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We study the dipole response of atomic clusters by solving the equations of the time-dependent local-density
approximation in real time. The method appears to be more efficient than matrix or Green’s function methods
for large clusters modeled with realistic ionic pseudopotentials. As applications of the method, we exhibit
results for sodium and lithium clusters and for C60 molecules. The calculated Mie resonance in Na147 is
practically identical to that obtained in the jellium approximation, leaving the origin of the redshift unresolved.
The pseudopotential effects are strong in lithium and act to broaden the Mie resonance and give it a substantial
redshift, confirming earlier studies. There is also a large broadening due to Landau damping in the calculated
C60 response, again confirming earlier studies.@S0163-1829~96!02631-8#

The time-dependent local-density approximation
~TDLDA ! has been widely applied to the collective elec-
tronic excitations of atomic clusters, starting with jellium
calculations by Ekardt.1 The usual formalism is based on
linear response with frequency rather than time as a variable.
The resulting Green’s function equations may be solved di-
rectly in coordinate space1–4 or in a particle-hole configura-
tional representation.5–7 The direct coordinate-space method
is very efficient when the system has spherical symmetry,
reducing the integral equation to a one-dimensional equation.
However, realistic theory requires that the ion cores be
treated explicitly, losing the spherical symmetry. Then the
Green’s function method requires a matrix representation of
operators on in three-dimensional space, which makes the
overall dimensionality too large to handle. The configura-
tional representation, on the other hand, is limited by the
dimensionality of the particle-hole space. This depends on
the number of particles in the system calculated; for moder-
ate numbers of particles in three dimensions it is more prac-
tical than the other methods.

We think that the most effective method for large num-
bers of particles in three dimensions is to go back to the time
representation and explicitly calculate the time evolution of
the initial configuration. Since only a single Slater determi-
nant is evolved, one does not get into the multiplicity prob-
lem of the particle-hole representation. And because the
Hamiltonian matrix is rather sparse in a coordinate-space
representation, one avoids the very large matrix dimension-
ality problem of the Green’s function method.

We shall illustrate the method with several examples,
taken from alkali metal clusters and C60 molecules. Our
pseudopotentials are constructed following the method of
Troullier and Martins.8 We first calculate local pseudopoten-
tials in thes andp waves defined to produce pseudo-wave-
functions that match the Hartree-Fock wave functions
smoothly at a certain radiusr c . The pseudopotential in the
Hamiltonian has two parts, a local potential identical to the
p-wave pseudopotential, and a separable nonlocal potential

that acts in thes wave and accounts for the difference in the
s andp wave interactions. The nonlocal part is determined
by the method of Kleinman and Bylander.9 The electron-
electron interaction is treated as is commonly done, taking
into account exchange and correlation effects with the con-
tact interaction from Perdew and Zunger.10 As a first step, we
must find the ground state electronic configuration. We shall
assume that the ionic geometry is known and so we only
have to solve the Kohn-Sham equation for the electrons. This
is done with the same representation of the Hamiltonian as
will be used for the response. Given the electron wave func-
tions for the ground state, we next perturb them by the re-
placement

f85eikzf.

This gives the electrons a coherent velocity field and causes
a dipole moment to develop as the system evolves with time.
We solve the time-dependent equations of motion, keeping
track of the dipole moment. The Fourier transform of the
dipole moment is the response that we seek. The wave num-
ber k must be much smaller than the inverse radius of the
system for the response to be dipolar and linear in the per-
turbing field.

We now discuss some of the numerical details. It is im-
portant to have high-order algorithms to evaluate the kinetic
energy operator and integrate the time-dependent Kohn-
Sham equation. We use algorithms that have proved success-
ful in nuclear physics11 and have also been successful in
solving the Kohn-Sham equation.15 We use the nine-point
difference formula to evaluate the Laplacian operator~called
N54 in Ref. 15!. The time-dependent Kohn-Sham equation
is integrated with a fourth-order Taylor expansion of the
TDLDA equation. In this expansion, the electron density is
fixed to evaluations at times half way between the wave-
function evaluations by a predictor-corrector method. This
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prescription has been shown to conserve energy to a high
accuracy.11 The additional numerical quantities that need to
be specified are the mesh spacings, the size of the box in
which the wave function is calculated, and the number of
mesh points. For our purposes here, calculating only the
electronic properties at a fixed ionic geometry, convergence
can be obtained with rather coarse meshes. We use a spheri-
cal box of radiusR to truncate the Cartesian lattice of mesh
points. The values we used are shown in Table I. As one
might expect, the alkali metals can be treated with much
coarser meshes that elements like carbon that form much
more compact structures.

Before presenting the results of the calculations with ionic
pseudopotentials, we show how the method compares with
the Green’s function technique for the jellium calculation.
We assume a jellium sphere with a density parameter
r s53.25 a.u. and a radius of 8.88 Å, corresponding to a
cluster of 138 lithium atoms, Li138. Figure 1 shows the RPA
result calculated with the Green’s function method as well as
the Fourier transform of the response calculated from the
time evolution of the Hamiltonian. The response is expressed
in units of the single-electron sum rule per eV; thus the in-
tegrated response gives the number of valence electrons. The
RPA calculation was done in a spherical basis, while the
TDLDA calculation was done in a three-dimensional mesh
as described above. For both calculations, the response has
been smoothed out by adding a small imaginary part to the
frequency~0.05 eV!. For the TDLDA computation, this is
done by including a damping factor exp(2gt) in the inte-
grand of the Fourier transform. The only difference one sees

between the two methods in Fig. 1 is the greater structure in
the TDLDA response above the ionization threshold. This is
a consequence of the finite box size in the TDLDA algo-
rithm; the Green’s function method treats the electron con-
tinuum explicitly.

We now examine some individual systems with the full
pseudopotential treatment. We start with sodium, which has
a rather weak pseudopotential. We consider the 147 atom
cluster arranged as a Mackey icosahedron. There is some
evidence12 that the ionization potentials of alkali metal clus-
ters have a periodicity corresponding to the Mackey icosahe-
dra. We took the nearest-neighbor distance between atoms in
adjacent layers to be 3.66 Å, corresponding to nearest-
neighbor spacing in the bulk metal~bcc lattice!. The re-
sponse is shown in Fig. 2, compared with the jellium model.
The peak at 3.0 eV agrees well with the jellium model. This
is not surprising; the pseudopotential for sodium is quite
weak and has a very small momentum dependence. The po-
sition of the resonance is about 15% higher than the empiri-
cally observed Mie resonance, leaving this long-standing dis-
crepancy between theory and experiment unresolved. Of
course, the geometry may well be more diffuse than we have
assumed, perhaps due to thermal motion.

The Mie resonance in Li clusters has the largest redshift
of any alkali metal clusters, making this system especially
interesting to gain a fundamental understanding of the red-
shifts. We again assume an icosahedral structure. Here, the
spacing between layers is taken as 3.02 Å, corresponding as
before to the nearest-neighbor distance in the bcc bulk struc-
ture. It is also of interest to see whether the high symmetry of
the icosahedron has an effect on the shape of the Mie reso-
nance, and so we have also calculated the response assuming
a different geometric structure for the cluster. It is possible to
enclose exactly 147 atoms in a sphere on an fcc lattice, and
we calculated this case as well. In Fig. 3, we compare the
pseudopotential-LDA calculation with experiment for both
structures. The fcc response is slightly broader than the
icosahedral. In both cases the theory is redshifted almost to
the full amount required by the experiment. This redshift is
due to the state dependence of the pseudopotential. We have
verified this by repeating the calculation with a state inde-

TABLE I. Numerical parameters in the TDLDA calculations.

System Dx ~Å! R ~Å! N Dt/\ ~eV21) Nt

Jellium ~Li 138) 1.5Å 15Å 4169 0.01eV21 5000
Li 147 0.8 15 27609 0.01 5000
Na147 0.8 15 27609 0.01 5000
C60 0.3 6.5 42691 0.001 5000

FIG. 1. Dipole response of a jellium sphere corresponding to the
cluster Li138. The solid line shows the RPA calculation using a
spherical Green’s function representation, and the dashed line
shows the result of real-time integration of the TDLDA equations
on a three-dimensional coordinate-space mesh.

FIG. 2. Comparison of jellium and pseudopotential Hamilto-
nians for the response of the sodium cluster Na147

1. The dashed
line shows the jellium calculation at a densityr s53.93 and the solid
line is the pseudopotential result.
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pendent potential, using thes-state pseudopotential in all
partial waves. Then the Mie resonance peaks at about 4 eV
instead of at 3 eV, close to the jellium position. The impor-
tance of the nonlocality of the pseudopotential for the red-
shift has been discussed earlier, using more simplified treat-
ments of the Hamiltonian.7,13,14 In Refs. 7 and 13 the
pseudopotential was spherically averaged in the Hamil-
tonian, losing the discreteness of the ionic structure. In our
own previous work, Ref. 14, we used contact pseudopoten-
tials, which also exhibit the qualitative effects associated
with nonlocality. While contact potentials are very conve-
nient to work with, they are of unproven reliability, and we
shall see, in the next example, that they can give misleading
results. It should also be mentioned that Ref. 14 also used a
separable form for the time-dependent electron-electron in-
teraction, which tends to give more collectivity to the Mie
resonance than more refined treatments of the interaction.

For completeness in the presentation of the real-time
method for solving TDLDA, we show in Fig. 4 the real-time
response of Li147

1. The dipole moment is plotted as a func-
tion of time.

Our final example is the response function for C60,
shown in Fig. 5. The valence space for carbon includes the

four electrons in thes andp orbitals, and the energy spread
of the single particle states is much larger than in the alkali
metals. For this system we had to use a mesh spacing of 0.3
Å to get a good convergence of the electronic calculation.
The required time step is also much smaller, due to the
higher frequency range of the response. We evolved the sys-
tem for a shorter time, so the energy resolution is poorer on
an absolute scale than for the previous examples. The main
features of the calculated response function are the small
peak at 7 eV, representing mainlyp electron excitations, and
the much larger broad structure between 15 and 25 eV, rep-
resentings electron excitations. The sum rule strength in the
p electron peak, obtained by integrating over energies in the
range 2–10 eV, is 9~out of 240 total, if the pseudopotential
were local!. Experimentally, there are several peaks, particu-
larly at 4.8 and 5.9 eV and the measured strength up to 7 eV
is 6.16 The calculation thus gives a reasonable strength in this
region, although it misses the detailed structure. Thes plas-
mon is very much broadened in the pseudopotential-based
TDLDA, whereas in simplified tight-binding models, it is
much narrower.17 Our results are similar to those of Ref. 6,
who calculated the pseudopotential-TDLDA response in a
frequency- and configuration-space representation. In a pre-
vious work,20 we calculated the C60 response using a contact
pseudopotential, which produced a broad distribution of
strength extending up to 60 eV. The strength at high energy
thus appears to be an artifact of the contact pseudopotential.

Another quantity of interest in C60 is its polarizability.
This may be extracted from the responseS using the formula

a5
e2

mE S~E!dE

E2 ,

where S is normalized according to the sum rule
*SdE5Ne . Our calculated polarizability isa580 Å3, in
good agreement with the value 85 Å3 that may be
obtained from the dielectric constante'4. Here, the tight-
binding model is rather far off, predictinga'45 Å3.FIG. 4. Time dependence of dipole moment in Li147

1.

FIG. 3. Pseudopotential calculations for lithium cluster re-
sponse, with two different models for the ionic geometry. The
dashed line shows Li147

1 with a spherically truncated fcc structure,
and the solid line shows Li147

1 with a Mackey icosahedral struc-
ture. Data points are from Ref. 18.

FIG. 5. Response for C60 with the pseudopotential-LDA Hamil-
tonian. The diamonds show the photoionization data of Ref. 19,
which has an arbitrary normalization. The dashed curve is the
TDLDA calculation of Ref. 6.
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