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A recent tight-binding scheme provides a method for extending the results of first-principles calculations to
regimes involving 1022103 atoms in a unit cell. The method uses an analytic set of two-center, nonorthogonal
tight-binding parameters, on-site terms that change with the local environment, and no pair potential. The free
parameters in this method are chosen to simultaneously fit band structures and total energies from a set of
first-principles calculations for monatomic fcc and bcc crystals. To check the accuracy of this method we
evaluate structural energy differences, elastic constants, vacancy formation energies, and surface energies,
comparing to first-principles calculations and experiment. In most cases there is good agreement between this
theory and experiment. We present a detailed account of the method, a complete set of tight-binding param-
eters, and results for 29 of the alkaline-earth, transition, and noble metals.@S0163-1829~96!01931-5#

I. INTRODUCTION

Recently, a total-energy tight-binding~TB! method was
introduced1 wherein the parameters were fit to the total en-
ergies and band structures obtained from a limited set of
first-principles calculations. The method produces very good
structural energy differences, elastic constants, phonon fre-
quencies, vacancy formation energies, and surface energies
for the transition and noble metals. In this paper we thor-
oughly examine the method for these elements and for the
alkaline-earth metals.

Section II describes the method, including the analytic
expressions for the tight-binding parameters and the scheme
for fitting them to first-principles theory. The remainder of
the paper discusses the predictions made by this method.
Section III shows that the method correctly predicts the or-
dering of several metallic phases, including the 29-atom
aMn phase, and correctly predicts the energy differences
between the lower phases. Section IV discusses the calcula-
tion of elastic constants. Since these calculations can also be
performed by first-principles techniques,2–5 we compare our
TB results with those obtained from first-principles to assess
the accuracy of the method. We can also use the method to
study systems that have relatively large~20–200 atom! unit
cells, a regime that requires laborious first-principles calcu-
lations, but which can be done very quickly by our TB
method. In Sec. V we discuss the structure and energetics of
vacancies and in Sec. VI we consider surface energetics. Fi-
nally, in Sec. VII we summarize our results, discuss possible
methods to improve our agreement with first-principles
theory or experiment, and consider the course of future im-
provements to the method.

II. TIGHT-BINDING METHOD

Density-functional theory~DFT!,6 using the Kohn-Sham
ansatz for the kinetic energy,7 tells us that the total energy of

a system of electrons moving in a solid can be written in the
form

E@n~r !#5(
i
f ~m2« i !« i1F@n~r !#, ~1!

wheren(r ) is the electronic density,« i is the Kohn-Sham
eigenvalue of thei th electronic state,m is the chemical po-
tential, and the sum is over all electronic states of the system.
Since we will be primarily interested in studying metals, we
take the functionf (m2«) to have the Fermi function form8

f ~z!5
1

11ebz , ~2!

FIG. 1. Values of the two-center Slater-Koster integrals for the
Hamiltonian matrix as a function of distance for molybdenum, ob-
tained from the tight-binding parameters~10!. The integrals are
labeled according to the standard notation~Refs. 17 and 19!.
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whereb51/kT. Typically we takeT between 2 and 5 mRy.
The functionalF@n(r )# contains the remaining part of the
DFT total energy: the ion-ion interaction energy, the parts of
the Hartree and exchange-correlation energy not included in
the eigenvalue sums, and corrections for double counting in
the eigenvalue sums.

Many tight-binding methods use~1! to provide a natural
separation between the parts ofE@n(r )# that can be treated
by tight binding and the parts that must be treated by other
means.9–16 In these cases the eigenvalue sum is calculated by
tight-binding methods andF@n(r )# is approximated by a
sum of pair potentials.

We have developed an alternative method of applying
tight binding to~1!,1 based on the fact that the Kohn-Sham
method allows an arbitrary shift in the potential. If this shift
is defined to be

V05F@n~r !#/Ne , ~3!

where

Ne5(
i
f ~m2« i ! ~4!

is the number of electrons in the system, then the eigenvalues
« i are each shifted by an amountV0 , to the new values

« i85« i1V0 . ~5!

The total energy~1! then becomes

E@n~r !#5(
i
f ~m82« i8!« i8 , ~6!

wherem85m1V0 is the shifted chemical potential.
By the density-functional theorem,6 the shifted eigenval-

ues« i8 can be considered to be functions of the crystal struc-
ture, including volume, primitive lattice vectors, and internal
parameters. A tight-binding method that reproduces the« i8
over a range of structures will then solve the total-energy
problem~1! or ~6! without resort to an additional term.

The two-center Slater-Koster formulation17 of tight bind-
ing with a nonorthogonal basis breaks the problem into the
calculation of three types of parameters: on-site parameters,
which represent the energy required to place an electron in a
specific orbital; Hamiltonian parameters, which represent the
matrix elements for electrons hopping from one site to an-
other; and overlap parameters, which describe the mixing
between the nonorthogonal orbitals on neighbor sites. The
eigenvalues« i8 can be determined once the parameters are
evaluated for a given structure. The basic method we use is
to give the Slater-Koster parameters simple algebraic forms,
with parameters chosen to reproduce first-principles results
over a wide range of structures.

In an orthogonal tight-binding calculation, applying the
shift ~5! to each eigenvalue would be equivalent to shifting
each diagonal element of the Hamiltonian matrix by an
amountV0 . In the nonorthogonal case the effect is slightly
more complicated. It is clear, however, that the Hamiltonian
and overlap parameters should not directly depend on the
shift V0 . Thus the effect of~5! can only be accounted for by
changing the on-site parameters. These parameters must now
be sensitive to the local environment around each atom. We

describe this local environment by introducing a ‘‘density’’
associated with each atom, defined by

r i5(
jÞ i

exp@2l ̃ ı̃
1 Ri j #Fc~Ri j !, ~7!

where ı̃ ( ̃) denotes the type of atom on sitei ( j ), l is a
parameter that will depend on the atom types,Ri j is the
distance between atomsi and j , and Fc(R) is a smooth
cutoff function

Fc~R!5$11exp@~R2R0!/ l #%
21, ~8!

which we use to limit the range of the parameters. In the
calculations shown here we typically takeR0514.0a0 and
l50.5a0 ~wherea0 denotes the Bohr radius!, which effec-
tively zeros all interactions for neighbors more than
16.5a0 apart. Depending on the structure and lattice constant,
this radius will include 80 – 300 neighboring atoms.

Although, in principle, the on-site terms should have off-
diagonal elements due to the overlap of the on-site wave
functions with neighboring atomic potentials,18 we follow
traditional practice and only include the diagonal terms,
keeping only the terms corresponding tos, p, andd orbitals.
The on-site term for atomi is

hia5a ı̃ a1b ı̃ ar i
2/31c ı̃ ar i

4/31d ı̃ ar2, ~9!

wherea5s, p, or d and r i is given by ~7!. To show the
correspondence between this theory and previous theories,
note thatr in ~7! has a form similar to a pair potential. Thus,
if ~9! were linear inr, we restricted ourselves to an orthogo-
nal Hamiltonian, and kepthia independent of the angular
momentum, then~9! would just be a method of parametriz-
ing F@n(r )# by a simple pair potential. Seen in this light, the
density-dependent parts of the on-site term~9! can be re-
garded as a generalized pair potential.

In general, the Hamiltonian and overlap Slater-Koster pa-
rameters may depend upon the structure and local environ-
ment of the atoms, even in the case of the two-center ap-
proximation. This approach, while valid, will lead to many
complications when we extend the method to include other
crystal structures and binary alloys. We therefore constrain
the form of these parameters so that they depend only on the
distance between the two atoms. Both the Hamiltonian and
overlap parameters are assumed to have the same functional
form

Pg~R!5~eg1 f g R!exp@2gg
2 R#Fc~R!, ~10!

whereg indicates the type of interaction~e.g., sss, pdp,
etc.!, R is the distance between the atoms, andFc(R) is
given by ~8!.

In the monatomic case, restricting ourselves tos, p, and
d orbitals, there are three on-site Slater-Koster parameters
~9!, with 13 parameters required to completely specify them.
Similarly, there are 10 Hamiltonian and 10 overlap param-
eters~10!, each requiring 3 parameters. Thus, to completely
specify the Slater-Koster tight-binding scheme in this model
requires the determination of at most 73 parameters. In prac-
tice, we only used thed ı̃ a found in~9! in the parametrization
of Ti, Zr, and Hf, so for most elements we had only 70
independent parameters. The parameters are determined by
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requiring that the eigenvalues determined by the Slater-
Koster parameters19 @~7!–~10!# reproduce the electronic band
structure@including the eigenvalue shift~3!# produced by a
set of first-principles density-functional calculations and that
the corresponding energies~6! reproduce the first-principles
energies. For the metals discussed here we use either the
muffin-tin potential augmented plane wave20 ~APW! or the
full-potential linearized augmented plane wave21,22 ~LAPW!
method to calculate the electronic band structure and total
energies for 4–6 volumes in each of the fcc and bcc struc-
tures, using uniformk-point meshes that include the origin
and contain 89 and 55 points, respectively. In all cases we
used the Hedin-Lundqvist parametrization23 of the local-
density approximation7 ~LDA ! to DFT. Possible spin polar-
ization is ignored. For a typical transition metal there are
about 4000 eigenvalues and energies in the database. We use
an IMSL package, based on a finite-difference Levenberg-
Marquardt algorithm,24 to adjust the 70~or 73! parameters to
reproduce this database by means of a nonlinear least-
squares fit, with the total energies typically weighted about
200 times larger than the eigenvalues in a single band. We
place additional conditions on the minimization as follows.
Since the overlap matrix defined by the parameters~10!
must, physically, be positive definite, a function that penal-
izes small or negative determinant overlap matrices is in-
cluded. While this does not guarantee that our overlap matrix
will remain positive definite during the minimization pro-
cess, it does tend to keep the determinant from changing
sign, meaning that an overlap matrix that is originally posi-
tive definite tends to stay that way. We also restrict the be-
havior of the functions~10!. Physically, we expect both the
Hamiltonian and overlap parameters to decay steadily and
not change sign for distancesR near or greater than the
nearest-neighbor distance. We thus add another contribution
to our minimization function, which penalizes parameter sets
(eg , f g , gg) that cause eitherPg(r ) or Pg8(r ) to vanish over

the range of distances where we are likely to require evalu-
ation of the Slater-Koster matrix elements. Finally, we select
our starting parameters guided by those found in previous
work19 and ensure that the symmetry of the eigenstates is
taken into account.

As an illustration of the above technique, we present sev-
eral results for molybdenum. Using the APW program, we
calculated the total energy and band structure of Mo at four
volumes in the fcc structure and five volumes in the bcc
structure. The parameters in~7!, ~9!, and~10! were then ad-
justed to best fit the total energies and the band structure in
the lower six bands of Mo over all nine volumes. The result-
ing two center Slater-Koster parameters~10! are shown in
Fig. 1 for the Hamiltonian matrix elements. We note that
there is a smooth and monotonic decay of the TB parameters
towards zero. To assess the quality of the fit, we calculate the
tight-binding band structure of Mo at the LDA equilibrium
volume~3.12 Å! of the bcc structure~Fig. 2! and compare it
to the first-principles band structure~Fig. 3!.19 We see that
the band structures are in close agreement over the entire
Brillouin zone and a wide spectrum of energies, with some
deterioration far above the Fermi level. We also calculate the
energy-volume behavior for a large number of phases and
compare the fcc and bcc energies to those obtained from
APW calculations, as shown in Fig. 4. We see that there is
excellent agreement between the tight-binding and first-
principles curves for the fcc and bcc structures and that all
other structures, including hcp, are above the bcc ground
state.

The above procedure works well for all of the metals
described here except vanadium, where the elastic constant
C44 is predicted to be 172 GPa, compared to 30 GPa found
experimentally25 and 43 GPa when found using the first-
principles LAPW method. This discrepancy is probably due
to the high electronic density of states in vanadium near the
Fermi level.19 To better describe the electronic structure of

FIG. 2. Tight-binding electronic band structure of bcc Mo at the LDA equilibrium lattice constant~3.12 Å!. The energies of the
eigenstates have been uniformly shifted to set the Fermi level to zero.
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vanadium we have made two changes to the above formal-
ism. First, we split thed on-site energy~9! into contributions
from the t2g andeg levels.19 Second, we increase our pa-
rameter space by modifying the Slater-Koster parameter’s
functional form~10! to include a quadratic term

Pg~R!5~eg1 f gR1 f̄ gR
2!exp@2gg

2R#Fc~R!. ~11!

This procedure adds an additional 24 parameters to our basis
set, for a total of 97. We reduce this by settingda50 in ~9!
for a5s, p, t2g, and eg. When we fit the remaining 93

parameters, as above, we reduce the predicted elastic con-
stantC44 to 92 GPa without significantly changing our other
predictions. While this is not in perfect agreement with ex-
periment, it is a substantial improvement, so we will use
these parameters for vanadium in preference to the 73 pa-
rameter set, which gives a worse elastic constant.

We have used this method to determine tight-binding pa-
rameters for most of the alkaline-earth, transition, and noble
metals. In the case of the antiferromagnetic~Cr and Mn! and
magnetic~Fe, Co, and Ni! elements we restricted our calcu-
lations to the nonmagnetic case. This causes some difficulty
when comparing our results to experiment, as shown below.
The parameters for La are not presented because itsf bands
are located in the middle of thed bands19 and therefore it is
impossible to fit within our formalism. The Appendix lists
various methods of obtaining the parameters used in this
paper.

III. GROUND-STATE BEHAVIOR
AND PHASE STABILITY

We first test our parameter sets by looking at the equation
of state for the observed ground state of each element. For
the fcc and bcc nonmagnetic cubic crystals, our parameters
should reproduce the first-principles results for these phases
because of the fitting procedure. For the hcp elements and
manganese, these calculations serve as a tight-binding pre-
diction of the equation of state. The case of manganese has
been discussed in more detail elsewhere.26

Table I shows the equilibrium lattice constants and bulk
moduli for all of the metals studied here, comparing them to
first-principles LAPW calculations,3,5 muffin-tin APW
calculations,20 and to experiment.27,28 For the nonmagnetic
cubic crystals, the equilibrium lattice constant is within 1%
of the first-principles LDA value for all of the cubic elements

FIG. 3. Self-consistent first-principles LDA electronic band structure of bcc Mo at the LDA equilibrium lattice constant~3.12 Å!, as
determined by the muffin-tin APW program~Ref. 20!. The energies of the eigenstates have been uniformly shifted to set the Fermi level to
zero.

FIG. 4. Energy-volume behavior of molybdenum in several
phases, using the tight-binding method. The energy of the diamond
structure is not shown, as its minimum energy is 0.116 Ry above
the origin. The small symbols (L) represent the APW energies of
the bcc and fcc phases. The construction of theL12 andD03 lat-
tices is discussed in Table II. The origin of the energy was chosen
arbitrarily.
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except tantalum and iridium, and in these cases the discrep-
ancy is less than 2%. Similarly, the equilibrium bulk moduli
are in good agreement with the first-principles results, within
10% for all nonmagnetic cubic elements except tantalum,
where the error is 17%.

The hexagonal close packed phases were not fit to first-
principles results. As a result, the equations of state predicted
by the tight-binding model are not as accurate as for the
cubic lattices. The largest error is for zirconium, wherea is
7% smaller than experiment andc is 8% larger. Yttrium and
hafnium also show large discrepancies between the tight-
binding model and experiment, and thec for titanium is
2.5% larger than experiment. The lattice constants for the
other elements are within 2% of experiment, consistent with
the errors we would find in first-principles calculations. We
conclude that the tight-binding method is nearly as good as

first-principles LDA methods in determining the structural
parameters of hcp metals.

To be successful, the tight-binding method must also
show that the experimental ground-state structure is, in fact,
the ground state predicted by the method. We have calcu-
lated energy versus volume curves for several common crys-
tal structures. As an example, Fig. 4 shows the resulting
energy-volume curves for molybdenum. The results for all of
the elements are summarized in Table II, which shows the
equilibrium energy of each of these phases expressed as the
difference in energy between that phase and the equilibrium
energy of the experimental ground state. Thec/a ratio of the
hcp phase has been chosen to minimize the tight-binding
energy at each volume to obtain the hcp energies. The tight-
binding method correctly predicts the ground-state structure
for all metals except the ferromagnetic metals iron and co-

TABLE I. Equilibrium lattice constants and bulk moduli for the experimentally observed ground-state
structures of the elements, comparing the results of our tight-binding parametrization~TB!, first-principles
local density approximation~LDA ! results, where available, and experiment~Expt.! ~Refs. 27 and 28!. Where
not referenced, the LAPW results were done for this paper, using previously developed methods~Ref. 4!.

a ~Å! c ~Å! B0 ~GPa!
Element Structure TB LDA Expt. TB LDA Expt. TB LDA Expt.

Ca fcc 5.30 5.34a 5.58 a a a 21 19a 15
Sc hcp 3.26 3.21b 3.31 4.91 5.01b 5.27 63 65b 44
Ti hcp 2.97 2.87 2.95 4.80 4.55 4.68 122 120 105
V bcc 2.94 2.93 3.03 a a a 211 196 162
Cr bcc 2.80c 2.88 a a 283 190
Mn aMn 8.41c 8.91 a a 320 60
Fe bcc 2.71c 2.87 a a 281 168
Co hcp 2.40c 2.51 3.90c 4.07 384 191
Ni fcc 3.43c 3.42d 3.52 a a a 268 261 186
Cu fcc 3.52 3.52 3.61 a a a 189 190 137

Sr fcc 5.73 6.08 a a a 15 12
Y hcp 3.59 3.52b 3.65 5.35 5.61b 5.73 46 48b 37
Zr hcp 2.99 3.17b 3.23 5.57 5.14b 5.15 108 119b 83
Nb bcc 3.25 3.25 3.30 a a a 187 193 170
Mo bcc 3.12 3.12d 3.15 a a a 283 291d 272
Tc hcp 2.72 2.74 4.34 4.40 304 297
Ru hcp 2.68 2.71 4.26 4.28 360 321
Rh fcc 3.77 3.76 3.80 a a a 306 309 270
Pd fcc 3.85 3.85 3.89 a a a 212 220 181
Ag fcc 4.01 4.01 4.09 a a a 142 142 101

Ba bcc 4.82 5.02 a a a 10 10
Hf hcp 3.07 3.18b 3.19 5.08 5.15b 5.05 111 110b 109
Ta bcc 3.30 3.24 3.30 a a a 185 224 200
W bcc 3.14 3.14 3.16 a a a 319 333 323
Re hcp 2.78 2.77b 2.76 4.39 4.50b 4.46 371 388b 372
Os hcp 2.75 2.73b 2.74 4.31 4.39b 4.32 441 440b 418
Ir fcc 3.86 3.82d 3.84 a a a 389 401d 355
Pt fcc 3.90 3.90 3.92 a a a 318 305 278
Au fcc 4.06 4.06 4.08 a a a 187 205 173

aFirst-principles LAPW calculations~Ref. 3!.
bFirst-principles APW calculations~Ref. 20!.
cNonmagnetic calculation. The experimental structure exhibits some form of magnetism.
dFirst-principles LAPW calculations~Ref. 5!.
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balt. This is understandable, since we have not included spin
polarization. Especially satisfying is the fact the method
finds the correct ground states of the hcp metals and
manganese,26 since these phases are not included in the fit of
the tight-binding parameters.

We can also assess the stability of the tight-binding pa-
rameters by studying crystal structures of lower symmetry.
Thus Fig. 5 shows the energy of molybdenum under a
volume-conserving tetragonal strain, the so-called Bain
path,29 at the experimentally observed equilibrium volume of
the bcc phase. The energy is properly a minimum for the bcc
lattice, wherec/a51, and attains a local maximum at the fcc
structure (c/a5A2), indicating thatC112C12,0, so that the
fcc structure is unstable. Similarly, Fig. 6 shows the energy

for a monatomic lattice undergoing a trigonal strain with the
primitive vectors

S a1a2
a3
D 5S a b b

b a b

b b a
D S x̂

ŷ

ẑ
D , ~12!

wherea andb are chosen so that the volume is the experi-
mentally observed volume of the bcc lattice, and the angle
between the primitive vectors is given byu, where

cosu5
~2a1b!b

a212b2 . ~13!

TABLE II. Relative energies per atom of several structures for each of the metals examined by the
tight-binding model discussed in the text. The energy of the experimental ground-state structure is arbitrarily
set to zero. All energies are calculated at the equilibrium volume found by the tight-binding fit and are
expressed in mRy. Below the common name of each phase is itsStrukturberichtdesignation.

Structure
fcc bcc hcp diamond sc aMn bMn bW AuCu3 AlFe3

Element A1 A2 A3 A4 Ah A12 A13 A15 L12
a D03

b

Ca 0.0 2.8 0.5 83.5 13.3 2.1 3.1 0.7 19.8 24.4
Sc 4.7 8.5 0.0 101.1 34.3 10.2 11.0 19.4 39.7 33.9
Ti 5.2 9.1 0.0 157.7 64.9 16.7 15.4 22.4 56.1 63.8
V 19.6 0.0 19.6 180.8 76.0 11.2 12.7 12.2 62.1 53.4
Cr 28.6 0.0 30.6 49.1 118.6 20.3 19.7 16.2 94.3 87.2
Mn 7.5 14.3 2.9 44.2 90.3 0.0 1.5 7.0 87.6 66.2
Fe -27.9 0.0 -35.0 79.8 54.5 -23.1 -25.0 -8.1 4.5 20.4
Co -2.9 21.0 0.0 135.0 8.2 19.2 72.7 75.2
Ni 0.0 8.0 2.8 142.3 75.9 7.7 4.6 15.0 48.7 57.1
Cu 0.0 3.5 1.2 70.8 24.7 6.2 5.4 10.1 14.7 22.0

Sr 0.0 2.1 1.0 73.0 22.0 3.2 3.2 1.4 22.2 25.4
Y 2.4 8.8 0.0 97.9 432.2 8.6 10.4 17.3 31.5 27.5
Zr 1.1 2.9 0.0 112.7 123.3 8.6 8.0 8.0 18.7 26.2
Nb 26.1 0.0 22.7 181.9 68.6 17.1 21.1 15.9 69.5 59.6
Mo 30.0 0.0 31.0 147.3 68.7 17.5 19.9 11.3 67.7 53.5
Tc 6.1 23.3 0.0 72.9 56.3 0.2 4.5 13.3 64.6 35.4
Ru 1.0 44.6 0.0 134.5 106.6 16.3 14.6 34.7 103.0 82.7
Rh 0.0 31.7 5.1 159.8 96.0 16.3 7.4 29.5 81.2 88.3
Pd 0.0 9.9 2.5 148.6 84.9 9.2 6.1 12.8 50.1 72.8
Ag 0.0 3.3 0.6 66.1 24.1 6.0 5.3 8.6 15.7 25.2

Ba 0.9 0.0 0.1 85.3 23.6 2.8 2.9 2.2 27.0 30.7
Hf 1.2 7.1 0.0 380.2 113 22.9 20.6 20.8 110.2 143.3
Ta 24.7 0.0 25.3 188.6 63.2 8.9 14.0 9.8 65.6 54.2
W 36.0 0.0 38.2 159.3 113.7 18.2 25.7 12.4 134.2 94.2
Re 13.4 27.7 0.0 28.6 55.6 0.2 1.8 19.1 61.0 22.1
Os 8.1 64.3 0.0 11.2 58.6 17.8 17.4 42.4 66.2 33.6
Ir 0.0 50.1 8.5 83.9 83.5 23.8 19.9 41.8 64.0 75.6
Pt 0.0 9.7 4.4 168.7 78.3 14.4 12.8 25.9 48.5 78.5
Au 0.0 1.4 0.6 96.1 24.1 8.7 8.4 15.2 17.5 32.3

aCalculations using theL12 ~AuCu3) lattice, placing the metal atoms on the copper sites and leaving
vacancies on the gold sites.
bCalculations using theD03 ~AlFe3) lattice, placing the metal atoms on the iron sites and leaving vacancies
on the aluminum sites.

4524 54MEHL AND PAPACONSTANTOPOULOS



The vectors~12! represent a fcc lattice whenu560°, a
simple cubic lattice whenu590°, and a bcc lattice when
u5109.47°. The tight-binding calculations in Fig. 6 show
that the bcc phase is indeed the minimum-energy structure.
Also, the simple cubic phase has a local maximum in the
energy, indicating that it is elastically unstable with
C44,0.

IV. ELASTIC CONSTANTS

Elastic constants are calculated by imposing an external
strain on the crystal, relaxing any internal parameters to ob-
tain the energy as a function of the strain, and numerically
solving for the elastic constants as the curvature of the en-
ergy versus strain curve.2–5 We have calculated the elastic
constants for the ground-state phases of all of the elements in
this study except manganese. This procedure serves two pur-
poses: it tests the mechanical stability of the proposed tight-

binding ground state and it assesses the ability of the method
to determine properties not included in the fit of the tight-
binding parameters.

The elastic constants of the cubic materials~except man-
ganese! are shown in Table III. This table also shows the
elastic constants obtained from first-principles LAPW
computations5 and experiment.25,30,31 All calculations were
performed at the experimental volume. The accuracy of the
elastic constantsC11 andC12 is remarkably good. For the 12
elements for which we have first-principles results, none of
the tight-binding elastic constants differs from the first-
principles results by more than 15%. For comparison, the
first-principles results also differ from the experimental re-
sults by less than 15%, a measure of the accuracy of the
LDA in determining these elastic constants. Thus the tight-
binding elastic constants are not significantly worse than
those computed from first-principles. Considering only the
nonmagnetic materials, the root-mean-square~rms! deviation
of the tight-bindingC11 compared to experiment is 38 GPa,
while the rms deviation ofC12 is 15 GPa.

The errors inC44 are somewhat larger, the rms deviation
from experiment being 49 GPa. In this case, if we exclude
calcium and strontium, discussed below, the maximum de-
viation of first-principles results from experiment is 22%, in
molybdenum. The maximum deviation of the tight-binding
elastic constant from the first-principles result is in vana-
dium, where the error is 114%, even when we use the qua-
dratic Slater-Koster parametrization~11! and split the on-site
d terms. As noted above, this is probably due to the high
value of the density of states of vanadium near the Fermi
level.19 Excluding vanadium, the maximum deviation is
36%, in niobium. Hence, except for the anomaly of vana-
dium, the tight-binding results are only slightly worse than
the first-principles results in the determination of elastic con-
stants.

Calculation ofC44 in the alkaline-earth metals is difficult
because the lattice is extremely soft. The error in calcium is
71% compared to first-principles results and 50% compared
to experiment. For strontium the situation is even worse,
since we predict the fcc lattice to be unstable to any strain
that is related toC44. In this regard, however, it is important
to note that even many of the best LDA elastic constant
calculations in Table III have an absolute error of more than
10 GPa. Since the experimental values ofC44 for both cal-
cium and strontium are less than 10 GPa, it is understandable
that we cannot reproduce the experimental elastic constants
for the alkaline-earth metals with any degree of accuracy.

We also note that this method correctly reproduces the
sign of the elastic constantC122C44, even in rhodium and
iridium, where it is negative, though the predicted magnitude
uC122C44u is much larger than observed experimentally and
in first-principles calculations for these two materials. The
negative sign cannot be obtained from the standard
embedded-atom method~EAM!,32 though it can be found in
the modified embedded-atom method~MEAM !.33

We have also calculated elastic constants for all of the
nonmagnetic transition metals that take the hcp structure.
Hexagonal close packed crystals have two atoms per unit cell
and the internal parameter describing the atomic positions is
free to move when we strain the crystal to calculate elastic
constants. Using the tight-binding approach, it is relatively

FIG. 5. Tight-binding calculation of the energy of molybdenum,
at the experimental equilibrium volume, under a tetragonal strain
@the Bain path~Ref. 29!#, as a function ofc/a. The vertical lines
denote the positions of the bcc and fcc lattices.

FIG. 6. Tight-binding calculation of the energy of molybdenum,
at the experimental equilibrium volume, under a trigonal strain of
the lattice given by~12!, as a function of the angle between the
primitive vectorsu. The positions of the bcc, simple cubic, and fcc
lattices are denoted by the vertical lines.

54 4525APPLICATIONS OF A TIGHT-BINDING TOTAL- . . .



simple to determine the value of the internal parameter that
minimizes the total energy for a given external strain and
then find the related elastic constant by standard techniques.
This is more difficult for first-principles calculations, so we
have not calculated LAPW elastic constants for hexagonal
materials. The tight-binding elastic constants are compared
to experiment30 in Table IV. For simplicity in interpreting
the results, we calculated the elastic constants using the
tight-bindingc/a ratio at the experimental volume. The hcp

tight-binding elastic constants show larger relative deviations
from experiment than found in the cubic crystals. The largest
deviation, 88%, occurs in the calculation ofC44 in zirco-
nium, where we predict a value of 4 GPa, compared to the 33
GPa found by experiment. The rms deviations of the tight-
binding elastic constants from experiment are 46 GPa for
C11, 17 GPa forC12, 25 GPa forC13, 54 GPa forC33, and
22 GPa forC44. The rms deviation over all of the hcp elastic
constants is 36 GPa. When compared to the rms deviation for

TABLE III. Elastic constants for cubic elements. All elements for which we have constructed a set of
tight-binding parameters and which have a cubic ground state~except manganese! are presented here. A
comparison is made between the results of our tight-binding parametrization~TB!, first-principles full po-
tential LAPW results~LAPW!, where available, and experiment~Expt.! ~Ref. 25!. Where unreferenced, the
LAPW results were done for this paper, using previously developed methods~Ref. 4!. Calculations were
performed at the experimental volume.

C11 C12 C44

Element TB LAPW Expt. TB LAPW Expt. TB LAPW Expt.

Ca 15 17a 16b 10 10a 12b 4 14a 8 b

V 224 205 228 106 111 119 92 30 43
Cr 432 346 88 66 250 100
Fe -4 227 180
Ni 256 142 86
Cu 161 156 168 108 106 121 55 80 75
Sr 8 15 3 6 -3 10
Nb 204 230 246 137 122 139 34 25 29
Mo 453 468a 450c 147 149a 173c 120 98a 125c

Rh 491 433 413 171 185 194 260 206 184
Pd 233 218 227 163 172 176 63 74 72
Ag 133 122 124 86 90 93 42 52 46
Ba 9 7 13
Ta 275 256 261 140 154 157 78 67 82
W 529 527 523 170 194 203 198 147 160
Ir 694 621a 590 260 256a 249 348 260a 262
Pt 380 381 347 257 189 251 71 83 76
Au 184 200 189 154 173 159 43 33 42

aFirst-principles LAPW calculations~Ref. 5!.
bExperiment from Ref. 30.
cExperiment from Ref. 31.

TABLE IV. Elastic constants for hexagonal close-packed elements. All elements for which we have
constructed a set of tight-binding parameters and which have a nonmagnetic hcp ground state are presented
here. A comparison is made between the results of our tight-binding parametrization~TB! and experiment
~Expt.! ~Ref. 30!. The tight-binding results include internal relaxation. Calculations were performed at the
experimental volume, but at thec/a ratio that minimized the energy for that volume. Note that in a hexagonal
crystal,C665(C112C12)/2.

C11 C12 C13 C33 C44

Element TB Expt. TB Expt. TB Expt. TB Expt. TB Expt.

Sc 73 99 30 40 31 29 78 107 25 28
Ti 171 160 58 90 46 60 203 181 64 47
Y 45 78 15 29 13 20 48 77 17 24
Zr 102 144 67 74 65 67 99 166 4 33
Tc 477 196 172 505 127
Ru 642 563 170 188 129 168 706 624 214 181
Re 559 616 283 273 250 206 621 683 136 161
Os 754 272 274 831 232
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cubic materials~37 GPa!, we see that on average the hcp
elastic constants are as accurate as those calculated in the
cubic case.

V. VACANCIES

Vacancy formation energies are most easily determined
by the supercell total-energy method.34 One atom in the su-
percell is removed and neighboring atoms are allowed to
relax around this vacancy while preserving the symmetry of
the lattice. The great advantage of the tight-binding method
over first-principles calculations is that we can do the calcu-
lation in a very large supercell, eliminating the possibility of
vacancy-vacancy interactions. We find that a supercell con-
taining 108 atoms is sufficient to eliminate the interaction.
The vacancy formation energy is given by

Evac~V!5Esc~N21,1;V!2~N21!Ebulk~V/N!, ~14!

whereEsc(M ,Q;V) is the total energy of a supercell of vol-
umeV containingM atoms andQ vacancies andEbulk(V) is
the energy per atom of the bulk metal at a volumeV per
atom. We use the experimental lattice constant to set the
volume of the system, since under experimental conditions
the lattice constant of a metal containing isolated vacancies
will be the lattice constant of the bulk metal.

We have computed the vacancy formation energy of sev-
eral of the cubic transition and noble metals using this tight-
binding method, including relaxation around the vacancy.
The results are presented in Table V, where we also compare
to first-principles results35,36 and experiment.37,38 The calcu-

lated vacancy formation energies of niobium, silver, tanta-
lum, and iridium are in excellent agreement with experiment.
The tight-binding parametrizations of rhodium, tungsten, and
platinum give the poorest vacancy formation energies, 1–2
eV above the experimental value.

We note that theL12 andD03 lattices described in Table
II can be considered vacancy-containing supercells with
N54. Though the vacancy-vacancy interaction in these cells
is quite large, fitting the TB parameters@~7!–~10!# to first-
principles results for these lattices will improve the vacancy
formation energy calculation. We have yet to implement this
procedure.

VI. SURFACES

The tight-binding model can be used to calculate surface
energies by the supercell technique. A slab of metal is
formed by cleaving the crystal along the desired plane, cre-
ating two identical free surfaces. The distance between the
two surfaces in increased, creating a set of slabs that repeat
periodically in the direction perpendicular to the surfaces. Of
course, we must take care to separate the slabs by a large
region of vacuum so that the electrons on one slab cannot
hop to a neighboring slab. The slabs must be thick enough so
that the atoms at the center of the slab have the properties
~e.g., local electronic density of states! of atoms in the bulk
material and so that the two surfaces on the same slab cannot
interact with each other. For low index@~100!, ~110!, and
~111!# faces of the nonmagnetic fcc and bcc metals we find
that a slab containing 25 atomic layers is sufficient to meet
these criteria. We also converge the calculations with respect
to thek-point mesh. Depending on the surface and underly-
ing bulk structure this takes between 19 and 91k points in
the two-dimensional Brillouin zone. We estimate numerical
error in the TB surface energies to be about 0.1 J/m2.

The surface energy, expressed as the energy required to
create a unit area of new surface, is then given by the for-
mula

Esurf5
1

2A
~Eslab2NEbulk!, ~15!

whereA is the area occupied by one unit cell on the surface
of the slab,Eslab is the total energy of the slab,N is the
number of atoms in the unit cell, andEbulk is the energy of
one atom in the bulk at the lattice constant of the atoms in
the interior of the slab. For simplicity, the calculations were
done using the bulk equilibrium lattice parameters, with no
relaxation or reconstruction at the surface. Our calculations
indicate that relaxationenergiesare on the order of 1–10 %
of the total surface energy, so neglecting relaxation will not
significantly alter our conclusions. Of course, relaxation and
reconstruction are necessary in order to understand surface
properties. We plan to address these issues in the future.

We have calculated the formation energies for bulk termi-
nated~i.e., unrelaxed and unreconstructed!, low index@~100!,
~110!, and ~111!# surfaces of the nonmagnetic fcc and bcc
transition and noble metals. Table VI compares these results
to experiment,39,40 first-principles calculations,36,41–44 and
atomistic models.33,45,46Note that, except for the~100! sur-

TABLE V. Tight-binding vacancy formation energies compared
to first-principles calculations and experiment. Energies were com-
puted using a 108-atom supercell. Calculations with the atoms at
the primitive lattice sites in the crystal~Fixed! and allowing relax-
ation around the vacancy~Relaxed! are shown. First-principles cal-
culations of the vacancy formation energy are given in the column
labeled ‘‘LDA.’’ The experimental column shows a range of ener-
gies if several experiments have been tabulated. Otherwise the es-
timated error in the experiment is given.

Vacancy formation energy
Tight-binding

Element Fixed Relaxed LDA Experimenta

Cu 1.29 1.18 1.41b, 1.29c 1.28 – 1.42
Nb 2.84 2.82 2.656 0.3
Mo 2.63 2.46 3.0 – 3.6
Rh 3.39 3.35 2.26c 1.71d

Pd 2.46 2.45 1.57b 1.856 0.25
Ag 1.31 1.24 1.20b ,1.06c 1.11 – 1.31
Ta 3.17 2.95 2.96 0.4
W 6.86 6.43 4.66 0.8
Ir 2.19 2.17 1.97d

Pt 2.79 2.79 1.356 0.09
Au 1.24 1.12 0.896 0.04

aExperimental energies as tabulated by Schaefer~Ref. 37!, unless
otherwise noted.
bFirst-principles calculations of Dederichset al. ~Ref. 35!.
cFirst-principles calculations of Polatoglouet al. ~Ref. 36!.
dExperimental energy tabulated by de Boeret al. ~Ref. 38!.

54 4527APPLICATIONS OF A TIGHT-BINDING TOTAL- . . .



TABLE VI. Surface energies, calculated from the tight-binding theory~TB!, by first-principles local-
density methods~LDA !, by the embedded-atom method~EAM!, or by the modified embedded-atom method
~MEAM !, compared to experiment. Energies are given in units of J/m2.

Element Orientation TB LDA EAM MEAMa Experiment

V ~111! 3.34 1.81 2.6b

~110! 2.13 1.68c 1.71
~100! 3.04 1.83c 2.49

Cu ~111! 1.73 1.94d 1.17e 1.41 1.77f

~110! 2.04 1.40e 1.64
~100! 1.93 1.28e 1.65

Nb ~111! 2.44 2.02 2.3b

~110! 1.54 2.36g, 2.9h 1.81c 1.87
~100! 2.37 2.86g, 3.1h 1.97c 2.02

Mo ~111! 2.84 1.86 2.9b

~110! 3.04 3.14g 2.13c 1.93
~100! 2.12 3.52g 2.28c 2.12

Rh ~111! 2.46 2.54d, 2.53g 2.60 2.6b

~110! 2.71 2.88g 2.92
~100! 2.57 2.81g 2.90

Pd ~111! 1.57 1.64g 1.22e 1.38 2.00b

~110! 1.86 1.97g, 2.5h, 2.70i 1.49e 1.67
~100! 1.75 1.86g, 2.3h, 1.04i 1.37e 1.66

Ag ~111! 1.14 1.21g, 1.21d 0.62e 1.09 1.32f

~110! 1.42 1.26g, 1.4h 0.77e 1.27
~100! 1.29 1.21g, 1.3h 0.71e 1.22

Ta ~111! 3.14 2.31 2.78b

~110! 2.05 1.80c 2.17
~100! 3.00 1.99c 3.29

W ~111! 6.75 2.25 2.99f

~110! 4.30 2.60c 2.23
~100! 6.7 5.54j 2.81c 2.65 6k

Ir ~111! 2.59 2.84 3.0b

~110! 3.19 3.06
~100! 2.95 2.91

Pt ~111! 2.51 1.44e 1.66 2.49b

~110! 2.97 1.75e 2.13
~100! 2.83 1.65e 2.17

Au ~111! 1.48 0.79e 0.89 1.54f

~110! 1.85 0.98e 1.12
~100! 1.69 0.92e 1.08

aModified embedded-atom calculations~Ref. 33!.
bExperimental determination of the surface energy of an ‘‘average’’ face using an approximate extrapolation
to T50 ~Ref. 33!.
cEmbedded-atom calculations for bcc metals~Ref. 46!.
dFull-potential linearized muffin-tin orbital~full-potential LMTO! calculation, using seven-layer slabs~Ref.
36!.
eEmbedded-atom calculations for fcc metals~Ref. 45!.
fExperimental determination of the surface energy of an average face atT50 ~Ref. 39!.
gFP LMTO calculation, using seven-layer slabs~Ref. 42!.
hFull-Potential LAPW calculation, using nine-layer slabs~Ref. 43!.
iLocal orbital pseudo-potential calculation, using a three-layer slab.~Ref. 41!.
jFull-potential linearized augmented plane-wave~LAPW! calculation for the ideal surface, using a five-layer
slab ~Ref. 44!.
kExperimental result for the~100! surface~Ref. 40!.
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face of tungsten, the experimental results33,39are for an ‘‘av-
erage’’ surface and some are extrapolated toT50 from high
temperatures.33

The results for the fcc metals are particularly gratifying.
In all cases we findE(111),E(100),E(110) . Thus close
packed surfaces are the most stable for the fcc metals. The
TB surface energies are uniformly larger, and closer to ex-
periment, than those obtained by the EAM,45 which is known
to underestimate surface energies in fcc metals. Our surface
energies are generally closer to experiment than those ob-
tained by the MEAM~Ref. 33! and in good agreement with
first-principles calculations of the surface energy of cop-
per~111! ~Ref. 36! and rhodium.42 Our calculations are also
in the range of the surface energies predicted by several first-
principles calculations for palladium and silver.41–43

Results for bcc metals are also good. For all of the unre-
laxed surfaces we findE(110),E(100),E(111) . The energies
for niobium and molybdenum are somewhat low compared
to both first-principles calculations42,43 and experiment, but
the only serious discrepancy is the average surface energy of
tungsten, which is smaller than our values by a factor of
one-third. At the moment this is not particularly worrisome,
because experimental estimates of the surface energy of
tungsten range from 1.68 J/m2 to 4.50 J/m2.47 The latter
number is, in fact, in range of our calculation for the~110!
surface. In addition, the results for the energy of the~100!
surface of tungsten are in good agreement with both first-
principles results44 and experiment.40 In most cases the tight-
binding surface energies are greater than either of the corre-
sponding EAM or MEAM values. Where this is not the case
the energy difference is slight.

VII. SUMMARY

We have extended the tight-binding method1 to include
most of the alkaline-earth, transition, and noble metals.
Tight-binding parameters are determined by doing a least-
squares fit to simultaneously reproduce the total energy and
electronic structure determined by first-principles at several
volumes of the fcc and bcc lattices. In all cases except the
ferromagnetic metals the method correctly predicts the
ground-state structure, even when the ground state is hcp or
aMn.

The method was tested against first-principles results and
experiment by the calculation of elastic constants, vacancy
formation energies, and surface energies. Elastic constants
for nonmagnetic cubic materials are, in general, in good
agreement with both LAPW calculations and experiment,
though we have some problems withC44 in vanadium. Since
the tight-binding method does not require a specific sign for
C122C44 we get reasonable elastic constants even for
rhodium and iridium. Elastic constants for the hcp phase are
nearly as accurate as those calculated in the cubic phase.

Compared to experiment, the accuracy of the vacancy for-
mation energy predictions range from good to poor, with
niobium, silver, tantalum, and iridium all in excellent agree-
ment with experiment and rhodium, tungsten, and platinum
much larger than experiment. Surface energies for both fcc
and bcc crystals are in good agreement with the available
first-principles and experimental data. Energies for fcc crys-
tals are uniformly larger than the corresponding EAM ener-
gies, in agreement with experiment.

Improvements to the tight-binding method are under in-
vestigation. In particular, we are examining other forms for
the parametrization of the on-site terms~9! and the Slater-
Koster terms~10!. We are also investigating the effect of
two-center Slater-Koster integrals on the on-site terms, as
suggested by Mercer and Chou.18 Since these terms properly
account for the crystal-field splitting of the on-site terms,
they may be useful in obtaining even more accurate results.
Finally, we have begun the process of extending the tight-
binding method to binary systems.48

ACKNOWLEDGMENTS

We thank Warren Pickett, David Singh, and Mihalis Si-
galas for many helpful discussions. This work is partially
supported by the United States Office of Naval Research.

APPENDIX: TIGHT-BINDING PARAMETERS

The tight-binding parameters used in this paper are avail-
able from the AIP Physics Auxiliary Publication Service,
http://www.aip.org/epaps/epaps.html, as noted in a footnote
to this paper,49 on the World Wide Web at http://cst-
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