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I describe a method for calculating nonequilibrium fluctuations in degenerate conduction bands. The method
uses Green-function propagators to solve the one-particle Boltzmann equation. In the equilibrium limit of the
uniform electron gas, I confirm that the Nyquist noise theorem is recovered within this formalism.
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Solving the Boltzmann equation using Green functions is
a simple and direct method for calculating nonequilibrium
fluctuations of electrons in semiconductors. Their effective-
ness in high-field noise modeling was demonstrated by Stan-
ton and Wilkins1–3 for classical electrons. The recent exten-
sion of the Boltzmann-Green functions to degenerate
systems, within a relaxation-time approach,4 shows their util-
ity for calculating current noise in III-V heterojunctions5 and
their consequent importance for improved device optimiza-
tion.

For Maxwell-Boltzmann statistics, there is no explicit dis-
tinction between the one-particle distribution and its fluctua-
tion since they are strictly identical. What is different in my
treatment of nonequilibrium Fermi-Dirac systems is the iden-
tification of the separate evolutions of these objects. In the
classical limit they will of course coincide and the Stanton-
Wilkins theory1,2 is regained.

First, I describe a Boltzmann-Green-function formalism
adaptable to metallic electron systems with realistic collision
processes. Second, I verify an important property of the for-
malism in its low-field limit, the Nyquist theorem for degen-
erate conduction bands.6 Last, I comment on the inclusion of
many-body scattering processes within this approach.

For single-particle scattering situations, the semiclassical
Boltzmann equation for the electron distribution function
f s(r ,k;t) is
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The indexs labels the discrete subbands or valleys in a
multilevel system, as well as the spin state. The field-
dependent scattering rateS is assumed to satisfy microscopic
reversibility, so that Eq.~1! holds equally for degenerate and
classical populations.

To construct the time-dependent distribution and its fluc-
tuation, one must begin by generating the steady-state form
of f from the equilibrium solutionf s

eq(r ,k). For this we need
Eq. ~1! at equilibrium:
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where the self-consistent internal fieldE0(r ) is defined in the
absence of an external driving field. The quantitiesf eq and
E0 are linked by the usual constitutive relations, the first
being Poisson’s equation for the divergence ofE0(r ) in
terms of the densityn0(r )5^ f eq&5V21(k8,s8 f s8

eq(r ,k8)
~hereV is the sample element’s volume!. The second rela-
tion is the form of the equilibrium function itself,
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The gradient of the local potentialV0 is qE0 andEF is the
Fermi energy.

Define the difference function gs(r ,k)[ f s(r ,k)
2 f s

eq(r ,k). From each side of Eq.~1! in the steady state,
subtract its equilibrium counterpart. We obtain

vks–
]gs

]r
2
qE~r !

\
–

]gs

]k
5
q~E2E0!

\
–

] f s
eq

]k
1F] f s

]t G
coll

.

~4!

Recast@] f /]t#coll in terms ofg and f eq:
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Equations ~4! and ~5! define a standard integro-
differential equation forg, with an inhomogeneous term di-
rectly dependent onf eq:
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where ts
21(k;E)5(k8,s8Ss8s(k8,k;E) and the functional

C@ f eq# denotes the second sum of collision terms in Eq.~5!.
The adiabatic response of the system about its nonequi-

librium steady state is determined once the Boltzmann-Green
function
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is known.4 Since the difference solutiong is generated ex-
plicitly from f eq, the corresponding equation forG is easily
derived by taking variations everywhere in Eq.~6!. The
propagatorG determines the differential response of the non-
equilibrium system to arbitrary perturbations of the underly-
ing equilibrium state.

All of the steady-state fluctuation properties are definable
in terms ofG and the equilibrium background fluctuation
D f eq. In particular, the steady-state fluctuation of the particle
number is
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in which the equilibrium fluctuationD f eq is the density-
density correlation function in the static long-wavelength
limit,7 up to a factorkBT:
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Calculation of the time-dependent response requires the
dynamical Boltzmann-Green function
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with initial value Rss8(k,k8;r ,01)5dkk8dss8. In the fre-
quency domain, its Fourier transformR̂ satisfies the follow-
ing form of Eq.~1!:
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All of the dynamical fluctuation properties are definable
in terms ofR̂ and the nonequilibrium background fluctuation
D f . In particular, the dynamical velocity autocorrelation
function is
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Physically, Eq.~12! states that a random excursion of the
distribution function out of the nonequilibrium steady state
will undergo a dynamical evolution governed by Eq.~11!,
carrying with it the temporal correlations.8

I now show that the Nyquist theorem for degenerate, mul-
tilevel conduction bands holds within the Boltzmann-Green-
function prescription.~Reference 3, Appendix 2A, details the
proof for classical Boltzmann-Green functions.! Consider a
homogeneous electron gas, of densityns . The equilibrium
field E0 is zero. Let the driving field beE5Ex̂. Assuming
that the field dependence of the scattering rate vanishes faster
thanE, the functionalC@ f eq# can be dropped from Eq.~6!.

The form of the current density J52q^vxg&
52q/V(k,s(vx)ksgs(k) yields an expression for the dif-
ferential mobilitym:
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The derivative]gs /]E satisfies an equation obtained from
Eq. ~6! by differentiating each side:
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On the other hand, the difference propagatorG obeys the
equation

(
k9,s9

H dkk9dss9F2
qE
\

]

]kx9
1

1

ts~k9!G
2Sss9~k,k9!JGs9s8~k9,k8!5dkk8dss8

qE
\

]

]kx8
.

~15!

A comparison of Eqs.~14! and ~15! results in
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where(Gg;E2 in the low-field limit.
Now convolve the right-hand expression in the relation
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with Eq. ~11! in the static limitv→0. The resulting equation
is numerically equivalent to Eq.~6!. Therefore
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Combining Eqs.~13!, ~16!, and~18! whenE→0, I conclude
that
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which is the Einstein relation when the velocity autocorrela-
tion function is expressed in terms of the diffusion constant9

D̂xx[ns
21^^vxvx8D f̂ &&8.

The Nyquist theorem follows. For definiteness, take a
two-dimensional electron gas with sample areaV5LxLy .
Given the total current I and applied voltageV,
then ]J/]E5(I /Ly)/(V/Lx)5Lx

2/(VR), where R is the
macroscopic sample resistance. The current-current spectral
density for nsV carriers is given by9 SII (v,E)
[4nsV@(q/Lx)

2D̂xx(v,E)#. Thus Eq.~19! is equivalent to
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confirming that the Nyquist result is contained within the
fluctuation structure of this framework.

I close with some remarks on many-body effects. The
Boltzmann-Green function approach obviously gains in

scope with the inclusion of multiparticle scattering, be it
electron-electron, electron-phonon, or other. The cost of this
is a collision term nonlinear ing and linearized equations for
G andR, which now depend ong explicitly.10

At low densities and high temperatures, the present for-
malism describes a weakly coupled classical plasma, as in
the theory of Stanton and Wilkins.1–3 In the strongly degen-
erate limit of high density and low temperature, the domi-
nance ofEF over kBT means that collective plasma dynam-
ics are frozen out and Born-Oppenheimer mode decoupling
is valid.7 In this caseD f eq becomes, to a very good approxi-
mation, the density-density correlation function screened
with a static local-field correction.11,12

In the intermediate regime, the tools of choice for trans-
port problems are quantum-kinetic equations.13,14 For high
fields, however, truly practical calculations, especially of
noise, are rare. Simplified quantum-kinetic formulations with
Boltzmann-like structures have been set up to deal with spe-
cific problems10,15,16and it may be possible to extend them.
The conceptual similarity between nonequilibrium
Boltzmann-Green functions and the particle-hole vertex
propagators of many-body theory7 encourages further inves-
tigation.
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