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Based on the Hubbard-Hirsch model, we studied the dynamical susceptibility and spin excitation of an
itinerant-electron system within the random-phase approximation by using a Green’s-function technique. It is
shown that the two-center matrix elements in the Hubbard-Hirsch model not only change the dynamic property
of the susceptibility, but also widen the gap between two spin subbands, which suppresses the electron-hole
single excitations. In contrast, the region of collective excitations of the spin becomes larger.@S0163-
1829~96!02825-1#

I. INTRODUCTION

The origin of ferromagnetism in transition metals has
been a controversial subject for quite a long time.1,2 This
controversy stems from the apparent dual character~itiner-
ancy and localization properties! of the d electrons respon-
sible for magnetism in transition metals. According to the
molecular-field theory of ferromagnetism of Weiss,3 the in-
teraction giving rise to the spontaneous magnetic order can
be represented by an internal molecular field. It was
Heisenberg4 who first realized that ferromagnetism is intrin-
sically a quantum many-body effect, and proposed the sce-
nario that spin-independent Coulomb interaction and the
Pauli exclusion principle result in the ‘‘exchange interac-
tion’’ between electronic spins. From the Weiss-Heisenberg
local model, the Curie-Weiss law is successfully explained.
However, a nonintegral number of Bohr magnetons cannot
be obtained for the atomic magnetic moment atT50 K. Con-
sequently, Stoner5 and Slater6 proposed an itinerant-electron
model based on Bloch’s work7 in the free-electron gas. Ac-
cording to Stoner, the 3d electrons of transition metals, in-
stead of being localized around particular nuclei, can move
from one ion to another through the crystal lattice. This
theory gives the nonintegral number of Bohr magnetons for
the atomic magnetic moment atT50 K, but fails at finite,
nonzero temperature. In 1963 Hubbard8 studied the electron
correlation due to the strong Coulomb interaction, and pro-
posed the famous Hubbard model. In this model, the hopping
integral describes the itinerancy tendency of electrons, while
the electron correlation describes the localization tendency.
In terms of the Hubbard model, the metal-insulator transition
is successfully explained,8 and metal magnetic properties
have been discussed. Within the mean-field approximation,
the Stoner model can be deduced from the single-band Hub-
bard model. However, the single-band Hubbard model ex-
hibits antiferromagnetism rather than ferromagnetism.9–11

Recently, Hirsch12–14 proposed that certain two-center
matrix elements that arise in the derivation of the Hubbard
Hamiltonian from first-principles calculations play a funda-
mental role in metallic ferromagnetism. It is shown that

when one electron is in the bonding state and the other in the
antibonding state, the contribution of the exchange integralJ
to the Coulomb energy is negative. By adding this term to
the Hubbard Hamiltonian, Hirsch obtained what we call the
Hubbard-Hirsch Hamiltonian. He showed that partial spin
polarization is naturally derived from the later model, which,
we think, is an important improvement over the Stoner
model.

However, in Hirsch’s works, the metallic ferromagnetism
is studied within the Hartree-Fock approximation~HFA!,
and the correlation of quasiparticles under thermal excitation
is neglected. A more complete theory should go beyond the
HFA and consider the electron-hole interaction. In fact,
many people15–17have investigated the spin wave energy of
a ferromagnet using the random-phase approximation~RPA!
in the Stoner model. Based on the Hubbard-Hirsch Hamil-
tonian, in this paper we study the spin excitation in an
itinerant-electron system with the RPA. The paper is orga-
nized as follows. In Sec. II we derive analytic expressions of
the dynamical susceptibility. In Sec. III we give the spin
excitation spectrum and some discussions. The conclusion is
given in Sec. IV.

II. DYNAMICAL SUSCEPTIBILITY

The Hubbard-Hirsch Hamiltonian is expressed as
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where t i j is the hopping integral,U is the usual Hubbard
on-site repulsion, andJ is an off-diagonal matrix element of
the Coulomb interaction between electrons on nearest-
neighbor sites. BothU and J are taken to be positive. By
Fourier transformation one can obtain the expression of the
Hubbard-Hirsch Hamiltonian in the energy-momentum space
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with Z being the number of nearest neighbors, andd the
vectors that connect a site to its nearest neighbors.

In order to calculate the dynamical susceptibility of the
spin system, we use the spin densities
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to define the Green’s function
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In the RPA, the general equation of the Green’s function,
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1~2q!&&v

5^@Ck1q,↓
1 Ck,↑ ,Ŝ
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is reduced to the following form:
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Then we can obtain the Green’s function
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We find from the above results that in comparison with the
Stoner model, the two-center matrix elements not only lead
U to change into (U12ZJ), but also give rise to an addi-
tional term (2ZJ/N)(q1

gq1
^nk1q1

& in Eks .
Summing over all wave numbers, from Eq.~10! we obtain

the dynamical spin susceptibility in the RPA,
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For the paramagnetic phase,
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Then
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xp(T) in Eq. ~19! is the Pauli paramagnetic susceptibility of
the free-electron gas.

III. MAGNETIC EXCITATION

The magnetic excitation spectrum is determined by the
poles of the dynamical susceptibility, i.e., from

x21~q,v!2150, ~20!

namely,
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This equation has solutions corresponding to the single or the
Stoner excitations as well as the spin-wave modes. First, we
discuss the Stoner excitation. The poles ofF(v) are

v5ek1q2ek1~U12ZJ!~^n↑&2^n↓&!

1
2ZJ

N (
q1

gq1
~^nk1q1

&2^nk1q1q1
&!. ~22!

Thus the thermal excitations resulting from the electronic
spin-flip excitations across the Fermi surface, which create
single-particle electron-hole pairs with opposite spins, must
exist in an itinerant magnet. Such excitations are called
single or Stoner excitations. Taking into account the effect of
two-center matrix elements, the gaps which the spin flips

must overcome are widened, so that the single excitations
will be suppressed. In the Stoner continuum the imaginary
part of G21(q,v) is not zero, however, it vanishes outside
of the Stoner continuum. This means that in the Stoner ex-
citations in Hubbard-Hirsch’s model the damping still exists.

In order to study the collective excitations outside of the
Stoner continuum, we expand (Ek1q2Ek) and (̂ nk1q1q1

&
2^nk1q&) in the long-wavelength limit as follows:
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From ~21!, ~23!, and~24!, we can obtain the following equa-
tion, from which the dispersion of spin waves are deter-
mined:

15F~v!52
Ũq
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Ũ5U12ZJ. ~27!

For a cubic crystal in the long-wavelength limit, we have
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Let Ek be at the spherical Fermi surface. From~29! and ~25!, we can obtain the collective excitation spectrum of the spin
system,
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Comparing our result with the collective excitation in Stoner
theory, we find that the effect of two-center matrix elements
not only change the dispersion of spin waves by
@U/N→(U/N)1(2ZJ/N)gq#, but also broaden the region
of collective excitations. That is to say, the collective exci-
tations become stronger when the effect of two-center matrix
elements are accounted for.

IV. CONCLUSION

Based on the spin-polarization ferromagnetism theory of

Hirsch, we have studied the dynamical susceptibility and
magnetic excitations of an itinerant-electron system with the
random-phase approximation. It has been found that the dy-
namical susceptibilityx21(q,v) is modified greatly, the gap
of spin flip is increased by 2ZJ(^n↑&2^n↓&), and inEks an
additional term (2ZJ/N)(q1

gq1
^nk1q1

& appears, when the
effect of two-center matrix elements are taken into account.
Thus the single excitations of the electron-hole pairs are sup-
pressed, while the region of collective excitations becomes
larger.
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