60 2.6°
(110 2.71 2.8¢ 2.92
(100 2.57 2.819 2.90

Pd (112 1.57 1.6 _ 1.22¢ 1.38 2.00
(110 1.86 1.97, 2.5" 2.70! 1.49¢ 1.67
(100 1.75 1.869, 2.3 1.04 1.37¢ 1.66

Ag (111 1.14 1.219, 1.214 0.62° 1.09 1.37
(110 1.42 1.269, 1.4" 0.77¢ 1.27
(100 1.29 1.219,1.3" 0.71°¢ 1.22

Ta (112 3.14 2.31 2.78
(110 2.05 1.8C° 2.17
(100 3.00 1.99 3.29

W (111 6.75 2.25 2.99
(110 4.30 _ 2.60F 2.23
(100 6.7 5.54 2.81°¢ 2.65 6k

Ir (111 2.59 2.84 3.0
(110 3.19 3.06
(100 2.95 2.91

Pt (111 2.51 144 1.66 2.49
(110 2.97 1.75° 2.13
(100 2.83 1.65° 2.17

Au (112 1.48 0.7¢ 0.89 1.54
(110 1.85 0.9¢ 1.12
(100 1.69 0.92 1.08

Modified embedded-atom calculatio(Ref. 33.

PExperimental determination of the surface energy of an “average” face using an approximate extrapolation
to T=0 (Ref. 33.

®Embedded-atom calculations for bcc metd@ef. 46.

9Full-potential linearized muffin-tin orbitalfull-potential LMTO) calculation, using seven-layer slatizef.
36).

®Embedded-atom calculations for fcc metéRef. 45.

fExperimental determination of the surface energy of an average face @t(Ref. 39.

9FP LMTO calculation, using seven-layer slaifef. 42.

AFull-Potential LAPW calculation, using nine-layer slaifef. 43.

iLocal orbital pseudo-potential calculation, using a three-layer ¢Rif. 47).

IFull-potential linearized augmented plane-w#u&PW) calculation for the ideal surface, using a five-layer
slab (Ref. 44).

KExperimental result for th€100) surface(Ref. 40.
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face of tungsten, the experimental restittS are for an “av- The method was tested against first-principles results and
erage” surface and some are extrapolate@ 400 from high  experiment by the calculation of elastic constants, vacancy
temperatured® formation energies, and surface energies. Elastic constants

The results for the fcc metals are particularly gratifying. for nonmagnetic cubic materials are, in general, in good
In all cases we findE111)<E(100y<E(110). Thus close agreement with both LAPW calculations and experiment,
packed surfaces are the most stable for the fcc metals. THbBough we have some problems with, in vanadium. Since
TB surface energies are uniformly larger, and closer to exthe tight-binding method does not require a specific sign for
periment, than those obtained by the EAMyhich is known C;,—Cy, We get reasonable elastic constants even for
to underestimate surface energies in fcc metals. Our surfag@odium and iridium. Elastic constants for the hcp phase are
energies are generally closer to experiment than those olnearly as accurate as those calculated in the cubic phase.
tained by the MEAM(Ref. 33 and in good agreement with Compared to experiment, the accuracy of the vacancy for-
first-principles calculations of the surface energy of cop-mation energy predictions range from good to poor, with
per11l) (Ref. 36 and rhodiun2 Our calculations are also hiobium, silver, tantalum, and iridium all in excellent agree-
in the range of the surface energies predicted by several firstent with experiment and rhodium, tungsten, and platinum
principles calculations for palladium and silvér*3 much larger than experiment. Surface energies for both fcc

Results for bcc metals are also good. For all of the unreand bcc crystals are in good agreement with the available
laxed surfaces we finé 110y<E100<E(111)- The energies first-principles and experimental data. Energies for fcc crys-
for niobium and molybdenum are somewhat low comparedals are uniformly larger than the corresponding EAM ener-
to both first-principles calculatiofs* and experiment, but gies, in agreement with experiment.
the only serious discrepancy is the average surface energy of Improvements to the tight-binding method are under in-
tungsten, which is smaller than our values by a factor ofvestigation. In particular, we are examining other forms for
one-third. At the moment this is not particularly worrisome, the parametrization of the on-site ter® and the Slater-
because experimental estimates of the surface energy #oster terms(10). We are also investigating the effect of
tungsten range from 1.68 Jirto 4.50 J/nf.*” The latter two-center Slater-Koster integrals on the on-site terms, as
number is, in fact, in range of our calculation for ttel0)  suggested by Mercer and Ch¥lSince these terms properly
surface. In addition, the results for the energy of (h60  account for the crystal-field splitting of the on-site terms,
surface of tungsten are in good agreement with both firstthey may be useful in obtaining even more accurate results.
principles result§ and experimerft® In most cases the tight- Finally, we have begun the process of extending the tight-
binding surface energies are greater than either of the corréinding method to binary systerfi%.
sponding EAM or MEAM values. Where this is not the case

the energy difference is slight. ACKNOWLEDGMENTS
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