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Boltzmann-Green functions for nonequilibrium fluctuations in metallic systems
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| describe a method for calculating nonequilibrium fluctuations in degenerate conduction bands. The method
uses Green-function propagators to solve the one-particle Boltzmann equation. In the equilibrium limit of the
uniform electron gas, | confirm that the Nyquist noise theorem is recovered within this formalism.
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Solving the Boltzmann equation using Green functions is 9t qEy(r) ofd

a simple and direct method for calculating nonequilibrium Vi, ————5—- =-— 2 [S,o(k' K Eg)fSYr k)
: . . ) . ar h ak et

fluctuations of electrons in semiconductors. Their effective- k',o
ness in high-field noise modeling was demonstrated by Stan-
ton and Wilkind=3for classical electrons. The recent exten-
sion of the Boltzmann-Green functions to degenerate
systems, within a relaxation-time approdahows their util-

ity for calculating current noise in 1ll-V heterojunctichand  \here the self-consistent internal figig(r) is defined in the
t_helr consequent importance for improved device optimizazpsence of an external driving field. The quantiti€sand
tion. o ) .. . Eq are linked by the usual constitutive relations, the first
For Maxwell-Boltzmann statistics, there is no explicit dis- being Poisson’s equation for the divergence Bj(r) in
tinction between the one-particle distribution and its fluctua—terms of the densityng(r)=(f*H=0"1%,, 'f°%(r k')

tion since they are strictly identical. What is different in my (here€) is the sample element's volumeThe second rela-
treatment of nonequilibrium Fermi-Dirac systems is the iden-. "~ P e A
tification of the separate evolutions of these objects. In théIon is the form of the equilibrium function itself,
classical limit they will of course coincide and the Stanton-
Wilkins theory? is regained. . 3 1

First, | describe a Boltzmann-Green-function formalism folrk)= 1+exp[E,(k)+Vo(r)—Eg]/kgT} )
adaptable to metallic electron systems with realistic collision
processes. Second, | verify an important property of the forthe gradient of the local potentisdy is qE, andEg is the
malism in its Ipw-fleld limit, the Nyquist theorem for dpgen- Fermi energy.
erate conduction bgn&sl.ast, | comment on the inclusion of Define the difference function g, (r,k)="f,(r k)
many-body scattering processes within this approach. —£%{r,k). From each side of Eq) in the steady state,

For single-particle scattering situations, the semiclassical ,yiract its equilibrium counterpart. We obtain
Boltzmann equation for the electron distribution function '
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fo(r.k;t) is
99, QE(r) d9, Q(E—Ey) afg! [of,
Moy, 2o GED 9ty Yeor T T ek Tk ok Lat)
ot ar h ok (4)
of, .
:[W} Recasf df/dt]q in terms ofg and f€%
coll
of,
== 2 [Syrolk KE) (1K) {—} =— > [Syro(k’K;E)gy(r.k)
k/,O'/ at CO” k’,o’l
— S, (KK E)f (k' D) ]. (1)

=Sy (KK ;E)gy (1K) ]— S, (k' K E
The indexo labels the discrete subbands or valleys in a vo( 19,:(r.K)] k,% i ( )

multilevel system, as well as the spin state. The field- ) o ,

dependent scattering rads assumed to satisfy microscopic =Sy oK' K;EQ) 1531, k) =[S, (K, k'S E)

reversibility, so that Eg(1) holds equally for degenerate and . e ,

classical p)(/)pulations.q e ’ =Sy (kK EQ) I KN} ®)
To construct the time-dependent distribution and its fluc-

tuation, one must begin by generating the steady-state form Equations (4) and (5) define a standard integro-

of f from the equilibrium solutiorf$Yr,k). For this we need differential equation fog, with an inhomogeneous term di-

Eqg. (1) at equilibrium: rectly dependent of®%
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(12)
_A(E-Ep) 4 . _ Physically, Eq.(12) states that a random excursion of the
B h 'a_kfga(r’k)+C”[f ArKE), ©) distribution function out of the nonequilibrium steady state

. . . ) will undergo a dynamical evolution governed by Hdl),
where 7, (K;E) =2 'Sy (k',K;E) and the functional  carrying with it the temporal correlatiofs.

C[f*9 denotes the second sum of collision terms in &) | how show that the Nyquist theorem for degenerate, mul-
_ The adiabatic response of the system about its nonequjevel conduction bands holds within the Boltzmann-Green-
librium steady state is determined once the Boltzmann-Greeg,nction prescription(Reference 3, Appendix 2A, details the

function proof for classical Boltzmann-Green function€onsider a
59, (1K) homogeneous electron gas, of density The equilibrium
Gy (k,k';r)= eg : (7)  field Eq is zero. Let the driving field bé&=&X. Assuming

of i (r,k’) that the field dependence of the scattering rate vanishes faster

than&, the functionalC[ f¢9] can be dropped from Ed6).

The form of the current densityJ=—q(v.Q)
=—-0/Q3y ;(vy)ke9,(K) yields an expression for the dif-
ferential mobility w:

is known? Since the difference solutiog is generated ex-
plicitly from €9, the corresponding equation f& is easily
derived by taking variations everywhere in E@). The
propagatoG determines the differential response of the non
equilibrium system to arbitrary perturbations of the underly- 1 43 1
ing equilibrium state. n(E)
All of the steady-state fluctuation properties are definable

in terms of G and the equilibrium background fluctuation
Af®9 In particular, the steady-state fluctuation of the particle

99,

Tang € ngg% (ks e (). (13

The derivativerg,, / € satisfies an equation obtained from
Eq. (6) by differentiating each side:

number is
£ 9 1
Af,(r,k)=Afqr k)+Ag,(r,k) 5 |9 9
k%—’ 5kk 50’0’ A ﬁk)'( + ’Ta.(k’)
=AFrK)+ D G (kK ;r)AFEN(r k), a9, q 4
’0" - ! ! = N=—— q .
k', Sw(k,k)]—ag (k") “kx(fﬁga) (14)

®)

in which the equilibrium fluctuatiorAf®9 is the density-
density correlation function in the static long-wavelengt
limit,” up to a factorkgT:

On the other hand, the difference propaga®mobeys the
hequation

g€ 4 1
" nl T T T, + T
1o 2 {‘5“ oo { h K, n(k”J
AfSAr,k)=kgT =f%q1—f9). 9 ’
(o8 (9EF ag (o8 qg (9
. . . _Sm’r”(k7k”) G(r”(r’(kwik’):5kk’5(r(r’__/-
Calculation of the time-dependent response requires the h dky
dynamical Boltzmann-Green function (15)
Sf 4(r,k;t A comparison of Eqs(14) and(15) results in
R (K51 -t = 01—t ) Y g P Ao and(is
Sf g (r,k’;t") ” 1
with initial value R, (k,k';r,0%)= 84 8,,:. In the fre- a—;(k)=g(ga(k)+k2, Gwr(k,k’)ggr(k’))- (16)
guency domain, its Fourier transforR satisfies the follow- 7
ing form of Eq.(1): where=Gg~ £2 in the low-field limit.
Now convolve the right-hand expression in the relation
2 P d QqE(r) o N 1 ]
o kk” Qg o Vk”a"ﬁ —ﬁ .W —To_(k";E) lw afiq 3

&kx :_kB_T(UX)k(TAf?TO(k)i (17)

—S(mu(k,k”;E)]R(,,,(,,(k”,k’;r,w)z S Oer- (1D with Eq.(11) in the static limitw— 0. The resulting equation
is numerically equivalent to Ed6). Therefore
All of the dynamical fluctuation properties are definable
in terms ofR and the nonequilibrium background fluctuation 9o(k) __ 9 E R (KK 0=0) (0,0 AFEI(K).

Af. In particular, the dynamical velocity autocorrelation £ KeT\
function is (18
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Combining Eqgs(13), (16), and(18) when£—0, | conclude
that

p= e (ewiate=0))" (19
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scope with the inclusion of multiparticle scattering, be it
electron-electron, electron-phonon, or other. The cost of this
is a collision term nonlinear ig and linearized equations for
G andR, which now depend og explicitly.*

At low densities and high temperatures, the present for-

which is the Einstein relation when the velocity autocorrela-malism describes a weakly .co_ugzlsed classical plasma, as in
tion function is expressed in terms of the diffusion constant the theory of Stanton and Wilkirfs® In the strongly degen-

DxxEns_l<<va>,<Af>>"

erate limit of high density and low temperature, the domi-

The Nyquist theorem follows. For definiteness, take ah@nce ofEg overkgT means that collective plasma dynam-

two-dimensional electron gas with sample afeaL,L, .
Given the total currentl and applied voltageV,
then aJ/aéI:(I/Ly)/(V/LX)=Li/(QR), where R is the

macroscopic sample resistance. The current-current spectry

density for n) carriers is given by S'(w.&)
=4n0[(9/L,)?D(w,£)]. Thus Eq.(19) is equivalent to

S'(0,0) =4kBT%, (20

confirming that the Nyquist result is contained within the The

fluctuation structure of this framework.

ics are frozen out and Born-Oppenheimer mode decoupling
is valid.” In this caseA f®dbecomes, to a very good approxi-
mation, the density-density correlation function screened
jth a static local-field correctiohi*?

In the intermediate regime, the tools of choice for trans-
port problems are quantum-kinetic equations’ For high
fields, however, truly practical calculations, especially of
noise, are rare. Simplified quantum-kinetic formulations with
Boltzmann-like structures have been set up to deal with spe-
cific problemd%®1®and it may be possible to extend them.
conceptual similarity between nonequilibrium
Boltzmann-Green functions and the particle-hole vertex

| close with some remarks on many-body effects. Thepropagators of many-body thedrgncourages further inves-
Boltzmann-Green function approach obviously gains intigation.
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